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Abstract

We consider a cognitive factory domain with multiple teams of heterogeneous robots
where the goal is for all teams to complete their tasks as soon as possible to achieve overall
shortest delivery time for a given manufacturing order. Should the need arise, teams help
each other by lending robots. This domain is challenging in the following ways: different
capabilities of heterogeneous robots need to be considered in the model; discrete symbolic
representation and reasoning need to be integrated with continuous external computations
to find feasible plans (e.g., to avoid collisions); a coordination of the teams should be
found for an optimal feasible global plan (with minimum makespan); in case of an en-
countered discrepancy/failure during plan execution, if the discrepancy/failure prevents
the execution of the rest of the plan, then finding a diagnosis for the discrepancy/failure
and recovering from the plan failure is required to achieve the goals.

We introduce a formal planning, execution and monitoring framework to address
these challenges, by utilizing logic-based formalisms that allow us to embed external
computations in continuous spaces, and the relevant state-of-the-art automated reasoners.
To find a global plan with minimum makespan, we propose a semi-distributed approach
that utilizes a mediator subject to the condition that the teams and the mediator do not
know about each other’s workspaces or tasks. According to this approach, 1) the media-
tor gathers sufficient information from the teams about when they can/need lend/borrow
how many and what kind of robots, 2) based on this information, the mediator computes
an optimal coordination of the teams and informs each team about this coordination, 3)
each team computes its own optimal local plan to achieve its own tasks taking into ac-
count the information conveyed by the mediator as well as external computations to avoid
collisions, 4) these optimal local plans are merged into an optimal global plan. For the
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first and the third stages, we utilize methods and tools of hybrid reasoning. For the second
stage, we formulate the problem of finding an optimal coordination of teams that can help
each other, prove its intractability, and describe how to solve this problem using existing
automated reasoners. For the last stage, we prove the optimality of the global plan. For
execution and monitoring of an optimal global plan, we introduce a formal framework
that provides methods to diagnose failures due to broken robots, and to handle changes in
manufacturing orders and in workspaces. We illustrate the applicability of our approaches
on various scenarios of cognitive factories with dynamic simulations and physical imple-
mentation.
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Özet

Birden fazla farklı yapıda robot takımlarından oluşan, verilmiş bir üretim siparişini
en yakın teslim tarihine yetiştirmenin hedeflendiği bir bilişsel fabrika ortamını ele alıyoruz.
İhtiyaç durumunda takımlar birbirine robot ödünç vererek yardım edebilirler. Söz konusu
ortam şu zorlukları barındırmaktadır: Farklı yapıdaki robotların farklı kabiliyetlerinin
modelde dikkate alınması gerekmektedir; uygulanabilir planların elde edilebilmesi için
(örn., çarpışmalardan sakınmak amacıyla) kesikli simgesel gösterimin sürekli harici hesap-
lamalarla birleştirilmesi gerekmektedir; eniyileştirilmiş uygulanabilir geniş çaplı (en kısa
üretim süreli) bir plan için takımların bir koordinasyonu bulunmalıdır; plan icrası sırasında
bir uyuşmazlık ile karşılaşılması halinde, hedefe ulaşabilmek için, oluşan aksaklıklar eğer
geriye kalan planın icrasını engelliyorsa, onları teşhis edebilmek ve uygun iyileşmeyi ya-
pabilmek gerekmektedir.

Bu zorlukların üstesinden gelmek amacıyla, sürekli uzayda yapılan harici hesapla-
maların gömülebildiği mantık tabanlı biçimselcilikler ve otomatik akıl yürütücülerin kul-
lanıldığı bir biçimsel planlama, icra ve denetleme sistemini öne sürüyoruz. En kısa üretim
süreli eniyileştirilmiş geniş çaplı planı bulmak için bir aracının kullanıldığı, takımların ve
aracının birbirlerinin çalışma alanları ya da görevleri hakkında bilgi sahibi olmadıkları,
yarı-dağıtık bir yöntem öneriyoruz. Bu yönteme göre, 1) aracı, takımların kaç adet hangi
yapıdaki robotu ne zaman ödünç verebilecekleri/alabilecekleri bilgisini toplar, 2) bu bil-
gilere göre, aracı, eniyileştirilmiş bir koordinasyon hesaplar ve her takımı bu koordi-
nasyon konusunda bilgilendirir, 3) aracı tarafından verilen bilgiyi ve çarpışmalardan sakın-
mak için yapılan harici hesaplamaları kullanarak her takım eniyileştirilmiş yerel planını
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hesaplar, 4) eniyileştirilmiş yerel planlar eniyileştirilmiş ortak plan elde etmek için birleş-
tirilir. Birinci ve üçüncü aşamalarda, hibrid akıl yürütme yöntemlerini ve araçlarını kul-
lanıyoruz. İkinci aşamada, takımlar için eniyileştirilmiş koordinasyon bulma problemini
tanımlıyoruz, zorluğunu kanıtlıyoruz, ve problemin mevcut otomatik akıl yürütücülerle
nasıl çözülebileceğini gösteriyoruz. Son aşama için, geniş çaplı planın eniyileştirilmiş
olduğunu kanıtlıyoruz. Eniyileştirilmiş geniş çaplı planın icrası ve denetlenmesi için,
bozuk robotlar nedeniyle oluşan başarısızlıkları teşhis edebilmeyi sağlayan, ve üretim
siparişinde ve çalışma alanlarında oluşabilecek değişikliklerle başa çıkabilen bir biçimsel
sistem tanıtıyoruz. Yaklaşımlarımızın uygulanabilirliğini bilişsel fabrikalar üzerinde çeşitli
senaryolarla yaptığımız simülasyon ve fiziksel uygulamalar aracılığıyla gösteriyoruz.
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Chapter 1

Introduction

Multiple teams of robots with heterogeneous capabilities are commonly employed
to complete a task in a collaborative fashion in many application domains, ranging from
search and rescue operations to exploration/surveillance missions, service robotics to cog-
nitive factories. In this thesis, we focus on cognitive factories with multiple teams of
heterogeneous robots.

Cognitive factory concept [71, 20] is a novel paradigm proposed to enhance produc-
tivity and ensure economic sustainability and growth in the manufacturing sector. Aimed
towards highly flexible and typically small to medium size manufacturing plants, these
factories are equipped with multiple teams of heterogeneous manufacturing tools, such
as dexterous mobile manipulators. Since these factories are endowed with high-level rea-
soning capabilities, they can rapidly respond to changing customer needs and customiza-
tion requests, and produce a large variety of customized products even in low quantities.
Consequently, cognitive factories provide an ideal compromise between the flexibility of
human workshops with cost-effectiveness of mass production systems.

1.1 Challenges

In the context of cognitive factories, we address three key challenges of such do-
mains including teams of heterogeneous robots:

• Hybrid reasoning for each team: Combining discrete task planning with con-
tinuous feasibility checks and perception. In a cognitive factory, each team of
robots needs to complete some tasks to achieve their manufacturing goals. These
tasks require execution of various robotic actions, such as pick, place, move, carry,
charge, etc. in some order as well as helping each other. For that, each team needs to
find a collaborative task plan — a sequence of robotic actions. On the other hand,
cognitive factories consist of static and dynamic obstacles in the environment. If
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these obstacles are not considered, computed task plans may contain robots passing
through each other, or touching an obstacle while going from one place to the other.
Finding a feasible plan for the teams is necessary in order to avoid collisions that
may prevent the execution of the desired plans. For that, an integration between
continuous feasibility checks and discrete task planning should be established.

• Finding an optimal global plan for multiple teams. An optimal global plan for
the teams in a cognitive factory minimizes the delivery lead time for a customized
order. This leads to a more cost-effective process by reducing contribution of fac-
tory overhead per order, preserves energy resources and decreases negative environ-
mental impacts by efficient use of facility infrastructure. For such an optimal global
plan, the teams can help each other by lending/borrowing robots. This requires an
optimal coordination of the robot transfers between teams.

• Intelligent execution monitoring. For the fault-awareness and reliability of a cog-
nitive factory with multiple robots, it is essential that the robots have the capability
of identifying discrepancies between the expected states and the observed states,
check whether these discrepancies would lead to a plan failure, diagnose possible
causes of relevant discrepancies, and find plans to reach their goals. For that, a
general formal framework is needed for plan execution and monitoring that would
utilize high-level reasoning.

1.2 Our Approach

In this thesis, we propose to use state-of-the-art automated reasoners (i) to en-
dow each heterogeneous robot team with high-level reasoning capabilities in the style
of cognitive robotics [48], such that each team becomes capable of planning their own
actions; and (ii) to coordinate robot exchanges among the teams to ensure an optimal
global plan. We propose to utilize, in particular, the knowledge representation and reason-
ing formalisms, the action description language C+ [38] and Answer Set Programming
(ASP) [49, 5, 34, 50], and relevant automated reasoners, such as the propositional satisfi-
ability (SAT) solver MANYSAT [41] and ASP solver CLASP [33]. These formalisms are
highly expressive which allows us to express concurrency and defaults. They support spe-
cial constructs, called external atoms, that allow access to external computations. They
also have efficient reasoners that are continuously being improved.

• For hybrid reasoning, we emphasize several core characteristics of cognitive fac-
tories, such as existence of heterogeneous robots with varying capabilities, ability
of robots to execute concurrent actions, existence of complex (state/temporal) con-
straints/goal conditions, and provide a computational framework to find feasible
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and optimal local plans for each team. The proposed method is based on earlier
works on hybrid planning [19, 22, 29] that utilize the expressive logic-based for-
malisms and reasoners mentioned above, but in different domains, such as robotic
manipulation and service robotics.

In particular, by combining discrete task planning with continuous feasibility checks
and perception, we address existence of static/dynamic obstacles in the domain.
For performing feasibility checks, we utilize pre-computation approach to embed
information about static obstacles perceived by a Kinect RGB-D camera into the
domain description, while we rely on guided replanning to account for possible
robot-robot collisions [22]. Furthermore, we extend the domain to model hetero-
geneity of robots and conduct various optimizations on local plans. In particular, in
addition to finding a local plan with minimum makespan, we further optimize the
total cost of this plan by considering several other objectives relevant in cognitive
factories: to minimize the number of robotic actions or to ensure that actions in a
team are executed as early as possible or to minimize fuel consumption.

• For finding an optimal global plan (with minimum makespan) for multiple teams,
we advocate the use of a semi-distributed approach to protect privacy of workspaces
and to reduce message-passing and computational effort. Privacy is a concern in mi-
cro manufacturing plants that specialize on prototyping pre-release products, while
reduction of communication among teams may be preferable when the means of
communication is lossy or costly. Furthermore, a semi-distributed approach is ad-
vantageous in that it reduces the size of the global domain into manageable pieces,
and provides a solution methodology that can utilize parallelization of computa-
tions.

As in [20], our approach utilizes a mediator subject to the condition that the teams
and the mediator do not know about each other’s workspaces or tasks, and capital-
izes on the fact that each team and the mediator is capable of hybrid reasoning. Our
approach is not constrained with the tight restrictions of [20] where homogeneous
robots are considered and at most one robot transfer is permitted in a global plan.
Also our method utilizes a wider variety of automated reasoners in a more general
setting of cognitive factories.

According to our semi-distributed approach, 1) the mediator gathers sufficient in-
formation from the teams about when they can/need lend/borrow how many and
what kind of robots, 2) based on this information, the mediator computes an op-
timal coordination of the teams and informs each team about this coordination, 3)
each team computes its own optimal local plan to achieve its own tasks taking into
account the information conveyed by the mediator as well as external computations
to avoid collisions, 4) these optimal local plans are merged into an optimal global
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plan. The first and the third steps utilize methods and tools of hybrid reasoning as
decribed above. For the second step, we formulate the problem of finding an opti-
mal coordination of teams that can help each other, prove its intractability, and use
automated reasoners to solve it. For the last stage, we prove the optimality of the
global plan.

• For intelligent execution and monitoring, we introduce an execution monitoring
algorithm to address possible plan failures during the execution of the global plan,
such as broken robots/parts preventing execution of some actions, new obstacles in
the environment or new order arrival to the teams. Our algorithm allows diagnostic
reasoning as in [20] when sensory information is not sufficient to identify the cause
of a failure (i.e., which robot/part is broken), but in a more general cognitive factory
setting with heterogenous robots and allowing different formalisms and reasoners.
Once a diagnosis is found, our execution and monitoring algorithm finds a new
plan, with the possibility of repairing the broken robots/parts if needed.

1.3 Contributions of the Thesis

Our contributions can be summarized as follows:

• We have introduced cognitive toy factory scenarios with heterogeneous robots,
that necessitate teams to help each other and that requires integration of feasibility
checks into task planning. These scenarios are important for better understanding
the challenges of cognitive factories and useful as benchmarks for future studies.

• We have represented the cognitive toy factory domain in the formalisms of C+ and
ASP, by embedding feasibility checks like robot-obstacle collisions that utilize
state-of-the-art technologies such as Open Dynamics Engine (ODE).

• We have presented methods for computing optimal hybrid plans with these for-
mulations and state-of-the-art technologies, with respect to different optimization
measures, such as minimum makespan and total cost of actions.

• We have introduced a novel semi-distributed method to compute an optimal global
plan for multiple teams of heterogeneous robots.

• We defined the problem of determining a coordination between multiple teams of
heterogeneous robots for an optimal global plan. We analyzed the computational
complexity of the optimal coordination problem, and proved that it is NP-hard.

• We have introduced a method to solve the coordination problem using the state-of-
the-art ASP solvers. We have performed experiments to show the scalability of our
method.
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• We have performed experiments to analyze the scalability of our method for com-
puting optimal local/global plans, over cognitive toy factory settings with multiple
teams of heterogeneous robots.

• We have introduced a general execution and monitoring algorithm that can han-
dle surprises like new manufacturing orders, changes in workspaces, and broken
robots/parts that cannot be identified by sensory information but requires deeper
reasoning. The algorithm utilizes different methods to handle each one of these
discrepancies.

• We have showed the applicability of our approach with various cognitive toy fac-
tory scenarios, both with dynamic simulation using OpenRave and with a physical
implementation, using Kuka youBots and Lego NXTs.

1.4 Thesis Outline

In Chapter 2 we describe a cognitive toy factory domain with multiple teams of
heterogeneous robots. We continue with some preliminaries on logic-based knowledge
representation formalisms used in our studies. In Chapter 3, we describe the action de-
scription language C+ , and how the cognitive toy factory domain can be represented in
this formalism. We introduce an action query language to facilitate high-level reasoning,
such as planning, by means of queries over this domain descrription. We illustrate how
the cognitive factory domain description and the queries can be used with the state-of-
the-art automated reasoners. In Chapter 4, we describe Answer Set Programming (ASP)
and show details on how to use ASP for high-level reasoning. In Chapter 5, we present
our method to find an optimal global plan for multiple teams of heterogeneous robots and
prove its correctness. We define the problem of determining a coordination, prove the
intractability of the problem, formulate the problem using ASP and show scalability of
this method via the experimental evaluation over cognitive factory scenarios. Examples
are given for a better understanding of these methods. The applicability of our method for
optimal global planning is illustrated with a dynamic simulation and a physical implemen-
tation; the scenarios are shown along with relevant snapshots. In Chapter 6, we analyze
the scalability of our method. Chapter 7 presents our execution monitoring algorithm,
and demostrates its applicability. Related work is discussed in Chapter 8. We conclude in
Chapter 9 by summarizing our results. The URLs for the supplementary materials (videos
of dynamic simulations and physical implementations) are provided in the thesis.

5



Chapter 2

Cognitive Factories with Multiple
Teams of Heterogeneous Robots

We consider cognitive factories with multiple teams of heterogeneous robots. Cog-
nitive factory concept [4, 71, 72, 20], Figure 2.1, is a novel paradigm proposed to enhance
productivity and ensure economic sustainability and growth in the manufacturing sec-
tor. Aimed towards highly flexible and typically small to medium size manufacturing
plants, these factories are equipped with multiple teams of heterogeneous manufacturing
tools, such as dexterous mobile manipulators. They endow manufacturing system with
high-level reasoning capabilities in the style of cognitive robotics, such that these systems
become capable of planning their own actions. They can rapidly respond to changing
customer needs and customization requests, and produce a large variety of customized
products even in low quantities. By utilizing sophisticated planning and decision-making
algorithms, cognitive factories can efficiently allocate their resources for daily/weekly/-
monthly work load and ensure production of variant-rich products to guarantee press-
ing delivery deadlines. Consequently, cognitive factories provide an ideal compromise
between the flexibility of human workshops with cost-effectiveness of mass production
systems.

We consider multiple teams of robots with different capabilities. Each team is given
a feasible task to complete in its workspace on its own, and where teams are allowed to
transfer robots between each other. The goal is to find an optimal overall plan for all
teams so that all tasks can be completed as soon as possible

As an example of a cognitive factory, we consider a cognitive toy factory with two
teams of robots, where each team is located in a separate workspaces collectively work-
ing toward completion of an assigned task. There are two types of processes that are
conducted in these workspaces: manufacturing process and painting process. In particu-
lar, Team 1 manufactures nutcracker toy soldiers through the sequential stages of cutting,
carving and assembling, while Team 2 processes them by going through stages of painting
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Figure 2.1: A cognitive factory

in black, painting in color, and stamping. Each workspace is depicted as a grid, as shown
in Figure 2.2, contains an assembly line along the north wall to move the toys and a pit
stop area where the worker robots can change their end-effectors. Each workspace also
includes static obstacles.

The teams are heterogeneous, as each team is composed of three types robots with
different capabilities. Worker robots operate on toys, they can configure themselves for
different stages of processes, and they can be exchanged between teams; charger robots
maintain the batteries of workers and monitor team’s plan, and cannot be exchanged be-
tween teams. Worker robots are further categorized into two, based on their liquid resis-
tance. In particular, wet (liquid resistant) robots can perform every stage of the processes
involved in manufacturing and painting of the toys, while dry (non-liquid resistant) robots
cannot be employed in painting and cutting stages, since there processes involve liquids.
All robots are holonomic and can move from any grid to another one following straight
paths.

In this cognitive factory, teams can help each other: at any step, a team can lend
several of its worker robots through their pit stop such that after a transportation delay the
worker robots show up in the pit stop of a borrowing team.

We have tested this cognitive toy factory scenario with both dynamic simulations
using OPENRAVE [12], and with a physical implementation utilizing KuKa youBots and
Lego NXT robots controlled over Robot Operating System (ROS). Snapshot of a state
from the physical implementation by two teams utilizing Kuka youBots and Lego NXT
robots can be seen in Figure 2.3, while a snapshot of a state from a dynamic simulation by
two teams utilizing Kuka youBots is shown in Figure 2.4. In these snapshots we can see
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Figure 2.2: Workspace

that the worker robots are aligned near the assembly line to work on the boxes/toys, while
the charger robots are approached to the worker robots to charge them when needed.

Figure 2.3: Snapshot of a state from the physical implementation

Figure 2.4: Snapshot of a state from a dynamic simulation
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Chapter 3

Representation and Reasoning about a
Dynamic Domain

In this thesis, we utilize nonmonotonic logic-based approaches to represent and rea-
son about dynamic domains, such as action languages [35] and Answer Set Programming
(ASP) [49, 5, 34, 50]. In this chapter, we will briefly describe preliminaries about action
languages and their uses in conjunction with the relevant automated reasoners; ASP will
be elaborated in the next chapter.

Action languages [35] are formal models of parts of natural language that are used
for expressing dynamic systems. An action language consists of two parts: an action
description language to describe the dynamic domain, and an action query language to
facilitate reasoning tasks over this description. In this thesis, we use the action description
language C+ [38]; and a query language, which is a variation of Q. These two kinds of
action languages are explained in the following sections.

3.1 Action Description Language C+

Let us briefly describe the action description language C+, as in [38].
A (multi-valued propositional) signature is a set σ of symbols called constants par-

titioned into fluent constants, σfl and action constants, σact, along with a nonempty finite
set Dom(c) of symbols, assigned to each constant c. An atom of a signature σ is an ex-
pression of the form c = v where c∈σ and v ∈Dom(c). A formula of σ is a propositional
combination of atoms. A causal rule is an expression of the form F ⇐ G, where F and
G are formulas of σ. A causal theory is a set of causal rules.

An interpretation of σ is a function that maps every element of σ to an element of
its domain. An interpretation I satisfies an atom c = v (I |= c = v) if I(c) = v. A
(world) state is an interpretation of σfl. An action is an interpretation of σact.

A model of a set X of formulas is an interpretation that satisfies all formulas in X .

9



If X has a model it is said to be consistent. If every model of X satisfies a formula F then
we say that X entails F and write X |= F .

A Boolean constant is one whose domain is the set {f, t} of truth values.

Syntax In the action description language C+ fluents are of two types: simple fluents
and statically determined fluents. The values of simple fluents (resp. statically determined
fluents) may directly (resp. indirectly) change through actions.

Actions and change are described in C+ using three kinds of expressions:

(i) static laws of the form
caused F if G (3.1)

where F and G are fluent formulas, i.e.,formulas that consist of fluent constants
only,

(ii) action dynamic laws of the form (3.1) in which F is an action formula, i.e., a for-
mula that contains at least one action constant and no fluent constants, and G is a
formula, and

(iii) fluent dynamic laws of the form

caused F if G after H (3.2)

where F and G are fluent formulas and H is a formula.

In the causal laws, F is called the head. In (3.1) and (3.2) the part if G can be
dropped if G is True.

A static law where F is False is called a state constraint; a fluent dynamic law
where F is False is called a transition constraint.

A causal law is a static law, or an action dynamic law, or a fluent dynamic law. An
action description is a set of causal laws.

In our descriptions of cognitive factories

• actions are Boolean constants and

• action dynamic laws are used for exogeneity of actions only.

Semantics LetD be an action description with a signature σ andDom(σ). The transition

diagram described by D, denoted T (D), is characterized by a set S of states and a set R
of transitions, which are defined as follows:

(i) S is the set of all interpretations s of σfl such that, for every static law (3.1) in D, s
satisfies F if s satisfies G, s |= G ⊃ F ,
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(ii) with a function V : σfl × S → Dom(σfl), V (P, s) = s(P ) is the value of P in s,

(iii) R ⊆ S × {f, t}σact × S is the set of all triples 〈s, A, s′〉 such that s′ is the only
interpretation of σfl which satisfies the heads of all

• static laws (3.1) in D for which s′ satisfies G, and

• fluent dynamic laws (3.2) in D for which s′ satisfies G and s ∪ A satisfies H .

The laws included in (iii) above are those that are applicable to a transition from s to s′

caused by executing A.
The static causal laws make sure that s is a state, and handles the ramifications and

the qualifications ofA; whereas the dynamic causal laws handle the preconditions and the
direct effects of A.

3.1.1 Abbreviations

In action descriptions, we can use an expression of the form

a causes F if G (3.3)

to describe the direct effects of actions, which abbreviates the fluent dynamic law

caused F if True after G ∧ a. (3.4)

We can express that F is a precondition of a by the expression

nonexecutable a if ¬F (3.5)

which stands for the fluent dynamic law

caused False if True after ¬F ∧ a. (3.6)

Similarly, we can express that F holds by default by the expression

default F

that abbreviates the static law
caused F if F .

We can use the expression of the form

inertial F
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which stands for the dynamic law

caused F if F after F

to express the commonsense law of inertia: F does not change unless it is effected by an
action.

In almost all action domains, we express that there is no cause for the occurrence of
an action a, by the abbreviation

exogeneous a

which stands for the dynamic laws

caused a if a.

3.1.2 Representation of the Cognitive Factory Domain in C+

We use C+ to describe the cognitive toy factory domain as follows.

Fluents and actions We view the workspace as a grid. We consider simple fluent con-
stants

• xpos(r) = x and ypos(r) = y (”robot r is at (x , y)”)

• battery(w) = bs (”battery of worker robot w has a capacity of bs units”)

• endEffector(w) = e (”end effector of worker robot w is for work stage e”)

• docked(c,w) (”charger robot c is docked to the worker robot w”)

• workDone(b) = ws (”box b is being processed at the stage ws”)

• wetpaint(b) (”box b has wetpaint”)

that follow the inertia laws, and the actions

• move(r , d) (”robot r moves in direction d”)

• workOn(w , b) (”worker robot w works on the box b”)

• charge(c) (”charger robot c does the charging action”)

that are exogeneous.
To describe the actions we need to describe their direct effects and preconditions.
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Direct effects of actions We describe the direct effects of the actions above by causal
laws of the form (3.3). For instance, the following causal law expresses that a direct effect
of workOn(w , b) action is an increase in the work stage of box b by one:

workOn(w , b) causes workDone(b) = ws if workDone(b) = ws−1

Another direct effect of workOn(w , b) action is expressed as

workOn(w , b) causes battery(w) = bl−workCons if battery(w) = bl

for bl ≥workCons , which means it causes the battery of worker robot w to decrease by
some units specified by workCons .

Similarly, we describe that the charging by a charger robot c increases the battery
of the worker robot w it is docked to:

charge(c) causes battery(w) = maxBattery if docked(c,w).

Preconditions of actions We describe the preconditions of actions by causal laws of the
form (3.5). For instance, we describe that a worker robot w cannot work on the box b if its
end effector is prepared for the work stage ws but the box b is not ready to be processed,
i.e., box b is not at the work stage ws−1, by the law

nonexecutable workOn(w , b) if endEffector(w) = ws1 ∧ workDone(b) 6= ws1−1.

To describe that a worker robot w cannot work on a box b if the robot has insufficient
battery, by the law

nonexecutable workOn(w , b) if battery(w) = bl

where bl<workCons .
Similarly, a charger robot c cannot do the charging action if it is not docked to any

robot:
nonexecutable charge(c) if ¬docked(c).

We can specify different capabilities of heterogeneous robots while describing the
preconditions of actions that may be executed by only some types of robots. For example,
to describe that a dry robot dr in a team that conducts the painting process in a cognitive
toy factory cannot do the painting action, (which is the first work stage of the boxes), we
have the following law:

nonexecutable workOn(dr , b) if workDone(b) = 0.
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Attributes of actions We introduce an attribute of move action by an action constant

distance with domain {1 , . . . ,maxUnit ,None}

to show how many units the robot is moving. The attribute takes the value None if and
only if the action is not executed.

We describe the direct effect of a robot r moving in direction Right, with the fol-
lowing law

move(r ,Right) causes xpos(r) = x+u if distance(r ,Right) = u ∧ xpos(r) = x

for x+u ≤maxX . We describe the effects of moving in other directions, Left ,Up,Down,
with similar laws.

We describe the direct effect on the battery of a moving worker robot by the follow-
ing law:

move(w , d) causes battery(w) = bl−u if distance(r , d) = u ∧ battery(w) = bl

for bl≥u.
We have other forms of expressions to describe the indirect effects of actions, state

contraints, transition constraints and nonconcurrency constraints.

Ramifications We express that a box with wet paint dries at the next step by the follow-
ing law

caused ¬wetpaint(b) after wetpaint(b)

which is an indirect effect of workOn action that causes box b to reach a workstage that
contains paint.

Constraints We ensure that two worker robots do not occupy the same grid cell unless
they are at the pitstop area (pixX , pitY ) or they are out of the workspace limits, by the
state constraints

caused False if ¬(xpos(w1) = pitX ∧ ypos(w1) = pitY ) ∧
xpos(w1)>0 ∧ ypos(w1)>0 ∧
xpos(w1) = xpos(w2) ∧ ypos(w1) = ypos(w2)

for w1 6= w2.
We ensure that a robot does not move in two reverse directions by the noncurrency

constraints

14



nonexecutable move(r ,Right) ∧move(r ,Left)

nonexecutable move(r ,Up) ∧move(r ,Down)

External atoms We can define atoms whose truth values can be computed externally via
some functions. External atoms take as input some parameters from the domain descrip-
tion (e.g., the locations of robots), to externally check some conditions and then return the
boolean value of this external computation. These special constructs can be used to take
care of the static obstacles in the environment. We can express that a worker w can not
move in the directions right , up with units u1, u2 if there is a collision with an obstacle
by the following condition:

nonexecutable move(w , right) ∧move(w , up)

if distance(w , right) = u1 ∧ distance(w , up) = u2 ∧
xpos(w) = x ∧ ypos(w) = y ∧ existsCollision(x , y , u1, u2).

for x + u1≤maxX and y + u2≤maxY . Here existsCollision is an external function
that checks whether the movement of a robot from grid cell (x , y) with units u1, u2 col-
lides with any obstacles. Details can be found in Section 3.4

3.2 Action Query Language

Given an action domain description represented in C+ as described above, we can
perform reasoning tasks over it. Reasoning problems can be represented using queries in
an “action query language” as described in [35].

We consider an action language, which is a variation of the action query language
Q introduced in [35]. In this language an atomic query is one of the two forms, F holds
at t or A occurs at t, where F is a fluent formula, A is an action formula, and t is a time
step. A query is a propositional combination of atomic queries.

Let D be an action description and T (D) = 〈S, V,R〉 denote the transition diagram
described by D, with a set S of states, a value function V mapping every fluent P to a
value at each state s, and a set R of transitions. A history of D of length n is a sequence

s0, A0, s1, . . . , sn−1, An−1, sn (3.7)

where each 〈si, Ai, si+1〉 (0 ≤ i < n) is in R. We say that a query Q of the form F holds
at t (resp. A occurs at t) is satisfied by a history (3.7) if st satisfies F (resp. if At satisfies
A). For nonatomic queries, satisfaction is defined by truth tables of propositional logic.
We say that a query Q is satisfied by an action description D, if there is a history H of D
that satisfies Q.
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3.2.1 Planning

Suppose that F and G are fluent formulas denoting an initial state and goal condi-
tions respectively. We can describe the problem of finding a plan of length k, with a query
of the form

F holds at 0 ∧G holds at k.

We can also solve variations of these problems, where some intermediate states are spec-
ified or where the specified actions are not executed consecutively. This allows us to
enforce, for instance, further temporal constraints in a planning problem.

For example, suppose that the action formula giveRobot(w) describes that the team
lends the robot w. We can express a question of the form ”can you complete your task
specified by the initial state F and the goal conditions G in k steps, while also lending m
robots before step l?”, with a query of the form

F holds at 0 ∧G holds at k ∧ ∃T,W1, . . . ,Wm :

T<l ∧W1<W2< . . . <Wm ∧
m∧
i=1

giveRobot(Wi) occurs at T.

This query states that while reaching the goal state from the initial state, there should be
a time step T before l, where m distinct robots are lent.

3.2.2 Prediction

Suppose that F is a fluent formula denoting an initial state. We can describe the
problem of predicting the resulting state after an execution of a sequence A0, . . . , An−1 at
a state F with a query of the form

F holds at 0 ∧
∧
i

Ai occurs at i (3.8)

Prediction problems may be useful to predict the resulting states after an execution
of a long (possibly partial) sequence of (possibly concurrent/nondeterministic) actions,
before these actions are actually executed.

3.3 CCALC

The Causal Calculator (CCALC) [38] is a causality-based reasoning system that
allows representation of dynamic domains in a subset of the expressive action description
C+ and can compute solutions to planning problems with temporal constraints described
by a query in a variation of Q. Given an action description and a query, CCALC finds
an answer to the query in the spirit of satisfiability planning [44]: 1) it transforms the
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1 :- objects

2 1 :: worker.

3

4 :- query

5 label::1;

6 maxstep::0..2;

7

8 0:

9 xpos(1)=3, ypos(1)=3,

10 battery(1)=7,

11 endEffector(1)=1,

12 linePos(1)=4,

13 workDone(1)=0,

14 -wetpaint(1);

15

16 maxstep:

17 workDone(1)=1.

Figure 3.1: A planning problem in a Cognitive Factory domain presented to CCALC

action description and the query into a set of formulas in propositional logic [38]; 2) it
calls a SAT solver (like MANYSAT [41]) to find a model of this propositional theory; 3) if
a model is found then it extracts the plan; otherwise, it answers the query negatively.

In the syntax of CCALC, conjunctions ∧, disjunctions ∨, implications ⊃, negations
¬, universal quantifiers ∀, and existential quantifiers ∃ are replaced with the symbols &,
++, ->>, -, /\, and \/ respectively.

Planning problems are represented in the form of queries in CCALC. A planning
problem in a Cognitive Factory domain can be seen in Figure 3.1. In the initial state,
the worker robot we1 is located at cell (3, 3) with a battery of 7 and has its end effector
prepared to work on the work stage 1. There is also a box, 1, at position 4 with no work
done on it. We want to find the shortest plan to have the working stage of box 1 at 1.

The output for the presented planning problem and the domain description is shown
in Figure 3.2. In the plan, we see that if the assembly line shifts to make box 1 align
with worker we1 at step 0 and worker we1 works on the box at step 1, box 1 will have the
desired working stage at step 2.

CCALC allows us to embed geometric reasoning using external atoms, which are
not part of the signature of the domain description (i.e., they are not declared as fluents
or actions), and are implemented externally in some programming language of the user’
choice as functions, (e.g., a collision checker utilizing a probabilistic motion planning
algorithm). They are evaluated in SWI Prolog while grounding the causal laws.
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1 0: workDone(1)=0 endEffector(1)=1 battery(1)=7 linePos(1)=4

2 xpos(1)=3 ypos(1)=3 -wetpaint(1)

3 ACTIONS: lineShift

4 1: workDone(1)=0 endEffector(1)=1 battery(1)=7 linePos(1)=3

5 xpos(1)=3 ypos(1)=3 -wetpaint(1)

6 ACTIONS: workOn(we1, 1)

7 2: wetpaint(1) workDone(1)=1 endEffector(1)=1 battery(1)=5

8 linePos(1)=3 xpos(1)=3 ypos(1)=3

Figure 3.2: A Cognitive Factory plan obtained from CCALC

3.4 Embedding Continuous Feasibility Checks into
Causal Planning

Our method on combining discrete task planning with continuous feasibility checks
is based on earlier works [19, 22] on hybrid planning.

With the pre-computation method (PRE): We externally compute all possible cases
of robot-obstacle collisions in advance and then embed this information into the ac-
tion domain description via external predicates. For instance, the external predicate
existsCollision(robot type,X,Y,U1,U2) is implemented in C++ utilizing Open Dy-
namics Engine (ODE) 1. It considers all the static obstacles in the environment and checks
whether the robot at (X,Y) moving in units U1,U2 collides with any of the obstacles. It
returns 1 is there is a collision, and 0 if there is no collision. We can express that a worker
W of type 1 can not move in the directions right,up with units U1,U2 if there is a collision
by the following condition:

nonexecutable move(W,right) & move(W,up) if distance(W,right)=U1 &

distance(W,up)=U2 & xpos(W)=X & ypos(W)=Y where X+U1=<maxX &

Y+U2=<maxY & existsCollision(1,X,Y,U1,U2).

With the guided replanning method (GREPL): After computing a plan, we can check
for collisions of robots, using the external computations provided by ODE. If the plan is
found infeasible, then we can identify which actions c are being executed at which state s
when a collision occurs. Based on this information, we can ask for a new plan which does
not involve execution of c at s, by adding a constraint to the planning problem description.
For instance, if it is found by collision checks that two worker robots W1 and W2 can not
cross each other diagonally between locations (X1,Y1) and (X2,Y2), then we can add the
following constraint to the planning problem

caused false if xpos(W1)=X2 & ypos(W1)=Y2 & xpos(W2)=X1 & ypos(W2)=Y1

1http://pyode.sourceforge.net
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after xpos(W1)=X1 & ypos(W1)=Y1 & xpos(W2)=X2 & ypos(W2)=Y2

where W1\=W2.

to guide the solver to find a new plan where the workers W1 and W2 do not exchange their
locations (X1,Y1) to (X2,Y2), respectively, at any time step.
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Chapter 4

Answer Set Programming

Answer Set Programming (ASP) [49, 5, 34, 50] is a declarative programming para-
digm oriented towards solving combinatorial search problems as well as knowledge-
intensive problems. The idea is to represent a problem as a “program” whose models
(called “answer sets”) correspond to the solutions, and to find the answer sets for that pro-
gram using an answer set solver. In the representation of a problem use rules to ”generate”
many answer sets corresponding to “possible solutions”, and constraints to “eliminate”
the answer sets that do not correspond to solutions.

4.1 Programs and Answer Sets

Let us briefly describe the details of Answer Set Programming (ASP) as in [34, 49].

Syntax An ASP program Π over signature σ is a finite set of rules of the form

A0 ← A1, . . . , Am, not Am+1, . . . , An (4.1)

where n≥m≥ 0 and each Ai ∈σ is an atom.
A0 is an atom or ⊥, and it is called the head, and A1, . . . , Am, not Am+1, . . . , An is

the body of the rule. A rule is called a fact if m=n=0 and a constraint if A0 is ⊥. We
generally omit the← sign for facts, and the ⊥ sign for constraints.

Semantics An interpretation I of an ASP program Π is a set of atoms. A rule is satisfied

by an interpretation I if the head of the rule is true whenever the body of the same rule is
true with respect to I . An interpretation I satisfies a program Π if it satisfies all the rules
in the program, and it is called a model of Π.

The reduct ΠI of Π with respect to I is the set of rules

A0 ← A1, . . . , Am (4.2)
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for all rules in Π of the form (4.1) with {Am+1, . . . , An} ∩ I = ∅.
An answer set of a program Π that does not contain negation as failure is defined to

be a model I that is the ”minimal” among the other models of Π (relative to set-theoretic
inclusion). For example, consider the following program without negation as failure

a← b.

Note that this simple program has three models {}, {a} and {a, b}. Since both {a, b} and
{a} have strict subsets which are also a model of the program, they cannot be answer sets.
On the other hand, {} is a minimal model, and thus, the answer set of the program.

Now consider a program Π that may contain negation. A model I is an answer set

for Π, if it is an answer set of the reduct ΠI . Consider, for instance, the program

a← not b

b← not a

and let a partial interpretation I be {b}. The reduct of this program relative to I is

b←

and it is satisfied by I . Since the only strict subset of I is {}, and it does not satisfy
the reduct, I is a minimal model of the reduct. Thus, I is an answer set of the program.
Similarly, another answer set of the program is {a}.

More general forms of ASP programs are also defined such as forms that may con-
tain classical negation ¬ and disjunction [34] and nested expressions [51] in the heads of
rules as well.

In ASP, we use special constructs to express choice and cardinality constraints. The
constructs of the form

{L1, . . . , Lk}c (4.3)

are called choice expressions, and constructs of the form

m≤{L1, . . . , Lk}≤n (4.4)

are called cardinality expressions which allows to bound, from below (by m) and from
above (by n), the number of literals included in the answer set. Programs using these
construct can be viewed as abbreviations for programs defined above [27]. For instance
the following program

{a}c

stands for the program
a← not not a.
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The constraint
← 2{a, b, c}

stands for
← a, b

← a, c

← b, c.

Expression (4.3) describes subsets of {L1, . . . , Lk}. When used in heads of rules,
(4.3) generates many answer sets, and these type of rules are called choice rules. For
instance, the program

{a, b, c}c (4.5)

has answer sets that are arbitrary subsets of {a, b, c}. Expression (4.4) describes subsets
of {L1, . . . , Lk} whose cardinalities are between m and n. When used in constraints, it
eliminates some answer sets, and these are called cardinality constraints. For instance,
adding the constraint

← 2{a, b, c}

to program (4.5) eliminates the answer sets for (4.5) whose cardinalities are at least 2.
Adding

← not (1{a, b, c}1)

eliminates the answer sets for (4.5) whose cardinalities are not exactly 1.
Another special construct is used to express optimization statements [64]. To indi-

cate preferences, we use minimize and maximize statements of the form

minimize {L1 = wL1 , . . . , Lm = wLm , not Lm+1 = wLm+1 , . . . , not Ln = wLn}

to associate weights with specific literals. This statement expresses that we want to find
an answer set with the smallest weight. If there are several minimize statements, then the
answer sets are ordered lexicographically according to the weights of the statements. The
first statement is considered to be the most significant.

Let us give examples for the use of these special constructs in a cognitive factory do-
main. Cardinality constraints can be used to express that a team needs at least two robots
at time step t and optimization statements can be used to optimize a plan by minimizing
the total cost of actions. For instance, the following expression

#minimize [ cost(r, c, t) : robot(r) = c ] (4.6)

is used to minimize the sum of all costs c of robotic actions performed in a plan, where
costs of actions performed by robot r at time step t are defined by atoms of the form
cost(r, c, t).
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4.2 External Atoms in ASP

In this thesis, we consider nondisjunctive HEX programs [18], which has an exten-
sion of answer set semantics to higher order atoms with external atoms. An external atom
is an expression of the form &g [y1, . . . , yk](x1, . . . , xl) where y1, . . . , yk and x1, . . . , xl
are two lists of terms (called input and output lists, respectively), and &g is an external
predicate name. Intuitively, an external atom provides a way for deciding the truth value
of an output tuple depending on the extension of a set of input predicates. External atoms
allow us to embed results of external computations into ASP programs. They are usually
implemented in a programming language of the user’s choice, like C++.

Consider, for instance, a workspace in a cognitive factory, with some obstacles.
With the method PRE for integration: An object detection algorithm can be used to iden-
tify all locations l occupied by these obstacles, and the results of this external computation
can be embedded into the formulation of a state constraint expressing that a robot r cannot
be at a location l occupied by an obstacle at any time step t:

← at(r, l, t),&obstacleAt [l]()

where &obstacleAt is an external predicate whose value is determined by an object de-
tection algorithm [15] using Point Cloud Library over data obtained by a Kinect RGB-D
camera. We can also express a transition constraint to avoid collisions of robots with
obstacles while the robots move from one location l1 to another l2:

← at(r, l1, t), goto(r, l2, t),&collision[r, l1, l2]()

where the external predicate collision checks for such collisions using Open Dynamics
Engine (ODE).

4.3 CLASP

After representing a computational problem as a program whose answer sets cor-
respond to solutions of the problem, we can use an answer set solver to compute the
solutions of the problem.

We need to make some syntactic modifications on the program to present it to an
answer set solver, like CLASP [33]. In the syntax of CLASP, the head of a rule can be
of the forms (4.3) or (4.4) but with the superscript c and the sign ≤ dropped. The body
can contain cardinality expressions with the sign ≤ dropped. Each arrow symbol ← is
replaced with the symbol :-, and each rule is followed by a period.

CLASP finds an answer set for a program in two stages: first a “grounder”, like
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1 query_label(query) :- true.

2 false :- not h(eql(xpos(1),3),0),query_label(1).

3 false :- not h(eql(ypos(1),3),0),query_label(1).

4 false :- not -h(eql(wetpaint(1),true),0),query_label(1).

5 false :- not h(eql(linePos(1),4),0),query_label(1).

6 false :- not h(eql(workDone(1),0),0),query_label(1).

7 false :- not h(eql(battery(1),7),0),query_label(1).

8 false :- not h(eql(endEffector(1),1),0),query_label(1).

9 false :- not h(eql(workDone(1),1),maxstep),query_label(1).

10 true.

11 :- false.

Figure 4.1: A planning problem in a Cognitive Factory domain presented to CLASP

1 Answer: 1

2 h(eql(workOn(1,1),true),1) h(eql(move(1,right),true),0)

3 h(eql(xpos(1),3),0) h(eql(ypos(1),3),0) h(eql(linePos(1),4),0)

4 h(eql(workDone(1),0),0) h(eql(endEffector(1),1),0) h(eql(battery(1),7),0)

5 h(eql(battery(1),6),1) h(eql(endEffector(1),1),1) h(eql(workDone(1),0),1)

6 h(eql(linePos(1),4),1) h(eql(ypos(1),3),1) h(eql(xpos(1),4),1)

7 h(eql(xpos(1),4),2) h(eql(ypos(1),3),2) h(eql(linePos(1),4),2)

8 h(eql(workDone(1),1),2) h(eql(endEffector(1),1),2) h(eql(battery(1),4),2)

9 h(eql(wetpaint(1),true),2)

10 SATISFIABLE

Figure 4.2: A Cognitive Factory plan obtained from CLASP

GRINGO is used to get rid of the schematic variables, and then a DPLL-like branch and
bound algorithm is used to find an answer set for the ground program. The plan can be
extracted from the answer set of the ground program, if found.

A planning problem can be solved using ASP, by specifying the initial state and the
goal state in the query. An example can be seen in Figure 4.1, which is the transformation
of the planning problem in Figure 3.1 into ASP. The output of the presented planning
problem and the domain description is shown in Figure 4.2.

4.4 Transformations from C+ to ASP

There are various transformations between causal logic, C+, and ASP, such as [38,
56, 25, 52, 26]. We use an automated tool CPLUS2ASP [7], which uses the modified
translation [26] of McCain’s translation, to transform a domain description in C+ to an
ASP program.

CPLUS2ASP is a standard library which describes the constructs of the input lan-
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guage of CCALC in terms of ASP. It can handle multi-valued constants and turn the lan-
guage of CCALC into formulas under the stable model semantics. Afterwards, it uses the
software system F2LP (“formulas to logic programs”) to turn these into the input language
of ASP solvers.

For example, a law expressing the direct effect of an action in the language of
CCALC such as

workOn(W,B) causes workDone(B)=WS1 if workDone(B)=WS1-1.

is translated into the language of CLASP as follows

h(eql(workDone(B),WS1),V_astep+1) :-

h(eql(workOn(W,B),true),V_astep),h(eql(workDone(B),WS1-1),V_astep).

Here V astep denotes the time step ranges in {0..maxstep − 1}.
Terms of the form eql(c, v) are atoms to express that fluent c has the value v, and

atoms of the form h(f, t) express that f is true at time step t.
A law expressing the precondition of an action such as

nonexecutable workOn(W,B)

if battery(W) = BL where BL < workCons.

is translated into a constraint

false :- h(eql(workOn(W,B),true),V_astep),

h(eql(battery(W),BL),V_astep),BL<workCons.

The translation of the planning problem shown in Figure 3.1 into ASP, can be seen
in Figure 4.1.
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Chapter 5

Finding an Optimal Global Plan for
Multiple Teams of Heterogeneous
Robots

In this chapter we describe our logic-based method to find optimal global plans
(with minimum makespan) for multiple teams of heterogeneous robots through a media-
tor.

We consider multiple teams of n types of robots, where each team is given a feasible
task to complete in its workspace on its own using hybrid reasoning as described above,
and where teams are allowed to transfer robots between each other. The goal is to find
an optimal feasible global plan for all teams so that all tasks can be completed as soon
as possible within at most k steps, where at most mx robots of type x can be transferred
between any two teams, and subject to the following constraints:

C1 Teams do not know about each other’s workspace or tasks (e.g., for the purpose
of privacy in micro manufacturing plants that specialize on prototyping pre-release
products).

C2 Lending/borrowing robots between workspaces back and forth is not desired (e.g.,
transportation of robots is usually costly, also, since tasks may be different in
workspaces, robots need some tuning). Also, for similar reasons, robots can be
transferred between two teams in a single batch.

The approach we introduce in this chapter was published in [21] for the special case
where only homogeneous robots were considered (n= 1), and in [59] for the general case.
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Figure 5.1: A semi-distributed approach

5.1 Overall Approach

We introduce a novel semi-distributed method to find an optimal global plan for all
teams, with at most k steps, subject to constraints [C1] and [C2], and the presence of a
mediator who does not belong to any team and who does not know anything about teams’
workspaces, tasks and goals. Our method consists of two phases: finding a coordination
of the teams and then an optimal global plan.

In the first phase, for a nonnegative integer l≤ k denoting the length of a global plan:
1) The mediator asks yes/no questions to every team (in any order), to identify whether a
team can complete its task in l steps, while lending/borrowing how many robots to/from
of which sort. 2) Once answers to these questions are collected, the mediator tries to find
a coordination of the teams (i.e., which team should lend how many robots of which sort
to which other team, and when), subject to the constraints [C1] and [C2]. The optimal
value for l can be found by a linear search.

In the second phase, after some coordination of teams is found for an optimal value
of l, the mediator informs each team how many robots it is expected to lend to (or bor-
row from) which other team and when. Taking this information into account, each team
computes an optimal local plan (whose length is less than or equal to l) to complete its
task. An optimal global plan for all teams is then obtained as the union of all optimal
local plans.

Note that the mediator cannot find a global plan on its own since it does not know
about teams’ workspace, tasks, plans, actions, goals, etc.. In fact, a centralized approach
to compute a global plan is in most cases not scalable due to large domain description
that formalizes all workspaces and teams. Also note that teams do not communicate with
each other. Otherwise, the number of queries (and the number of rounds of exchanging
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messages) would increase substantially, leading to a more time-consuming process to find
an optimal global plan.

Both phases involve solving computational problems that are intractable, since find-
ing plans of length l possibly with temporal constraints is NP-complete [69], and answer-
ing each query in the first phase is a planning problem with temporal constraints, and thus
NP-complete [69]. We prove that finding a coordination of the teams for a global plan
with at most l steps is also NP-complete (see Proposition 5.4).

Note that, in the first phase, each team answers queries that are relevant to its
workspace, task, goals only, and independently of other teams; therefore, queries can
be answered in parallel. In the second phase, each team computes an optimal local plan
on its own; therefore, optimal local plans can be computed in parallel as well.

5.2 Querying Teams

The mediator asks yes/no questions of the following three forms to every team (in
any order), for every l≤ k, l≤ l and m≤mx, x≤n:

Q1 Can you complete your task in l steps?

Q2 Can you complete your task in l steps, if you lend m robots of type x before step l?

Q3 Can you complete your task in l steps, if you borrow m robots of type x after step
l?

Answering each question is a planning problem with temporal constraints, and thus
NP-complete [69]. These questions can be further generalized, considering different com-
binations of types of robots that are lent or borrowed. We do not consider such general-
izations, for computational efficiency purposes. Therefore we have a third constraint

C3 Teams can borrow/lend robots of the same sort.

Examples for queries of the forms Q1-Q3 are shown in Figure 5.2. The query in
Figure 5.2a asks for a plan of length 25. The query in Figure 5.2b asks for a plan of length
25 with the constraint of lending 1 dry robot before step 3. The query in Figure 5.2c asks
for a plan of length 25 with the constraint of borrowing 2 dry robots after step 7.
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Figure 5.2: Examples of queries of forms Q1-Q3 presented to CCALC

1 :- query

2 label::1;

3 maxstep::25;

4

5 0:

6 xpos(c1)=1, ypos(c1)=1, xpos(1)=1, ypos(1)=3,

7 [/\C /\W | -docked(C,W)], [/\R | -docked(R)],

8 [/\B | -wetpaint(B)],

9 linePos(B)=B+lineLength,

10 [/\B | workDone(B) = 0], [/\W | battery(W)=maxBattery],

11 [/\W | endEffector(W)=1],

12 [/\C | -bench(C)];

13

14 maxstep:

15 [/\C /\W | -docked(C,W)], [/\R | -docked(R)],

16 linePos(maxBox) = 0, [/\ B | workDone(B) = 3].

(a) Query of form Q1

1 :- macros

2 maxT -> 50.

3 :- variables

4 T :: 0..maxT-1;

5 WE1:: dryrobot.

6

7 :- query

8 label::1;

9 maxstep::25;

10

11 0:

12 xpos(c1)=1, ypos(c1)=1, xpos(1)=1, ypos(1)=3, xpos(2)=1, ypos(2)=3,

13 [/\C /\W | -docked(C,W)], [/\R | -docked(R)],

14 [/\B | -wetpaint(B)],

15 linePos(B)=B+lineLength,

16 [/\B | workDone(B) = 0], [/\W | battery(W)=maxBattery],

17 [/\W | endEffector(W)=1],

18 [/\C | -bench(C)];

19

20 maxstep:

21 [\/T | T<3,[\/WE1 | (T: giveRobot(WE1))]],

22 [/\C /\W | -docked(C,W)], [/\R | -docked(R)],

23 linePos(maxBox) = 0, [/\ B | workDone(B) = 3].

(b) Query of form Q2
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1 :- macros

2 maxT -> 50.

3 :- variables

4 T :: 0..maxT-1.

5 :- objects

6 we1,we2:: dryrobot.

7

8 :- query

9 label::1;

10 maxstep::25;

11

12 0:

13 xpos(c1)=1, ypos(c1)=1, xpos(1)=1, ypos(1)=3,

14 [/\C /\W | -docked(C,W)], [/\R | -docked(R)],

15 [/\B | -wetpaint(B)],

16 linePos(B)=B+lineLength,

17 [/\B | workDone(B) = 0], [/\W | battery(W)=maxBattery],

18 [/\W | endEffector(W)=1],

19 [/\C | -bench(C)];

20

21 7: (bench(we1), xpos(we1)=minX-1,ypos(we1)=minY-1,

22 bench(we2),xpos(we2)=minX-1,ypos(we2)=minY-1);

23

24 maxstep:

25 [\/T | T>=7, T<maxstep, (T: takeRobot(we1)),(T: takeRobot(we2))],

26 [/\C /\W | -docked(C,W)], [/\R | -docked(R)],

27 linePos(maxBox) = 0, [/\ B | workDone(B) = 3].

(c) Query of form Q3

5.3 Inferring Knowledge about Robot Transfers

From teams’ answers to the yes/no questions posed by the mediator, the following
can be inferred:

• If there is a team that answers “no” to every question, then there is no overall plan
of length l where every team completes its own tasks.

• Otherwise, we can identify sets Lendersx ⊂ Lenders of lender teams that can lend
robots of type x and sets Borrowersx ⊂ Borrowers of borrower teams that needs
to borrow robots of type x, where x≤n (Lenders,Borrowers ⊂ Teams): If a team
answers no to question Q1 and “yes” to question Q3 for some l,m and x, then it is
a borrower for robot type x. If a team answers “yes” to question Q1 and “yes” to
question Q2 for some l,m and x, then it is a lender for robot type x.

• For every lender (resp., borrower) team, from its answers to queries Q2 (resp., Q3),
we can identify the earliest (resp., latest) time it can lend (resp., borrow) m robots
of type x, x≤n, in order to complete its tasks in l steps.
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For every l≤ k, these inferences can be used to decide whether lenders and bor-
rowers can collaborate with each other, so that every team completes its task in l steps as
follows.

For instance, we can identify the earliest lend times and latest borrow times by a
collection of partial functions:

Lend earliestm,x : Lendersx 7→ {0, . . . , l}
Borrow latestm,x : Borrowersx 7→ {0, . . . , l}

5.4 Coordination of Teams

Usually transferring robots from one team to another team takes some time, not only
due to transportation but also due to calibration of the robots for a different workspace.
Let us define such a delay time by a function:

Delay : Lenders× Borrowers× {1, . . . , n} 7→ {0, . . . , l}.

Considering the earliest lend times, latest borrow times, and the delay of transfers,
let us define the conditions under which a set of lender teams can collaborate with a set
of borrower teams.

Definition 5.1. An nml-collaboration between Lenders and Borrowers with at most
m= max{mx} robot transfers, with n types of robots, and within at most l steps, rela-
tive to Delay, is a partial function

f : Lenders× Borrowers× {1, . . . , n} 7→
{0, . . . , l} × {0, . . . ,m}

(where f(i, j, x) = (l, u) denotes that team i lends u robots of type x to team j at time step
l) such that the following hold:

(a) For every borrower team j ∈Borrowersx, there are some lender teams i1, . . . , is ∈Lendersx,
x≤n, where the following two conditions hold:

• f(i1, j, x) = (l1, u1), . . . , f(is, j, x) = (ls, us) for some time steps l1, . . . , ls≤ l,
some positive integers u1, . . . , us≤mx, and some type x,

• Delay(i1, j, x) = t1, . . . ,Delay(is, j, x) = ts for some time steps t1, . . . , ts≤ l;

and there is a positive integer m≤mx such that

max{l1+t1, . . . , ls+ts}≤Borrow latestm,x(j)

m≤
∑s

k=1 uk.
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(b) For every lender team i∈Lendersx, for all borrower teams j1, . . . , js ∈Borrowersx,
x≤n, such that f(i, j1, x) = (l1, u1), . . . , f(i, js, x) = (ls, us) for some time steps
l1, . . . , ls≤ l, some positive integers u1, . . . , us≤mx, and some type x, and there is a
positive integer m≤mx such that

Lend earliestm,x(i)≤ min{l1, . . . , ls}
m≥

∑s
k=1 uk.

Condition (a), which ensures that a borrower team does not borrow fewer robots
than it needs, and Condition (b), which ensures that a lender team does not lend more
robots than it can, together entail the existence of a lender team that can lend robots when
a borrower team needs them.

Now we are ready to precisely describe the computational problem of finding a
coordination of multiple teams of heterogeneous robots, to complete all the tasks as soon
as possible in at most l steps where at most m robots can be relocated:

FINDCOLLABORATION n

INPUT: For a set Lenders of lender teams, a set Borrowers of borrower teams,
positive integers n, l and mx, x≤n: a delay function Delay and a collection of
functions Lend earliestm,x and Borrow latestm,x for every positive integerm≤mx,
x≤n.
OUTPUT: A nml-collaboration between Lenders and Borrowers with at most
m= max{mx} robot transfers, with at most n types of robots, and within at most l
steps, relative to Delay.

As expected, this problem is intractable even when the robots are homogeneous
(assuming that P 6= NP). The proof is shown in the next section.

Example 5.2. Consider four teams of robots, where Teams 1 and 2 are lenders and Teams
3 and 4 are borrowers. Take l=8,m1=4 and n = 1. The lenders’ answers to questions of
the form Q2 (“Can you complete your task in l steps, if you lendm robots of type x before
step l?”) and the borrowers’ answers to questions of the form Q3 (“Can you complete
your task in l steps, if you borrow m robots of type x after step l?”) are summarized
in Figure 5.3. The affirmative (resp., negative) answers to questions for time step l are
denoted by green/solid (resp., red/hatched); the number m of robots that can be lent or
needs to be borrowed are denoted above the rows. According to these answers, Team 1
can lend 2 robots after step 3 or 4 robots after step 7, Team 2 can lend 1 robot after step 2,
Team 3 needs to borrow 1 robot before step 5 or 3 robots before step 7, and Team 4 needs
to borrow 2 robots before step 6. Suppose the delay time is Delay(i, j)= | i−j |.

We can show that an nml-collaboration f exists: f(1, 3) = (3, 1), f(1, 4) =

(3, 1), f(2, 4) = (2, 1). Indeed, f satisfies the conditions in Definition 5.1.
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Figure 5.3: A summary of teams’ answers to queries

(a) for Team 3, f(1, 3) = (3, 1), and there exists m= 1≤ 1 such that
Borrow latest1,1(3)=5>3+2. So Team 3 can finish its task in 8 steps if it borrows
1 robot before step 5. Similarly, for Team 4, f(1, 4) = (3, 1) and f(2, 4) = (2, 1),
and there existsm = 2≤ 1+1 such thatBorrow latest2,1(4) = 6>max 3 + 3, 2 + 2.

(b) for Team 1, f(1, 3) = (3, 1) and f(1, 4) = (3, 1), and there exists m = 2>1 + 1

such that Lend earliest2,1(1) = 3≤ 3. Similarly, for Team 2, f(2, 4) = (2, 1), and
there exists m = 1 > 1 such that Lend earliest1,1(2) = 2≤ 2.

5.5 Finding a Team Coordination is Hard

The problem FINDCOLLABORATION n is intractable, as expected.

Proposition 5.3. The decision version of FINDCOLLABORATION n (i.e., existence of a

nml-collaboration) is NP-complete.

To prove this proposition, we will need the following lemma (Proposition 1 in [21]):

Lemma 5.4. The decision version of FINDCOLLABORATION (FINDCOLLABORATION n

for n=1) is NP-complete.

Proof of Proposition 5.3. We prove the membership as in the proof of Lemma 5.4. We
prove the hardness by a polynomial-time reduction from FINDCOLLABORATION, which
is an NP-complete problem: consider one type of robots in FINDCOLLABORATION n.

For Lemma 5.4 we consider an nml-collaboration for one type of robots (n = 1).
Therefore the definition of an nml-collaboration is reduced to the following form:
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Definition 5.5. An ml-collaboration between Lenders and Borrowers with at most m
robot transfers and within at most l steps, relative to Delay, is a partial function

f : Lenders× Borrowers→ {0, . . . , l} × {0, . . . ,m}

(where f(i, j) = (l, u) denotes that team i lends u robots to team j at time step l) such that
the following hold:

(a) For every borrower team j ∈Borrowers, there are some lender teams i1, . . . , is ∈Lenders

where

• f(i1, j) = (l1, u1), . . . , f(is, j) = (ls, us) for some time steps l1, . . . , ls≤ l and
some positive integers u1, . . . , us≤m, and

• Delay(i1, j) = t1, . . . ,Delay(is, j) = ts for some time steps t1, . . . , ts≤ l;

and there is a positive integer m≤m such that

max{l1+t1, . . . , ls+ts}≤Borrow latestm(j)

m≤
∑s

k=1 uk.

(b) For every lender team i∈Lenders, for all borrower teams j1, . . . , js ∈Borrowers

such that f(i, j1) = (l1, u1), . . . , f(i, js) = (ls, us) for some time steps l1, . . . , ls≤ l
and some positive integers u1, . . . , us≤m, and there is a positive integer m≤m such
that

Lend earliestm(i)≤ min{l1, . . . , ls}
m≥

∑s
k=1 uk.

Proof of Lemma 5.4. Let us denote by FINDCOLLABORATIOND the decision version of
FINDCOLLABORATION, i.e., decide for an existence of aml-collaboration. We prove that
FINDCOLLABORATIOND is NP-complete in two parts: membership and hardness.

Membership: Let Σ = {0, 1,∧,∨, ·, ◦, •, ?} be the alphabet, and let Σ∗ denote the set
of all strings over Σ∗. We define a language L to be the set of all strings in Σ of the form
B1 ∧B2 ∧B3 ∧B4 ∧D ∧X ∧ Y where

• B1, B2, B3, B4 are binary representations of the number of Lenders |Lenders|, the
number of Borrowers |Borrowers|, the maximum number of steps l, and the maxi-
mum number of robots m, respectively.

• D has the form D1,1 ∧ D1,2 ∧ ... ∧ Da,b with each Di,j of the form (Id ∧ Jd) · D′

where Id and Jd are the binary representation of lender index i and borrower index
j, and D′ is the binary representation of the value Delay(i, j).
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• X has the form Xm1,i1 ∧ Xm1,i2 ∧ · · · with each Xm,i of the form (Mx ∧ Ix) ◦ Sx
where Mx and Ix are the binary representation of number m and lender index i, and
Sx is the binary representation of the value Lend earliestm(i).

• Y has the form Ym1,j1 ∧ Ym1,j2 ∧ · · · with each Ym,j of the form (My ∧ Jy) • Sy
where My and Jy are the binary representation of number m and borrower index j,
and Sy is the binary representation of the value Borrow latestm(j),

such that, given an input x ∈ Σ∗ then x ∈ L iff FINDCOLLABORATIOND with input
corresponding to x returns yes.

Note that FINDCOLLABORATIOND is a decision problem since FINDCOLLABORATIOND

returns yes if and only if x∈L.
We will show that FINDCOLLABORATIOND is in NP by showing that (A) the above

representation x∈Σ∗ is polynomial in the size of an input to FINDCOLLABORATIOND,
(B) we can describe a guess y of polynomial size corresponding to a potential collabora-
tion function f , and (C) checking whether y satisfies all conditions of Def. 1 with respect
to input x can be done by a polynomial time algorithm.

(A) The input x∈Σ∗ consists of four numbers and at most 1+2·m functions (Delta plus
a maximum of m Lend earliest and Borrow latest functions), where Delta has
size O(|Lenders| · |Borrowers| · log(l)) and the other functions are below that.
Therefore, |x| has polynomial size in l·m.

(B) A guess y, corresponding to a collaboration function f , will be of the form F1 ∧
· · · ∧ Fw with w = O(|Lenders| · |Borrowers| · l · log(m)) = O(|x|4) where
each Fi is of the form (Iu ∧ Ju) ? (Lu ∧Mu) with Iu, Ju, Lu,Mu the binary rep-
resentations of lender iu, borrower ju, time step lu and number of robots mu, for
f(iu, ju) = (lu,mu). Each Fi has linear size in |x| therefore |y| = O(|x|5) and
therefore polynomial.

(C) We can check whether y conforms to all conditions in polynomial time: For condi-
tion (a) and (b), we check at most m values of Borrow latest and Lend earliest
functions for each Borrower and Lender, respectively. Therefore, the checking
algorithm takes polynomial time in |x|.

Hence, FINDCOLLABORATIOND is in NP.

Hardness: Take any 3-SAT instance F over signature σ of n variables x1, . . . , xn and
p clauses c1, ..., cp of the form cj = (tj,1, tj,2, tj,3), where tj,1, tj,2, tj,3 are literals. We can
reduce F to an instance of FINDCOLLABORATIOND as follows.

First, we define the sets Lenders and Borrowers. The set of Lenders has n lenders
for each variable in F . We define a function ϕ : Lenders → σ such that ϕ(i) = xi, to
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denote the relation between the lenders and the variables, Lenders = {1, ..., n}. The set
of Borrowers is defined for each clause in F , Borrowers = {n+1, ..., n+p}. So there is
a 1-1 mapping between lenders and variables, and between borrowers and clauses.

We define l = 2 ∗ |σ| = 2n, and a mapping step(xi) from literal xi, (resp., ¬xi) to
time steps such that step(xi) = i, (resp., step(¬xi) = n+ i).

Given a literal t in F , we denote by occ(t) the number of clauses of F which contain
t. Without loss of generality, we assume that no literal is contained twice in any clause.
Using occ(t) we define a function rNum : {1, . . . , l}→{1, . . . ,m} where m is a positive
integer explained below; rNum associates each time step (i.e., each literal) with a number
of robots.

Intuitively, for each clause c∈F containing literal t, rNum(step(t)) robots must be
transferred to satisfy c. To achieve this, we define rNum such that for each time step u,
the number of robots that must be transferred is larger than the total number of robots
that can be transferred before u, i.e., larger than the number of robots in all previous steps
multiplied by their respective occurrence counts of associated literals:

rNum(1) = 1

rNum(u) = 1+
∑u−1

i=1 rNum(i) · occ(step−1(i)) for 1 < u ≤ l

The constant m is the maximum number of robots that can be given at the lat-
est time step, i.e., the largest value of rNum for a given 3-SAT instance. This value is
m= rNum(step(¬xn))·occ(¬xn); by eliminating the definition of rNum from the formula,
we obtain the following equation

m=
(
occ(x1)+1

)
· . . . ·

(
occ(xn)+1

)
·
(
occ(¬x1)+1

)
· . . . ·

(
occ(¬xn−1)+1

)
·occ(¬xn).

Since a literal may occur in at most p clauses, m = O(p2n) which is exponential in the
input size. This is not a problem as the valuem can be computable in polynomial time and
represented in linear space, moreover our reduction never requires to explicitly represent
m functions: Lend earliest is defined on three intervals per lender and Borrow latest

is defined on four intervals per borrower, hence a polynomial time reduction.
We define Delay(i, j) = 0, for every i∈Lenders, j ∈Borrowers.
For each lender i, we define Lend earliestm(i) as follows:

Lend earliestm(i) =


step(ϕ(i)) if 1 ≤ m ≤ rNum(step(ϕ(i)))·occ(ϕ(i))

step(¬ϕ(i)) if rNum(step(ϕ(i)))·occ(ϕ(i)) < m and
m ≤ rNum(step(¬ϕ(i)))·occ(¬ϕ(i))

undefined otherwise

Intuitively, each lender i can lend up to rNum(step(ϕ(i)))·occ(ϕ(i)) robots with earli-
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step 1 step 2 step 3 step 4 step 5 step 6

1 a

8 ¬a
team 1:
(lender)
a, ¬a

2
b

16 ¬bteam 2:
(lender)
b, ¬b

4 c

32 ¬c
team 3:
(lender)
c, ¬c

a
b

¬c
1

2
32

team 4:
(borrower)
a ∨ b ∨ ¬c

c

¬a
¬b

4
8

16

team 5:
(borrower)
c ∨ ¬a ∨ ¬b

Figure 5.4: Example hardness reduction for 3-SAT formula F1 = (a∨b∨¬c)∧(c∨¬a∨¬b)

est time step step(ϕ(i)) or it can lend up to rNum(step(¬ϕ(i)))·occ(¬ϕ(i)) robots with
earliest time step step(¬ϕ(i)).

For each clause cj = (tj,1, tj,2, tj,3) in F , without loss of generality, we assume that
step(tj,1) ≤ step(tj,2) ≤ step(tj,3), and, for each borrower j+n, we defineBorrow latestm(j+n)

as follows:

Borrow latestm(j+n) =


undefined if 1 ≤ m < rNum(step(tj,1))

step(tj,1) if rNum(step(tj,1)) ≤ m < rNum(step(tj,2))

step(tj,2) if rNum(step(tj,2)) ≤ m < rNum(step(tj,3))

step(tj,3) if rNum(step(tj,3)) ≤ m ≤ m

Intuitively, each borrower j+n corresponding to clause cj needs to borrow at least the
number of robots associated with at least one literals in cj , at the latest time step that is
associated with that particular literal.

Example 5.6. Figure 5.4 shows an example reduction from 3-SAT formula F1 = (a∨ b∨
¬c) ∧ (c ∨ ¬a ∨ ¬b). Bold lines indicate Lend earliest and Borrow latest functions,
e.g., lender 2, corresponding to variable b has Lend earliest16(2) = 5. Numbers given
next to bold lines indicate values of rNum for the respective step, e.g., rNum(5) = 16.
Note that occ(t) = 1 for every literal t, hence rNum(step(t)) = 2step(t).

Note that the reduction from 3-SAT to FINDCOLLABORATIOND can be done in time
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polynomial in the size of the input formula. Let us prove that this is a correct reduction:
F is satisfiable iff there is an ml-collaboration between Lenders and Borrowers with at
most m robot transfers and at most in l steps defined above.

Hardness: SAT→ collaboration Let I be an interpretation mapping σ to truth values such
that this assignment satisfies F . Here and in the following we denote an interpretation I
by the set of atoms in σ whose values are mapped to true.

We define the collaboration function

f : Lenders × Borrowers → {0, ..., l} × {0, ...,m}

as follows:

• for every variable s∈ I and for every borrower j+n,

f(ϕ−1(s), j+n) = (step(s), rNum(step(s)))

where clause cj contains s;

• for every variable s /∈ I and for every borrower j + n,

f(ϕ−1(s), j+n) = (step(¬s), rNum(step(¬s)))

where clause cj contains ¬s.

Example 5.7 (ctd). Interpretation I1 = {a, c} satisfies F1 and induces the following
collaboration f1: f1(1, 4) = (1, 1), f1(2, 5) = (5, 16), f1(3, 5) = (3, 4).

We can now show that f , as obtained above from I , indeed satisfies all conditions
of Def. 1, i.e., it is an ml-collaboration.

• Def. 1(a): I satisfies each clause in F . For every borrower j corresponding to clause
cj = (tj,1, tj,2, tj,3), let tj,k be a literal in cj satisfied by I . Take any borrower j + n.
By our construction of f , there is a lender ik = ϕ−1(var(tj,k)) such that f(ik, j +

n) = (step(tj,k), rNum(step(tj,k))) where step(tj,k)≤ l and rNum(step(tj,k))≤m.
Take m = rNum(step(tj,k))≤m. Then the following hold:

max{step(tj,k)}≤ step(tj,k) = Borrow latestm(j+n)

m≤ rNum(step(tj,k)).

Hence condition (a) holds.

• Def. 1(b): Take any lender i (corresponding to variable ϕ(i)). Consider two cases:
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– Case 1: ϕ(i) ∈ I . Lender i has cooperations with borrowers n+j1, .., n+jq,
corresponding to clauses cj1 , ..., cjq which containϕ(i). Note that q≤ occ(ϕ(i))

and q= occ(ϕ(i)) if and only if ϕ(i) does not occur multiple times in any
clause. The construction of f is as follows:

f(i, n+j1) = (step(ϕ(i)), rNum(step(ϕ(i))))

...

f(i, n+jq) = (step(ϕ(i)), rNum(step(ϕ(i))))

where step(ϕ(i)) = l1 = · · · = ls≤ l, and rNum(step(ϕ(i))) =u1 = · · · =

us≤m. Take m = rNum(step(ϕ(i)))·occ(ϕ(i)) ≤ m. Then the following
hold:

Lend earliestm(i) = step(ϕ(i))≤min{step(ϕ(i))}
m≥ rNum(step(ϕ(i))) · q.

– Case 2: ϕ(i) /∈ I . Lender i has cooperations with borrowers n+j1, .., n+jq,
corresponding to clauses cj1 , ..., cjq which contain¬ϕ(i). Note that q= occ(¬ϕ(i))

and q= occ(¬ϕ(i)) if and only if ¬ϕ(i) does not occur multiple times in any
clause. The construction of f is as follows:

f(i, n+j1) = (step(¬ϕ(i)), rNum(step(¬ϕ(i))))

...

f(i, n+jq) = (step(¬ϕ(i)), rNum(step(¬ϕ(i))))

where step(¬ϕ(i)) = l1 = · · · = ls ≤ l and rNum(step(¬ϕ(i))) =u1 = · · · =
us ≤ m. Take m = rNum(step(¬ϕ(i)))·occ(¬ϕ(i)) ≤ m. Then the following
hold:

Lend earliestm(i) = step(¬ϕ(i))≤min{step(¬ϕ(i))}
m≥ rNum(step(¬ϕ(i)))·q.

Hence condition (b) holds.

Therefore, a function f obtained as shown above from a satisfying assignment I of
F is a collaboration according to Def. 1.

Hardness: collaboration→ SAT
Let f be a collaboration function defined via the reduction explained above. We

need to show that there is an interpretation that satisfies F . Without loss of generality, we
assume that Delay(i, j) = 0 for all i, j, and do not mention delay in the following.
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Since f is a collaboration function, it satisfies the conditions in Def. 1.
Given f and a borrower j+n corresponding to clause cj , we say that borrower

j+n can complete its task with respect to a literal t∈ cj iff the borrower borrows at
least rNum(step(t)) robots up to time step step(t) (inclusive) and there is no t′ ∈ cj with
step(t)<step(t′) such that the borrower borrows rNum(step(t′)) or more robots at a step
after step(t).

Intuitively, a borrower can complete its task with respect to literal t∈ cj iff its task
can be completed by obtaining robots until step(t) and this is not true for another literal
after that step. Given a collaboration function f , per definition of collaboration each
borrower can complete its task with respect to exactly one literal.

Example 5.8 (ctd). In collaboration f1, borrower 4 can complete its task with respect to
a and with respect to no other literal, borrower 5 can complete its task with respect to ¬b,
and not with respect to c because step(c)<step(¬b).

Towards proving the result, we introduce two lemmas.

Lemma 5.9. If borrower j+n, corresponding to clause cj , can complete its task with

respect to literal tu ∈ cj , then borrower j+n borrows at least one robot from lender

ϕ−1(var(tu)) at step step(tu) and that robot cannot be lent before step step(tu).

Intuitively, this lemma states that a borrower which can complete its task with re-
spect to a certain literal tu always borrows at least one robot from the lender correspond-
ing to var(tu), and that robot is exchanged at the step corresponding to tu, i.e., at the step
corresponding to the correct (with respect to polarity of the variable) literal.

Example 5.10 (ctd). Given f1 we saw that borrower 5 can complete with respect to ¬b.
According to Lemma 5.9, borrower 5 receives at least 1 robot at step(¬b) = 5 which is
true as f1(2, 5) = (5, 16). Intuitively, Lemma 5.9 holds because borrower 5 requires 16
robots to complete its task with respect to ¬b whereas lenders can only lend 15 robots in
total during steps 1 . . . 4. Therefore, borrower 5 must receive at least 1 of the 16 robots
that can be given at step 5, and this robot is in addition to 2 robots that could potentially
be given at step 2. (See also Lemma 5.11 which shows that these 2 robots cannot be given
in that case.)

Proof of Lemma 5.9. • Case 1: tu is a positive literal.

Borrower j+n can complete its task with respect to tu ∈ cj , so it borrows at least
rNum(step(tu)) robots with the latest time step step(tu).

Borrower j+n can cooperate with lenders ϕ−1(var(t1)), ..., ϕ−1(var(tu)).

Towards a contradiction, assume that borrower j+n does not borrow any robots
from lender ϕ−1(var(tu)) at step step(tu). Then there exists a collaboration func-
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tion f with:

f(ϕ−1(var(tα)), j+n) = (lα,mα)

...

f(ϕ−1(var(tβ)), j+n) = (lβ,mβ)

where step(t1) ≤ lα ≤ lβ < step(tu) and rNum(step(tu)) ≤ (mα + · · · + mβ)

and max{lα, . . . , lβ} ≤ step(tu). Note that this function excludes borrowing at step
step(tu) hence it excludes

f(ϕ−1(var(tu)), j+n) = (step(tu),m) for every m.

Therefore, the maximum number of robots that borrower j+n can borrow with f is

rNum(step(t1))·occ(t1) + · · ·+ rNum(step(tu−1))·occ(tu−1) =

=
∑u−1

i=1 rNum(step(ti))·occ(ti) = rNum(step(tu))− 1

which is exactly one robot less than borrower j+n needs to be able to complete
with respect to tu.

We have reached a contradiction: there cannot be a collaboration function that sat-
isfies condition (a) of Def. 1 without lender ϕ−(var(tu)) lending at least one robot
to borrower j at step step(tu).

• Case 2: tu is a negative literal.

If borrower j+n, corresponding to clause cj , can complete its task with respect to
literal ¬tu ∈ cj , then it borrows at least rNum(step(¬tu)) robots with the latest time
step step(¬tu).

Assume that borrower j+n borrows m robots from lender ϕ−1(var(tu)). Then,

Lend earliest(ϕ−1(var(tu)))m = step(tu).

By our construction of Lend earliest, we have m≤ rNum(step(tu))·occ(tu). With
this assumption, there exists a collaboration function f with:

f(ϕ−1(var(tα)), j+n) = (lα,mα)

...

f(ϕ−1(var(tβ)), j+n) = (lβ,mβ)

f(ϕ−1(var(tu)), j+n) = (lγ,m)

where step(t1) ≤ lα ≤ lβ ≤ lγ ≤ step(¬t) and rNum(step(¬t))≤ (mα + · · · +
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mβ+m) and max{lα, . . . , lβ, lγ} ≤ step(¬t).

The maximum number of robots borrower j+n can borrow can be computed as
follows:

rNum(step(t1))·occ(t1)+ . . .+rNum(step(tu))·occ(tu)+ . . .

. . .+rNum(step(¬tu−1))·occ(¬tu−1) =

=
∑u−1

i=1 rNum(step(ti))·occ(ti) = rNum(step(¬tu))− 1

We have reached a contradiction: there cannot be a collaboration function that sat-
isfies condition (a) of Def. 1 without lender ϕ−(var(tu)) lending at least one robot
to borrower j at the time step where the lender has the earliest possibility to lend
this robot, i.e., at step step(tu).

Lemma 5.11. If borrower j+n, corresponding to clause cj , can complete its task with

respect to positive literal t∈ cj (resp., with respect to negative literal ¬t∈ cj) then no

borrower can complete its task with respect to negative literal ¬t (resp., with respect to

positive literal t).

Intuitively, this lemma states that if a borrower can complete its task with respect
to a certain literal t, no other borrower can complete its task with respect to the negation
of literal t. In terms of truth values and clause satisfiability, Lemma 5.11 shows that a
collaboration corresponds to a consistent set of literals satisfying all clauses.

Example 5.12 (ctd). Given f1 borrower 5 can complete with respect to ¬b, Lemma 5.11
states that no borrower can complete with respect to b. Intuitively, this holds because
lender 2 provides at least one of 16 possible robots at step 5. Therefore, it cannot give
robots already at step 2.

Proof of Lemma 5.11. • Case 1: borrower j+n can complete its task with respect to
positive literal t∈ cj .

By Lemma 5.9, borrower j+n borrows at least one robot from lender ϕ−1(var(t))
at step step(t).

Since lender ϕ−1(var(t)) lends robots with earliest step step(t), by Lend earliest
function, the lender can lend at most rNum(step(t))·occ(t) robots.

Let borrower j′+n be a borrower corresponding to a clause cj′ which contains ¬t.
To complete its task by borrowing robots from lender ϕ−1(var(t)), it needs to bor-
row at least rNum(step(¬t)) robots. However, rNum(step(¬t))>rNum(step(t))·occ(t).

Therefore, lender ϕ−1(var(t)) cannot be the lender that satisfies borrower j′+n. In
other words, clause cj′ cannot be satisfied by literal ¬t.
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• Case 2: borrower j+n can complete with respect to negative literal t∈ cj .

By Lemma 5.9, borrower j′+n borrows m≥ 1 robots from lender ϕ−1(var(t)) at
step step(¬t), where

Lend earliest(ϕ−1(var(t))) = step(¬t).

Since lender ϕ−1(var(t)) lends a number of robots with earliest time step as above,
this lender cannot lend any robots before step(¬t). Therefore, lender ϕ−1(var(t))
cannot be the lender that satisfies a borrower j+n with respect to literal t∈ cj . In
other words, clause cj cannot be satisfied by literal t.

We can now prove that, if f is a ml-collaboration then F is satisfiable.
As f is a collaboration function it satisfies the conditions in Def. 1. By condition

(a) every borrower j+n can complete its task with respect to some literal t∈ cj . Given
f , let J be the set of all literals t s.t. some borrower can complete with respect to t.
Due to Lemma 5.11 no two borrowers complete their respective tasks with respect to
complementary literals x and ¬x for some variable x. Hence J does not contain both
positive and negative literals for any variable; it is a consistent set of literals.

Each borrower j+n corresponding to clause cj can complete its task with respect
to some literal t∈ J and t∈ c, therefore all clauses of F are satisfied by J . Therefore,
given a collaboration function f , the consistent set of literals J corresponds to a (unique)
satisfying truth assignment I for F .

5.6 Finding a Coordination of Teams in ASP

Since the computational problem is intractable, ASP is suitable for solving it: De-
ciding whether a program in ASP has an answer set is NP-complete [9]. We model
FIND COLLABORATIONn as follows. The input is represented by a set of facts, us-
ing atoms of the form delay(i, j, l), lend earliest(i,m, l, x), and borrow latest(j,m, l, x)

where 1≤x≤n, i∈Lendersx, j ∈Borrowersx,m≤m, l≤ l.
Condition (a) of Definition 5.1 is defined for each borrower j as follows:

condition borrower(j, x)←
borrow latest(j,m, l, x),

sum〈{u : f(i, j, l1, u, x), i∈Lendersx, l1≤ l, u≤m}〉≥m,
max〈{l1+t : f(i, j, l1, u, x), delay(i, j, t), i∈Lendersx, l1≤ l, u≤m}〉≤ l

where 1≤x≤n, j ∈Borrowersx, l≤ l,m≤m. The second line of the rule above de-
scribes that team j needs m robots of type x by step l. The third and fourth lines express
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that the number of robots lent to the borrower team j is at least m; the last two lines
express the latest time step l that team j borrows a robot of type x. Similarly, we define
condition (b).

condition lender(i, x)←
lend earliest(i,m, l, x),

sum〈{u : f(i, j, l1, u, x), j ∈Borrowersx, l1≤ l, u≤m}〉≤m,
max〈{l1 : f(i, j, l1, u, x), delay(i, j, t), j ∈Borrowersx, l1≤ l, u≤m}〉≥ l

We define an nml-collaboration f , by atoms of the form f(i, j, l, u, x), describing
f(i, j, x) = (l, u), by first ”generating” partial functions f :

{f(i, j, l, u, x) : l≤ l, u≤m}1←
(1≤x≤n, i∈Lendersx, j ∈Borrowersx)

and then ensuring that the borrowers can borrow exactly one type of robot and that lenders
can lend at most one type of robots:

← not 1{fB(j, x) : 1≤x≤n}1 (j ∈Borrowers)

← 2{fL(i, x) : 1≤x≤n} (i∈Lenders))

where fB(j, x) and fL(i, x) are projections of f onto j, x and i, x, respectively. Finally
we ”eliminate” the partial functions that do not satisfy conditions (a) and (b) of Defini-
tion 5.1:

← not condition borrower(j, x), fB(j, x) (j ∈Borrowersx, 1≤x≤n)

← not condition lender(i, x) (i∈Lendersx, 1≤x≤n)

With the ASP formulation above, an ASP solver can find an nml-collaboration. The
formulation represented to CLASP is shown in Figure 5.5.

5.7 Decoupling Plans for an Optimal Global Plan

Once a coordination of the teams is found for an optimal value of l, the necessary
information of which team lends to (or borrow from) which other team and when is passed
to each team. Then each team computes an optimal local plan whose length is less than
or equal to l. The optimal global plan is found by decoupling the optimal local plans.

In this section, we discuss the correctness of our approach.

Lemma 5.13. Under C1, C2 and C3, for every l,m and n, there is an nml-collaboration

of lenders and borrowers if and only if there is a collaboration of lenders and borrowers.
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1 % team I is a lender for robots of type X

2 lenderx(I,X) :- lend(I,M,L,X).

3 % team J is a borrower for robots of type X

4 borrowerx(J,X) :- borrow(J,M,L,X).

5

6 % if a team is a lender/borrower for a type of robot

7 % then it is a lender/borrower.

8 lender(I) :- lenderx(I,X).

9 borrower(J) :- borrowerx(J,X).

10

11 % earliest time that lender I can lend M robots of type X is step L

12 lend_earliest(I,M,L,X) :- L #min[lend(I,M,L1,X)=L1] L,num(M),step(L),

13 lenderx(I,X),type(X).

14 % latest time that borrower J needs to borrow M robots of type X is step L

15 borrow_latest(J,M,L,X) :- L=#max[borrow(J,M,L1,X)=L1],num(M),step(L),

16 borrowerx(J,X),type(X).

17

18 % lender I lends U robots of type X to borrower J at step L

19 {f(I,J,L,U,X) : num(U): step(L)}1:- lenderx(I,X),borrowerx(J,X),type(X).

20

21 %projection of f onto J and X.

22 fB(J,X):-f(I,J,L,U,X).

23 %projection of f onto I and X.

24 fL(I,X):-f(I,J,L,U,X).

25

26 % a borrower team can only borrow one type of robots

27 :- not 1{fB(J,X) : type(X)}1, borrower(J).

28 % lender team can lend at most one type of robots

29 :- 2{fL(I,X) : type(X)}, lender(I).

30

31 % a borrower team does not borrow fewer robots than it needs

32 condition_borrower(J,X) :-

33 M [f(I,J,L1,U,X)=U:lenderx(I,X):step(L1):num(U)],

34 #max[f(I,J,L1,U,X)=L1+T:lenderx(I,X):num(U):step(L1):delay(I,J,T)]L,

35 borrow_latest(J,M,L,X),borrowerx(J,X),step(L),num(M),type(X).

36 :- not condition_borrower(J,X),borrowerx(J,X),fB(J,X).

37

38 % a lender team does not lend more robots than it can

39 condition_lender(I,X) :-

40 [f(I,J,L1,U,X)=U:borrowerx(J,X):step(L1):num(U)] M ,

41 L #min[f(I,J,L1,U,X)=L1:borrowerx(J,X):num(U):step(L1)],

42 lend_earliest(I,M,L,X),lenderx(I,X),step(L),num(M),type(X).

43 :- not condition_lender(I,X),lenderx(I,X).

Figure 5.5: ASP formulation of the coordination problem

45



Proof. (⇒) Assume that there is an nml-collaboration of lenders and borrowers under
C1, C2 and C3. The nml-collaboration tells which lender should lend how many num-
ber of robots of which type to which borrower at which step. Since the workspaces of
the teams are separate and the teams execute their local plans according to the nml-
collaboration there is no collision of robots during the execution of the plans. Therefore
the nml-collaboration is a collaboration of lenders and borrowers.

(⇐) Assume that there is a collaboration of lenders and borrowers for some l,m
and n under C1, C2 and C3. Since this collaboration satisfies C2 and C3, it means that
lending/borrowing is done in a single batch and the teams lend/borrow robots of the same
type.

Let team i be a lender that lends m1, ...,mr robots of type x to teams j1, ..., jr at
steps l1, ..., lr, respectively. Team i can finish its task in at most l steps while it lends
m1 + ... + mr = m robots. So if Lend earliestm,x(i) = l, then l ≤ min{l1, ..., lr} will
hold. Similarly, for a borrower team j that borrows m1, ...,mr robots of type x from
teams i1, ..., ir at steps l1, ..., lr, we can conclude that if Borrow latestm,x(j) = l for
m = m1 + ...+mr, then l ≥ max{l1, ..., lr}. Also if there is delay between teams we can
determine it by taking the time difference of the step l′ that team i lends robots to team j

and the step l′′ that team j borrows robots from team i.
Therefore if there is a collaboration then it satisfies the conditions for an nml-

collaboration. So there is an nml-collaboration under C1, C2 and C3.

By incrementing l one by one until k, we can find the optimal value for the plan
length. After finding an optimal plan length for the teams, each team computes its local
plan regarding the nml-collaboration.

Lemma 5.14. The union of local plans is a global plan.

Proof. Each team computes its local plan with the information of at which step how
many robots they are suppose to lend/borrow, stated by the nml-collaboration. Since the
constraints in the domain description rules out the actions which would result in collisions,
during the execution of the local plans there won’t be any conflicts.

By taking the union of the local plans, each team will concurrently perform their
actions at each step. At the lending steps, the robots that are lent will move to the bench,
which is a seperate area from the workspaces. At the borrowing steps, the robots will
move from the bench to the borrower’s workspace. The delay between two workspaces
are also considered, so at the borrowing step for the team, the robots will be available at
the bench to enter the workspace.

Since the workspaces of the teams are seperate, during the execution of the plans
there won’t be any conflicts between teams. Therefore the union of the local plans can be
determined as the global plan of the teams.
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5.8 Algorithm for Finding an Optimal Global Plan

In this section, we describe our algorithm (Algorithm 5.1) to find an optimal global
plan of r teams, given the action domain description D, maximum plan length k, number
of types of robots n, maximum number of robots mx that can be transferred for type
x, x≤n and the planning problems P1, . . . ,Pr for each team with initial states and goals.

To find an optimal global plan, first the roles of each team (lender or borrower) are
identified by asking queries of form Q1 5.2. After that, by gathering yes/no answers to
queries of the forms Q2 and Q3 from every lender/borrower team, the earliest lend times
and the latest borrow times are inferred (Algorithms 5.3 and 5.4). Then based on these
earliest and latest times of robot transfers, and considering delays of robot transfers, an
optimal coordination among the teams is computed as described in Section 5.6. Once
such a coordination is found for an optimal global plan of length, necessary information
about this coordination is conveyed to each lender or borrower as constraints. After that,
each team computes its own optimal local hybrid plan (as described in Chapters 3 and
4) whose length is at most l, and which satisfies the coordination constraints conveyed to
by the mediator. Finally, these optimal local hybrid plans are decoupled for an optimal
global plan as described in Section 5.7. According to Algorithm 5.1 linear search is used
to find the optimal value of l.

The function DETERMINEROLES (described in Algorithm 5.2) determines the role
of each team for length l given the action domain descriptionD and the planning problems
of each team. This function asks each team i for a plan of length l with domain D and
planning problem Pi. If the team can find a plan, then there is a possibility that the team
may be able to lend some of its robots and still reach its goal state in l steps, so it is
identified as a lender. Otherwise, it is identified as a borrower.

The function GATHERANSWERS LEND (described in Algorithm 5.3) asks lender
teams queries of the form Q2 for every x≤n,m≤mx and l≤ l, by updating the domain
description D with Dlend,x which is a description of the lending action and additional
constraints on only allowing the teams to lend robots of type x only. The constraints
are given to avoid undesired lending actions of other type of robots. After collecting the
answers, the earliest lend time for each lender team (i.e., the minimum time step l that the
team can lend robots, while completing its tasks within l steps) is found.

Similarly, for borrowers, GATHERANSWERS BORROW (described in Algorithm 5.4)
asks queries of the form Q3 for every x≤n,m≤mx. This function updates the domain
description D now with Dborrow,x which is a description of the borrowing action and ad-
ditional constraints on only allowing the teams to borrow robots of type x only. The
constraints are to avoid undesired borrowing actions of other type of robots. After the
answers are collected, the latest borrow time for each borrower team (i.e., the maximum
time step l at which the team borrows robots, to complete its tasks within l steps) is found.
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Algorithm 5.1 FIND OPTIMAL GLOBAL PLAN

Input: An action domain descriptionD, positive integers k, n and mx, x ≤ n, r planning
problems P1,P2, . . . ,Pr (one for each team) with initial states s1, s2, ..., sr and goal
states g1, g2, ..., gr, and a transportation delay td

Output: A tuple consisting of, for each team i, a plan P [i] of length at most l ≤ k, team
role role[i], lending/borrowing constraints for each team C[i]

1: planfound := false;
2: l := 0;
3: while ¬planfound ∧ l < k do
4: l = l + 1;
5: role← DETERMINEROLES(D,P1, ...,Pr, l);
6: if all teams are Borrowers then

//There isn’t a lender team to help the borrower teams
7: continue;
8: end if
9: if all teams are Lenders then

//Every team can complete on its own
10: planfound = true;
11: continue;
12: end if
13: for all teams i do
14: if role[i] = Lender then
15: lendm,x[i]← GATHERANSWERS LEND(D,Pi, l, n,m1, ...,mn);
16: else
17: borrowm,x[i]← GATHERANSWERS BORROW(D,Pi, l, n,m1, ...,mn);
18: end if
19: end for
20: if FIND COORDINATION(role, l, n,m1, ...,mn, lendm,x, borrowm,x, td) then
21: C ← determine constraints from the coordination;
22: planfound = true;
23: end if
24: end while
25: for all teams i do
26: P [i]← FIND LOCAL PLAN(Di, l,Pi, Ci);
27: end for
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Algorithm 5.2 DETERMINEROLES

Input: An action domain description D, r planning problems P1,P2, . . . ,Pr (one for
each team), positive integer l

Output: team roles, role
1: for all teams i do
2: Ask for a plan of length l with domain D and planning problem Pi
3: if answer=success then
4: role[i] = Lender;
5: else
6: role[i] = Borrower;
7: end if
8: end for

Algorithm 5.3 GATHERANSWERS LEND

Input: An action domain description D, planning problem P , positive integers l, n and
mx, x ≤ n

Output: lendm,x for each m ≤ mx, x ≤ n
L1,1, ..., Lm1,1, ..., L1,n..., Lmn,n ← empty sets for lend times of each number of robot
type;

1: for all robot types x ≤ n do
2: D ← D ∪Dlend,x;
3: for all m ≤ mx do
4: for all l ≤ l do
5: C ← the constraint of lending m robots of type x before step l;
6: Ask for a plan of length l with domain D and planning problem P ∪ C;
7: if answer=success then
8: Lm,x = Lm,x ∪ {l};
9: end if

10: end for
11: lendm,x = min{Lm,x};
12: end for
13: end for

5.9 Demonstrations

We have shown the applicability of our approach with both dynamic simulations
using OPENRAVE [12] (with different optimizations of local feasible plans), and with a
physical implementation utilizing KuKa youBots and Lego NXT robots controlled over
Robot Operating System (ROS). Videos of these implementations are available at http:
//cogrobo.sabanciuniv.edu/?p=748.

A plan sequence from the physical implementation can be seen in Figure 5.6. In
this setting, team 1 is responsible for the manufacturing process, whereas team 2 does
the painting process on the toys. As the plan execution begins, the worker robots align
themselves in front of the assembly line to be able to work on the products that shift on
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Algorithm 5.4 GATHERANSWERS BORROW

Input: An action domain description D, planning problem P , positive integers l, n and
mx, x ≤ n

Output: borrowm,x for each m ≤ mx, x ≤ n
B1,1, ..., Bm1,1, ..., B1,n..., Bmn,n ← empty sets for borrow times of each number of
robot type;

1: for all robot types x ≤ n do
2: D ← D ∪Dborrow,x;
3: for all m ≤ mx do
4: for all l ≤ l do
5: C ← the constraint of borrowing m robots of type x after step l;
6: Ask for a plan of length l with domain D and planning problem P ∪ C;
7: if answer=success then
8: Bm,x = Bm,x ∪ {l};
9: end if

10: end for
11: borrowm,x = max{Bm,x};
12: end for
13: end for

the line to the places in front of the worker robots. For example, at step 3 in team 2, the
first workstage of the first product, painting in black, is completed. The chargers also
move towards the worker robots to charge them when needed. For example, in step 3,
the charger in team 2 dockes to a worker robot, charges it in step 4 and undocks from the
worker robot at step 4. At step 12, team 2 lends two dry robots, and the robots move to the
bench. The delay time is considered to be 3 steps and while the lent robots move in the
bench, the teams continue to execute their plans. At step 15, team 1 borrows the two dry
robots and the teams continue to execute their plans until all the products are completed.

Figure 5.6: Snapshots of a plan sequence from the physical implementation
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Chapter 6

Experimental Evaluation

We investigated the scalability and usefulness of the proposed optimal global plan-
ning method by means of some experiments over the cognitive toy factory domain (Chap-
ter 2).

6.1 Setting

We have performed our experiments on a Linux server with 16 Intel E5-2665 CPU
cores (32 threads) with 2.4GHz and 64GB memory (note that our experiments never use
more than 300MB).

Algorithms 5.1,5.2,5.3 and 5.4 are implemented in Python. The ASP solver Clasp
version 2.1.3 (with Gringo version 3.0.5), with configuration=handy as the command
line option, is used for answering queries. To solve the collaboration problem, we also
use CLASP. To compare the computation times for answering queries, we also performed
experiments using CCALC with the multi-threaded SAT-solver MANYSAT (limited to four
threads). For the transformation of the domain representation in C+ to ASP we used the
tool CPLUS2ASP v1 [7].

First of all, it is important to observe that, since each team is equipped with its
own computation unit and the queries are designed in a way that teams do not need to
communicate with each other, queries for teams can be trivially parallelized as depicted
in Figure 6.1. Two sorts of parallelization are utilized: i) mediator asks sets of queries to
teams in parallel and ii) each team takes advantage of multiple cores in its computation
unit to process multiple queries simultaneously. Thanks to this parallelization, the total
time required to find a coordination for an optimal global plan through a mediator, consists
of the time it takes for the mediator to compute a coordination plus the time it takes for
the slowest team to answer all queries asked by the mediator: Ttotal = Tcoord + Tquery.
Furthermore, each team can additionally take advantage of multiple core/threads that may
exists in its computation unit, to process multiple queries simultaneously. Therefore, we
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can analyze the scalability of the proposed approach by investigating Tcoord and Tquery,
respectively.

Mediator

Team 1

 

 

 

Tcoord
Ttotal

Tquery w/ multi-core 
computation unit

Team 2
w/ multi-core 

computation unit

w/ multi-core 
computation unit

Team N
w/ multi-core 

computation unit

Figure 6.1: Parallelization of queries

6.2 Tquery: Querying Teams

To study the scalability of querying teams, we performed experiments both for ho-
mogeneous teams and for heterogeneous teams. In the homogeneuous case, we consid-
ered two sets of scenarios where workspaces are 7×3 grid cells, as shown in Table 6.1.The
team sizes in these scenarios are kept reasonable (2–9 robots per workspace) considering
real manufacturing processes, since every work cell in a real factory typically is of mod-
est size with 3–12 operators. In the first set each team has a different size. Scenarios 1–3
(resp. Scenarios 4 and 5) are built incrementally. For example, in Scenario 2 there are
three teams with 1, 2, 4 worker robots, respectively, and the total number of robots in this
scenario, including the charger robots, is 11, whereas in Scenario 3 an additional team
with 6 worker robots and 3 charger robots is added. In the second set of scenarios, some
teams may have the same size. Here also Scenarios 1 b–3 b (resp. Scenarios 4 b –6 b)
are built incrementally, but considering teams of same sizes. For instance, in Scenario 1 b
there are three teams with 1, 1, 2 worker robots, whereas in Scenario 2 b there are four
teams with 1, 1, 2, 2 worker robots, the team numbers are increased by adding new teams
of the same size.

We also considered the heterogeneous cases (n = 2) of these scenarios, where the
number of a worker robot of one type is computed by dividing the total number of workers
by n. For example, the heterogeneous case of Scenario 4 is two teams with 1 wet, 1 dry
worker robots and 2 wet, 2 dry worker robots, respectively.

In these experiments, in order to find the optimal global plan length for the teams in
each scenario, we considered queries of the form Q1-Q3 as described in Chapter 5. Total
number of queries in each scenario corresponds to the total number of queries answered
by all the teams until a coordination for an optimal length is found. The computation time
Tquery in each scenario is computed by the time it takes for the slowest team to answer all
the queries.

We would like to analyze the results to better understand how the computation time
(CPU seconds) for answering queries and the optimal global plan length are affected by a
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Table 6.1: Scenarios

Scenario Teams Worker Charger Total
robots robots robots

1 2 1,2 1,1 5
2 3 1,2,4 1,1,2 11
3 4 1,2,4,6 1,1,2,3 20
4 2 2,4 1,2 9
5 3 2,4,6 1,2,3 18

1 b 3 1,1,2 1,1,1 7
2 b 4 1,1,2,2 1,1,1,1 10
3 b 5 1,1,2,2,2 1,1,1,1,1 13
4 b 3 2,2,4 1,1,2 12
5 b 4 2,2,4,4 1,1,2,2 18
6 b 5 2,2,4,4,4 1,1,2,2,2 24

change in the team size, the number of teams, the number of orders, the maximum number
of robot exchange between teams and when heterogeneous robots with varying capabil-
ities are considered. Although the experimental evaluation of different sorts of hybrid
reasoning is extensively studied in a companion paper [60], we have also conducted some
experiments to observe the effect of hybrid reasoning.

6.2.1 Changing the team sizes and the workspace sizes

To analyze the effects of changing the team size (i.e., the total number of robots
in each team) and the workspace size (i.e., number of grid cells) on the computational
efficiency (Tquery) and the quality of plans (i.e., makespans), first we considered scenarios
with one team of homogeneous robots. Therefore, we generated two sets of instances
for Scenario 2 from Table 6.1 to compare teams with different sizes, that vary over two
different sizes of workspaces (with 5×3=15 and 7×3=21 grid cells), with the maximum
makespan of k = 50.

Table 6.2 shows the results of query answering. We can observe from this table
that the total time for a team of 2 robots to answer all 93 queries (essentially planning
problems) is 9.17 seconds, under multi-threading. In the same workspace size, it takes
47.43 seconds for a team of 6 robot to answer all the 95 queries. For a team of 2 robots in a
workspace of 21 size, it takes 20.56 seconds to answer all 86 queries. So the computation
time increases as the number of robots per team and the size of the workspace increase.

Next, we also considered heterogeneous robots and multiple teams. In particular,
we experimented over scenarios 1 b, 2 b, 4 b and 5 b of Table 6.1, where the team sizes
double. Table 6.3 shows the results of query answering in these scenarios that are com-
parable with each other in terms of team sizes. We can observe from this table that as the
team size increases the optimal plan length decreases, since there are more robots that can
be used for the tasks.
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Table 6.2: Team size and workspace size vs. computation time and plan quality: for one
team of multiple homogeneous robots in Scenario 2, the max number of robot exchange
is 2 and the order number is 4

Number of Total grid Optimal plan Total Time to answer
robots cells length queries all queries (secs)

2
15 24

93 9.17
3 94 45.01
6 95 47.43
2

21 25
86 20.56

3 87 105.95
6 85 102.45

Table 6.3: Team size and robot transfers vs. computation time and plan quality: multi-
ple teams, where workspaces are of the same size 7×3, the order number is 4, and the
maximum makespan is 50
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1 b 1,1,2 1,1,1
1 287 249.91 502 139.81 39
2 353 390.21 710 137.04 35\ 39

4 b 2,2,4 1,1,2
1 139 41.24 245 34.59 25
2 207 79.06 389 57.77 23

2 b 1,1,2,2 1,1,1,1
2 264 61.37 394 81.09 30
3 312 252.11 490 85.63 30

5 b 2,2,4,4 1,1,2,2
2 44 4.15 76 5.67 17
3 58 6.81 92 6.25 17

Consider the scenarios 1 b and 4 b: each one has 3 teams, but scenario 4 b doubles
the number of worker robots in the teams. Consider that case where the maximum number
of robot transfers is 1. Under these conditions, the plan length decreases from 39 in
Scenario 1 b to 25 in Scenario 4 b, since larger teams are able to finish their tasks quickly.
This results in less number of queries and the computation time becomes smaller: it takes
249.91 CPU seconds to solve Scenario 1 b, whereas it takes 41.24 CPU seconds to solve
Scenario 4 b. The results are also similar for scenarios 2 b and 5 b.

Now consider the case where the maximum number of robots transfers is 2: so
the teams can help each other even more. Since the number of queries increase due to
the increase of maximum robot transfers, the computation time increases in all of the
scenarios. Also the increase in the number of robot transfer leads the teams to help each
other more and in scenarios 1 b and 4 b we can see it affecting the plan quality, since the
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Table 6.4: Team number vs. computation time and plan quality: multiple teams, where
workspaces are of the same size 7×3, the maximum number of robot transfers is 2, and
the maximum makespan is 50
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4 3,6 4 22 4.51 38 6.98 17
2 2,3,6 4 258 105.95 484 86.99 25
5 3,6,9 4 49 13.48 89 19.70 17
1 b 2,2,3 3 298 33.40 478 23.81 30\31
2 b 2,2,3,3 3 166 12.80 246 7.95 24
3 b 2,2,3,3,3 3 205 12.95 291 8.09 24
4 b 3,3,6 5 212 245.69 450 156.33 25\ 26
5 b 3,3,6,6 5 88 16.48 154 18.14 20
6 b 3,3,6,6,6 5 110 18.34 193 20.37 20

plan lengths decrease from 39 to 35 in Scenario 1 b, and from 25 to 23 in Scenario 4 b.

6.2.2 Changing the number of teams

To analyze the effects of changing the number of teams on the computational ef-
ficiency and the quality of plans, we considered some of the scenarios of Table 6.1 that
have different number of teams but with same parameters such as the maximum number
of robot exchange or the number of orders, to compare the effect of the change in team
number. Table 6.4 shows the results of query answering from examples of two sets of
scenarios.

Consider the scenarios 2, 4 and 5: Scenario 4 has 2 teams and Scenario 2 has 3
teams with the additional team having a smaller size than the other teams. Scenario 5
also has 3 teams, but the additional team has a larger size than the other teams. We can
observe from Table 6.4 how the computation time and the plan quality are affected when
the number of teams is increased by adding a team with a smaller size. The computation
time from Scenario 4 to Scenario 2 increases from 4.51 to 105.95, since a longer global
plan length is needed to be found for the smaller team to complete its task. We can see
that the optimal global plan length of Scenario 2 is found to be 25, whereas for Scenario 4
it is 17. When the number of teams is increased by adding a team with a larger size as in
Scenario 5, the computation time increases slightly with respect to Scenario 4, since the
large size of the new team takes more computation time.

In the second set of instances, the team numbers are increased by adding teams of
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the same size. Consider the scenarios 1 b and 2 b: we can observe a decrease in the plan
length from 30 to 24, because the additional team is not of a smaller size and it is used to
help the other teams to reach a shorter plan. This results in the decrease of total number
of queries and hence the decrease in the computation times: it takes 33.40 CPU seconds
to solve Scenario 1 b, whereas it takes 12.80 CPU seconds to solve Scenario 2 b.

When an additional team is added to Scenario 2 b to have Scenario 3 b, we can
observe that the plan quality remains the same, which shows that a coordination for a
shorter length cannot be found in this setting. Also the computation time stays the same,
since the additional team has the same size, so it does not take a longer time for the team
to answer all the queries.

We can observe the similar results in scenarios 4 b, 5 b and 6 b. There is a decrease
in the computation time from 245.69 CPU seconds of Scenario 4 b to 16.48 CPU seconds
of Scenario 5 b. In these instances the team sizes are larger than of scenarios 1 b, 2 b
and 3 b, and the additional teams also has a large size. So since the new team added to
Scenario 4 b is large, it is able to help the other teams while finishing its task. This results
in the decrease of the plan length from 25 to 20, and in the number of total queries. When
an additional team is added to Scenario 5 b, this does not affect the plan quality, which
shows that this is the optimal length that can be reached in this setting.

Additionally, it can be observed from Table 6.4 that the plan length increases in cer-
tain cases when heterogeneity is considered, since the existence of robots with restricted
capabilities may cause delays for the accomplishment of some tasks (check for instance
Scenario 1 b, when the teams can help each other by borrowing at most 1 robot or at most
2 robots).

6.2.3 Changing the maximum number of robot transfers

For comparing the effect of the maximum number of robot exchanges between
teams, we considered the scenarios in which there are slightly larger teams, since we
want the possibility of exchanging more robots between teams. Table 6.5 shows the re-
sults of query answering. As expected, the results show that as more number of robots
are allowed to be exchanged between teams, the teams become more collaborative which
results in smaller optimal global plan lengths.

Consider Scenario 1: when the maximum number of robot exchanges between
teams are limited to 1, the optimal plan is found to be of length 30 and the computa-
tion takes 795.41 CPU seconds, whereas when the maximum number is set to 2, the plan
length decreases to 20 and the computation time decreases to 30.60, which is a large
difference.

In Scenario 5, the plan length continues to decrease when a maximum of 3 robot
transfers are allowed. The computation time does not show a deep decrease as in Scenario
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Table 6.5: Robot transfers vs. computation time and plan quality: multiple teams, where
workspaces are of the same size 7×3 and the maximum makespan is 50
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3 1,2,4,6 1,1,2,3 5
1 134 795.41 204 245.02 30
2 80 30.60 137 34.70 20

5 2,4,6 1,2,3 6
1 74 179.40 115 136.37 25
2 93 639.95 159 263.35 23
3 94 261.11 161 174.52 21

1 b 1,1,2 1,1,1 4
1 287 249.91 502 139.81 39
2 353 390.21 710 137.04 35\39

4 b 2,2,4 1,1,2 5
1 139 41.24 245 34.59 25
2 207 79.06 389 57.77 23

1, because even though the plan length decreases, the computatation time is more affected
by the increase in the total number of queries. Also in scenarios 1 b and 4 b, increasing
the maximum number of robot transfers shortens the plan lengths, while the computation
times increase slightly.

6.2.4 Changing the number of boxes

We considered the scenarios in Table 6.1 to analyze the effects of changing the
number of orders/boxes on the computational efficienct and the quality of plans. Since the
resuls are similar in two sets of scenarios, Table 6.6 shows the results of query answering
for scenarios 1, 2 and 3.

We can observe from Table 6.6 that, in Scenario 1, the total time for two teams with
small sizes to answer all the queries increase considerably as the order number increases:
the computation takes 8.49 CPU seconds when the order is 3 boxes, whereas it takes
5232.9 CPU seconds when the order is 5 boxes. This is due to the fact that the work that
each teams needs to complete increases, and it takes more time to find a plan utilizing
small amount of robots. Also it can be observed that the optimal plan length increases in
considerable amount, even if only one more box is added to the order of the teams: the
optimal plan length is 24 when the order is 3 boxes, whereas the plan length is 30 when
the order is 4.

When we consider Scenario 2, the increase in the computation time is not as severe
as in Scenario 1: the computation takes 36.37 CPU seconds when the order is 3 boxes,
whereas it takes 1891.75 CPU seconds when the order is 5 boxes. As there are more teams
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Table 6.6: Order numbers vs. computation time and plan quality: multiple teams, where
workspaces are of the same size 7×3 and the maximum makespan is 50
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3 55 8.49 91 7.57 24
1 1,2 1,1 1 4 90 166.15 149 91.40 30

5 114 5232.90 186 1140.90 36
3 191 36.37 358 40.99 21

2 1,2,4 1,1,2 2 4 258 106.34 484 85.28 25
5 338 1891.75 633 533.65 30
3 50 13.3 90 10.83 15

3 1,2,4,6 1,1,2,3 3 4 83 18.96 148 29.54 17
5 143 61.78 250 84.05 20

that can help the smaller teams in Scenario 2, the optimal plan length is found to be 21,
and as the number of boxes increase the optimal plan length increases.

In Scenario 3, there are teams of large sizes and this results in shorter plan lengths
than Scenario 1 and 2. The computation times are also smaller, since the total number
of queries are low. We can observe that the increase of the plan length in Scenario 3 is
more narrow than in Scenario 1. While the plan length of Scenario 1 increases by 8 steps
when 2 more boxes are added to the order, in Scenario 3 the plan length increases by 5
steps. This shows that the teams with larger sizes are able to react more efficiently to new
orders.

6.2.5 Using Hybrid Reasoning

Table 6.7 shows the results when the teams in the scenarios shown in Table 6.6
utilizes hybrid reasoning while answering the queries.

We can observe from the table that the computation time increases in all cases, since
finding a feasible plan with the constraints is time consuming. Also we can observe the
increase in the optimal plan length for some scenarios. For example, for Scenario 1 with 4
orders has an optimal plan length of 30 without hybrid reasoning, whereas the plan length
becomes 31 when hybrid reasoning is included. This shows that the optimal global plan
found without hybrid reasoning was unfeasible, but with the help of hybrid reasoning a
feasible optimal global plan is found.
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Table 6.7: Order numbers vs. computation time and plan quality: multiple teams (us-
ing hybrid reasoning), where workspaces are of the same size 7×3 and the maximum
makespan is 50
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1 1,2 1,1 1
3 48 26.56 75 15.33 24
4 93 990.05 152 312.63 31

2 1,2,4 1,1,2 2
3 219 69.88 415 73.72 22
4 287 317.51 537 157.81 26

3 1,2,4,6 1,1,2,3 3
3 49 22.38 90 45.48 15
4 70 39.92 125 107.76 17

6.3 Tcoord: Coordination of Teams

To study the scalability of our method for finding a coordination of teams, we have
generated two sets of instances, one with homogeneous worker robots (n = 1) and one
with heterogeneous worker robots (n = 2, 4), that vary over the number of teams (ranging
between 2–16) and the maximum number of robots that can be transferred (m = 2, 4).
Table 6.8 shows the results of coordination; each reported CPU time is the average for at
least m× n instances.

We can observe from this figure that the computation time increases slightly as the
factory involves more heterogeneous robots and more number of teams. These results can
be observed more clearly, as the number of transferred robots also increases. When the
factory involves 16 teams with heterogeneous robots, and the number of robots lent/bor-
rowed between any two teams is at most 4, the computation time is still less than 15
seconds. Intuitively, involving more heterogeneous robots (resp. requiring more robot
transfers between teams) makes the coordination problem harder since different capabili-
ties of the robots (resp. more combinations of robot transfers) have to be considered while
searching for a coordination.

6.4 Overall Scenarios

Table 6.9 shows the results for six scenarios of varying size for teams of robots with
only 1 type of workers, averaged over three runs, without hybrid reasoning. For each
scenario, we report the total number of questions answered by the teams, the average
CPU time to answer a query and to find a coordination of teams, the length of an optimal
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Table 6.8: CPU time in seconds for Tcoord

number of m̄ = 2 m̄ = 4
teams n = 1 n > 1 n = 1 n > 1

2 < 10−6 < 10−6 < 10−6 0.005
4 < 10−6 0.014 0.023 0.245
8 0.005 0.061 2.92 3.61

16 0.080 0.432 6.63 14.9

Table 6.9: Experimental results for six scenarios
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1 2 15 1,2 5 6 212 3.96 < 0.1 30 34
2 3 15 1,2,3 9 9 437 3.92 < 0.1 25 34
3 4 15 1,2,3,4 15 12 525 1.82 < 0.1 21 34

4 2 24 2,4 8 8 127 4.76 < 0.1 20 29
5 3 24 2,4,6 18 12 171 5.37 < 0.1 18 29
6 4 24 2,4,6,8 30 16 293 79.96 < 0.1 18 29

global plan with/without collaborations of teams. For instance, for Scenario 5, a total of
171 queries are answered by the teams; average less than a second. An optimal global
plan with such a coordination has 18 steps; whereas an optimal global plan without any
collaborations has 29 steps.

We can observe from the table that finding a coordination function by the mediator
takes a negligible amount of time. The majority of the total computation time is spent for
the teams to answer questions. As the problem size increases, the size of the ASP program
gets larger, making it hard for CLASP to find an answer. Since teams’ query answering
can be parallelized, scalability of the approach to factories with many workspaces seems
plausible.

We can also observe the tradeoff between the optimal global plan length and the
total computation time, with and without team collaborations. For instance, for Scenario
2, if we allow collaborations of teams, then we can find an optimal global plan of length
25, in about 33 minutes; otherwise, we can find an optimal global plan of length 34 in
about 5 minutes. This computational cost is negligible compared to 27% decrease in
process length resulting in large cost savings for the manufacturing industry; time gains
achieved by such a decrease in process length will help economic sustainability under low
quantity orders, and result also in better customer satisfaction.
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Table 6.10: Experimental results comparing ASP vs. SAT
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1 2 15 1,2 5 6 212 3.96 6.67
2 3 15 1,2,3 9 9 437 3.92 6.13
3 4 15 1,2,3,4 15 12 525 1.82 3.36

4 2 24 2,4 8 8 127 4.76 7.91
5 3 24 2,4,6 18 12 171 5.37 13.08
6 4 24 2,4,6,8 30 16 293 79.96 151.33

6.5 Answering Queries: CCALC vs. ASP

We performed experiments to compare the use of CCALC and ASP for answering
queries, with the same instances used in our experiments, as explained in Section 6.4.
Table 6.10 summarizes the results of these experiments, comparing the computation times
using the ASP solver CLASP with the grounder GRINGO, with the computation times
using CCALC with the multi-threaded SAT-solver MANYSAT (limited to four threads).
The computation times are average CPU times in seconds, obtained over three repeated
runs of all scenarios. The time reported for ASP includes the time spent for grounding by
GRINGO; the time reported for SAT includes the time spent for obtaining the propositional
theory by CCALC. Note that except for the computation times used to answer queries,
all other numbers are the same as in Table 6.10. We observe from these results that the
ASP solver CLASP performs better than CCALC with the SAT solver MANYSAT in all
cases. This is also true for real time (not shown in tables), not only for CPU time (shown
in tables).

6.6 Finding Optimal Values: Binary Search vs. Linear
Search

To find the optimal value for a global plan length l, and to find the earliest/latest
lend/borrow times l of individual teams, we can use binary search or linear search.

One possibility is to apply binary search between 1 and l to find the earliest lend
times and the latest borrow times l, and between 1 and k to find the optimal value for the
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global plan length l. With this approach, every team answers O(n ·m · log(k)2) queries.
However, the computation time to answer a query drastically increases as the plan

length increases (due to inherent hardness of planning [69, 23]). In such cases, as sug-
gested by Trejo et al. [68], it is not a good idea to apply binary search to find the optimal
value for a global plan length l. Meanwhile, given a plan length, queries to find the earli-
est lend times and the latest borrow times take about the same time; in such cases, as also
suggested by [68], it is a good idea to apply binary search to find these optimal values.
Therefore, a better approach might be to use linear search to find the optimal value for a
global plan length l, and binary search to find optimal values for lending/borrowing times.
We compared these two approaches to compute optimal values for plan length l experi-
mentally over the six scenarios used in our experiments, using CCALC with MANYSAT.
Table 6.11 shows the results of these experiments. Results are averages over three runs.

We can observe that these experimental results confirm Trejo et al. [68]’s results
summarized above. For small scenarios, the overall time to find a solution (not shown
in the table) is smaller with two binary searches while for large scenarios using linear
search for l gives a better overall performance. For example, for Scenario 1, a total of
1012 seconds is required to find the optimal value for l with binary search, while using
linear search requires 1670 seconds. On the other hand, finding the optimal value for l in
Scenario 4 requires 36737 seconds using binary search while linear search requires only
2114 seconds. Nevertheless the overall time to find the optimal solution increases in all
scenarios either due to an increased effort for answering questions or due to a significantly
increased amount of queries.
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Table 6.11: Experimental results comparing linear search vs. binary search
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1 2 15 1,2 5 6 212 6.67 < 0.1 30 34
2 3 15 1,2,3 9 9 437 6.13 < 0.1 25 34
3 4 15 1,2,3,4 15 12 525 3.36 < 0.1 21 34
4 2 24 2,4 8 8 127 7.91 < 0.1 20 29
5 3 24 2,4,6 18 12 171 13.08 < 0.1 18 29
6 4 24 2,4,6,8 30 16 293 151.33 < 0.1 18 29

l:
bi

na
ry

1 2 15 1,2 5 6 100 8.78 < 0.1 30 34
2 3 15 1,2,3 9 9 187 9.96 < 0.1 25 34
3 4 15 1,2,3,4 15 12 310 7.78 < 0.1 21 34
4 2 24 2,4 8 8 163 215.13 < 0.1 20 29
5 3 24 2,4,6 18 12 201 224.32 < 0.1 18 29
6 4 24 2,4,6,8 30 16 351 283.63 < 0.1 18 29
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Chapter 7

Execution Monitoring

Once an optimal global plan is computed for multiple teams of heterogeneous robots
to reach their manufacturing goals as soon as possible (via Algorithm 5.1 described in
Chapter 5), it is executed by the teams. During the execution of this plan, there may
be some changes in the environment (such as a change in the number of the obstacles),
or changes in the manufacturing orders (such as an increase in the number of orders).
In addition to these changes that can be detected by sensory information or simply by
direct communication between the teams and the mediator, there may be some changes
that are hard to detect (such as a broken part of a robot). We present a general planning
and execution monitoring algorithm, that computes an optimal global plan as described
in the earlier sections, monitors this plan’s execution, detects discrepancies between the
observed states and the expected states, and if the discrepancies lead to plan failures then
it applies methods to recover from these failures.

7.1 Algorithm for Execution and Monitoring of Plans

Execution of the global plan with optimal value l≤ k consists of each team execut-
ing its own local plan in its workspace. Therefore our execution monitoring algorithm
checks the execution of the local plans separately. The flowchart in Figure 7.1 shows
the general flow of monitoring the execution of each local plan. The algorithm (Algo-
rithm 7.1) observes the current state via the sensors at each step of the plan and checks
for a discrepancy or changes. If a discrepancy/change is detected it modifies the planning
problem and checks whether this discrepancy/changes causes the rest of the plan to fail,
by checking whether executing the rest of the plan reached the goals. If there is plan fail-
ure, then replanning is done to reach the deadline in at most k steps. If the team cannot
find a plan until the deadline on its own, the planning problem is modified to borrow some
robots from other teams after they finish executing their own local plans at step l. If a plan
cannot be found even if the team borrows some robots, then a global replanning is needed.
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Figure 7.2 shows the detection of a discrepancy/change during the execution of the
local plan. In this thesis, we assume that detected discrepancies are due to broken parts
of robots in the workspace. If a discrepancy is detected, the cause of the discrepancy is
diagnosed and the diagnosis is added to the planning problem as constraints. If a change
in the order is detected, the goals of the planning problem is modified with respect to
the new order. If a change in the environment is detected, then the information about the
obstacles is added to the planning problem as constraints.

Figure 7.1: Flowchart of a local execution and monitoring algorithm

We now describe the execution and monitoring algorithm in further detail. As the
teams execute the computed optimal global plan (i.e., each team executes its own local
plan), our execution monitoring algorithm (Algorithm 7.1) checks at each step of the plan

(Line 14) whether there is a discrepancy between the observed state of the world and the
expected state (with respect to the monitored fluents),

(Line 20) whether there is some change in the environment such as unknown obstacles in
the environment,

(Line 25) whether there is some change in the manufacturing orders.
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Figure 7.2: Flowchart of detecting a discrepancy/change during the execution

Once a discrepancy is detected (Line 14), our algorithm tries to find a diagnosis
of the discrepancy (Line 18) utilizing a diagnosis algorithm (Algorithm 7.3) similar to
that of [20]: Algorithm 7.3 tries to find the cause of the failure (i.e., which robots are
broken) (Line 3 of Algorithm 7.3), and verifies that the robots are indeed broken (Line 4
of Algorithm 7.3).

If changes are detected in the environment then Algorithm 7.1 obtains full infor-
mation about the current state (Line 27). If the manufacturing orders change then Algo-
rithm 7.1 updates the goals of the planning problem.

The diagnose algorithm shown in Algorithm 7.3 assumes that there is a discrepancy
at the given step l. Until a correct diagnosis is found by MINIMAL DIAGNOSIS (Line
3) it calls the consulting agent by VERIFYDIAGNOSIS (Line 4) to check whether the
diagnosis returned by MINIMAL DIAGNOSIS is correct or not. If the diagnosis is not
correct, it updates the state by expressing that the diagnosis does not hold (Line 5) and the
loop again calls for MINIMAL DIAGNOSIS. Otherwise it exists the loop, and returns the
diagnosis. To find a minimal diagnosis, MINIMAL DIAGNOSIS (Algorithm 7.2) checks
for every subset r of i robots, for i≤m, where m denotes the total number of robots,
whether or not a plan can be found (Line 5) considering the robots in r as broken. If a
plan can be found, then the set of robots are diagnosed to be broken and the algorithm
stops the execution.

After a discrepancy/change is detected, Algorithm 7.1 stops the execution of the
plan, and checks

(i) whether this discrepancy or change will prevent the execution of the rest of the plan
at the current state (Lines 33), and

(ii) if it does not prevent the execution of the rest of the plan at the current state, whether
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Algorithm 7.1 PLAN&EXECUTE&MONITOR

Input: An action domain descriptionD, a set B of robots/parts that may get broken, pos-
itive integers k, n and mx, x ≤ n, r planning problems P1,P2, . . . ,Pr (one for each
team) with initial states s1, s2, ..., sr and goal states g1, g2, ..., gr, and a transportation
delay td

Output: Achieve the goals of all teams in minimum time steps
//Let X be a tuple consisting of, for each team i, a plan PX [i] of length at most l ≤ k,
team role roleX [i], lending/borrowing constraints for each team C[i].

1: step := 0;
2: kX := k;
3: X ← FIND OPTIMAL GLOBAL PLAN(D, k, n,m1, ...,mn,P1,P2, . . . ,Pr, td);
4: while kX > 0 do
5: globalreplan := false;
6: while ¬globalreplan ∧ kX > 0 do
7: step = step+ 1;
8: kX = kX − 1;
9: for all teams i do

10: Di ← D ∪Dborrow if roleX [i] = Borrower;
D ∪Dlend if roleX [i] = Lender;

11: Ai, ci, ei, oi ← extract from PX [i] the actions to be executed at step, the
current state, the expected next state and the observed state after Ai;

12: localreplan := false;
13: discrepancy := false;
14: if oi 6= ei then
15: localreplan = true;
16: discrepancy = true;

//Obtain Db from D using B.
17: Di ← Db ∪ Dborrow if roleX [i] = Borrower;

Db ∪ Dlend if roleX [i] = Lender;
//obtain the full information of the current state (the observed state
with the diagnose)

18: si ← oi ∪ DIAGNOSE(Di,B, PX [i], si, oi, step);
19: end if
20: if new order of boxes then
21: localreplan = true;
22: Pi ← modify the planning problem Pi with the changed order of

boxes;
23: si ← obtain the current state;
24: end if
25: if the environment is updated then
26: localreplan = true;
27: si ← oi;
28: end if
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29: if localreplan then
30: if discrepancy then

//Obtain Dx from D using B.
31: Di ← Dx ∪ Dborrow if roleX [i] = Borrower;

Dx ∪ Dlend if roleX [i] = Lender;
32: end if

// the planning problem of team i, Pi, now has an updated initial state
si

33: if not CHECK PLAN(Di, PX [i],Pi, Ci) then
34: if discrepancy then
35: Di ← Di ∪ Drepair;
36: end if
37: PX [i]← FIND LOCAL PLAN(Di, kX ,Pi, Ci);
38: if PX [i] = none then
39: Pi ← modify the planning problem Pi by allowing borrowing

robots after step l;
40: Di ← Di ∪ Dborrow;
41: PX [i]← FIND LOCAL PLAN(Di, kX ,Pi, Ci);
42: end if
43: if PX [i] = none then
44: globalreplan = true;
45: end if
46: end if
47: end if
48: end for
49: end while
50: if globalreplan then
51: X ← FIND OPTIMAL GLOBAL PLAN(D, k, n,m1, ...,

mn,P1,P2, . . . ,Pr, td);
52: end if
53: end while

the rest of the plan will lead to a goal state (Lines 37).

Algorithm 7.1 checks (i) and (ii), i.e., whether the rest of the plan reaches the goals
from the current state. If the rest of the plan can still be executed from the current state,
CHECK PLAN returns true, the execution of the plan continues. If the rest of the plan
cannot be executed to reach the goals, then a new plan is needed to recover from the
possible plan failure. If the reason for a new plan is an encountered discrepancy, the
domain description Di is updated with Drepair which contains the repair actions to allow
repairs of broken robots if needed. Then a new local plan with at most kX length satisfying
the constraints in Ci is asked. If such a local plan cannot be found for Team i then the
planning problem Pi is modified to allow borrowing robots after step l. A new plan is
asked with modified planning problem and the updated domain description.

If a local plan to recover from a plan failure at a team cannot be found, then a global
replanning needs to be done.
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Algorithm 7.2 MINIMALDIAGNOSIS

Input: D: domain description where robots may be broken, B, P : executed plan, s:
initial state, o: observed state, nonnegative integers m, l

Output: CB: a set of broken robots/robot parts
1: i := 1;
2: while i ≤ m and CB 6= 0 do
3: for all set r of i robots do
4: o′ ← add to o the robots in r as broken, and the remaining robots as not

broken;
5: if FIND PLAN(D,P, s, o′, l) then
6: CB ← update by adding the diagnosed parts in the plan;
7: break;
8: end if
9: end for

10: i++;
11: end while

Algorithm 7.3 DIAGNOSE

Input: D: domain description where robots may be broken, B, P : executed plan, s:
initial state, o: observed state, nonnegative integers m, l

Output: C: the diagnosis
//Assumption: a discrepancy is already detected

1: correctdiagnosis := false;
2: while ¬correctdiagnosis do
3: C ← MINIMALDIAGNOSIS(D,B, P, s, o,m, l);
4: if not VERIFYDIAGNOSIS() then
5: o←update o stating that the diagnosis does not hold;
6: else
7: correctdiagnosis = true;
8: end if
9: end while
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To summarize our approach when there is a change during execution: (i) First the
algorithm calls CHECK PLAN to check whether the current plan can still be executed. (ii)
If not, then the algorithm calls FIND LOCAL PLAN to find a plan from the current state to
the goal state of length at most k. (iii) If a plan cannot be found, then the planning problem
is modified and FIND LOCAL PLAN is again called to find a plan from the current state
to the goal state of length at most k by allowing the team borrowing robots after step
l. (iv) If a plan is found in either of the calls of FIND LOCAL PLAN, then the team
continues to execute this new local plan. Otherwise a global replanning is needed. A
new optimal global plan of length less than or equal to k is tried to be found by calling
FIND OPTIMAL GLOBAL PLAN. (v) If a plan of length at most k cannot be found then
k is increased one by one and FIND OPTIMAL GLOBAL PLAN is called until a plan is
found.

7.1.1 Example

Consider two teams with heterogeneous robots in a cogtive toy factory. Team 1
has one wet robot and one charger, team 2 has two wet robots, two dry robots, and one
charger. Both teams have 6 products to work on. A coordination of these teams if found
for an optimal value of l = 29. According to this coordination, team 2 lends two dry
robots to team 1 at step 12 and team 1 borrows these robots at step 15. Table 7.1 shows
the execution of the global plan calculated according to the coordination and l.

The teams begin by shifting the boxes on the line and moving the worker robots near
the assembly line. At step 3 charger c1 is expected to do a charging action on worker 1,
but it fails to do so. This failure causes a difference in the observed state and the expected
state of step 3. A diagnosis is found for the detected discrepancy and a new local replan
is computed. Team 2 begins executing its new plan, whereas team 1 continues executing
its old plan. At step 12, team 2 lends the dry robots as expected. Then a new order of one
more box arrives to team 1. A new local plan is computed, and team 1 begins executing
its new plan. At step 15, team 1 borrows the robots as expected. The teams continue
executing their plans.

Table 7.1: Execution of the Plans

(The symbol ’-’ denotes ”doing nothing”.)

Time Team1 Team2

0 lineShift lineShift move(c1,up)

move(c1,right) move(1,right)

1 lineShift swapEndEffector(2,2)

swapEndEffector(4,3) lineShift

move(c1,right) move(1,right)

2 llineShift move(1,right) dock(c1,1) workOn(1,1) move(2,right)

3 workOn(1,1) move(c1,up) move(c1,right) charge(c1) lineShift move(4,right)

To be continued on next page
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Continued from previous page Charging action failed.

- Diagnose failure.

Replan.

4 move(1,left) repairInlet(1)

5 swapEndEffector(1,2) workOn(2,1) workOn(1,2)

6 move(1,right) charge(c1) ineShift

7 dock(c1,1) undock(c1) workOn(2,2)

workOn(1,3) workOn(4,1)

8 charge(c1) lineShift move(c1,left)

9 lineShift dock(c1,2) workOn(1,4) workOn(4,2)

10 undock(c1) workOn(1,1) charge(c1) move(4,down) move(1,right)

11 move(c1,right) move(1,left) undock(c1) workOn(2,3) workOn(1,5)

move(4,up) move(4,left)

12 swapEndEffector(1,1) giveRobot(4) giveRobot(3)

New order. lineShift move(c1,right)

Replan. -

13 move(1,right) dock(c1,1)

14 takeRobot(we2) takeRobot(we1) dock(c1,1) charge(c1) workOn(2,4)

15 swapEndEffector(we1,2) charge(c1) undock(c1) workOn(1,6)

move(2,down) move(2,right)

16 undock(c1) workOn(1,2) move(c1,left) move(1,left)

17 move(c1,right) move(1,right) dock(c1,1)

18 swapEndEffector(we2,3) dock(c1,1) charge(c1) move(2,up)

workOn(1,3) move(we1,right)

19 charge(c1) workOn(we1,2) move(we2,right) undock(c1)

20 undock(c1) workOn(we2,1) move(1,left) move(c1,right)

21 lineShift move(c1,left) swapEndEffector(1,3) dock(c1,2)

22 dock(c1,we1) workOn(1,4) charge(c1) move(1,right)

workOn(we2,2) workOn(we1,3)

23 charge(c1) lineShift undock(c1) workOn(2,5) workOn(1,3)

24 undock(c1) workOn(1,5) lineShift move(c1,left)

workOn(we2,3) workOn(we1,4)

25 lineShift move(c1,left) dock(c1,1) workOn(2,6) workOn(1,4)

26 dock(c1,we2) workOn(1,6) charge(c1) lineShift

27 charge(c1) undock(c1) workOn(1,5)

28 workOn(we2,4) workOn(we1,5) lineShift

29 lineShift workOn(1,6)

30 workOn(we2,5) workOn(we1,6) lineShift

31 lineShift lineShift

32 workOn(we2,6) -

33 undock(c1) lineShift -

34 lineShift -

7.2 Discussion

In our algorithm for execution and monitoring, while searching for a new plan for
Team i, we take into account its constraintsCi from the coordination that was found for all
teams for length l. Therefore, if a new plan is found, it still satisfies the desired constraints.
Also, we allow the team to borrow robots after l and since every other team is suppose
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to finish at time step l, they can easily lend the necessary robots. Last but not least, a
local replanning of one team does not affect the other teams’ plans, since each team has
its own workspace. Therefore, this algorithm creates no conflicts when the overall plan is
modified.

7.3 Demonstrations

We have shown the applicability of our approach with a simulation of a cognitive
toy factory. The implementation is done in C++ and Python. Plan execution is simulated
using OpenRave. A video clip illustraying the simulation of the example above can be
found in the following address: http://youtu.be/CU9gWG-dRSs
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Chapter 8

Related Work

In this thesis, we address a variety of challenges from coordination for decoupled
planning to execution monitoring. Hence, we examine the related work in literature under
several subtopics.

8.1 Decoupled Planning

There are works on decoupling plans of multiple agents to coordinate their actions
[10] in that local plans are computed by agents and then combined in order to compute
a global plan. In these related works, there are studies on specifying social laws before
local planning to have a conflict-free coordination. These social laws are followed by
every agent, and they restrict the agents’ behavior. The traffic rule of everyone driving on
the right side of the road traffic rules can be given as example to social laws. Shoham and
Tennenholtz [63] studies how social laws can be created in the design phase of a multi-
agent system. Another pre-planning coordination method is studied by Mors et al. [67]
to find a minimal set of additional constraints on subplans to ensure a coordination of the
individual plans.

Another approach that is used by the related works is putting restrictions on local
plans to be able synchronize them or merge them into a global plan. Georgeff [36] is the
first to propose a plan-synchronization method from individual plans. They resolve the
interaction between individual actions, then determine the possible ”unsafe” situations,
and insert synchronization primitives to the subplans to avoid the unsafe situations. Stuart
[65] uses a propositional temporal logic to specify constraints to a theorem prover to gen-
erate sequences of communication actions that guarantee that no event will fail. Yang et
al. [70] describe a method to merge individually generated plans with a set of limitations
on the allowable interactions between goals. Foulser et al. [30] give formulations on plan
merging and define the mergeability of operations.

There are also methods that integrate individual planning with coordination of the
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plans, by exchanging information between teams about their partial plans or goals. The
Partial Global Planning framework [16] and its extension, Generalized PGP [11], for
agents to share their plans using a specialized plan representation. Coordination is achieved
as follows: if an agent informs a second agent of its own plan, the second agent merges
this information into its own partial global plan and then tries to improve the global plan.
The improved plan is shown to the other agents who can accept/reject/modify it. Alami
et al. [1] present a scheme for multi-agent cooperation where each robot coordinates its
own plan with other robots’ plans to ensure proper execution.

Our method is different from these works in that no restrictions are put on the order
of actions for local planning of each team, and that teams do not exchange information
about their plans or goals with each other. Each team communicates with the mediator,
by only answering the mediator’s yes/no questions; so the teams do not have to share
private information with each other. Also, we do not assume that all teams are in the
same workspace, or all robots are of the same sort. Moreover, our goal is not to find any
coordination of teams that would allow decoupling of their local plans, but to find a co-
ordination of teams for an optimal global plan (with minimum makespan); therefore, we
also consider exchange of robots between teams. Furthermore, after the mediator informs
the teams about when they are expected to lend/borrow robots, each team computes opti-
mal local plans (with minimum makespans, and possibly with some other optimizations
of total action costs).

A neutral coordinator is used by Ehtam et al. [17] to negotiate with the decision
makers. Each decision maker solves its own problem, communicates with the media-
tor about the preferred points. Negotiation continues until a pareto-optimal solution is
reached. There are also existing work on task assignment and scheduling. Luo et. al [54]
present an auction-based approach where robots bid to get assigned to a task, and reach an
almost-optimal solution. Gombolay et. al [39] introduce a multi-agent task sequencer that
computes schedules that satisfies temporal deadlines and spatial restrictions and produces
near-optimal solutions.

In our method, the mediator does not negotiate with the teams but simply gathers
information from them to find an optimal global solution. It does not know anything about
the teams’s goals, tasks or workspaces, and the teams do not know what the mediator is
trying to optimize. It does not try to assign/schedule tasks but only informs the teams
about when they are expected to lend/borrow robots.

Robots can be considered as shared resources in our approach since they are ex-
changed between teams. An approach by Lin [53] considers a domain where the agents
negotiate for common resources and informs the central coordination of their next events
and proposals of time intervals. The agents schedules their events until the coordinator
approves the schedule while conducting the fault detection task. In the work by Sycara
et al. [66] robots communicate with each other their demand of shared resources and
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schedule their tasks according to resource availability.
Our work is different from the existing approaches on resource allocation in a multi-

agent time-constrained domain [53, 66, 8], because the mediator does not require any
information about local plans, ordering constraints on actions, or causal links, to decide
for resource allocation.

There are studies also on team formation. For example, Gaston and desJardins
[32] consider the existence of a centralized task knowledge that provides information on
which skills have been filled, and the agents then attempt to form teams to accomplish
tasks. Local information is available to the individual agents for deciding which teams
to initiate and which teams to join. Although robot exchanges modifies the teams, our
work is different from the works on team formation because our method does not aim for
deciding how or when to join teams.

8.2 Hybrid Reasoning

Task planners are very efficient and are able to solve complex problems. However
integrating the geometric information of the environment or robots in these planners is a
challange. Therefore the work of combining task planning and motion planning in effi-
cient ways plays an important role in robotics. The related work on hybrid reasoning can
be separated into two groups: integration at search level and integration at representation
level.

Some works that integrate geometric reasoning and task planning while searching
for a plan are summarized. In the work by Alili et. al. [2], the overall planning system
starts from a goal, and builds a plan which is based on planned actions for the robot and
estimation of feasibility of actions for the human. While planning, the symbolic plan-
ner queries to the geometric planner about the feasibility of each action. Kaelbling and
Lozano-Pérez [43] construct a plan at an abstract level, by constraining the plan steps so
that they are serializable and then recursively plan and execute actions to achieve the first
step in the abstract plan without constructing the rest of the plan in detail. They handle
the integration of continuous geometric planning with task planning by using approxi-
mate geometric computations that construct appropriate choices for the parameters of an
operator. Cambon et. al. [6], introduce a task planner that is based on a hybrid planning
process in which a fast heuristic forward planner for “high-level” plans is used in close in-
teraction with a manipulation planning subsystem for instantiating and validating actions
in the three-dimensional environment. Plaku and Hager [58], use symbolic action plan-
ning to guide the tree-based exploration by identifying and selecting discrete actions and
regions of the continuous space that sampling-based motion planning can further explore
to significantly advance the search for a solution trajectory.

The second group of works integrate geometric reasoning and task planning at the
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representation level. Guitton and Farges [40] propose a method allowing to take into ac-
count geometric constraints at the symbolic description of an action and to satisfy them.
These constraints are formulated through the addition of a new set of preconditions, the
geometric preconditions, which are sent to the motion planner through planning requests.
The approach by Gashler et. al. [31] uses 3D geometric volumes as the underlying rep-
resentation for symbolic planning and motion planning, and combines this idea with a
general-purpose AI planner supporting deterministic planning with incomplete informa-
tion and sensing. techniques. Kresse and Beetz [45] specify motions using constraints,
which tightly links symbolic reasoning to control theoretic execution. They combine sym-
bolic and geometric reasoning by using plan-based action control to implement sophis-
ticated symbolic actions. Eyerich et. al. [24, 14] consider semantic attachments whose
values are determined by external mechanisms. The subproblems like path planning are
dealt with in the semantic attachments and the information actually needed to solve the
problem is generated at the time the semantic attachment is invoked by the high-level
planner. They implement their approach on an autonomous robot capable of performing
service tasks in a typical kitchen environment.

Our approach is in the second group of work. It is similar with the methods in
[19, 42], however the implementation is on a new domain.

8.3 Execution Monitoring

For execution monitoring, there are works that consider replanning when a discrep-
ancy is detected during the execution. De Giacomo et al. [37] provide a situation calculus-
based approach in which after executing each action the robot compares its mental world
model with reality, if a discrepancy is detected it recovers from this unanticipated event.
Parsons et al. [57] integrate the execution of low-level navigation primitives to high-level
reasoning processes. Depending on the intentions of the robot a plan is computed, and if
there is inadequacy during the execution of the plan, it switches to a new plan considering
current degrees of satisfaction and of adequacy.

Doherty et al. [13] present a temporal-logic based task planning end execution
monitoring framework. The plan is monitored by a knowledge processing middleware
framework which informs the command executor if a violation is detected, and then a re-
covery procedure is handled. Lemai and Ingrand [46] integrate deliberative planning, plan
repair and execution control in a dynamic environment with tight temporal constraints.

In the work by Fichtner et al. [28] discrepancies are detected during the execution
of the plan, explanations for action failures are provided in terms of which action has
failed, then a recovery plan is computed.

In our method, if a discrepancy is detected during the execution of the plan, we diag-
nose the failure in terms of broken robots/parts that caused the plans not to be executed as
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expected. We also consider other types of changes in the cognitive factory workspace such
as new manufacturing orders or new obstacles. After a discrepancy/change is detected,
we first check whether this discrepancy/change causes plan failure. Then we consider
replanning to recover from the current state to reach the goal. We also check whether a
plan can be found if the team gets help from the other teams, which prevents a global
replanning. If a recovering plan cannot be found even if the team gets help from other
teams, then we consider global replanning.

8.4 Cognitive Factories

There are recent works relevant to cognitive factories [61, 3] that complements
our framework. Shea et. al. [62] use generative CNC machining planning with shape
grammars and automated fixture design for automated fabrication of customized part ge-
ometries. Maier et. al. [55] introduce a model-based approach that computes success
probabilities of plans utilizing online observations for product manufacturing. Lenz et al.
[47] present a system that anticipates human behavior, based on knowledge databases and
decision processes, ensuring an effective collaboration between the human and robot.

In our method, we use knowledge representation and automated reasoning for-
malisms and tools to endow each multiple teams of robots with high-level reasoning
capabilities, similar with [20, 21]. However, our method utilizes a wider variety of au-
tomated reasoners in a more general setting of cognitive factories, not constrained with
tight restrictions on robot types or number of robot transfers.
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Chapter 9

Conclusion

We have introduced a novel semi-distributed method to find an optimal global plan
(with minimum makespan) for multiple teams of heterogeneous robots, by means of de-
termining a coordination of teams based on their answers to yes/no questions that do not
convey private information about their workspace, tasks, robots, plans, actions, goals,
etc. in cognitive factories. According to this method, teams can help each other by lend-
ing/borrowing robots (which motivates the use of a central mediator for coordination) but
they are not allowed to know about each other’s workspaces or tasks (which motivates
distributed computation of a global plan). This planning method consists of two core
stages: finding a coordination of teams in such a way to guarantee optimality of a global
plan, and decoupling hybrid local plans into a feasible global plan. The correctness of this
method is proven in this thesis. Both stages involve NP-hard problems; the intractability
of the coordination problem is proven in this thesis. Fortunately, the design of the opti-
mal global planning method allows for extensive use of parallelization, and thus improves
scalability.

We have also introduced an execution monitoring framework that checks for vari-
ous sorts of discrepancies and provides methods for plan failure recoveries if needed. This
framework considers execution failures due to (i) a discrepancy during the execution of
the plan, (ii) changes in the manufacturing orders of the teams or in the environment like
unknown obstacles in workspaces of the teams. To recover from failures due to discrepan-
cies, we have introduced an algorithm that uses high-level diagnostic reasoning methods.
To recover from failures due to changes in the manufacturing orders or environment, we
have introduced methods for replanning of local/global plans taking into account complex
goals and constraint.

We have introduced cognitive toy factory scenarios and represented the cognitive
toy factory domain in the formalisms of C+ and ASP. We have performed experiments to
analyze the scalability of local hybrid planning, finding a coordination and global optimal
planning. When more heterogeneous robots were involved in the collaboration problem,
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the computation time for finding a coordination slightly increased, but still remained rea-
sonable. For optimal global planning, the benefits of extensive use of parallelization were
observed in the experiments, and gave promising results.
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