5,657 research outputs found

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Distributed simulation optimization and parameter exploration framework for the cloud

    Get PDF
    Simulation models are becoming an increasingly popular tool for the analysis and optimization of complex real systems in different fields. Finding an optimal system design requires performing a large sweep over the parameter space in an organized way. Hence, the model optimization process is extremely demanding from a computational point of view, as it requires careful, time-consuming, complex orchestration of coordinated executions. In this paper, we present the design of SOF (Simulation Optimization and exploration Framework in the cloud), a framework which exploits the computing power of a cloud computational environment in order to carry out effective and efficient simulation optimization strategies. SOF offers several attractive features. Firstly, SOF requires “zero configuration” as it does not require any additional software installed on the remote node; only standard Apache Hadoop and SSH access are sufficient. Secondly, SOF is transparent to the user, since the user is totally unaware that the system operates on a distributed environment. Finally, SOF is highly customizable and programmable, since it enables the running of different simulation optimization scenarios using diverse programming languages – provided that the hosting platform supports them – and different simulation toolkits, as developed by the modeler. The tool has been fully developed and is available on a public repository1 under the terms of the open source Apache License. It has been tested and validated on several private platforms, such as a dedicated cluster of workstations, as well as on public platforms, including the Hortonworks Data Platform and Amazon Web Services Elastic MapReduce solution

    Graphical User Interface (GUI) Development for an Optical Communication Simulator

    Get PDF
    Modeling and simulation tools have been an integral part of engineering world for a long time. Various Electronic Design Automation (EDA) tools have been extensively used in various industries and research to evaluate the performance of electronic systems. The advancement of such design tools also has influenced the optical communication sector such that there has been a continuous progress on the Photonic Design Automation (PDA) tools. Currently, many software for simulating optical communications are available. However, they are very expensive and conceal the information on how components are modeled. To avoid these constraints, we developed our own PDA software for optical communication. This thesis delves into the development of Graphical User Interface (GUI) of our software. The studied GUI software conforms to the feature of standard simulation software and assists the users to perform a system-level simulation of fiber optic communication. The developed GUI allows the users to design their layout, run the simulation and view the results in the form of data or plot. The GUI is explained with respect to the graphical layout and the interactive features of the components. The detailed structure is described along with the Java library used to build them. The interactive aspects of GUI are investigated, for adding the hierarchical feature to our GUI software. In addition, a plotting tool is created for the GUI. The thesis provides comprehensive information on working principle of GUI for simulation software and describes the addition of plotting tool and hierarchical design in detail

    SOCR: Statistics Online Computational Resource

    Get PDF
    The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an integrated educational web-based framework for: interactive distribution modeling, virtual online probability experimentation, statistical data analysis, visualization and integration. Following years of experience in statistical teaching at all college levels using established licensed statistical software packages, like STATA, S-PLUS, R, SPSS, SAS, Systat, etc., we have attempted to engineer a new statistics education environment, the Statistics Online Computational Resource (SOCR). This resource performs many of the standard types of statistical analysis, much like other classical tools. In addition, it is designed in a plug-in object-oriented architecture and is completely platform independent, web-based, interactive, extensible and secure. Over the past 4 years we have tested, fine-tuned and reanalyzed the SOCR framework in many of our undergraduate and graduate probability and statistics courses and have evidence that SOCR resources build student's intuition and enhance their learning.

    Simulation modelling and visualisation: toolkits for building artificial worlds

    Get PDF
    Simulations users at all levels make heavy use of compute resources to drive computational simulations for greatly varying applications areas of research using different simulation paradigms. Simulations are implemented in many software forms, ranging from highly standardised and general models that run in proprietary software packages to ad hoc hand-crafted simulations codes for very specific applications. Visualisation of the workings or results of a simulation is another highly valuable capability for simulation developers and practitioners. There are many different software libraries and methods available for creating a visualisation layer for simulations, and it is often a difficult and time-consuming process to assemble a toolkit of these libraries and other resources that best suits a particular simulation model. We present here a break-down of the main simulation paradigms, and discuss differing toolkits and approaches that different researchers have taken to tackle coupled simulation and visualisation in each paradigm

    How to Correctly Deal With Pseudorandom Numbers in Manycore Environments - Application to GPU programming with Shoverand

    Get PDF
    International audienceStochastic simulations are often sensitive to the source of randomness that character-izes the statistical quality of their results. Consequently, we need highly reliable Random Number Generators (RNGs) to feed such applications. Recent developments try to shrink the computa-tion time by relying more and more General Purpose Graphics Processing Units (GP-GPUs) to speed-up stochastic simulations. Such devices bring new parallelization possibilities, but they also introduce new programming difficulties. Since RNGs are at the base of any stochastic simulation, they also need to be ported to GP-GPU. There is still a lack of well-designed implementations of quality-proven RNGs on GP-GPU platforms. In this paper, we introduce ShoveRand, a frame-work defining common rules to generate random numbers uniformly on GP-GPU. Our framework is designed to cope with any GPU-enabled development platform and to expose a straightfor-ward interface to users. We also provide an existing RNG implementation with this framework to demonstrate its efficiency in both development and ease of use
    • 

    corecore