20,552 research outputs found

    A cloud robotics architecture for an emergency management and monitoring service in a smart cityenvironment

    Get PDF
    Cloud robotics is revolutionizing not only the robotics industry but also the ICT world, giving robots more storage and computing capacity, opening new scenarios that blend the physical to the digital world. In this vision new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. In this paper a possible implementation of a cloud robotics architecture for the interaction between users and UAVs is described. Using the latter as monitoring agents, a service for fighting crime in urban environment is proposed, making one step forward towards the idea of smart cit

    A cloud robotics architecture for an emergency management and monitoring service in a smart cityenvironment

    Get PDF
    Cloud robotics is revolutionizing not only the robotics industry but also the ICT world, giving robots more storage and computing capacity, opening new scenarios that blend the physical to the digital world. In this vision new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. In this paper a possible implementation of a cloud robotics architecture for the interaction between users and UAVs is described. Using the latter as monitoring agents, a service for fighting crime in urban environment is proposed, making one step forward towards the idea of smart city

    Design of cloud robotic services for senior citizens to improve independent living in multiple environments

    Get PDF
    The paper proposed a cloud robotic solution for the healthcare management of senior citizens, to demonstrate the opportunity to remotely provide continuous assistive robotic services to a number of seniors regardless to their position in the monitored environment. In particular, a medication reminding, a remote home monitoring and an user indoor localization service were outsourced in the cloud and provided to the robots, users and caregivers on request. The proposed system was composed of a number of robotic agents distributed over two smart environments: a flat at the Domocasa Lab (Peccioli, IT) and a condominium at the Angen site of the Orebro science park (Orebro, SE). The cloud acquired data from remote smart environments and enabled the local robots to provide advanced assistive services to a number of users. The proposed smart environments were able to collect raw data for the environmental monitoring and the localization of the users by means of wireless sensors, and provide such data to the cloud. On the cloud, specific algorithms improved the local robots, by providing event scheduling to accomplish assistive services and situation awareness on the users position and environments’ status. The indoor user localization service, was provided by means of commercial and ad-hoc sensors distributed over the environments and a sensor fusion algorithm on the cloud. The entire cloud solution was evaluated in terms of Quality of Service (QoS) to estimate the effectiveness of the architecture

    MyBot: Cloud-Based Service Robot using Service-Oriented Architecture

    Get PDF
    This paper is an extended version of the conference paper presented in IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2016).This paper presents a viable solution for the development of service robots by leveraging cloud and Web services technologies, modular software architecture design, and Robot Operating System (ROS). The contributions of this paper are two- folded (1) Design of ROS Web services to provide new abstract interfaces to service robots that makes easier the interaction with and the development of service robots applications, and (2) Integration of the service robot to the cloud using the ROSLink protocol. We demonstrate through real-world implementation on the MyBot robot the effectiveness of these software abstraction layers in developing applications for service robots through the Internet and the cloud, and in accessing them through Internet. We believe that this work represents an important step towards a more popular use of service robots.info:eu-repo/semantics/publishedVersio

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity
    • …
    corecore