673 research outputs found

    A Centralized Mechanism to Make Predictions Based on Data From Multiple WSNs

    Full text link
    In this work, we present a method that exploits a scenario with inter-Wireless Sensor Networks (WSNs) information exchange by making predictions and adapting the workload of a WSN according to their outcomes. We show the feasibility of an approach that intelligently utilizes information produced by other WSNs that may or not belong to the same administrative domain. To illustrate how the predictions using data from external WSNs can be utilized, a specific use-case is considered, where the operation of a WSN measuring relative humidity is optimized using the data obtained from a WSN measuring temperature. Based on a dedicated performance score, the simulation results show that this new approach can find the optimal operating point associated to the trade-off between energy consumption and quality of measurements. Moreover, we outline the additional challenges that need to be overcome, and draw conclusions to guide the future work in this field.Comment: 10 pages, simulation results and figures. Published i

    A Simple Flood Forecasting Scheme Using Wireless Sensor Networks

    Full text link
    This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.Comment: 16 pages, 4 figures, published in International Journal Of Ad-Hoc, Sensor And Ubiquitous Computing, February 2012; V. seal et al, 'A Simple Flood Forecasting Scheme Using Wireless Sensor Networks', IJASUC, Feb.201

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Malicious node detection using machine learning and distributed data storage using blockchain in WSNs

    Get PDF
    In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage. © 2013 IEEE

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table
    • …
    corecore