396 research outputs found

    Practical global illumination for interactive particle visualization

    Get PDF
    ManuscriptParticle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. We present two algorithms targeting upcoming, highly parallel multicore desktop systems to enable interactive navigation and exploration of large particle datasets with global illumination effects. Monte Carlo path tracing and texture mapping are used to capture computationally expensive illumination effects such as soft shadows and diffuse interreflection. The first approach is based on precomputation of luminance textures and removes expensive illumination calculations from the interactive rendering pipeline. The second approach is based on dynamic luminance texture generation and decouples interactive rendering from the computation of global illumination effects. These algorithms provide visual cues that enhance the ability to perform analysis and feature detection tasks while interrogating the data at interactive rates. We explore the performance of these algorithms and demonstrate their effectiveness using several large datasets

    Stochastic Volume Rendering of Multi-Phase SPH Data

    Get PDF
    In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes

    Doctor of Philosophy

    Get PDF
    dissertationVisualizing surfaces is a fundamental technique in computer science and is frequently used across a wide range of fields such as computer graphics, biology, engineering, and scientific visualization. In many cases, visualizing an interface between boundaries can provide meaningful analysis or simplification of complex data. Some examples include physical simulation for animation, multimaterial mesh extraction in biophysiology, flow on airfoils in aeronautics, and integral surfaces. However, the quest for high-quality visualization, coupled with increasingly complex data, comes with a high computational cost. Therefore, new techniques are needed to solve surface visualization problems within a reasonable amount of time while also providing sophisticated visuals that are meaningful to scientists and engineers. In this dissertation, novel techniques are presented to facilitate surface visualization. First, a particle system for mesh extraction is parallelized on the graphics processing unit (GPU) with a red-black update scheme to achieve an order of magnitude speed-up over a central processing unit (CPU) implementation. Next, extending the red-black technique to multiple materials showed inefficiencies on the GPU. Therefore, we borrow the underlying data structure from the closest point method, the closest point embedding, and the particle system solver is switched to hierarchical octree-based approach on the GPU. Third, to demonstrate that the closest point embedding is a fast, flexible data structure for surface particles, it is adapted to unsteady surface flow visualization at near-interactive speeds. Finally, the closest point embedding is a three-dimensional dense structure that does not scale well. Therefore, we introduce a closest point sparse octree that allows the closest point embedding to scale to higher resolution. Further, we demonstrate unsteady line integral convolution using the closest point method

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Beyond ExaBricks: GPU Volume Path Tracing of AMR Data

    Full text link
    Adaptive Mesh Refinement (AMR) is becoming a prevalent data representation for scientific visualization. Resulting from large fluid mechanics simulations, the data is usually cell centric, imposing a number of challenges for high quality reconstruction at sample positions. While recent work has concentrated on real-time volume and isosurface rendering on GPUs, the rendering methods used still focus on simple lighting models without scattering events and global illumination. As in other areas of rendering, key to real-time performance are acceleration data structures; in this work we analyze the major bottlenecks of data structures that were originally optimized for camera/primary ray traversal when used with the incoherent ray tracing workload of a volumetric path tracer, and propose strategies to overcome the challenges coming with this

    QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets

    Get PDF
    We introduce QuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits the data redundancy often found in layered datasets which are common in science and engineering fields such as geology, biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks which are then compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression rates (4× to 54× of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering. We show that our GPU implementation performs comparably in speed with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint

    Terrain guided multi-level instancing of highly complex plant populations

    Get PDF
    corecore