11 research outputs found

    Storing and Indexing Plan Derivations through Explanation-based Analysis of Retrieval Failures

    Full text link
    Case-Based Planning (CBP) provides a way of scaling up domain-independent planning to solve large problems in complex domains. It replaces the detailed and lengthy search for a solution with the retrieval and adaptation of previous planning experiences. In general, CBP has been demonstrated to improve performance over generative (from-scratch) planning. However, the performance improvements it provides are dependent on adequate judgements as to problem similarity. In particular, although CBP may substantially reduce planning effort overall, it is subject to a mis-retrieval problem. The success of CBP depends on these retrieval errors being relatively rare. This paper describes the design and implementation of a replay framework for the case-based planner DERSNLP+EBL. DERSNLP+EBL extends current CBP methodology by incorporating explanation-based learning techniques that allow it to explain and learn from the retrieval failures it encounters. These techniques are used to refine judgements about case similarity in response to feedback when a wrong decision has been made. The same failure analysis is used in building the case library, through the addition of repairing cases. Large problems are split and stored as single goal subproblems. Multi-goal problems are stored only when these smaller cases fail to be merged into a full solution. An empirical evaluation of this approach demonstrates the advantage of learning from experienced retrieval failure.Comment: See http://www.jair.org/ for any accompanying file

    Automata-Theoretic Approaches to Planning in Robotics: Combinatorial Filter Minimization, Planning to Chronicle, Temporal Logic Planning With Soft Specifications, and Sensor Selection for Detecting Deviations From a Planned Itinerary

    Get PDF
    In this dissertation, we present a collection of new planning algorithms that enable robots to achieve complex goals, beyond simple point-to-point path planning, using automata-theoretic methods, and we consider the filter minimization (FM) problem and a variant of it, filter partitioning minimization (FPM) problem, which aims to minimize combinatorial filters, used for filtering and automata-theoretic planning in systems with discrete sensor data. We introduce a new variant of bisimulation, compatibility, and using this notion we identify several classes of filters for which FM or FPM is solvable in polynomial time, and propose several integer linear programming (ILP) formulations of FM and FPM. Then, we consider a problem, planning to chronicle, in which a robot is tasked with observing an uncertain time-extended process to produce a ‘chronicle’ of occurrent events that meets a given specification. This problem is useful in applications where we deploy robots to autonomously make structured videos or documentaries from events occurring in an unpredictable environment. Next, we study two variants of temporal logic planning in which the objective is to synthesize a trajectory that satisfies an optimal selection of soft constraints while nevertheless satisfying a hard constraint expressed in linear temporal logic (LTL). We also extend planning to chronicle with the idea of this problem. Then, we consider the problem of planning where to observe the behavior of an agent to ensure that the agent’s execution within the environment fits a pre-disclosed itinerary. This problem arises in a range of contexts including in validating safety claims about robot behavior, applications in security and surveillance, and for both the conception and the (physical) design and logistics of scientific experiments

    Optimal global planning for cognitive factories with multiple teams of heterogeneous robots

    Get PDF
    We consider a cognitive factory domain with multiple teams of heterogeneous robots where the goal is for all teams to complete their tasks as soon as possible to achieve overall shortest delivery time for a given manufacturing order. Should the need arise, teams help each other by lending robots. This domain is challenging in the following ways: different capabilities of heterogeneous robots need to be considered in the model; discrete symbolic representation and reasoning need to be integrated with continuous external computations to find feasible plans (e.g., to avoid collisions); a coordination of the teams should be found for an optimal feasible global plan (with minimum makespan); in case of an encountered discrepancy/failure during plan execution, if the discrepancy/failure prevents the execution of the rest of the plan, then finding a diagnosis for the discrepancy/failure and recovering from the plan failure is required to achieve the goals. We introduce a formal planning, execution and monitoring framework to address these challenges, by utilizing logic-based formalisms that allow us to embed external computations in continuous spaces, and the relevant state-of-the-art automated reasoners. To find a global plan with minimum makespan, we propose a semi-distributed approach that utilizes a mediator subject to the condition that the teams and the mediator do not know about each other’s workspaces or tasks. According to this approach, 1) the mediator gathers sufficient information from the teams about when they can/need lend/borrow how many and what kind of robots, 2) based on this information, the mediator computes an optimal coordination of the teams and informs each team about this coordination, 3) each team computes its own optimal local plan to achieve its own tasks taking into account the information conveyed by the mediator as well as external computations to avoid collisions, 4) these optimal local plans are merged into an optimal global plan. For the first and the third stages, we utilize methods and tools of hybrid reasoning. For the second stage, we formulate the problem of finding an optimal coordination of teams that can help each other, prove its intractability, and describe how to solve this problem using existing automated reasoners. For the last stage, we prove the optimality of the global plan. For execution and monitoring of an optimal global plan, we introduce a formal framework that provides methods to diagnose failures due to broken robots, and to handle changes in manufacturing orders and in workspaces. We illustrate the applicability of our approaches on various scenarios of cognitive factories with dynamic simulations and physical implementation

    Efficient local search for Pseudo Boolean Optimization

    Get PDF
    Algorithms and the Foundations of Software technolog

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Quantitative Approaches to enable the Automated Planning of Adaptive Process Models

    Get PDF
    Nowadays, process models are valuable tools for a variety of activities in the business environment. They are used, for example, to train employees, to document processes or as part of company audits and to align the IT strategy with the company goals. However, process models are still created manually in many cases. This manual creation proves to be tedious, thus cost-intensive and especially error-prone. The dissertation at hand addresses this problem area and presents approaches for the automated planning of adaptive process models. Adaptive process models are those process models that take into account factors that require flexibility in processes. This includes, for example, the context of processes or the actors involved in the process
    corecore