62,432 research outputs found

    A cloud-based energy management system for building managers

    Get PDF
    A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK

    kube-volttron: Rearchitecting the VOLTTRON Building Energy Management System for Cloud Native Deployment

    Full text link
    Managing the energy consumption of the built environment is an important source of flexible load and decarbonization, enabling building managers and utilities to schedule consumption to avoid costly demand charges and peak times when carbon emissions from grid generated electricity are highest. A key technology component in building energy management is the building energy management system. Eclipse VOLTTRON is a legacy software platform which enables building energy management. It was developed for the US Department of Energy (DOE) at Pacific Northwest National Labs (PNNL) written in Python and based on a monolithic build-configure-and-run-in-place system architecture that predates cloud native architectural concepts. Yet the software architecture is componentized in a way that anticipates modular containerized applications, with software agents handling functions like data storage, web access, and communication with IoT devices over specific IoT protocols such as BACnet and Modbus. The agents communicate among themselves over a message bus. This paper describes a proof-of-concept prototype to rearchitect VOLTTRON into a collection of microservices suitable for deployment on the Kubernetes cloud native container orchestration platform. The agents are packaged in redistributable containers that perform specific functions and which can be configured when they are deployed. The deployment architecture consists of single Kubernetes cluster containing a central node, nominally in a cloud-based VM, where a microservice containing the database agent (called a "historian") and the web site agent for the service run, and gateway nodes running on sites in buildings where a microservice containing IoT protocol-specific agents handles control and data collection to and from devices, and communication back to the central node

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenÅ› behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity

    Smarter grid through collective intelligence: user awareness for enhanced performance

    Get PDF
    This paper examines the scenario of a university campus, and the impact on energy consumption of the awareness of building managers and users (lecturers, students and administrative staff).Peer ReviewedPostprint (published version

    The role of linked data and the semantic web in building operation

    Get PDF
    Effective Decision Support Systems (DSS) for building service managers require adequate performance data from many building data silos in order to deliver a complete view of building performance. Current performance analysis techniques tend to focus on a limited number of data sources, such as BMS measured data (temperature, humidity, C02), excluding a wealth of other data sources increasingly available in the modern building, including weather data, occupant feedback, mobile sensors & feedback systems, schedule information, equipment usage information. This paper investigates the potential for using Linked Data and Semantic Web technologies to improve interoperability across AEC domains, overcoming many of the roadblocks hindering information transfer currently

    A Platform for Proactive, Risk-Based Slope Asset Management, Phase II

    Get PDF
    INE/AUTC 15.0
    • …
    corecore