80,885 research outputs found

    Human Shape-Motion Analysis In Athletics Videos for Coarse To Fine Action/Activity Recognition Using Transferable BeliefModel

    Get PDF
    We present an automatic human shape-motion analysis method based on a fusion architecture for human action and activity recognition in athletic videos. Robust shape and motion features are extracted from human detection and tracking. The features are combined within the Transferable Belief Model (TBM framework for two levels of recognition. The TBM-based modelling of the fusion process allows to take into account imprecision, uncertainty and conflict inherent to the features. First, in a coarse step, actions are roughly recognized. Then, in a fine step, an action sequence recognition method is used to discriminate activities. Belief on actions are made smooth by a Temporal Credal Filter and action sequences, i.e. activities, are recognized using a state machine, called belief scheduler, based on TBM. The belief scheduler is also exploited for feedback information extraction in order to improve tracking results. The system is tested on real videos of athletics meetings to recognize four types of actions (running, jumping, falling and standing) and four types of activities (high jump, pole vault, triple jump and long jump). Results on actions, activities and feedback demonstrate the relevance of the proposed features and as well the efficiency of the proposed recognition approach based on TBM

    Fine-grained Image Classification by Exploring Bipartite-Graph Labels

    Full text link
    Given a food image, can a fine-grained object recognition engine tell "which restaurant which dish" the food belongs to? Such ultra-fine grained image recognition is the key for many applications like search by images, but it is very challenging because it needs to discern subtle difference between classes while dealing with the scarcity of training data. Fortunately, the ultra-fine granularity naturally brings rich relationships among object classes. This paper proposes a novel approach to exploit the rich relationships through bipartite-graph labels (BGL). We show how to model BGL in an overall convolutional neural networks and the resulting system can be optimized through back-propagation. We also show that it is computationally efficient in inference thanks to the bipartite structure. To facilitate the study, we construct a new food benchmark dataset, which consists of 37,885 food images collected from 6 restaurants and totally 975 menus. Experimental results on this new food and three other datasets demonstrates BGL advances previous works in fine-grained object recognition. An online demo is available at http://www.f-zhou.com/fg_demo/

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors

    Full text link
    We present a method to infer 3D pose and shape of vehicles from a single image. To tackle this ill-posed problem, we optimize two-scale projection consistency between the generated 3D hypotheses and their 2D pseudo-measurements. Specifically, we use a morphable wireframe model to generate a fine-scaled representation of vehicle shape and pose. To reduce its sensitivity to 2D landmarks, we jointly model the 3D bounding box as a coarse representation which improves robustness. We also integrate three task priors, including unsupervised monocular depth, a ground plane constraint as well as vehicle shape priors, with forward projection errors into an overall energy function.Comment: Proc. of the AAAI, September 201

    A Study of Actor and Action Semantic Retention in Video Supervoxel Segmentation

    Full text link
    Existing methods in the semantic computer vision community seem unable to deal with the explosion and richness of modern, open-source and social video content. Although sophisticated methods such as object detection or bag-of-words models have been well studied, they typically operate on low level features and ultimately suffer from either scalability issues or a lack of semantic meaning. On the other hand, video supervoxel segmentation has recently been established and applied to large scale data processing, which potentially serves as an intermediate representation to high level video semantic extraction. The supervoxels are rich decompositions of the video content: they capture object shape and motion well. However, it is not yet known if the supervoxel segmentation retains the semantics of the underlying video content. In this paper, we conduct a systematic study of how well the actor and action semantics are retained in video supervoxel segmentation. Our study has human observers watching supervoxel segmentation videos and trying to discriminate both actor (human or animal) and action (one of eight everyday actions). We gather and analyze a large set of 640 human perceptions over 96 videos in 3 different supervoxel scales. Furthermore, we conduct machine recognition experiments on a feature defined on supervoxel segmentation, called supervoxel shape context, which is inspired by the higher order processes in human perception. Our ultimate findings suggest that a significant amount of semantics have been well retained in the video supervoxel segmentation and can be used for further video analysis.Comment: This article is in review at the International Journal of Semantic Computin
    • …
    corecore