227 research outputs found

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    A Hardware Platform for Communication and Localization Performance Evaluation of Devices inside the Human Body

    Get PDF
    Body area networks (BAN) is a technology gaining widespread attention for application in medical examination, monitoring and emergency therapy. The basic concept of BAN is monitoring a set of sensors on or inside the human body which enable transfer of vital parameters between the patient´s location and the physician in charge. As body area network has certain characteristics, which impose new demands on performance evaluation of systems for wireless access and localization for medical sensors. However, real-time performance evaluation and localization in wireless body area networks is extremely challenging due to the unfeasibility of experimenting with actual devices inside the human body. Thus, we see a need for a real-time hardware platform, and this thesis addressed this need. In this thesis, we introduced a unique hardware platform for performance evaluation of body area wireless access and in-body localization. This hardware platform utilizes a wideband multipath channel simulator, the Elektrobit PROPSimâ„¢ C8, and a typical medical implantable device, the Zarlink ZL70101 Advanced Development Kit. For simulation of BAN channels, we adopt the channel model defined for the Medical Implant Communication Service (MICS) band. Packet Reception Rate (PRR) is analyzed as the criteria to evaluate the performance of wireless access. Several body area propagation scenarios simulated using this hardware platform are validated, compared and analyzed. We show that among three modulations, two forms of 2FSK and 4FSK. The one with lowest raw data rate achieves best PRR, in other word, best wireless access performance. We also show that the channel model inside the human body predicts better wireless access performance than through the human body. For in-body localization, we focus on a Received Signal Strength (RSS) based localization algorithm. An improved maximum likelihood algorithm is introduced and applied. A number of points along the propagation path in the small intestine are studied and compared. Localization error is analyzed for different sensor positions. We also compared our error result with the Cramèr- Rao lower bound (CRLB), shows that our localization algorithm has acceptable performance. We evaluate multiple medical sensors as device under test with our hardware platform, yielding satisfactory localization performance

    Synchrophasors: Multilevel Assessment and Data Quality Improvement for Enhanced System Reliability

    Get PDF
    . This study presents a comprehensive framework for testing and evaluation of Phasor Measurement Units (PMUs) and synchrophasor systems under normal power system operating conditions, as well as during disturbances such as faults and transients. The proposed framework suggests a performance assessment to be conducted in three steps: (a) type testing: conducted in the synchrophasor calibration laboratory according to accepted industrial standards; (b) application testing: conducted to evaluate the performance of the PMUs under faults, transients, and other disturbances in power systems; (c) end-to-end system testing: conducted to assess the risk and quantify the impact of measurement errors on the applications of interest. The suggested calibration toolset (type testing) enables performance characterization of different design alternatives in a standalone PMU (e.g., length of phasor estimation windows, filtering windows, reporting rates, etc.). In conjunction with the standard performance requirements, this work defines new metrics for PMU performance evaluations under any static and dynamic conditions that may unfold in the grid. The new metrics offer a more realistic understanding of the overall PMU performance and help users choose the appropriate device/settings for the target applications. Furthermore, the proposed probabilistic techniques quantify the PMU accuracy to various test performance thresholds specified by corresponding IEEE standards, rather than having only the pass/fail test outcome, as well as the probability of specific failures to meet the standard requirements defined in terms of the phasor, frequency, and rate of change of frequency accuracy. Application testing analysis encompasses PMU performance evaluation under faults and other prevailing conditions, and offers a realistic assessment of the PMU measurement errors in real-world field scenarios and reveals additional performance characteristics that are crucial for the overall application evaluation. End-to-end system tests quantify the impact of synchrophasor estimation errors and their propagation from the PMU towards the end-use applications and evaluate the associated risk. In this work, extensive experimental results demonstrate the advantages of the proposed framework and its applicability is verified through two synchrophasor applications, namely: Fault Location and Modal Analysis. Finally, a data-driven technique (Principal Component Pursuit) is proposed for the correction and completion of the synchrophasor data blocks, and its application and effectiveness is validated in modal analyzes

    A Survey of Clock Synchronization Over Packet-Switched Networks

    Get PDF
    Clock synchronization is a prerequisite for the realization of emerging applications in various domains such as industrial automation and the intelligent power grid. This paper surveys the standardized protocols and technologies for providing synchronization of devices connected by packet-switched networks. A review of synchronization impairments and the state-of-the-art mechanisms to improve the synchronization accuracy is then presented. Providing microsecond to sub-microsecond synchronization accuracy under the presence of asymmetric delays in a cost-effective manner is a challenging problem, and still an open issue in many application scenarios. Further, security is of significant importance for systems where timing is critical. The security threats and solutions to protect exchanged synchronization messages are also discussed

    Methodology and Tools for Field Testing of Synchrophasor Systems

    Get PDF
    The electrical power grid, as one of today’s most critical infrastructures, requires constant monitoring by operators to be aware of and react to any threats to the system’s condition. With control centers typically located far away from substations and other physical grid equipment, field measurement data forms the basis for a vast majority of control decisions in power system operation. For that reason, it is imperative to ensure the highest level of data integrity as erroneous data may lead to inappropriate control actions with potentially devastating consequences. Performance of one of the most advanced monitoring systems, the synchrophasor system, is the focus of this thesis. This research will look at testing techniques used for performance assessment of synchrophasor system performance in the field. Existing methods will be reviewed and evaluated for deficiencies in capturing system performance regarding data quality. The focus of this work will be on improving synchrophasor data quality, by introducing new testing methodology that utilizes a nested testing approach for end-to-end testing in the field using a portable test set and associated software tools. The capability of such methods and these tools to fully characterize and evaluate the performance of synchrophasor systems in the field will be validated through implementation in a large-scale testbed. The purpose of this research is to specify, develop and implement a methodology and associated tools for field-testing of synchrophasor systems. To this day, there is no dedicated standard for field-testing of synchrophasor systems. This resulted in an inability to define widely accepted procedures to detect deterioration of system performance due to poor data quality and caused communication failures, unacceptable device and subsystem accuracy, or loss of calibration. This work will demonstrate how the new approach addresses the mentioned performance assessment gap. The feasibility of implementation of the proposed test procedures will be demonstrated using different test system configurations available in a large-scale testbed. The proposed method is fully leveraging the benefits of a portable device specifically developed for field-testing, which may be used for improvement of commissioning, maintenance and troubleshooting tests for existing installations. Use Cases resulting from this work will illustrate the practical benefits of the proposed methodology and associated tools

    Cybersecurity of Industrial Cyber-Physical Systems: A Review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the "physics" data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the "security by obscurity" principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.Comment: 32 pages, 10 figure

    Connected Vehicles at Signalized Intersections: Traffic Signal Timing Estimation and Optimization

    Get PDF
    Summary: While traffic signals ensure safety of conflicting movements at intersections, they also cause much delay, wasted fuel, and tailpipe emissions. Frequent stops and goes induced by a series of traffic lights often frustrates passengers. However, the connectivity provided by connected vehicles applications can improve this situation. A uni-directional traffic signal to vehicle communication can be used to guide the connected vehicles to arrive at green which increases their energy efficiency; and in the first part of the dissertation, we propose a traffic signal phase and timing estimator as a complementary solution in situations where timing information is not available directly from traffic signals or a city’s Traffic Management Center. Another approach for improving the intersection flow is optimizing the timing of traditional traffic signals informed by uni-directional communication from connected vehicles. Nevertheless, one can expect further increase in energy efficiency and intersection flow with bi-directional vehicle-signal communication where signals adjust their timings and vehicles their speeds. Autonomous vehicles can further benefit from traffic signal information because they not only process the incoming information rather effortlessly but also can precisely control their speed and arrival time at a green light. The situation can get even better with 100%penetration of autonomous vehicles since a physical traffic light is not needed anymore. However, the optimal scheduling of the autonomous vehicle arrivals at such intersections remains an open problem. The second part of the dissertation attempts to address the scheduling problem formulation and to show its benefits in microsimulation as well as experiments. Intellectual Merit: In the first part of this research, we study the statistical patterns hidden in the connected vehicle historical data stream in order to estimate a signal’s phase and timing (SPaT). The estimated SPaT data communicated in real-time to connected vehicles can help drivers plan over time the best vehicle velocity profile and route of travel. We use low-frequency probe data streams to show what the minimum achievable is in estimating SPaT. We use a public feed of bus location and velocity data in the city of San Francisco as an example data source. We show it is possible to estimate, fairly accurately, cycle times and duration of reds for pre-timed traffic lights traversed by buses using a few days worth of aggregated bus data. Furthermore, we also estimate the start of greens in real-time by monitoring movement of buses across intersections. The results are encouraging, given that each bus sends an update only sporadically (≈ every 200 meters) and that bus passages are infrequent (every 5-10 minutes). The accuracy of the SPaT estimations are ensured even in presence of queues; this is achieved by extending our algorithms to include the influence of queue delay. A connected vehicle test bed is implemented in collaboration with industry. Our estimated SPaT information is communicated uni-directionally to a connected test vehicle for those traffic signals which are not connected. In the second part of the dissertation, another test bed, but with bi-directional communication capability, is implemented to transfer the connected vehicle data to an intelligent intersection controller through cellular network. We propose a novel intersection control scheme at the cyber layer to encourage platoon formation and facilitate uninterrupted intersection passage. The proposed algorithm is presented for an all autonomous vehicle environment at an intersection with no traffic lights. Our three key contributions are in communica-tion, control, and experimental evaluation: i) a scalable mechanism allowing a large number of vehicles to subscribe to the intersection controller, ii) reducing the vehicle-intersection coordination problem to a Mixed Integer Linear Program (MILP), and iii) a Vehicle-in-the-Loop (VIL) test bed with a real vehicle interacting with the intersection control cyber-layer and with our customized microsimulations in a virtual road network environment. The proposed MILP-based controller receives information such as location and speed from each subscribing vehicle and advises vehicles of the optimal time to access the intersection. The access times are computed by periodically solving a MILP with the objective of minimizing intersection delay, while ensuring intersection safety and considering each vehicle’s desired velocity. In order to estimate the fuel consumption reduction potential of the implemented system, a new method is proposed for estimating fuel consumption using the basic engine diagnostic information of the vehicle-in-the-loop car. Broader Impacts: This research can transform not only the way we drive our vehicles at signalized intersec-tions but also the way intersections are managed. As we evaluated in a connected test vehicle in the first part of the dissertation, our SPaT estimations in conjunction with the SPaT information available directly from Traffic Management Centers, enables the drivers to plan over time the best vehicle velocity profile to reduce idling at red lights. Other fuel efficiency and safety functionalities in connected vehicles can also benefit from such information about traffic signals’ phase and timing. For example, advanced engine management strategies can shut down the engine in anticipation of a long idling interval at red, and intersection collision avoidance and active safety systems could foresee potential signal violations at signalized intersections. In addition, as shown in the second part of the dissertation, when a connected traffic signal or intersection con-troller is available, intelligent control methods can plan in real-time the best timings and the lengths of signal phases in response to prevailing traffic conditions with the use of connected vehicle data. Our MILP-based intersection control is proposed for an all autonomous driving environment; and right now, it can be utilized in smart city projects where only autonomous vehicles are allowed to travel. This is expected to transform driving experience in the sense that our linear formulations minimizes the intersection delay and number of stops significantly compared to pre-timed intersections

    Synchrophasors: Multilevel Assessment and Data Quality Improvement for Enhanced System Reliability

    Get PDF
    . This study presents a comprehensive framework for testing and evaluation of Phasor Measurement Units (PMUs) and synchrophasor systems under normal power system operating conditions, as well as during disturbances such as faults and transients. The proposed framework suggests a performance assessment to be conducted in three steps: (a) type testing: conducted in the synchrophasor calibration laboratory according to accepted industrial standards; (b) application testing: conducted to evaluate the performance of the PMUs under faults, transients, and other disturbances in power systems; (c) end-to-end system testing: conducted to assess the risk and quantify the impact of measurement errors on the applications of interest. The suggested calibration toolset (type testing) enables performance characterization of different design alternatives in a standalone PMU (e.g., length of phasor estimation windows, filtering windows, reporting rates, etc.). In conjunction with the standard performance requirements, this work defines new metrics for PMU performance evaluations under any static and dynamic conditions that may unfold in the grid. The new metrics offer a more realistic understanding of the overall PMU performance and help users choose the appropriate device/settings for the target applications. Furthermore, the proposed probabilistic techniques quantify the PMU accuracy to various test performance thresholds specified by corresponding IEEE standards, rather than having only the pass/fail test outcome, as well as the probability of specific failures to meet the standard requirements defined in terms of the phasor, frequency, and rate of change of frequency accuracy. Application testing analysis encompasses PMU performance evaluation under faults and other prevailing conditions, and offers a realistic assessment of the PMU measurement errors in real-world field scenarios and reveals additional performance characteristics that are crucial for the overall application evaluation. End-to-end system tests quantify the impact of synchrophasor estimation errors and their propagation from the PMU towards the end-use applications and evaluate the associated risk. In this work, extensive experimental results demonstrate the advantages of the proposed framework and its applicability is verified through two synchrophasor applications, namely: Fault Location and Modal Analysis. Finally, a data-driven technique (Principal Component Pursuit) is proposed for the correction and completion of the synchrophasor data blocks, and its application and effectiveness is validated in modal analyzes

    Survey on synchrophasor data quality and cybersecurity challenges, and evaluation of their interdependencies

    Get PDF
    Synchrophasor devices guarantee situation awareness for real-time monitoring and operational visibility of smart grid. With their widespread implementation, significant challenges have emerged, especially in communication, data quality and cybersecurity. The existing literature treats these challenges as separate problems, when in reality, they have a complex interplay. This paper conducts a comprehensive review of quality and cybersecurity challenges for synchrophasors, and identifies the interdependencies between them. It also summarizes different methods used to evaluate the dependency and surveys how quality checking methods can be used to detect potential cyberattacks. This paper serves as a starting point for researchers entering the fields of synchrophasor data analytics and security

    Data-driven cyber attack detection and mitigation for decentralized wide-area protection and control in smart grids

    Get PDF
    Modern power systems have already evolved into complicated cyber physical systems (CPS), often referred to as smart grids, due to the continuous expansion of the electrical infrastructure, the augmentation of the number of heterogeneous system components and players, and the consequential application of a diversity of information and telecommunication technologies to facilitate the Wide Area Monitoring, Protection and Control (WAMPAC) of the day-to-day power system operation. Because of the reliance on cyber technologies, WAMPAC, among other critical functions, is prone to various malicious cyber attacks. Successful cyber attacks, especially those sabotage the operation of Bulk Electric System (BES), can cause great financial losses and social panics. Application of conventional IT security solutions is indispensable, but it often turns out to be insufficient to mitigate sophisticated attacks that deploy zero-day vulnerabilities or social engineering tactics. To further improve the resilience of the operation of smart grids when facing cyber attacks, it is desirable to make the WAMPAC functions per se capable of detecting various anomalies automatically, carrying out adaptive activity adjustments in time and thus staying unimpaired even under attack. Most of the existing research efforts attempt to achieve this by adding novel functional modules, such as model-based anomaly detectors, to the legacy centralized WAMPAC functions. In contrast, this dissertation investigates the application of data-driven algorithms in cyber attack detection and mitigation within a decentralized architecture aiming at improving the situational awareness and self-adaptiveness of WAMPAC. First part of the research focuses on the decentralization of System Integrity Protection Scheme (SIPS) with Multi-Agent System (MAS), within which the data-driven anomaly detection and optimal adaptive load shedding are further explored. An algorithm named as Support Vector Machine embedded Layered Decision Tree (SVMLDT) is proposed for the anomaly detection, which provides satisfactory detection accuracy as well as decision-making interpretability. The adaptive load shedding is carried out by every agent individually with dynamic programming. The load shedding relies on the load profile propagation among peer agents and the attack adaptiveness is accomplished by maintaining the historical mean of load shedding proportion. Load shedding only takes place after the consensus pertaining to the anomaly detection is achieved among all interconnected agents and it serves the purpose of mitigating certain cyber attacks. The attack resilience of the decentralized SIPS is evaluated using IEEE 39 bus model. It is shown that, unlike the traditional centralized SIPS, the proposed solution is able to carry out the remedial actions under most Denial of Service (DoS) attacks. The second part investigates the clustering based anomalous behavior detection and peer-assisted mitigation for power system generation control. To reduce the dimensionality of the data, three metrics are designed to interpret the behavior conformity of generator within the same balancing area. Semi-supervised K-means clustering and a density sensitive clustering algorithm based on Hieararchical DBSCAN (HDBSCAN) are both applied in clustering in the 3D feature space. Aiming to mitigate the cyber attacks targeting the generation control commands, a peer-assisted strategy is proposed. When the control commands from control center is detected as anomalous, i.e. either missing or the payload of which have been manipulated, the generating unit utilizes the peer data to infer and estimate a new generation adjustment value as replacement. Linear regression is utilized to obtain the relation of control values received by different generating units, Moving Target Defense (MTD) is adopted during the peer selection and 1-dimensional clustering is performed with the inferred control values, which are followed by the final control value estimation. The mitigation strategy proposed requires that generating units can communicate with each other in a peer-to-peer manner. Evaluation results suggest the efficacy of the proposed solution in counteracting data availability and data integrity attacks targeting the generation controls. However, the strategy stays effective only if less than half of the generating units are compromised and it is not able to mitigate cyber attacks targeting the measurements involved in the generation control
    • …
    corecore