14 research outputs found

    An Explicit Framework for Interaction Nets

    Full text link
    Interaction nets are a graphical formalism inspired by Linear Logic proof-nets often used for studying higher order rewriting e.g. \Beta-reduction. Traditional presentations of interaction nets are based on graph theory and rely on elementary properties of graph theory. We give here a more explicit presentation based on notions borrowed from Girard's Geometry of Interaction: interaction nets are presented as partial permutations and a composition of nets, the gluing, is derived from the execution formula. We then define contexts and reduction as the context closure of rules. We prove strong confluence of the reduction within our framework and show how interaction nets can be viewed as the quotient of some generalized proof-nets

    On the functor l^2

    Full text link
    We study the functor l^2 from the category of partial injections to the category of Hilbert spaces. The former category is finitely accessible, and its homsets are algebraic domains; the latter category has conditionally algebraic domains for homsets. The functor preserves daggers, monoidal structures, enrichment, and various (co)limits, but has no adjoints. Up to unitaries, its direct image consists precisely of the partial isometries, but its essential image consists of all continuous linear maps between Hilbert spaces.Comment: 13 pages; updated Proposition 2.1

    Observational Equivalence and Full Abstraction in the Symmetric Interaction Combinators

    Full text link
    The symmetric interaction combinators are an equally expressive variant of Lafont's interaction combinators. They are a graph-rewriting model of deterministic computation. We define two notions of observational equivalence for them, analogous to normal form and head normal form equivalence in the lambda-calculus. Then, we prove a full abstraction result for each of the two equivalences. This is obtained by interpreting nets as certain subsets of the Cantor space, called edifices, which play the same role as Boehm trees in the theory of the lambda-calculus

    A Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments

    Full text link
    We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier and fragments of linear logic. We expose for this purpose a modified construction of Girard's hyperfinite geometry of interaction which interprets proofs as operators in a von Neumann algebra. The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions

    On traced monoidal closed categories

    Full text link

    On the Resolution Semiring

    Get PDF
    In this thesis, we study a semiring structure with a product based on theresolution rule of logic programming. This mathematical object was introducedinitially in the setting of the geometry of interaction program in order to modelthe cut-elimination procedure of linear logic. It provides us with an algebraicand abstract setting, while being presented in a syntactic and concrete way, inwhich a theoretical study of computation can be carried on.We will review first the interactive interpretation of proof theory withinthis semiring via the categorical axiomatization of the geometry of interactionapproach. This interpretation establishes a way to translate functional programsinto a very simple form of logic programs.Secondly, complexity theory problematics will be considered: while thenilpotency problem in the semiring we study is undecidable in general, it willappear that certain restrictions allow for characterizations of (deterministicand non-deterministic) logarithmic space and (deterministic) polynomial timecomputation

    Denotational validation of higher-order Bayesian inference

    Get PDF
    We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem
    corecore