
Clemson University
TigerPrints

All Dissertations Dissertations

12-2016

Connected Vehicles at Signalized Intersections:
Traffic Signal Timing Estimation and Optimization
S. AliReza Fayazi

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Fayazi, S. AliReza, "Connected Vehicles at Signalized Intersections: Traffic Signal Timing Estimation and Optimization" (2016). All
Dissertations. 2480.
https://tigerprints.clemson.edu/all_dissertations/2480

https://tigerprints.clemson.edu/?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2480?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

CONNECTED VEHICLES AT SIGNALIZED INTERSECTIONS: TRAFFIC
SIGNAL TIMING ESTIMATION AND OPTIMIZATION

A Doctoral Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mechanical Engineering

by
S. AliReza Fayazi
December 2016

Accepted by:
Dr. Ardalan Vahidi, Committee Chair

Dr. Joshua Summers
Dr. Mohammed Daqaq

Dr. Paul Venhovens
Dr. Andre Luckow

Abstract
Summary: While traffic signals ensure safety of conflicting movements at intersections, they also cause

much delay, wasted fuel, and tailpipe emissions. Frequent stops and goes induced by a series of traffic

lights often frustrates passengers. However, the connectivity provided by connected vehicles applications

can improve this situation. A uni-directional traffic signal to vehicle communication can be used to guide

the connected vehicles to arrive at green which increases their energy efficiency; and in the first part of the

dissertation, we propose a traffic signal phase and timing estimator as a complementary solution in situations

where timing information is not available directly from traffic signals or a city’s Traffic Management Center.

Another approach for improving the intersection flow is optimizing the timing of traditional traffic signals

informed by uni-directional communication from connected vehicles. Nevertheless, one can expect further

increase in energy efficiency and intersection flow with bi-directional vehicle-signal communication where

signals adjust their timings and vehicles their speeds. Autonomous vehicles can further benefit from traffic

signal information because they not only process the incoming information rather effortlessly but also can

precisely control their speed and arrival time at a green light. The situation can get even better with 100%

penetration of autonomous vehicles since a physical traffic light is not needed anymore. However, the optimal

scheduling of the autonomous vehicle arrivals at such intersections remains an open problem. The second

part of the dissertation attempts to address the scheduling problem formulation and to show its benefits in

microsimulation as well as experiments.

Intellectual Merit: In the first part of this research, we study the statistical patterns hidden in the connected

vehicle historical data stream in order to estimate a signal’s phase and timing (SPaT). The estimated SPaT

data communicated in real-time to connected vehicles can help drivers plan over time the best vehicle velocity

profile and route of travel. We use low-frequency probe data streams to show what the minimum achievable

is in estimating SPaT. We use a public feed of bus location and velocity data in the city of San Francisco as

an example data source. We show it is possible to estimate, fairly accurately, cycle times and duration of reds

for pre-timed traffic lights traversed by buses using a few days worth of aggregated bus data. Furthermore,

we also estimate the start of greens in real-time by monitoring movement of buses across intersections. The

results are encouraging, given that each bus sends an update only sporadically (≈ every 200 meters) and that

bus passages are infrequent (every 5-10 minutes). The accuracy of the SPaT estimations are ensured even in

ii

presence of queues; this is achieved by extending our algorithms to include the influence of queue delay. A

connected vehicle test bed is implemented in collaboration with industry. Our estimated SPaT information is

communicated uni-directionally to a connected test vehicle for those traffic signals which are not connected.

In the second part of the dissertation, another test bed, but with bi-directional communication capability, is

implemented to transfer the connected vehicle data to an intelligent intersection controller through cellular

network. We propose a novel intersection control scheme at the cyber layer to encourage platoon formation

and facilitate uninterrupted intersection passage. The proposed algorithm is presented for an all autonomous

vehicle environment at an intersection with no traffic lights. Our three key contributions are in communica-

tion, control, and experimental evaluation: i) a scalable mechanism allowing a large number of vehicles to

subscribe to the intersection controller, ii) reducing the vehicle-intersection coordination problem to a Mixed

Integer Linear Program (MILP), and iii) a Vehicle-in-the-Loop (VIL) test bed with a real vehicle interacting

with the intersection control cyber-layer and with our customized microsimulations in a virtual road network

environment. The proposed MILP-based controller receives information such as location and speed from each

subscribing vehicle and advises vehicles of the optimal time to access the intersection. The access times are

computed by periodically solving a MILP with the objective of minimizing intersection delay, while ensuring

intersection safety and considering each vehicle’s desired velocity. In order to estimate the fuel consumption

reduction potential of the implemented system, a new method is proposed for estimating fuel consumption

using the basic engine diagnostic information of the vehicle-in-the-loop car.

Broader Impacts: This research can transform not only the way we drive our vehicles at signalized intersec-

tions but also the way intersections are managed. As we evaluated in a connected test vehicle in the first part

of the dissertation, our SPaT estimations in conjunction with the SPaT information available directly from

Traffic Management Centers, enables the drivers to plan over time the best vehicle velocity profile to reduce

idling at red lights. Other fuel efficiency and safety functionalities in connected vehicles can also benefit

from such information about traffic signals’ phase and timing. For example, advanced engine management

strategies can shut down the engine in anticipation of a long idling interval at red, and intersection collision

avoidance and active safety systems could foresee potential signal violations at signalized intersections. In

addition, as shown in the second part of the dissertation, when a connected traffic signal or intersection con-

troller is available, intelligent control methods can plan in real-time the best timings and the lengths of signal

phases in response to prevailing traffic conditions with the use of connected vehicle data. Our MILP-based

intersection control is proposed for an all autonomous driving environment; and right now, it can be utilized

in smart city projects where only autonomous vehicles are allowed to travel. This is expected to transform

driving experience in the sense that our linear formulations minimizes the intersection delay and number of

stops significantly compared to pre-timed intersections.

iii

Acknowledgments

The first part of this dissertation was supported by BMW Group Technology Office USA, Mountain

View, CA. It was supported in part by the National Science Foundation under Grant CMMI-0928533. The

second part was sponsored by a research award from BMW Information Technology Research Center (ITRC)

in Greenville, SC, USA. I am thankful for the support provided by Mr. Andre Luckow and Mr. Hans-

Peter Fischer from BMW ITRC, and Mr. Andreas Winckler from BMW Group Technology Office, USA in

Mountain View, California.

I own an enormous debt of gratitude to my advisor, Prof. Ardalan Vahidi. His creative insight and

experience was invaluable. He spent long hours on this research especially during his sabbatical year that we

were both working at BMW Technology Office USA in Mountain View, CA and University of California,

Berkeley. I also thank other member of our research group, Mr. Grant Mahler from Clemson University who

is currently with BMW Technology Office USA in Mountain View.

Several other researchers at University of California, Berkeley also provided support and helpful

suggestions to the research presented in this dissertation. I wish to express my gratitude to Prof. Pravin

Varaiya, Prof. Roberto Horowitz, Dr. Anastasios Kouvelas, and Dr. Gabriel Gomes who introduced me to

the interesting research area of traffic signal control. I benefited from their knowledge and expertise during

our regular meetings and discussions at University of California, Berkeley.

iv

Publications
Journal Papers

• S. A. Fayazi, A. Vahidi, G. Mahler, and A. Winckler, “Traffic signal phase and timing estimation from
low-frequency transit bus data,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no.
1, pp. 1928, Feb 2015.

• S. A. Fayazi, and A. Vahidi, “Crowd-sourcing Phase and Timing of Pre-Timed Traffic Signals in Pres-
ence of Queues: Algorithms and Back-end System Architecture,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 3, pp. 870-881, March 2016.

• A. Kouvelas, J. Lioris, S. A. Fayazi, and P. Varaiya, “Maximum pressure controller for stabilizing
queues in signalized arterial networks,” Transportation Research Record: Journal of the Transportation
Research Board, 2421(1), p. 133-141, 2014.

• Y. Parvini, A. Vahidi, and S. A. Fayazi, “Heuristic versus Optimal Charging of Super-capacitors,
Lithium-Ion, and Lead-Acid Batteries:An Efficiency Point of View,” Under Review IEEE Transactions
on Control Systems.

Patents

• A. Vahidi, S. A. Fayazi, G. Mahler, and A. Winckler, “Systems and Methods for Estimating Traffic
Signal Information,” US Patent number. US9183743 B2, Publication Date Nov. 2015.

Conference and Poster Session

• S. A. Fayazi, A. Vahidi, and A. Luckow “Optimal Scheduling of Autonomous Vehicle Arrivals at
Intelligent Intersections via MILP,” Under Review in American Control Conference (ACC), 2017.

• A. Kouvelas, J. Lioris, S. A. Fayazi, and P. Varaiya, “Max-pressure controller for stabilizing the queues
in signalized arterial networks,” Transportation Research Board 93rd Annual Meeting, No. 14-5440.
2014.

• S. A. Fayazi, “A MILP-based Vehicle-Intersection Coordination under the Autonomous Vehicle Envi-
ronment,” ME Graduate Student Poster Session and Conference, Mechanical Engineering Department,
Clemson University, Nov. 2016.

• S. A. Fayazi, and N. Wan, “Arterial Traffic Estimation Using Vehicular Probe Data,” Top 3 Presentation
in Third ME Graduate Student Poster Session and Conference, Mechanical Engineering Department,
Clemson University, Jan. 2015.

• S. A. Fayazi, N. Wan, S. Lucich, A. Vahidi, and G. Mocko, “Optimal pacing in a cycling time-trial
considering cyclists fatigue dynamics,” in American Control Conference (ACC), 2013, pp. 6442 6447.

v

• N. Wan, S. A. Fayazi, H. Saeidi, and A. Vahidi, “Optimal Power Management of an Electric Bicycle
based on Terrain Preview and Considering Human Fatigue Dynamics,” in American Control Confer-
ence (ACC), 2014, pp. 3462 3467.

Technical Reports

• S. A. Fayazi, and A. Vahidi, , “Back-End Architecture of the Crowdsourcing System,” A technical
report submitted to BMW Group Technology Office USA, Mountain View, CA, Submission date Sep.
2013.

vi

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

Publications . v

List of Tables . x

List of Figures . xi

1 Introduction . 1
1.1 Research Motivation and Background . 1
1.2 Research Contributions . 6
1.3 Thesis Outline . 9

I Signal Phase and Timing Estimation in Connected Vehicle Environment 10

2 Crowdsourcing Phase and Timing of Pre-Timed Traffic Signals from Low-Frequency Vehicle
Probe Information . 11
2.1 Introduction . 11
2.2 Description of the Data Feed . 13
2.3 Data Transformation . 14
2.4 Crowdsourcing Acceleration and Deceleration of Buses . 17
2.5 Estimating Baseline Timing . 18
2.6 Estimating Phase-Change (Green-Initiation) . 22
2.7 Predicting Phase-Change (Green-Initiation) . 22
2.8 Estimating Changes in Signal Schedule . 24
2.9 Direct Estimation of Green Intervals and Probability of Green 26
2.10 Ground Truth Verification . 29
2.11 Acknowledgment . 31

3 Crowdsourcing Phase and Timing of Pre-Timed Traffic Signals in Presence of Queues 32
3.1 Introduction . 32
3.2 Data Transformation . 33
3.3 SPaT Estimation and Prediction . 35
3.4 Queue Waiting Time . 41
3.5 Ground Truth Verification . 45
3.6 Acknowledgment . 50

vii

4 Back-End System Architecture . 51
4.1 Introduction . 51
4.2 System Overview . 52
4.3 Software Architecture . 53
4.4 Crowdsourcing Engine . 54
4.5 Crowdsourcing Methodologies . 56
4.6 Ground Truth Verification Tools . 59
4.7 Acknowledgment . 62

5 Conclusions for Part I . 64

II Arterial Traffic Signal Optimization with Connected Vehicles 65

6 Vehicle-Intersection Coordination under the Connected Vehicles Environment 66
6.1 Introduction . 66
6.2 Problem Statement . 70
6.3 Definitions and Notations . 71
6.4 Problem Formulation . 74
6.5 Handling of Removable Discontinuities . 78
6.6 Mixed-Integer Linear Programming Case Study . 81

7 Cyber-physical Test Environment . 83
7.1 Introduction . 83
7.2 Vehicle-In-Loop Configuration . 87
7.3 Virtual Driver Assistant . 88
7.4 Data Structure and Communication . 91
7.5 Traffic Microsimulation . 94
7.6 Acknowledgment . 96

8 Estimating Fuel Consumption using Vehicle Diagnostic Data 97
8.1 Introduction . 97
8.2 Engine Fuel Management: Background . 98
8.3 iOS-based OBDII Data Logger . 100
8.4 Engine State Identification . 101
8.5 Estimation based on Mass Air Flow rate (MAF-based) . 103
8.6 Estimation based on Fuel Injection Flow rate (FIF-based) 105
8.7 Test Criteria . 106
8.8 Acknowledgment . 108

9 Experimental and Simulation Evaluation . 109
9.1 Introduction . 109
9.2 Test Scenarios . 111
9.3 Performance Metrics (MOE) . 118
9.4 SIL Simulation Results . 118
9.5 VIL Simulation Results . 119
9.6 Acknowledgment . 122

10 Conclusions for Part II . 123

Appendices . 125
A Autonomous Car Following Model . 126

viii

Bibliography . 127

ix

List of Tables

2.1 Red and cycle time estimates for a few southbound phases through Van Ness street, calculated using data from bus
routes 47 and 49 gathered for September 2012. 22

2.2 Parameters of the Gaussian Mixture Fit to histogram of Figure 2.9. 26
2.3 Root-mean-square and maximum estimation error for green initiations 30

3.1 Counts of passes during one year at four intersections . 35
3.2 Comparison Between the Collected Ground Truth (G.T.) Data and Estimations (Est.) of Travel Time, and Queue

Clearance and Waiting Times for all the Intersections Combined . 48

4.1 Difference in seconds between the camera-detected phase-changes and the bus-crowdsourced phase-change predictions. 63

6.1 Notations used to express intersection attributes . 72
6.2 Notations used to express connected vehicles . 74

8.1 Basic OBD Data used for fuel rate estimation . 101
8.2 Partial identification of (non)stoichiometric conditions using OBD’s Fuel System Status data (FUELSY S) 102
8.3 MAF-based fuel flow estimation summary . 105
8.4 Road test results for fuel rate estimation based on mass air flow rate . 105
8.5 FIF-based fuel flow estimation summary . 107
8.6 Road test results for fuel rate estimation based on fuel-injector . 107

9.1 MOEs reported for both SIL & VIL simulations, and OBD-based MOEs reported for the real vehicle only 118
9.2 SIL simulation results for all vehicles; and the overall performance improvements achieved by MILP-based inter-

section controller (Testbed C) . 119
9.3 VIL simulation results for all vehicles; and the overall performance improvements achieved by MILP-based inter-

section controller (Testbed C) . 121
9.4 VIL simulation results only for the real vehicle; and the overall performance improvements achieved by MILP-based

intersection controller (Testbed C) . 122

x

List of Figures

1.1 Possible communication modes of a GPS-enabled connected vehicle including: a V2V local broadcast, a short-range
V2I communication to roadside equipment, and a cellular infrastructure based V2I communication. 2

1.2 Communicating the status of traffic lights (SPaT) to connected vehicles, to be used by in-vehicle driver assistance
systems. 3

1.3 Two way communication for communicating the probe data of connected vehicles to adaptive traffic signal con-
trollers, for signal phase and timing optimization. 5

1.4 The overall hardware architecture of the implemented back-end system to provide the status of traffic lights to in-
vehicle systems. 7

1.5 Vehicle-intersection coordination under the autonomous vehicle environment. 8
1.6 The overall hardware architecture of the implemented back-end system to provide a two-way communication be-

tween smart intersection controllers and connected vehicles. 8

2.1 Aggregated plot of all bus (MUNI) updates for a period of 24 hours in the city of San Francisco. 13
2.2 Scatter plots of San Francisco Route 28 bus updates over one month (September 2012). A total of 2478 bus passes

are shown. 14
2.3 Maximum and minimum distance and time between two updates of San Francisco Route 28 buses over one month

(September 2012) along the short portion of Park Presidio Blvd depicted in Figure 2.2. 14
2.4 The probe reports fitted to the desired velocity-vs-time trajectories (full trajectory with a stop at red). 15
2.5 Equivalent velocity-vs-position trajectory (applicable to Figure 2.4). 16
2.6 Estimation of average deceleration and acceleration of buses during stop and start using probe data. 18
2.7 Stop time at red by each probe vehicle a) histogram b) stop time at different times of day (Southbound through phase

on Van Ness Street at Lombard Intersection). 19
2.8 Time between consecutive green-initiations must be an integer multiple of cycle time for a fixed-cycle traffic signal. 20
2.9 Deviation of approximated time between green-initiations from multiples of example cycle times. At the actual cycle

time of C = 90 seconds, a clear peak can be observed. 21
2.10 Schematic: Green-initiations mapped to a reference C-periodic interval for calculating the average and standard

deviation of green-initiations. 23
2.11 Variance of moving average estimate of green-initiation at different times and days of the week for Lombard inter-

section. The jump in variance corresponds, most often, to the change in signal schedule at 6 and 10 AM and 3 and 7
PM (shown by dashed vertical lines) on weekdays. 25

2.12 A Gaussian mixture model fitted to data of Figure 2.9 using the Expectation Maximization Algorithm. The peaks at
tail ends correspond to the change to signal offset when schedule changes. 26

2.13 The probe reports fitted to the desired trajectory passing through a green light with constant acceleration. (a) velocity-
vs-time (b) velocity-vs-position. 27

2.14 Green times mapped to one cycle interval. Southbound through phase on Van Ness Street at Lombard Intersection
with cycle time of 90 seconds. Actual red was 60, actual green 26.5, and yellow 3.5 seconds. 28

2.15 Crowd-sourced and actual green times mapped to one circular cycle interval in polar histograms (Southbound
through phase on Van Ness Street at four different intersections). 29

2.16 The error between crowd-sourced and actual green-initiations for the Van Ness southbound phase at Lombard inter-
section as recorded on June 6, 2013. Green circles highlight times of qualifying bus passages. 31

xi

3.1 The probe reports fitted to the desired velocity-vs-time trajectories:
(a) full trajectory with a stop at red but not influenced by delay in queue.
(b) full trajectory with a stop at red and with a probe report sent in queue.
(c) partial trajectory with a stop at red and with a probe report sent in queue. 34

3.2 Equivalent velocity-vs-position trajectory. (applicable to Figure 3.1(b) and also to Figure 3.1(a) and (c) with modi-
fications). 34

3.3 ∆twaiting is the waiting time for moving after the green-initiation or Start-of-Green (tSoG). 35
3.4 Extracting the variance (σ2) trajectory from the green-initiations. 37
3.5 The variance of estimated green-initiations for Lombard intersection. The actual schedule-changes happen at the

dashed vertical lines which are comparable to the jumps in the trajectories. 37
3.6 The red time observed by vehicles throughout the day of ten months at intersections along VanNess St. (the actual

intervals were available through city timing cards and are shown by dashed horizontal lines). 39
3.7 Polar histogram of the red signal timestamps compared to the actual red splits (the data was collected for ten months

at four intersections along Van Ness street) . 40
3.8 The time-space diagram of a probe vehicle (bus) waiting for moving after the start of the green signal; the clearance

time is the time from tSoG to the instant at which the probe vehicle passes the stop-bar. 41
3.9 Green-Initiation estimation knowing the position of the probe vehicle in queue. 42
3.10 Average Discharge Headway . 43
3.11 The queue clearance time model fit to data. 44
3.12 The error between the predicted and actual green-initiations (southbound phase at Lombard intersection as recorded

on April 25, 2013). 46
3.13 Estimated versus observed queue waiting time. 47

4.1 System overview of the path of data from data sources to server to a connected vehicle. 52
4.2 The software architecture of the traffic signal state communication through a cloud-based server. 53
4.3 The functional architecture of the Crowdsourcing Server. 55
4.4 Three-Point definition of an Intersection-Phase: (a) Through movement. (b) Left turn. (The desired intersection is

shown in shaded color) . 57
4.5 A probe location report that has been sent within the upstream part of an Intersection-Phase. 58
4.6 The features of the web interface: (a) Monitoring via Intersection−Dashboard (b) Animating the probe vehicles . 61

6.1 Scheduling the vehicles arrivals (an example). 71
6.2 Visualization of the intersection-entering, intersection-exiting, and safety area accessing times described (a) at inter-

section (b) in space-time diagram. 73
6.3 Earliest access time possible based on the speed limit and maximum acceleration rates. 76
6.4 Possible scenarios of two vehicles passing an intersection with just enough safe gap between them. (a),(d) cvk

accessing right after cv j exiting. (b),(c) cv j accessing right after cvk exiting. 78
6.5 The longest possible travel time between the accessing and exiting points. 79
6.6 Scheduling the arrivals of vehicles using the proposed MILP model, solved by intlinprog function in Matlab R2016a

(y-axis: projected remaining distance to the safety area, x-axis: assigned access times); (a) all weight given to
intersection throughput improvement (b) all weight given to satisfying the desired speeds of all vehicles (c) %50 \
%50 compromised solution (d) %80\%20 compromised solution. 82

7.1 (a) Software-in-the-loop and (b) Hardware-in-the-loop confguration in the traffic simulation applications. 84
7.2 Adding vehicle-in-the-loop to a hardware-in-the-loop configuration with (a) actual traffic lights or (b) virtual traffic

lights. 85
7.3 Vehicle-In-Loop (a) back-end configuration (b) visualization at intersection. 87
7.4 Vehicle-In-Loop (a) screenshot of the vehicle interacting with the simulator (b) in-vehicle setup. 88
7.5 Description of HMI of the Virtual Driver Assistant and the Virtual Traffic Signal implemented on iOS iPhone device. 88
7.6 Virtual Driver Assistant (a) Identifying the Phase/Movement after entering the intersection monitoring region (b)

Calculating the distance between the vehicle and the intersection center. 90

xii

7.7 Data exchanged between a connected vehicle approaching a signalized intersection and the intersection controller
(remote server). 93

7.8 Four different message types implemented for the test environment (Protocol buffer structured messages preceded
with a preamble). 95

8.1 Functional architecture of the developed iOS OBD Logger App. 100
8.2 The implemented OBD Log application: (a) test vehicle setup (b) designed user interface. 101
8.3 Preliminary road test results: (a) engine state indicators, identifed based on basic OBD data (b) estimated fuel rate

using the proposed methods. 103

9.1 Screenshots of the implemented simulation testbeds using Java; (a) Pre-timed signalized intersection with no com-
munication (Testbed A) (b) Pre-timed signalized intersection with unidirectional communication and speed-advisory
(Testbed B) (c) MILP-controlled intersection with no traffic signal and with bidirectional communication (Testbed
C). 111

9.2 Schematics map of green splits distributed over space-time. The graphics shows how a speed-planner find the feasible
velocity intervals in order to avvoid stopping at red. 114

9.3 Preliminary speed-planning for vehicles that can pass the MILP controlled intersection with no stop. 116
9.4 Latest access time possible based on the minimum cruising speed (vmin) and desired deceleration rates (adec). . . . 117
9.5 Google satellite view of (a) International Transportation Innovation Center (ITIC) test site (b) the 5,500 x 300-foot

asphalt straightaway used to execute the vehicle-in-the-loop tests. 120
9.6 The vehicle-in-the-loop test area at International Transportation Innovation Center (ITIC). 121

xiii

Chapter 1

Introduction

1.1 Research Motivation and Background

A connected vehicle environment, as shown in Figure 1.1, enables the vehicles equipped with com-

puting and wireless communication devices to ”talk” not only to each other but also to surrounding infras-

tructure. The vehicle-to-infrastructure (V2I) communication capability can be bidirectional through commu-

nication technologies such as short-range radios or cellular networks. In one direction of communication, the

vehicle information communicated can provide transportation agencies with traffic data to make roads less

congested; alternatively, intelligent traffic signals can use data coming from connected vehicles to optimize

their signal phase and timing. In the other direction of communication, the infrastructure information com-

municated to connected vehicles can help drivers manage the time, speed, and route of their travel to reduce

travel delay [1]. In addition, V2I can improve safety by informing travelers of dangerous situations especially

while approaching signalized intersections.

In 2013, there were 32,719 fatalities and 2.31 million injured people involved in 5.7 million total

number of crashes, according to U.S. DOT’s National Highway Traffic Safety Administration or NHTSA [2].

Furthermore, the cost of traffic congestion for U.S. economy is estimated more than $120 billion in 2012 [3].

Because of these facts, the U.S. DOT’s Intelligent Transportation Systems Joint Program Office (ITS JPO)

[4] has focused on connected vehicle research to leverage the capabilities of wireless technology to reduce

or eliminate crashes and achieve mobility benefits. In conjunction with automotive industry, test beds have

been developed to see how vehicles, roadside infrastructure, and back-end systems work together. While

the test environments for connected vehicle research can be interstate roadways, arterials, and signalized/

1

Cellular
Broadcast

Roadside
Equipment

GPS
Position/Time

V2V V2V

V2I V2I

V2V: Vehicle‐to‐Vehicle Bidirectional Communication
V2I: Vehicle‐to‐Infrastructure Bidirectional Communication

Intersection Controller

Figure 1.1: Possible communication modes of a GPS-enabled connected vehicle including: a V2V local broadcast, a short-range V2I
communication to roadside equipment, and a cellular infrastructure based V2I communication.

unsignalized intersections or a combination of them, the research proposed in this dissertation considers the

connected vehicles at signalized intersections only.

Traffic signals have been an indispensable element of our transportation networks since their in-

ception, and are not likely to change form or function in the foreseeable future [5]. While traffic signals

ensure safety of conflicting movements at intersections, they also cause much delay, wasted fuel, and tailpipe

emissions. Frequent stops and goes induced by a series of traffic lights often frustrates drivers. However,

the connectivity provided by connected vehicle applications can improve this situation. This can be accom-

plished by real-time transmission of the status of vehicles for use by intelligent traffic signals (intersection

controllers) and/or by providing the status of traffic lights (Signal Phase and Timing or SPaT) to in-vehicle

computing devices. The former is the subject of the second part of this dissertation and the latter is the subject

of the first part of this dissertation.

1.1.1 Signal Phase and Timing Estimation in Connected Vehicle Environment

As described previously in this chapter and as shown in Figure 1.2, in one direction of V2I commu-

nication, the SPaT information can be communicated to the connected vehicles, tailored to meet the needs of

the in-vehicle driver assistance systems. However, in arterial driving, the switching pattern of traffic signals

are complex and unknown. This makes accurate travel time estimation or optimal routing often impossible

even with modern traffic-aware in-vehicle navigation systems. Much of these difficulties arise due to the

lack of information about the current and future state of traffic signals. In an ideal situation where the state

of a light’s timing and phasing is known, the speed could be adjusted for a timely arrival at green (Velocity

Advisory System) [6]. One can expect considerable fuel savings in city driving with such predictive cruise

2

Figure 1.2: Communicating the status of traffic lights (SPaT) to connected vehicles, to be used by in-vehicle driver assistance systems.

control algorithms as shown in [6] and [7]. When idling at red becomes unavoidable, knowledge of remain-

ing red time can determine if an engine shut-down is worthwhile (Start/Stop System). A collision warning

system can benefit from the light timing information and warn against potential signal violations [8]. Future

navigation system that have access to the timing plan of traffic lights, can find arterial routes with less idling

delay [9] and can also provide more accurate estimates of trip time.

The main technical challenge to deploying such in-vehicle functionalities is in reliable estimation

and prediction of Signal Phase And Timing (SPAT): Uncertainties arising from clock drift of fixed-time

signals, various timing plan of actuated traffic signals, and traffic queues render this a challenging and open-

ended problem. Direct access to signal timing plans and real-time state of the light is prohibitively difficult

due to hundreds of local and federal entities that manage the more than 330,000 traffic lights across the United

States alone [10]. Even when such access is granted, much effort and time must be spent in structuring

information from various municipalities in standard and uniform formats. The more recent emphasis on

Dedicated Short Range Communication (DSRC) technology for communicating the state of traffic signals to

nearby vehicles has safety benefits, but requires heavy infrastructure investments and even then is limited by

its short communication range.

To overcome some of these difficulties, in the first part of this dissertation we propose an alternative

approach, that relies on vehicle probe data streams, for estimating a signal’s phase and timing. In recent years

several research groups have shown that mobile phone or vehicle probe data can be effectively utilized for

estimation of traffic flow [11, 12, 13]. Today many traffic information providers, such as Google, INRIX,

and Waze use data from vehicle and cellular phone probes, as well as other means, to estimate the severity

of traffic on highways nearly in real-time. However such algorithms perform relatively poorly in arterial

networks because traffic signals induce complex queue and stop and go dynamics. Some more recent work

has focused on estimating queue lengths [14] and on determining location of traffic signals and stop signs

[13] through use of vehicle probe data. What seems to be missing from the literature is a systematic attempt

to derive SPAT information from available vehicle data streams.

3

Unfortunately, currently one cannot expect high update rates from public fleets that broadcast their

information, nor is there a proliferation of vehicle probes. Most existing ones only provide event-based

updates, for example at a time of a crash or air-bag deployment. Interesting data sources such as San Francisco

taxi cab data available through the cab-spotting program [15] have update rates of only once per minute. More

frequent updates are available through NextBus, a service that provides a real-time XML feed of GPS time

stamp, position, velocity, and several other attributes of transit buses of a few cities in North America [16].

Some instances of this feed, such as San Francisco MUNI stream, have update rates on the order of twice per

minute. And one can be certain that intersections along a bus route get traversed by a bus every few minutes

during the day. An open question that we try to address in the first part of this dissertation is how much,

statistical patterns in such low-frequency data can reveal about the state and parameters of traffic lights. This

determines what the minimum achievable is; as higher frequency probe data becomes available in the future,

more accurate estimates of parameters of traffic signals can be obtained.

In case of a low-frequency data source, less challenge is expected in the estimation procedure if we

only use the probe data that appears to be less influenced by heavy traffic and delay in queue. However, this

eliminates a large portion of data; and any SPaT estimation method that filters out huge amount of data is

subject to error. For this reason, a queue dissipation formulation is required so that the influence of queue

delay is considered in SPaT estimations.

1.1.2 Arterial Traffic Signal Optimization with Connected Vehicles

Investing in the belief that harmony between connected cars and traffic control infrastructure can

revolutionize the traffic scene in smart cities, we expand the idea given in previous subsection to include

two-way communication between moving connected vehicles and upcoming traffic lights. This is the sub-

ject of the second part of this dissertation and enables the traffic signals to adapt their timing as well as the

approaching connected vehicles adapts their velocity for a timely arrival at signalized intersections. Adap-

tive signal control systems are able to adjust their timings and the lengths of signal phases in real-time in

response to prevailing traffic conditions. The input data is currently from traditional detectors (loop detectors

and video detection) but it has the potential to be provided within a connected vehicle environment. This

environment, as previously mentioned in this chapter and as shown in Figure 1.3, allows the geographical

data (positions, headings, and speeds) of connected vehicles to be wirelessly transmitted in real-time to traf-

fic signal controllers [17], whereas traditional detectors mostly rely on point detection which provide a very

limited information such as passage of a vehicle at a fixed location [18, 19].

4

Figure 1.3: Two way communication for communicating the probe data of connected vehicles to adaptive traffic signal controllers, for
signal phase and timing optimization.

Autonomous vehicles can further benefit from traffic signal information because they not only pro-

cess the incoming information rather effortlessly but also can precisely control their speed and arrival time

at a green light. The situation can get even better with 100% penetration of autonomous vehicles since a

physical traffic light is not needed anymore as shown in concept papers by [20, 21, 22]. Also because au-

tonomous cars have much faster reaction times than human driven vehicles, the intersection controller can

rapidly switch between phases [23].

However, the major challenges in this research are first to formulate an intelligent intersection con-

trol that is responsive to prevailing traffic conditions and second to create a versatile live testbed of intersection

controllers that more intelligently sense and route traffic and communicate to vehicles with cellular connec-

tivity. A real-time simulation testbed is safe, reproducible and resources-saving [24]; and this makes the

simulation option suitable for analysis on the performance of vehicles connectivity, platooning, and vehicle-

intersection coordination. Furthermore, a simulation testbed is inexpensive, does not need traffic lights and

test drivers, and makes the data logging much easier comparing to experimental testbeds. On the other hand,

by utilizing real test vehicles in an experimental testbed not only the fuel consumption can be measured more

accurately but also the real dynamics of a vehicle can be analyzed. Combining the advantages of the two

aforementioned testbeds, a Vehicle-In-Loop (VIL) configuration seems a preferable strategy in early stages

of a development where cost and safety are a priority. A Vehicle-In-Loop (VIL) configuration needs a mi-

croscopic traffic simulation model, one or more real vehicles, and a communication between the intersection

controller and all the vehicles (simulated and real vehicles). The microsimulation needs to be real-time be-

cause of the real vehicles in the loop. The real vehicles needs to be equipped with a geographical positional

data logger as well as a fuel consumption tracker. And the simulated vehicles have to replicate the same com-

munication protocol as the real vehicles use to interact with the intersection controller. These requirements

need to be considered in VIL design.

5

1.2 Research Contributions

If traffic signals of a city are connected to Traffic Management Center (TMC), then access to the

real time state of the traffic lights may be granted either directly from local and federal entities, or indirectly

through third party data providers. Nevertheless, what we are proposing in the first part of this dissertation as

a crowdsourced-based SPaT estimator is a complementary solution in situations where timing information is

not available directly from a city’s Traffic Management Center.

Our proposed solution obtains deterministic knowledge of SPaT information of pre-timed signals

using only low-frequency probe vehicle data. The input probe data can be gathered from connected vehicles

of any kind reporting at least their GPS coordinate, and velocity at a timestamp, although this research uses

the public feed of the San Francisco’s GPS-enabled buses. In [25, 26], we have shown that it is possible to

estimate, fairly accurately, cycle times and duration of reds and greens for pre-timed traffic lights traversed

by buses using a few days worth of aggregated bus data. Furthermore, we also estimate the green-initiations

(start of greens) in real-time by monitoring movement of buses across intersections. The results are encour-

aging, given that each bus sends an update only sporadically (≈ every 200 meters) and that bus passages are

infrequent (every 5-10 minutes).

The obtained SPaT information is ultimately fed into an in-vehicle computing device. The imple-

mented system, as shown in Figure 1.4, is actually capable of receiving SPaT data directly from Traffic Man-

agement Centers as well as from a crowdsourcing server. The system architecture of transferring a TMC’s

data into an in-vehicle system was verified by a previous student of our group. As mentioned previously, the

main contribution of this dissertation is a crowdsourced-based SPaT estimator.

As shown in Figure 1.4, the input probe data is collected by the crowdsourcing server. The data

is then recorded in a database so that the same server can access it to estimate a collection of traffic signal

phase and timing information (SPaT). The traffic signal information of each phase of each intersection is then

accessed by a cloud-based server, specially configured for the infrastructure-to-vehicle (I2V) communications

via wireless cellular networks, such as 4G/LTE. In fact, the cloud-based server allows for fluctuations in

number of connected vehicles requesting SPaT information. A Web Server is also set up for initialization,

maintenance and ground-truth verification purposes.

In [27], we have extended our SPaT estimation methodologies to include the influence of queue

delay. In this extension, it is statistically shown that a considerable number of vehicle passes occur in heavy

traffic and excluding them will negatively influence accuracy of SPaT estimation algorithms. We have pro-

6

Crowdsourcing
Server

Database

Web Server
Administrator/Browser

Cloud‐based
Server

Probe Vehicle Data
(Historical and instantaneous)

Connected
Vehicle

Connected
Traffic Lights

Traffic
Management

Center
(TMC)

Cellular Network

Actual SPaT

I2V

Estimated SPaT

SPaT

Figure 1.4: The overall hardware architecture of the implemented back-end system to provide the status of traffic lights to in-vehicle
systems.

posed a queue dissipation formulation which is compared and found to be consistent to other formulations

used in related works [28], [29].

In the second part of this dissertation, we add a bidirectional vehicle-to-infrastructure (V2I) commu-

nication capability so that the moving connected vehicles can wirelessly transmit their geographical data in

real-time to the upcoming connected intersection controllers. As shown in Figure 1.5, we propose an intelli-

gent intersection control algorithm that processes autonomous vehicle instantaneous data, create a live picture

of evolving traffic conditions, and optimally schedule vehicles arrivals and adjusts traffic signal status. As the

proposed algorithm is presented for an autonomous driving environment (100% penetration rate of equipped

vehicles) no physical traffic signal is needed. The intersection controller of Figure 1.5 is not considered for

central coordination of many intersections. This controller uses only the data around a certain area of the

intersection; and as a result, is considered easier to implement and more cost-effective [30].

Specifically, we will create three key components in communication, control, and experimental eval-

uation: i) a scalable mechanism allowing a large number of vehicles to subscribe to the intersection controller,

ii) a vehicle-intersection coordination scheme to anticipate vehicle arrivals and guiding them into fast mov-

ing platoons; we successfully reduce this coordination problem to a Mixed Integer Linear Program (MILP),

and iii) a Vehicle-in-the-Loop (VIL) test bed with a real vehicle interacting with the intersection control

cyber-layer and with our customized microsimulations in a virtual road network environment. The proposed

MILP-based controller receives information such as location and speed from each subscribing vehicle and

advises vehicles of the optimal time to access the intersection. The access times are computed by periodically

solving a MILP with the objective of minimizing intersection delay, while ensuring intersection safety and

considering each vehicle’s desired velocity.

In order to demonstrate the feasibility of communicating connected vehicle instantaneous data

7

through cellular networks communication technologies and also to evaluate the efficiency of our proposed

intelligent intersection control, a testbed is set up as shown in Figure 1.6. Our evaluation is conducted at an

isolated test area in a Vehicle-In-Loop (VIL) simulation framework, involving microscopic traffic simulation,

wireless cellular communication, and fuel estimation model. The simulation environment, as shown in Fig-

ure 1.6, is set up in such a way that not only it is real-time and replicates real vehicles movements in arterial

corridors but also communicates to the intersection controller same way the real connected vehicles do. The

real vehicles and the simulated ones interact with each other at a virtual intersection.

Scheduled Arrival Times

Virtual Traffic Signals
Connected Vehicles

(Autonomous)

Instantaneous Vehicle Data
Time stamped positional data using GPS

(Positions, Headings, and Speeds of connected vehicles)

Intersection Controller

Figure 1.5: Vehicle-intersection coordination under the autonomous vehicle environment.

As no autonomous test vehicle is available at this stage of the work, a location-based in-vehicle

virtual driver assistant is needed to guide the driver of the connected test vehicle for a timely arrival at

intersection. Furthermore, in order to estimate the fuel consumption of our test vehicle another in-vehicle

application is sought which can access the On-board diagnostics (OBD) port of the vehicle. However, an

in-vehicle implementation of these systems requires a close partnership with car makers or OEMs that is not

always possible. As a result, applications running on a smart-phone is a reasonable alternative. We have

implemented the aforementioned applications on iPhone iOS device. A new fuel estimation method is also

proposed and incorporated into the iOS application.

Intersection Controller

Real
Connected Vehicle

Virtual
Traffic Signals

Cellular Network

I2V

Estimated SPaT

Recommendations
Vehicle Data

Set status

Simulated
Connected Vehicles

Recommendations
Vehicle Data

Figure 1.6: The overall hardware architecture of the implemented back-end system to provide a two-way communication between smart
intersection controllers and connected vehicles.

8

1.3 Thesis Outline

In the first part of this dissertation, signal phase and timing estimation methods are developed for

traffic lights in a connected vehicle environment. The goal is to communicate these estimations to connected

vehicles for a timely arrival at intersections even if the traffic light is not connected and its real-time timing

and phasing is unknown. The outline of the first part of this dissertation which includes chapters 2-5 is as

follows: First in Chapter 2, the proposed methodology for estimation and prediction of Signal Phase and

Timing (SPaT) information from low-frequency probe data is presented for pre-timed traffic signals. The

estimated information consists of two parts: First is traffic signal baseline timing that includes cycle time,

phase lengths (red and green intervals), and signal offset changes. Second is phase-change (sync) data, that is

green-initiation or start-of-green. The probe data influenced by the heavy traffic and the delay in queues are

investigated later in Chapter 3 in such a way that accuracy of the SPaT estimations is ensured even in presence

of queues. It will be shown in this chapter that by using our proposed queue dissipation formulations, more

accurate phase-change predictions are achieved comparing with the results of Chapter 2. The back-end of

the whole implemented system is presented in Chapter 4. This includes the hardware architecture of the

system as well as the software techniques of processing the incoming crowdsourced data, estimating SpaT

information, and delivering the SPaT information to a connected test vehicle through I2V communications.

In Chapter 5, a summary of the research findings and the potential future works are presented.

The second part of the dissertation is organized as follows: First, Chapter 6 introduces the vehicle-

intersection coordination problem in simple words; and our proposed formulation is presented followed by

conversion to a simple linear constrained optimization problem (mixed-integer linear program or MILP).

In Chapter 7, we explain our evaluation approaches via microsimulations and with real vehicles interacting

with the intersection control cyber-layer and a virtual road network environment. The evaluation results are

given in Chapter 9; and the fuel consumption reduction potential of the proposed intersection control is also

reported. Our proposed method to estimate the real vehicle’s fuel consumption rate through vehicle diagnostic

data is explained in Chapter 8.

9

Part I

Signal Phase and Timing Estimation in

Connected Vehicle Environment

10

Chapter 2

Crowdsourcing Phase and Timing of

Pre-Timed Traffic Signals from

Low-Frequency Vehicle Probe

Information

2.1 Introduction

In order to achieve a complete solution to providing individualized SPaT information directly to ve-

hicles, alternative approaches are needed in situations where the phase and timing information is not available

from a city’s Traffic Management Center (TMC) or directly from infrastructure at intersections. In this chap-

ter we propose an alternative approach, that relies on vehicle probe data streams, for estimating a pre-timed

signal’s phase and timing.

In recent years, an increasing interest in obtaining SPaT information is obvious in the related pub-

lications in the literature but most of them rely on other sources of data. A traffic signal predictor is also

proposed in [31] but needs to be trained by a traffic controller’s data log; it is obvious that the raw data would

be logged only for few traffic controllers and if available, it is prohibitively difficult to access that data. Us-

ing the cameras of windshield-mounted mobile phones, Koukoumidis et al. in [7] present a speed advisory

11

software service that detects the current phase of signals; however, the mobile nodes need a database from

TMC for the signal settings of fixed-time traffic signals or the Support Vector Regression (SVR) prediction

models for actuated signals. In [32] the probability of a light being green is found over a planning horizon

but by assuming that the baseline timings and schedules are already available. A Virtual Trip Line (VTL)

technology based method is also conducted by Hao et al. in [33] to estimate the signal timing parameters.

To the best of authors’ knowledge, to date, three works by Kerper et al. [34], Cheng et al. [35] and

Chuang et al. [36] are deterministic approaches related to our proposed approach, although, those require

high frequency probe data sets. The simulation results in [34, 35] are based on the assumption that the

penetration level is high and the full velocity profiles of the vehicles are available through high-frequency

probe data. The only real dataset is a dataset used by Cheng et al. including detailed vehicle trajectory

recorded every one-tenth of a second [37]; and [34] assumes that frequency of data update is ≈1Hz. The

SPaT estimation methodology presented by Cheng et al. assumes that the acceleration rate of the vehicles

are also reported which is not available through regular tracking devices; furthermore, the start of greens and

start of reds are the only parameters of the signalized intersection that are estimated by them. Chuang et al.

[36] use smartphones installed in vehicles to collect velocity profiles at a sampling rate of 1 Hz. They have

implemented the crowdsourcing part directly on smartphones which decreases the number of reporting events

sent from smartphones thorugh Internet connectivity; however, the implications on smartphones’ battery

usage (which is not addressed by the authors) remains questionable.

Furthermore, the studies by Kerper et al. [34], Cheng et al. [35], and Chuang et al. [36] are only

applicable to signals that their timings are fixed during the day. Nevertheless, the SPaT estimation proposed

in this paper also operate on pre-timed signals control that may have different signal timings for segments of

the day such as AM-peak, PM-peak, and off-peak.

In addition to the aforementioned deterministic approaches, in [38], Zhu et al. use the maximum

a posteriori (MAP) estimation and a joint optimization algorithm to estimate the state of a traffic light, but

the system’s capability in estimating the next phase-change of a signal (which is needed for most in-vehicle

applications) is not addressed by the authors yet.

Our proposed solution in this chapter works fairly accurately with low-frequency vehicular probe

data streams. The accuracy is experimentally evaluated for a selection of pre-timed traffic lights in the city

of San Francisco, CA by utilizing a real-time data feed of San Francisco’s public buses as an example data

source. In this chapter, after a short description of the utilized data stream in Section 2.2, we explain recon-

struction of the approximate trajectory of a probe vehicle between each two update points in Sections 2.3 and

12

2.4. Section 2.5 presents our methodology and results for estimation of red time, and cycle time of a traffic

signal based on available and reconstructed probe vehicle data. We also discuss the potential for extracting

other attributes such as an estimate of the signal clock time (green initiations) in Section 2.6 and 2.7, changes

in a signal’s offset and schedule in Section 2.8, and probability of green in Section 2.9. We will compare

our estimates versus the ground truth measurements at an intersection in the city of San Francisco in Section

2.10.

2.2 Description of the Data Feed

The results in the first part of this dissertation are based on probe vehicle data which can be gathered

from vehicles of any kind reporting at least their GPS coordinate, and velocity at a timestamp. As an example

data source, the probe data from bus movements in the city of San Francisco is used. The bus data feed is

provided by NextBus [16] for a number of cities in North America through eXtensible Markup Language or

XML [39]. The attributes of interest are position and velocity of each bus along with their time stamp and

the bus identification number. Also the bus route data and location of bus stops are extracted from the same

data stream. A map of bus (and light rail) routes in San Francisco in Figure 2.1 is constructed by aggregating

GPS updates from all buses within a twenty-four hour period. The focus on this paper is only on a few bus

routes to show the feasibility of the proposed ideas.

Figure 2.2 shows example data from a portion of bus route 28 along Park Presidio Boulevard in

the city of San Francisco. This is an aggregation of 2478 bus passes over an entire month. While each bus

sends only four or five updates along the shown stretch of the route, the aggregated data is very revealing and

correctly depicts the location of intersections and bus stops. Figure 2.3 shows the maximum and minimum

Figure 2.1: Aggregated plot of all bus (MUNI) updates for a period of 24 hours in the city of San Francisco.

13

Figure 2.2: Scatter plots of San Francisco Route 28 bus updates over one month (September 2012). A total of 2478 bus passes are
shown.

(a) (b)

Figure 2.3: Maximum and minimum distance and time between two updates of San Francisco Route 28 buses over one month (September
2012) along the short portion of Park Presidio Blvd depicted in Figure 2.2.

distance and time between two updates of each bus pass and for every one of the 2478 bus passes. According

to this data, the updates do not seem to be at regular time or distance intervals. Time updates are anywhere

between every 10 seconds up to every 80 seconds or sometimes more. However there is a strong concentration

of data at 200 meters distance intervals which indicates that most updates happen every 200 meters. From

these update rates it seems that slower buses update at shorter distance intervals based on a time threshold

(90 sec).

2.3 Data Transformation

We would like to estimate if a bus was stopped at an intersection, how long it was stopped, and at

what time it left the intersection. We hope by aggregating this information for many buses we can estimate

14

the duration of a red phase, the cycle length, the start of a green phase, and perhaps more. But because the

update points for each bus are sporadic, we need to approximate a bus trajectory between each two update

points. This is actually a data transformation process where low frequency probe data are transformed and

consolidated into vehicle trajectories.

The most beneficial trajectory for our purposes is the trajectory which includes a stop at red signal.

Figure 2.4 demonstrates the reconstructed velocity-time trajectories that include such a stop; and they may

be used to estimate the green-initiation, the red interval, the cycle time, and perhaps more. There is also

statistical patterns in travel trajectories with no stop and with constant acceleration that will be discussed

later in Section 2.9.

Figure 2.4: The probe reports fitted to the desired velocity-vs-time trajectories (full trajectory with a stop at red).

The Data Transformation process first checks the consistency of the identified probe vehicle passes

with the trajectories shown in Figure 2.4. If successful then the process records the estimated trajectory to be

used later by SPaT estimation processes. We also filtered out passes with low upstream velocity (less than

15 km/h for results in this chapter only), to ensure that the influence of heavy traffic is minimized on signal

timing estimation.

Each identified vehicle pass is a series of three-tuple [vi, ti,xi] shown by filled circle points in trajec-

tories of Figure 2.4; where vi is the reported velocity, ti is the timestamp of the report, and xi is the distance

between each location report and the upstream point of the Intersection-Phase (the distance is calculated us-

ing Haversine Formula [40]). The points with index i = 1 are the reports sent right before the stop-bar of

the intended intersection; and the points with index i = 2 are the reports sent right after the stop-bar of the

intended intersection.

Each reconstructed travel trajectory consists of a vector of [velocity, time, position,aacc,adec] where

aacc and adec are the average acceleration and deceleration as denoted in Figure 2.4. We use deceleration

and acceleration of 2.2 m/s2 and 1.0 m/s2 respectively; we will later show how to obtain these values in next

section.

15

The equivalent velocity-position trajectory is demonstrated in Figure 2.5. The variable xsignal is the

location of the light or more specifically the stop-bar. The variables d1 = xsignal− x1 and d2 = x2− xsignal are

areas under the velocity-time curve.

Figure 2.5: Equivalent velocity-vs-position trajectory (applicable to Figure 2.4).

The major extractable information from reconstructed trajectories is the time that a waiting vehicle

starts moving at green (tstart) and the time that a moving vehicle comes to a stop at red (tstop) estimated as

follows:

tstart = t2−max{d2

v2
− v2

2aacc
,0}− v2

aacc
(2.1)

tstop = t1 +max{d1

v1
− v1

2adec
,0}+ v1

adec
(2.2)

where the function max(.) in Equation (2.1) decides whether the estimated trajectories of Figure 2.4 include

a constant velocity movement after the vehicle accelerates at green-initiation, and the function max(.) in

Equation (2.2) decides whether the estimated trajectories of Figure 2.4 include a constant velocity movement

before the vehicle comes to a full stop at a red light. The duration of red “observed” by a particular bus can

be estimated as:

tred = tSoG− tstop +
v1

adec
(2.3)

where v1
adec

is the time it takes a bus to come to a full stop after the driver detects the signal is red, and tSoG

is the start-of-green (green initiation) which is approximately equal to tstart assuming the bus stops at stop

bar. Aggregating tred for a sufficiently large number of bus passes will later lead to an estimate of total red

duration of a phase.

In the above calculations we assumed that acceleration and deceleration of buses were known and

16

constants. We show next how probe data is used to approximate the average acceleration and deceleration

of the bus fleet. We also demonstrate that tred is not highly sensitive to reasonable variations in the value of

acceleration.

2.4 Crowdsourcing Acceleration and Deceleration of Buses

Because of data sparsity, it is not possible to estimate the acceleration or deceleration of an individual

bus. However velocity-position data from many buses shows a trend in start/stop trajectory as seen in Figure

2.2. For instance, at the Geary bus stop where a majority of buses come to a full stop, one can observe a clear

slow-down and speed-up trend which can be used to estimate an average value for a bus deceleration and

acceleration, later shown in Figure 2.6. To simplify the future steps of this work, we assume that deceleration

to a stop and acceleration from a stop for a bus are constants and not functions of velocity. Hence the velocity

while accelerating from a stop at a signal can be related to the distance traveled as follows:

v2(x) = 2āacc(x− xsignal) (2.4)

where āacc is the average acceleration which is to be estimated from data. A similar equation can be written for

a deceleration interval. By defining y = x−xsignal , ψ = v2(x), and θ = 1
2āacc

Equation (2.4) can be reorganized

in the following linear parameterized form:

y = θψ (2.5)

Several data points can be stacked in a least-square approach to estimate the parameter θ and therefore āacc.

As seen in Figure 2.6 there are several outlier data points that will skew the estimation result. So in the least

square estimation, we have ignored the data points (in red) below a certain acceleration/deceleration profile

(shown by dashed curves) to reduce the influence of outliers. Figure 2.6 shows the resulting curve fit for both

deceleration and acceleration. The estimated deceleration is 2.2 m/s2 and the estimated acceleration is 1.0

m/s2. These values are consistent with bus acceleration measurements reported in [41, 42]1.

1The maximum sensitivity of tred estimate in Equation (2.3) to variations in acceleration (also similarly deceleration) can be found to
be:

δtred =−v2
δaacc

a2
acc

and because v2 is at most around 20 m/s for a city bus and aacc and adec are greater than 1 m/s2, even a 20% error in approximation of
aacc (δaacc/aacc = ±0.2) results in a maximum error of 4 seconds for tred . The error is much smaller in most places where v2 is much
less than 20 m/s.

17

Figure 2.6: Estimation of average deceleration and acceleration of buses during stop and start using probe data.

2.5 Estimating Baseline Timing

The goal in this section is to determine if the baseline timing for lights can be obtained by offline

aggregation and averaging of crowd-sourced bus data. In particular, we are interested in determining the

duration of reds/greens of a phase and the cycle time of a traffic signal. Later we will investigate if a signal’s

clock time and schedule changes can be calculated. But we note that mere knowledge of baseline schedule,

obtained offline and using only historical data, has statistical value even when a signal’s clock-time is un-

known. See for example [43] in which the baseline schedule of a light is used to predict the chance of a future

green for an eco-driving application.

While we have results from several intersections in different locations in San Francisco, in the rest

of this paper we focus on results for a segment of Van Ness street, between Lombard and Bush intersections.

This is a sometimes congested street and therefore suited to test our proposed algorithms under (relatively

heavy) city traffic conditions. Additionally, we have access to the actual signal timing cards of intersections

of Van Ness and therefore can verify the validity of our estimates. Most intersections on this segment of Van

Ness are fixed time intersections with the same cycle time and red duration throughout all days of the week.

For most of these traffic signals, only offset times change during rush hour schedule, that could be estimated

as we show later in this paper. We aggregate one month worth of data (September 2012) from two bus routes,

route 47 and route 49, in the southbound direction totaling 4289 bus passes. This data is used to estimate

signals’ cycle time and the timing of the phases controlling southbound traffic on Van Ness, as explained

next.

18

2.5.1 Estimating Duration of a Red Phase

For each bus pass we follow the procedure explained in Section 2.3 and for those that had stopped

at a red, the observed red time is calculated via Equation (2.3). Aggregating this data provides an estimate of

the duration of red for the corresponding phase. For example for the southbound phase on Van Ness street

at Lombard intersection, there remained 347 bus passes after applying the procedure described in Section

2.3 to the 4289 total passes. Figure 7.3 presents the observed red for these 347 passes in two forms: The

histogram of observed reds in the first subplot has a maximum of 68 seconds which is an upper bound

estimate to duration of red phase. The second subplot shows the observed reds at different hours of a day

for an entire month. During early morning hours (midnight-6am) and late night hours (7pm-11pm) where

the queue lengths are expected to be shorter, we observe a maximum observed red of 60 seconds. This

corresponds well to the actual timing of this intersection: According to the city timing cards, this intersection

has a 90 second cycle time split to 60 seconds of red, 3.5 seconds of yellow, and 26.5 seconds of green for

the southbound phase. Note also that many bus drivers may treat a yellow as red increasing their observed

red time to a maximum of 63.5 seconds.

0 10 20 30 40 50 60 70
0

10

20

30

Estimated Stop Time at Intersection (seconds)

B
us

 C
ou

nt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2424
0

20

40

60

80

Hour of Day (00−23 Hours)

 E
st

im
at

ed
 S

to
p

T
im

e
at

 In
te

rs
ec

tio
n

(s
ec

on
ds

)

Figure 2.7: Stop time at red by each probe vehicle a) histogram b) stop time at different times of day (Southbound through phase on Van
Ness Street at Lombard Intersection).

We repeated this process for a few other intersections on Van Ness and the results are summarized

in Table 2.1. In most cases the red estimates are very close to the actual red. This is while, unlike Lombard

Intersection, many of these intersections had a short red interval and a green-wave design that allowed most

buses to pass through their green period; thus offering a smaller number of usable data points2.

2A part of the larger error at Broadway intersection may be due to the steeper slope of Van Ness street at Broadway intersection
which is not taken into account in crowdsourcing acceleration and deceleration of the buses.

19

2.5.2 Estimating Cycle Times

For fixed-time signals with phases that repeat cyclically, the time between green-initiations of a

phase must be an integer multiple of the cycle time3. An approximation for a green-initiation can be obtained

using Equation (2.1), i.e. the clock time that a bus starts accelerating from a stop at red. The difference

between two consecutive approximations of green-initiations, based on bus movements, then must be an

“almost” integer multiple of the cycle time, as shown schematically in Figure 2.8. Let’s denote the time

between approximated green-initiations as bg, therefore,

bg(j) = tstart(j+1)− tstart(j) (2.6)

For a given cycle time C, we can then calculate the remainder of division of bg and C as follows:

modC(bg) = bg− round(bg/C)C (2.7)

where the function round(.) rounds its argument to the nearest integer and the function modC(.) is a modi-

fied definition of remainder of division by C that allows negative values. For example mod10(12) = 2 and

mod10(8) =−2.

Time between greens ≈ n ∙ C

vehicle # j

ve
lo

ci
ty

timetstarttstopt1 t2

v1
v2

vehicle # j+1

ve
lo

ci
ty

timetstarttstopt1 t2

v1
v2

Figure 2.8: Time between consecutive green-initiations must be an integer multiple of cycle time for a fixed-cycle traffic signal.

We expect modC(bg) to be close to zero on average, if the cycle time is fixed at C and signal clock

drift between two qualifying bus passes is small. Therefore we propose to approximate C by solving the

following optimization problem:

C̄ = argmin
C

n

∑
j=1

(
modC(bg(j))

C/2

)2

(2.8)

where it is assumed there are n + 1 qualifying bus passes during the interval of interest and therefore n

3Note that due to a signal’s clock drift this may not be true for green-initiations that are far apart.

20

calculations of bg. Observing that −C
2 < modC(.) 6 C

2 , we normalize the remainders by C/2 to ensure all

values of C generate equivalent costs.

Because a signal cycle time is normally an integer in practice and has a limited range, one can con-

veniently solve the above optimization problem by trying every feasible C. We tried integer values between 1

and 120 seconds when determining cycle time of signals on Van Ness. To reduce the influence of signal clock

drift we limit the choice of bg to those within a few hours, e.g. 5 hours for results in this paper. Using one

month worth of data, the estimated cycle time for Lombard intersection was 90 seconds, perfectly matching

its actual value. This is visually illustrated in Figure 2.9 with histograms of modC(bg) for Lombard Inter-

section for four different values of C. As it can be seen, for C = 90 seconds, the histogram peaks strongly

around zero despite various sources of uncertainty, i.e. unknown queue lengths and traffic conditions and

approximations made in reconstructing bus trajectories. In the fourth subplot, we also observe small bumps

near the tail ends; later in Section 2.8, we explain that these bumps are direct results of change in signal offset

times during rush hour schedules.

−10 0 10
0

20

40

60

mod
30

(b
g
)

B
us

 C
ou

nt

−20 −10 0 10 20
0

20

40

60

mod
50

(b
g
)

B
us

 C
ou

nt

−40 −20 0 20 40
0

20

40

60

mod
80

(b
g
)

B
us

 C
ou

nt

−40 −20 0 20 40
0

20

40

60

mod
90

(b
g
)

B
us

 C
ou

nt

Figure 2.9: Deviation of approximated time between green-initiations from multiples of example cycle times. At the actual cycle time
of C = 90 seconds, a clear peak can be observed.

Table 2.1 summarizes cycle estimates for a number of other intersections along Van Ness. For most,

the estimated and actual cycle times are identical. For Washington Intersection, our proposed algorithm

estimates the cycle time at exactly half of its actual value. This is partly due to lack of enough qualifying

bus passes for this intersection. There were only 94 bus passes that qualified the filters for Washington as

compared to 347 passes for Lombard Intersection. Also we were not able to obtain meaningful results for

Bush intersection which is an actuated intersection with two different cycle times. Bush Intersection had also

21

Table 2.1: Red and cycle time estimates for a few southbound phases through Van Ness street, calculated using data from bus routes 47
and 49 gathered for September 2012.

Intersection Actual Red Estimated Red Actual Cycle Estimated Cycle Qualifying Passes
(seconds) (seconds) (seconds) (seconds) (count)

Lombard 60 60 90 90 347
Filbert 31.5 30 90 90 170
Green 31.5 35 90 90 86
Broadway 36 42 90 90 133
Washington 31.5 32 90 45 94
Bush 31.5/38.5 38 75/90 NA 41

very few (41) qualifying bus passes, as it was mostly green to buses traveling southbound.

2.6 Estimating Phase-Change (Green-Initiation)

Equation (2.1) can be used to estimate the time tstart that each bus left the intersection. However, a

parameter called startup lost time (∆tlost) which is the average time taken for a bus waiting at stop bar to react

to a signal changing to green, needs to be taken into account for green-initiation estimation as in Equation

(2.9). It is later found in Section 2.10 that the ∆tlost=6 seconds results in best estimations.

tSoG = tstart −∆tlost (2.9)

2.7 Predicting Phase-Change (Green-Initiation)

For real-time in-vehicle applications, it is important to have a prediction of the start of future green

(or red) phases. Predicting the start of a green (green-initiation) is a challenging problem: even for fixed-

time signals that have fixed cycles, periodic projection of green-initiations can be inaccurate due to signal

clock drift throughout a day. To address this problem, we propose to continuously estimate the start of a

green phase based on the movement of buses that accelerate from a stop at an intersection. As a result, a

moving average of the most recent estimated green-initiations is used to predict the next transition to green.

More specifically, because of C-periodicity of a fixed-time light within each schedule, we can map the latest

estimates of green-initiation to a single reference interval [−C
2 ,

C
2] by applying the modC operator, e.g. for the

22

ith qualifying bus pass:

ti = modC(tSoG(i)) (2.10)

It must be emphasized that the tSoG(i) estimations should be first adjusted by an offset which is usually added

to the timings during the rush hour schedule. This is done by simply adding our estimated offset (as presented

in next section) to the estimated tSoG(i).

We can then create an average estimate of the green-initiation in this reference interval. Note that, a

simple “linear” average will, in general, produce an erroneous estimate due to the cycle periodicity. See for

examples the schematic in Figure 2.10 where four estimates of green, mapped to the linear interval, and their

Figure 2.10: Schematic: Green-initiations mapped to a reference C-periodic interval for calculating the average and standard deviation
of green-initiations.

true average are shown on a straight line. As seen in this example, the correct average does not fall between

the individual greens. The periodicity can be better visualized if the time axis is wrapped onto a circle shown

in Figure 2.10. Each green-initiation can then be represented by a vector with angle θi =
2π

C ti on the circle.

The average angle, θ̄SoG, is determined by the direction of the vector sum of all individual vectors:

θ̄SoG = tan−1

m
∑

i=1
sin(θi)

m
∑

i=1
cos(θi)

(2.11)

here m represents the number of samples used to calculate the moving average. The average start of the green

23

is obtained by mapping back, the average angle to the time axis:

t̄SoG =
C
2π

θ̄SoG± kC k ∈ Z (2.12)

The variance of this estimate is then obtained based on the minimum cyclic distance to the average, equiva-

lently calculated by:

σ
2
SoG =

1
m

m

∑
i=1

(modC(ti− t̄SoG))
2 (2.13)

We will show later in Section 2.10 that, in some instances, the accuracy of t̄SoG can be enhanced, if we

selectively choose samples that produce smaller variances. In other words with n latest samples, we propose

to calculate t̄SoG and σSoG for all possible combinations of m< n samples and select the one with the minimum

variance.

2.8 Estimating Changes in Signal Schedule

The traffic signals that we have considered on Van Ness street have 3 different schedules. While

cycle times remain constant across multiple schedules for these intersections, each signal’s offset with respect

to other signals and also with respect to a reference clock switches as the schedule changes. For example at

Lombard intersection and during weekdays, the start of the cycle is moved backward by 34 seconds at 6 AM

and at 3 PM and moved forward at 10 AM and 7 PM. It is essential to estimate the change in offset and time

of this change, if we are to solely rely on crowd-sourced data for predicting the start of a green. Here we

report a couple of methods that were relatively successful in estimating time of change and amount of offset.

2.8.1 Estimating Time of a Schedule Change

We propose to detect a change in signal offset/schedule by keeping track of green-initiations and

detecting when a green-initiation shifts off significantly from its periodic prediction. A smaller value of

variance calculated in Equation (2.13) indicates that the corresponding m estimates of green-initiation are

consistent with each other and multiple of C seconds apart. Right after a schedule change when the green-

initiations are shifted by the offset times, the variance is expected to temporarily increase, until it is corrected

by newer estimates of green-initiations. Jumps in the value of variance can then be indications of a change in

signal schedule/offset times.

24

To test this hypothesis, we combined three months worth of data and calculated the variance of the

moving average as a function of time of day4. Figure 2.11 shows the results for the intersection with Lombard

for every day of the week. One can see clear jumps in the value of variance at 6 and 10 AM, and at 3 and 7

pm on a weekday. These correspond to the times that the signal schedule changes. For some days of the week

there is also a large spike at around 8 AM; these spikes do not correspond to a schedule change, but perhaps

are results of heavier traffic at that time. The plots for weekends do not have major spikes, which is consistent

with the single schedule that is in effect on weekends. We conclude that spikes that happen recurrently on all

weekdays are considered to correspond to signal schedule change while non-recurrent spikes may be due to

heavy traffic.

00:00 06:00 12:00 18:00 00:00
0

350

σ2 Monday

00:00 06:00 12:00 18:00 00:00
0

350

σ2 Tuesday

00:00 06:00 12:00 18:00 00:00
0

350

σ2 Wednesday

00:00 06:00 12:00 18:00 00:00
0

350

σ2 Thursday

00:00 06:00 12:00 18:00 00:00
0

350

σ2 Friday

00:00 06:00 12:00 18:00 00:00
0

350

σ2 Saturday

00:00 06:00 12:00 18:00 00:00
0

350

σ2

Time (hours)

Sunday

Figure 2.11: Variance of moving average estimate of green-initiation at different times and days of the week for Lombard intersection.
The jump in variance corresponds, most often, to the change in signal schedule at 6 and 10 AM and 3 and 7 PM (shown by dashed
vertical lines) on weekdays.

4A first attempt to only use a couple of weeks worth of data had many gaps due to sparsity in qualifying bus passes.

25

2.8.2 Estimating Signal Offset

In the histogram corresponding to C = 90 seconds in Figure 2.9, there were small bumps near the

tail ends that were not explained in Section 2.5.2. Using the method of Expectation Maximization (EM) [44]

we fitted a Gaussian mixture model to the histogram in Figure 2.9 and the result is plotted in Figure 2.12.

EM found three distinct Gaussian clusters with parameters shown in Table 2.2. The major cluster is centered

almost at zero, which was expected; and the two minor clusters are centered at almost±30. These correspond

closely to the 34 second shift in timing of the signal during a schedule change. We have further verified this

hypothesis, by identifying time of days at which mod90(bg) exceed ±30 seconds. In nearly all cases, this

happens across multiple schedules, enforcing our hypothesis that the tail bumps are due to signal offset. In

this case, the mean of this minor clusters can be used as an estimate to the amount of schedule offset.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

mod
90

(b
g
)

B
us

 C
ou

nt

Figure 2.12: A Gaussian mixture model fitted to data of Figure 2.9 using the Expectation Maximization Algorithm. The peaks at tail
ends correspond to the change to signal offset when schedule changes.

Table 2.2: Parameters of the Gaussian Mixture Fit to histogram of Figure 2.9.

mean (µ) standard deviation (σ) weight (π)
-30.78 7.32 0.07
-0.24 7.02 0.79
29.79 9.32 0.14

2.9 Direct Estimation of Green Intervals and Probability of Green

So far, all of our analysis has been based on movement of buses that had stopped at an intersection.

We filtered out bus passes that had no intersection delay, e.g. those that cruised through a green. This

26

approach discards a substantial amount of data, in particular for phases that either are often green or are

timed in a green wave. But there is useful information that can be extracted from passes during a green:

It is possible to interpolate a point in time that a phase was green based on the bus data before and after

an intersection. Looking at Figure 2.13 and given the two update tuples [t1,x1,v1] and [t2,x2,v2] across one

intersection, we propose the following steps:

• Step 1: To determine whether a bus stopped at an intersection or not, we propose to approximate the

intersection delay, td , by subtracting projected travel time from actual travel time as follows:

td = (t2− t1)−
x2− x1

(v1 + v2)/2
(2.14)

where t2− t1 is the actual travel time and x2−x1
(v1+v2)/2 is the estimated travel time if the velocity of the bus

had changed linearly between v1 and v2.

• Step 2: Determine instances for which intersection delay calculated via Equation (2.14) is zero5. A

zero value for td indicates (with high likelihood) that the bus passed through a green and moreover, its

acceleration between two update points remained constant, as shown in Figure 2.13.

(a) (b)

Figure 2.13: The probe reports fitted to the desired trajectory passing through a green light with constant acceleration. (a) velocity-vs-
time (b) velocity-vs-position.

• Step 3: Interpolate between update times t1 and t2 to determine the point in time at which the signal

was green. For the constant acceleration case, we have:

xsignal = x1 + v1(tgreen− t1)+
1
2

a(tgreen− t1)2 (2.15)

where a = v2−v1
t2−t1

is the constant acceleration between two update points. Here tgreen denotes a time at

5We used a small threshold and accepted values sufficiently close to zero.

27

which the signal was green which is the feasible solution to the above quadratic equation:

tgreen = t1 +
−v1 +

√
v2

1 +2a(xsignal− x1)

a
(2.16)

• Step 4: Ideally we would like to aggregate all point calculations of tgreen to estimate intervals of green.

For signals with fixed and known cycle time C, this can be done by mapping all values of tgreen onto a

reference interval [0,C].

We carried out the above process for Lombard Intersection and the result is shown in the first subplot

of Figure 2.14. When mapping all green times to a single interval, we have accounted for known changes

in signal schedule. The second subplot is a histogram highlighting the concentration of points. In the ideal

situation when a signal had no clock drift and repeated the same state at the exact same time every day,

this mapping would result in an interval of green exactly matching signal’s green time; i.e. 26.5 seconds for

Lombard. But since the signal clock drifts, and also due to errors in reconstructing bus kinematics, the plotted

green interval has a wider range than the actual green time. However there is much stronger concentration

of mapped greens in the middle as shown by its histogram. This time period, and periods cyclically mapped

forward, are where the probability of green is the highest. Even in the absence of any further crowd-sourced

data, this probabilistic information is useful for many in vehicle applications (see [43] for instance).

0 10 20 30 40 50 60 70 80 90
Elapsed Time (sec)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

Sa
m

pl
e

C
ou

nt

Elapsed Time (sec)

Figure 2.14: Green times mapped to one cycle interval. Southbound through phase on Van Ness Street at Lombard Intersection with
cycle time of 90 seconds. Actual red was 60, actual green 26.5, and yellow 3.5 seconds.

28

Because of the cyclic periodicity, the data can be better visualized if mapped onto a polar histogram

in which one revolution corresponds to one cycle time. Figure 2.15 shows such polar histogram plots for

four different intersections along Van Ness. The height of each triangle represents the number of green

samples within that triangle interval. Also shown by shaded areas on these plots are the actual green intervals,

as observed and recorded in ground truth observations. It can be seen that the actual and crowd-sourced

estimates of green interval match relatively well. The differences can be attributed to signal clock drift and

also to errors in generating the crowd-sourced estimates.

30

210

60

240

90

270

120

300

150

330

180 0

(a) Lombard

30

210

60

240

90

270

120

300

150

330

180 0

(b) Union

Actual Green Split
Count of Green Samples

30

210

60

240

90

270

120

300

150

330

180 0

(c) Broadway

30

210

60

240

90

270

120

300

150

330

180 0

(d) Washington

Figure 2.15: Crowd-sourced and actual green times mapped to one circular cycle interval in polar histograms (Southbound through phase
on Van Ness Street at four different intersections).

2.10 Ground Truth Verification

To determine the accuracy of our estimates, in particular the green-initiations, we arranged a session

of on-site ground truth tests at the intersection of Lombard and Van Ness streets on June 6, 2013. Between

the hours of 7 AM and 4 PM, we recorded the actual start of a green of the southbound phase on Van Ness

29

almost every 15 minutes as the ground truth. This was done with the aid of a computer program that upon a

key press would log the time as synchronized with the NIST time server [45]. The human observer’s reaction

time was determined to be less than 0.3 seconds which is sufficiently accurate for the purpose of this study.

Concurrently, the green-initiations were predicted using the bus data feed and based on the procedure

explained in Section 2.6 and 2.7. This was done in real-time via a crowd-sourcing backend server. The XML

updates from routes of interest are continuously parsed and the data is written to a SQL data server. Another

computational node constantly monitors the data to estimate green-initiations and records it back on the SQL

server. We could monitor the agreement between actual green-initiations and crowd-sourced green-initiations,

in real-time, via a PHP web-interface.

After each qualifying bus pass, new estimates for green-initiations were generated using i) the last

data point only, ii) minimum-variance average of 3 samples chosen out of last 6 data points, and iii) minimum-

variance average of 2 samples chosen out of last 4 data points. Note that crowd-sourced estimate of greens

are sparse in time due to the fact that the bus data that qualifies our filters is infrequent. Therefore in between

two actual estimates, the green-initiations are cyclically mapped using the estimated cycle time of the traffic

light. Also the change in signal offset during schedule change is accounted for in this process. The estimated

values for green-initiations are then compared to the actual ground readings of the green-initiations6.

Figure 2.16 demonstrates the error between the crowd-sourced and actual green-initiations. The

jumps in error plots in Figure 2.16 correspond to the times when a new qualifying bus pass occurs. The

drift in between is due to the actual drift of the signal clock and is not a by-product of crowd-sourcing. The

root-mean-square and maximum error of each estimation approach are summarized in Table 2.3. It can be

observed that the minimum variance estimates are reasonably close to the actual timing with an RMS error

of around 2.5 seconds. The estimate that was based on only last sample was more prone to error in this case.

Table 2.3: Root-mean-square and maximum estimation error for green initiations

Estimation Method RMS Error (Sec.) Max. Error (Sec.)
Last data point 8.0 24.3

3 out of 6 data points 2.6 7.7
2 out of 4 data points 2.5 8.2

6When comparing the estimated values of green-initiation to the observed ground-truth, we noticed that the error is inclined to the
negative side. This is due to the value of a parameter called lost time (∆tlost) which is the average time taken for a waiting bus to react
to a signal changing to green, assuming there is no queue in front. This lost time is used as follows and as previously given in equation
(2.9) to adjust the estimated green-initiation:

tSoG = tstart −∆tlost

We varied the value of tlost to find a value that achieves the minimum RMS error in Fig. 2.16. We found that tlost = 6 seconds results in
minimum RMS error and included it in the results shown in Figure 2.16 and in Table 2.3

30

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
−25

−20

−15

−10

−5

0

5

10

15

20

25

E
rr

or
 (

se
c)

Time

Choosing last sample

Averaging on 3 samples, chosen out of 6 samples

Averaging on 2 samples, chosen out of 4 samples

Estimated bus departure time from the intersection

Figure 2.16: The error between crowd-sourced and actual green-initiations for the Van Ness southbound phase at Lombard intersection
as recorded on June 6, 2013. Green circles highlight times of qualifying bus passages.

2.11 Acknowledgment

This research was sponsored by a research award from BMW Group Technology Office USA, Moun-

tain View, CA; and it was also sponsored in part by the National Science Foundation grant number CMMI-

0928533. I would like to thank members in BMW Technology Office’s research team, Mr. Andreas Winckler

and Mr. Grant Mahler for their insight and suggestions on the ideas proposed here. I also wish to thank

Mr. Michael Smith of NextBus for the data he provided and Mr. Nainfeng Wan for his assistance with the

Expectation Maximization algorithm. Eventually, my special thanks and acknowledgments to Prof. Ardalan

Vahidi, my PhD advisor, for his support and supervision. We spent long hours together discussing the the-

oretical basis as well as collecting the ground truth data in the city of San Francisco for this part of the

dissertation.

31

Chapter 3

Crowdsourcing Phase and Timing of

Pre-Timed Traffic Signals in Presence of

Queues

3.1 Introduction

This chapter describes the crowdsourcing-based system for phase and timing estimation of pre-timed

traffic signals. As mentioned in previous chapters, the input crowd is a real-time feed of sparse probe vehicle

data and the output is an estimated collection of Signal Phase and Timing (SPaT) information. Nevertheless,

different from the previous chapter, the approach described in this chapter ensures the accuracy of the SPaT

estimations even in presence of queues. This was achieved by investigating the probe data influenced by the

heavy traffic and the delay in queues.

Only the departure pattern (discharge) of the queue is studied in this chapter. Several queue discharge

models such as [46, 47, 48] have the potential to be used in our application. Cheng et al. in [35, 49] used

the traffic shockwaves in order to model the queue discharge time. The shockwaves theory, also used in

[46, 47], was originally extended by Stephanopolos and Michalopoulos in [48] to the signalized intersection

applications. Kerper et al. in [34] claim that they use the queue discharge model of [28] with no explanation

provided; however, the way they benefit from this model is not clear. The queue discharge model presented in

this chapter is different from the aforementioned models in that it is based on an average discharge headway

32

model. There is no evidence so far that the presented model implies any significant advantage to other models;

however, it will be shown later in this chapter that the proposed queue dissipation formulations have a slightly

better correlation with the collected ground truth data.

The SPaT estimation in previous chapter (Chapter 2) did not consider the influence of queue delay,

and it was based on filtering out the vehicle passes that appeared to be influenced by heavy traffic and long

queues. This is why the position in queue was not considered in the methodologies presented in that chapter.

However, a considerable number of vehicle passes occur in heavy traffic and excluding them will negatively

influence accuracy of SPaT estimation algorithms. In Chapter 2 many of the movements during heavy traffic

period were filtered, reducing the number of available data points, causing estimation errors during heavy

traffic conditions. This is why the approach of Chapter 2 is suitable for intersections that have light traffic

condition with occasional short periods of heavy traffic throughout the day.

In this chapter, first ,transforming the probe data influenced by the heavy traffic into desired vehicle

trajectories is explained in Section 3.2. The detailed crowdsourcing methodologies that consider delay in

queues are explained with estimation results in Section 3.3. Section 3.4 describes in detail how SPaT estima-

tions are affected by idling periods in queue. Finally, more ground truth verifications are provided to evaluate

the SPaT estimations, and the queue dissipation formulations.

3.2 Data Transformation

This section describes the data transformation process where low frequency probe data are trans-

formed and consolidated into vehicle trajectories. It will be shown that the most beneficial trajectory for our

purpose in this chapter is the trajectory that not only includes a stop at red signal but also includes a probe

report sent in queue. Figure 3.1(b-c) demonstrates the reconstructed velocity-time trajectories that include

such a stop and a probe report sent in queue; while Figure 3.1(a) demonstrates the reconstructed trajectory

not influenced by delay in queue and used in previous chapter.

The Data Transformation process first checks the consistency of the previously identified probe

vehicle passes with the trajectories shown in Figure 3.1. If successful then the process records the estimated

trajectory to be used later by SPaT estimation processes. The reports sent while waiting in a queue, if

available, are denoted with index q. Figure 3.1(b) and (c) have both a probe report sent in queue with

approximately zero reported velocity.

The equivalent velocity-position trajectory is demonstrated in Figure 3.2. The variable xq, if avail-

33

(a) (b) (c)

Figure 3.1: The probe reports fitted to the desired velocity-vs-time trajectories:
(a) full trajectory with a stop at red but not influenced by delay in queue.
(b) full trajectory with a stop at red and with a probe report sent in queue.
(c) partial trajectory with a stop at red and with a probe report sent in queue.

Figure 3.2: Equivalent velocity-vs-position trajectory. (applicable to Figure 3.1(b) and also to Figure 3.1(a) and (c) with modifications).

able, is the reported position of the vehicle while waiting in queue and xsignal is the location of the light or

more specifically the stop-bar. The variables d1 = xq− x1 and d2 = x2− xq are areas under the velocity-time

curve, and dq is position in queue. It should be emphasized that position in queue is different from the term

queue length used in literature such as in [50].

The major extractable information from reconstructed trajectories is the time that a waiting vehicle

starts moving at green (tstart) and the time that a moving vehicle comes to a stop at red (tstop) estimated as in

Equation (2.1) and Equation (2.2). If the vehicle updates cannot be fit into any of the possible trajectories of

Figure 3.1 with stop, then it does not necessarily mean that the vehicle has never stopped. It just shows that

the actual travel trajectory is not fittable to any of the desired trajectories.

Table 3.1 reports the percentage of total vehicle passes in a year which are fittable into the desired

trajectories. It can be seen that by not ignoring the probe data that are influenced by queue delay, a greater

number of the vehicle passes will be available to the SPaT estimation algorithms.

34

Table 3.1. Counts of passes during one year at four intersections.

Total Pass counts Pass counts Pass counts
Identified fittable to fittable to fittable to

passes Fig. 3.1 (a)* Fig. 3.1 (b) Fig. 3.1 (c)
Lombard

49361
4476 428 5295

Intersection (9.07%) (0.87%) (10.73%)
Green

49343
1532 103 897

Intersection (3.10%) (0.21%) (1.82%)
Vallejo

49325
4468 221 1553

Intersection (9.06%) (0.45%) (3.15%)
Broadway

46938
3225 153 5543

Intersection (6.87%) (0.33%) (11.81%)

* passes captured by the method described in Section 2.3 of previous chapter.

3.3 SPaT Estimation and Prediction

The methods described in this section cover the Phase-Change (Green-Initiation) Estimation, and

Baseline Timing Estimation in presence of queues.

3.3.1 Green-Initiation Estimation

When a traffic light changes to green, drivers should wait for the queue in front to move before they

can start moving at green. As shown in Figure 3.3, this waiting time is denoted by ∆twaiting in this paper and

depends on the discharge rate of the queue as well as the time taken for the vehicle drivers to react to the

signal changing to green.

Figure 3.3: ∆twaiting is the waiting time for moving after the green-initiation or Start-of-Green (tSoG).

As a result, based on estimates of ∆twaiting and tstart , the green-initiation (tSoG) can be estimated as:

tSoG = tstart −∆twaiting (3.1)

However, depending on which travel trajectory the probe data can be fitted to, there are two ap-

proaches to estimate green-initiation:

• First approach (as used in Chapter 2) uses the probe data that appears to be less influenced by heavy

35

traffic and delay in queue. For this reason only the probe reports fittable to the trajectory of Figure

3.1(a) (or Figure 2.4) with high upstream velocity (v1) are selected to estimate the time tstart . Because

it is assumed that there is no long queue in front, an average value of ∆twaiting for the first few vehicles

in queue is used in green-initiation estimation. Please note that this average was denoted as ∆tlost in

Chapter 2 and its value was estimated as 6 seconds in our application for transit buses.

• Second approach (as proposed in this Chapter) uses the probe reports that reveal the position of the

probe vehicle in queue. This actually includes the reports that are fittable to the trajectories of Figure

3.1(b) or (c) where at least one probe report sent while in queue is available. Knowing the position of

the vehicle in queue, the queue waiting time (∆twaiting) can be estimated using the queue clearance time

model explained later in Section 3.4. This approach is expected to be more accurate than the first one

in persistent heavy traffic conditions, mainly because actual position in queue is available.

3.3.2 Signal Schedule Change Estimation

As described in previous chapter (Section 2.8), an offset (to f f set) is usually added to the timings

during the rush hour schedule. Our proposed approach not only estimates the time that the schedule of

a traffic light changes but also estimates the offset that is added to the timings. The process described in

Section 2.8 is explained here again but in a different way and by using a different data source (probe reports

that reveal the position of the probe vehicle in queue).

First, the green-initiations estimated using the second approach of previous subsection are sorted

based on the weekday and the time of the day. Then, the variance of the average (σ2) of few consecutive

green-initiations (e.g. 5 green-initiations) is calculated; and according to Figure 3.4 this process is repeated

for the next consecutive green-initiations till the whole list of green-initiations of each weekday is covered.

By putting the calculated variances together, a trajectory is constructed which demonstrates the change of

the variance with respect to time of each week-day. Please see Figure 3.5 for a sample plot of the variance

trajectory.

The spikes in the variance trajectory plot of Figure 3.5 actually show the times that a signal schedule

is changed. The more probe data is used, the sharper the spikes are. As a result, the probe data collected

of almost ten months is used in depicting Figure 3.5, although fewer months of collected probe data is also

enough to have detectable schedule change spikes. The variance trajectories of Figure 2.11 include some

extra and misleading large spikes due to heavier traffic in the middle of rush hour; however, considering the

36

Figure 3.4: Extracting the variance (σ2) trajectory from the green-initiations.

Figure 3.5: The variance of estimated green-initiations for Lombard intersection. The actual schedule-changes happen at the dashed
vertical lines which are comparable to the jumps in the trajectories.

influence of queue waiting time on SPaT estimation, all the spikes in Figure 3.5 are solely the results of the

schedule change.

37

3.3.3 Green-Initiation Prediction

The green-initiation prediction is the process of predicting the next transition to green for the desired

Intersection-Phase. This process was explained in detail in Section 2.7; and it is repeated here in summary as

follows:

The next green-initiations should be continuously predicted using the most recent reconstructed tra-

jectories of vehicles that accelerate at green. As a result, a moving average of the most recent estimated

green-initiations is used to predict the next transition to green. However, three adjustments should be con-

ducted before averaging the estimated green-initiations:

• First, the green-initiation estimations should be adjusted by the estimated offset if they happened during

the rush hour schedule change. This is done by simply adding to f f set to the estimated tSoG. In this way,

all the green-initiation estimations are synchronized to a same time reference.

• Second, the adjusted green-initiation estimations are mapped to one cycle interval before being aver-

aged.

• Third, a filter is used to filter out the outliers and wrong estimations. As described in Section 2.7, this

filter selectively chooses the green-initiation estimations that produce smaller variances.

After conducting the aforementioned three adjustments, the average of these green-initiations is calculated

(t̄SoG) which is used to predict the next green-initiation after current time. The improvements in green-

initiation prediction are demonstrated later in Section 3.5.1.

3.3.4 Red Split Estimation

The duration of red “observed” by a particular vehicle can be calculated using the trajectories of

Figure 3.1(a-b) as previously given in Equation (2.3). The trajectory of Figure 3.1(c) is also used in cal-

culating the observed red interval by verifying Equation (3.2) if tSoG > tq; where tq is the timestamp of the

zero-velocity probe data sent while waiting in queue.

tred = tSoG− tq (3.2)

Figure 3.6 shows scatter plots of tred calculated using the aforementioned equations for four inter-

sections in San Francisco. It is expected that the maximum of the aggregated calculations would be actually

an upper bound estimate to duration of the actual red phase.

38

00:00 06:00 12:00 18:00 00:00
0

50

100

150

R
ed

T
im

e
(s
)

Time of Day (hours)

(a) Lombard Intersection

00:00 06:00 12:00 18:00 00:00
0

50

100

150

R
ed

T
im

e
(s
)

Time of Day (hours)

(b) Green Intersection

00:00 06:00 12:00 18:00 00:00
0

50

100

150

R
ed

T
im

e
(s
)

Time of Day (hours)

(c) Vallejo Intersection

00:00 06:00 12:00 18:00 00:00
0

50

100

150

R
ed

T
im

e
(s
)

Time of Day (hours)

(d) Broadway Intersection

Figure 3.6: The red time observed by vehicles throughout the day of ten months at intersections along VanNess St. (the actual intervals
were available through city timing cards and are shown by dashed horizontal lines).

3.3.5 Red-Probability Estimation

This section demonstrates how to extract the probability distribution of red signal by aggregating

the probe reports that are sent from the vehicles waiting in queue at red signal. The method proposed in

this section completes the method of Section 2.9 in extracting the probability of green. For this purpose,

the timestamps of the zero-velocity reports that has been sent while waiting in queue are collected (more

specifically the tq timestamps of Figure 3.1(b-c)). Nevertheless, the tq timestamps do not necessarily denote

the times at which the signal is red; and the condition of tq < tsog should be verified before collecting tq as a

timestamp sample corresponding to red signal.

In order to synchronize all the collected tq timestamps to a same time reference, the estimated offset

(to f f set) is added to the timestamps that has occurred during the rush hour schedule change. The goal here is

to aggregate all these adjusted tq timestamps so that a probability distribution can be achieved for intervals

of red phase. However, before aggregating the adjusted timestamps, all the timestamps should be mapped to

one cycle interval by Equation (3.3) where C is the cycle time of the desired Intersection-Phase estimated by

the method explained in Section 2.5.2.

tq,mapped = tq− round(tq/C)C (3.3)

Equation (3.3) maps all timestamps of tq onto a reference interval of [0,C] in Unix-Time. These

mapped timestamps are all aggregated and can be plotted in polar histograms such as Figure 3.7. As shown

in this figure, the interval [0,C] can be mapped to an interval of [0,2π] because of the cyclic periodicity. The

longer each triangle of histograms is, the more red samples it includes. The shaded portions of the cycle

time are the actual red intervals which are depicted according to the city timing cards and the ground truth

observations. The histograms represent the probability distributions of red intervals which match very well

with the actual red intervals.

39

Figure 3.7: Polar histogram of the red signal timestamps compared to the actual red splits (the data was collected for ten months at four
intersections along Van Ness street)

40

3.4 Queue Waiting Time

As explained in Section 3.3.1, the key feature of the SPaT estimatior in heavy traffic conditions is in-

clusion of an estimate of the wait time in queue after green-initiation. The following subsections respectively

describe: how to formulate this waiting time based on the expected queue clearance time, how to find an esti-

mate of the queue clearance time via a queue discharge model, and how to estimate the unknown parameters

of the model.

3.4.1 Waiting Time Formulation

Let’s assume that a probe vehicle is the Nth vehicle waiting in a queue at red, as shown in the time-

space diagram of Figure 3.8. Then, the clearance time, denoted by ∆tclearance, is the discharge time that it

takes all of the N waiting vehicles to pass and leave the stop-bar after the start of the green signal. However, as

it is plotted in Figure 3.8, the clearance time of N queued vehicles consists of two parts: the waiting interval

that it takes the Nth vehicle to start moving after green-initiation (∆twaiting) plus the interval that it takes that

vehicle to travel all the way up to the stop-bar and cross the stop-bar (∆ttravel). As a result, the following

formulation is proposed here to estimate the waiting time in queue:

∆twaiting = ∆tclearance−∆ttravel (3.4)

With the queue clearance time and the estimated travel time in hand, then it is quite straightforward

to compute the waiting time and finally the green-initiation (tSoG). This is demonstrated in Figure 3.9 where

Figure 3.8: The time-space diagram of a probe vehicle (bus) waiting for moving after the start of the green signal; the clearance time is
the time from tSoG to the instant at which the probe vehicle passes the stop-bar.

41

Figure 3.9: Green-Initiation estimation knowing the position of the probe vehicle in queue.

∆ttravel is calculated1 using Figure 3.2; and the expected ∆tclearance is derived form a model proposed in the

following subsection.

3.4.2 A Model for Queue Clearance Time

The clearance time of queued vehicles can be represented by the summation of discharge head-

ways. Figure 3.10 shows the average discharge headway, according to the specifications given in [51]. The

Headway(n=1) is the interval between green-initiation and the time that rear wheels of first vehicle cross

the stop-bar, the Headway(n=2) is the interval between the first vehicle and the second vehicle leaving the

stop-bar, and so on. As a result, the summation of headways, as introduced in [52] and as given in Equation

(3.7), equates to the time from green-initiation to the instant at which the Nth vehicle of the queue crosses the

stop line.

∆tclearance =
N

∑
n=1

Headway(n) = hN +
N

∑
n=1

∆n (3.7)

Due to the start-up reaction and acceleration, the headways for the first few vehicles are greater than

h and are shown as h+∆n in Figure 3.10 where ∆n is the incremental headway for the nth vehicle [51]. In

this paper, the incremental headways are assumed to decrease exponentially with the position in queue. As a

result, an empirical formulation for the queue clearance time is achieved by rephrasing Equation (3.7) as:

∆tclearance = hN +∆1

N

∑
n=1

e−(n−1) (3.8)

1 The ∆ttravel is the expected travel time between xsignal and xq:

∆ttravel = max{
dq

v2
− v2

2aacc
,0}+ vs

aacc
(3.5)

where vs is the velocity at stop-bar (xsignal) and can be a value equal or lower than v2 as follows:

vs =

√
2aacc×min{dq,

v2
2

2aacc
} (3.6)

42

Figure 3.10. Average Discharge Headway.

It must be noted that if the heavy traffic passes are excluded (same as Chapter 2) then the average of

∆twaiting interval for the first vehicle in queue (6 seconds) can be used in all signal timing estimations.

3.4.3 Parameter Estimation

The clearance time model provided in Equation (3.8) is in fact a linear combination of saturation

headway (h) and the first incremental headway (∆1). As a result, Multiple Linear Regression model (MLR)

can be used to estimate these parameters. However, there are two challenges in using linear regression for

this purpose:

First, the regression variable is the vehicle position number in queue (N) which is not available.

However, it can be estimated by Equation (3.9), where Lv is the average distance that a vehicle occupies in

queue (20 ft), and b.c is the flooring function.

N = b
dq

Lv
c+1 (3.9)

Second, gathering enough observational data on queue clearance time is time consuming. For this

reason, an approach is proposed here which provides enough samples of queue clearance time without the

need of gathering them locally at intersections. This is achieved using Equation (3.10) where the green-

initiation timestamp of a sample Intersection-Phase (tSoG,observed) was locally collected from direct observa-

tion, and tstart is estimated based on the reconstructed trajectories (Figure 3.1(b) or (c)). Multiple of C seconds

is also included in Equation (3.10) because tSoG,observed is a locally collected green-initiation and might be

43

Figure 3.11: The queue clearance time model fit to data.

days before or after the estimated tstart .

∆twaiting = tstart − tSoG,observed± kC k ∈Z

∆tclearance = ∆twaiting +∆ttravel−−−−− .

(3.10)

The clearance time model in Equation (3.8) is then verified to fit the aforementioned data, as shown

in Fig. 3.11. However, this data shown in Fig. 3.11, represented by the blue circles, do not seem to be

symmetrically distributed. The queue clearance data is skewed most probably because there are many real

world factors, such as lane blockage and downstream queue spillback, that would prolong the time needed

for a queue to dissipate. On the other hand, usually there is no factor that could possibly make the queue

clearance time shorter than its expected value. This explains why data is skewed to the right and not to the

left. As a result, in order to reduce the influence of the unwanted events such as lane blockage, not all the data

shown in Fig. 3.11 was used for fitting purposes. For each one meter increment in distance to stop-bar, we

had labeled the data points that were more than 1.0 times the inter-quartile range above the 75th percentiles

as outliers. These outlier points were removed from data and are cross-marked in Fig. 3.11. Please note that

the clock drift could also be a reason that the queue clearance calculated by (3.10) is spread out.

The estimated regression coefficients of this curve fit are h=1.47s and ∆1=5.08s for the through

movement which are consistent with the measurements in literature [28, 53]. However, the first incremen-

tal headway ∆1 looks slightly greater than expected because of the low acceleration of buses compared to

conventional passenger vehicles, and also because of our slightly different definition of headway which con-

siders the rear wheels crossing the stop-bar instead of the front wheels. As an empirical verification of the

estimated parameters, assume there is no queue in front of the vehicle then the model estimates the clearance

44

time to be equal to h+∆1=6.6s. This yields a waiting time (somewhat akin to first driver’s reaction time) of

about 1.6s-2.6s considering that it takes a vehicle in front of queue about ∆ttravel=4s-5s to completely pass

the stop-bar. This is consistent with our observations in street and also with results in [53].

It must be emphasized that the aforementioned curve fitting was conducted only to get an idea of

the queue clearance parameters values, and as it is verified in subsection 3.5.2, it is not necessary to repeat

the process for every intersection-phase. However, the results are only applicable to through movement, and

similar parameter estimation should be repeated for left turn or shared left/through lanes.

3.5 Ground Truth Verification

While in the previous sections most of the obtained estimations were compared with the city timing

cards; this section provides more verifications for the green-initiation predictions and the proposed queue

formulations based on the collected ground truth data.

3.5.1 Verification of Green-Initiation

In order to verify the accuracy of green-initiation predictions, we collected the actual green-initiations

locally at a sample intersection. These time samples were actually collected by a computer program that

would log the time whenever the observer pressed a key at the change of red to green. The program was

synchronized to the NIST time server [45] and was used to record the actual green-initiations between hours

of 2 PM and 10 PM. This period of the day was selected so that the proposed green-initiation estimator could

be evaluated during the evening rush hour traffic.

Concurrent with the aforementioned ground truth data collection, the green-initiations were also

predicted by crowdsourcing the probe data sent from the public buses passing over the same intersection.

These predicted green-initiations are compared to the actual ground truth data collected. However, before

comparing these two time arrays, the gaps between their timestamps should be filled by cyclically mapping

each timestamp to the next one. The error between these predicted green-initiations and the collected actual

green-initiations is shown in Figure 3.12. The error shown in solid red line is the error of the estimation

method when only using data from the probe vehicles that stop at red, send a report while waiting in queue,

and leave the intersection at green. These vehicle passes should fit Figure 3.1(b) or (c) though. The error

shown in dashed black line is the error of the estimation approach of previous chapter that only took into

account those probe vehicles that stopped at red, and left the intersection at green without sending any report

45

while in queue. Because the position in queue is not available in this case, these vehicle passes should not be

influenced by queue delay and should fit Figure 3.1(a) with high upstream velocity.

12:00 15:00 18:00 21:00 00:00

Time (hours)

-15

-10

-5

0

5

10

15
E
rr
or

(s
ec
)

Error on predictions, benefiting from queue information.
Qualifying bus pass WITH queue information (Figure 3.1(b-c)).
Error on predictions, ignoring queue information.
Qualifying bus pass WITHOUT queue information (Figure 3.1(a)).

Figure 3.12: The error between the predicted and actual green-initiations (southbound phase at Lombard intersection as recorded on
April 25, 2013).

As it was expected in Subsection 3.3.1, Figure 3.12 demonstrates that during the persistent heavy

traffic conditions, the probe reports that include the vehicle position in queue, result in more accurate phase-

change predictions compared to the reports that do not reveal any queue information.

Please note that the jumps in error plots in Fig. 3.12 correspond to the times when new qualifying

bus passes occurred in this particular scenario. These times are shown with filled or open circles depending

on the trajectories that the corresponding passes are fitted to. Also the drift in plotted error in between the

passes is due to the actual drift of the signal clock.

3.5.2 Verification of Queue Formulations

Three ground truth data collection sessions were arranged at 10 intersections along Van Ness street,

San Francisco. One of the colleagues physically sat in buses and recorded the trajectory with a GPS tracking

device at high frequency. In this way, GPS location and velocity data was collected at the frequency of 1 Hz

while traveling on the transit buses. Fig. 3.8 shows a sample collected high-frequency GPS trace plotted over

time-space diagram, wherein the timing of the lights are plotted using the baseline timings given in the city

timing cards and the locally collected green-initiation timestamps.

46

We first searched the aforementioned plotted GPS traces for the stops at red at any of the 10 intersec-

tions along Van Ness street. Knowing the stop-bar positions of the intersections, the plots reveal the instant

at which the buses pass the stop-bar at green phases. Furthermore, the corresponding time-velocity diagrams

(not shown in Fig. 3.8) reveal the instant at which the waiting buses in queues start moving at green (tstart).

Using the aforementioned extracted timestamps, the bus actual travel time, and also the queue waiting and

clearance intervals are extracted as shown in Fig. 3.8. These values are tabulated in Table 3.2 as Ground

Truth (G.T.).

The estimations of the queue waiting and clearance times and the travel time are also given in Table

3.2 denoted by Estimations (Est.) which are calculated by applying the proposed queue formulations in Sec-

tion 3.4 to the collected ground truth data. The Root Mean Square Error (RMSE) between the estimations and

the collected ground truth data, observed at 10 intersections, was 2.68, 1.37, and 1.98 seconds for ∆tclearance,

∆ttravel , and ∆twaiting respectively which are accurate enough for the application in this manuscript. The box

plot of the errors are also given in Table 3.2.

The correlation between the estimated values and the observed values of Table 3.2 is shown in

Fig. 3.13 for queue waiting time. In the same figure, the proposed technique of waiting time estimation is

compared and found to be consistent to two other formulations used in related works: First, the formulations

proposed by Akçelik et al. [28] to estimate the queue departure response time for through closely-spaced

intersection sites (used by Kerper et al. [34]). Second, the queue discharge shockwave speed formulations

proposed by Lighthill [29] (according to the way it is used by Cheng et al. [35], Chuang et al. [36], and also

[54]).

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Observed Waiting Time (sec)

E
st
im

a
te
d
W
a
it
in
g
T
im

e
(s
ec
)

Estimated by Akcelik(2002) fromulations (RMSE=2.32 sec, R−Squared=0.32)
Estimated by Shockwave fromulations (RMSE=2.39 sec, R−Squared=0.28)
Estimated by the proposed fromulations (RMSE=1.98 sec, R−Squared=0.50)

Identity Line (45°)
Estimated values = Observed values

Figure 3.13: Estimated versus observed queue waiting time.

47

Table 3.2: Comparison Between the Collected Ground Truth (G.T.) Data and Estimations (Est.) of Travel Time, and Queue Clearance
and Waiting Times for all the Intersections Combined

Position Travel Time (sec) Clearance Time (sec) Waiting Time (sec)
in ∆ttravel ∆tclearance ∆twaiting

Queue (m) G.T. Est. G.T. Est. G.T. Est.

0.0 3 3.9 6.0 6.6 3.0 2.7
0.0 5 3.9 6.0 6.6 1.0 2.7
0.0 4 3.9 6.0 6.6 2.0 2.7
0.0 4 3.9 7.0 6.6 3.0 2.7
2.7 6 4.5 10.0 6.6 4.0 2.0
4.9 5 5.0 9.0 6.6 4.0 1.6
7.2 4 5.4 7.0 9.9 3.0 4.5
8.0 8 6.5 13.0 9.9 5.0 3.5
8.9 7 5.7 9.0 9.9 2.0 4.2
9.0 6 5.7 10.0 9.9 4.0 4.2
9.8 5 5.9 8.0 9.9 3.0 4.0
10.1 6 6.0 10.0 9.9 4.0 4.0
10.6 8 6.0 10.0 9.9 2.0 3.9
11.2 5 6.5 8.0 9.9 3.0 3.4
12.8 7 6.4 10.0 12.1 3.0 5.7
13.1 6 6.8 10.0 12.1 4.0 5.3
14.1 5 5.6 7.0 12.1 2.0 5.4
15.2 6 6.7 7.0 12.1 1.0 5.3
15.2 6 6.7 9.0 12.1 3.0 5.3
15.8 5 6.8 8.0 12.1 3.0 5.2
16.1 6 6.9 10.0 12.1 4.0 5.2
16.5 7 6.9 12.0 12.1 5.0 5.1
16.9 9 7.0 17.0 12.1 8.0 5.1
17.0 7 7.0 11.0 12.1 4.0 5.1
17.1 6 7.2 8.0 12.1 2.0 4.9
17.4 8 7.1 13.0 12.1 5.0 5.0
17.6 6 7.1 9.0 12.1 3.0 5.0
19.0 8 7.3 12.0 13.8 4.0 6.5
19.4 5 7.3 15.0 13.8 10.0 6.5
19.5 5 7.9 9.0 13.8 4.0 5.8
20.0 15 10.2 19.0 13.8 4.0 3.6
20.4 7 7.5 12.0 13.8 5.0 6.3
21.5 7 7.6 12.0 13.8 5.0 6.2
21.8 5 7.7 8.0 13.8 3.0 6.1
22.2 11 8.6 18.0 13.8 7.0 5.2
23.5 7 8.1 11.0 13.8 4.0 5.7
23.6 9 7.9 16.0 13.8 7.0 5.9
24.7 9 8.8 14.0 15.3 5.0 6.6
26.2 7 8.5 13.0 15.3 6.0 6.9
27.0 8 8.3 13.0 15.3 5.0 7.0
28.2 7 8.4 12.0 15.3 5.0 6.9
28.8 9 8.9 13.0 15.3 4.0 6.4
31.2 8 9.4 13.0 16.9 5.0 7.5
35.8 11 10.1 17.0 16.9 6.0 6.8
36.1 11 9.9 20.0 18.3 9.0 8.5
37.6 11 9.9 18.0 18.3 7.0 8.4
40.0 11 10.5 19.0 18.3 8.0 7.9
41.8 13 12.9 21.0 18.3 8.0 5.5
42.0 11 10.2 18.0 19.8 7.0 9.6
42.4 10 10.4 19.0 19.8 9.0 9.4
44.1 13 13.2 18.0 19.8 5.0 6.6
46.7 12 11.0 19.0 19.8 7.0 8.8
52.8 17 14.3 22.0 21.3 5.0 7.3
54.0 16 17.0 23.0 22.8 7.0 5.8
67.0 13 12.4 24.0 25.7 11.0 13.3
75.0 14 13.8 32.0 27.2 18.0 13.4

B
ox

Pl
ot

−6

−4

−2

0

2

4

6

1

Travel Time

E
rr
o
r
(s
ec
)

−6

−4

−2

0

2

4

6

1

Queue Clearance Time

E
rr
o
r
(s
ec
)

−6

−4

−2

0

2

4

6

1

Queue Waiting Time

E
rr
o
r
(s
ec
)

48

In addition to RMSE, Fig. 3.13 also provides the coefficient of determination R2. The R2 value

of our proposed estimation technique is closer to 1.0 which indicates slightly better correlation with the

observed values. This is achieved mainly due to taking account of incremental headways for the first few

vehicles in queue as well as the downstream velocity into our proposed queue dissipation formulations. It

should be emphasized that, although our obtained values for root mean square error (RMSE) and coefficient

of determination (R2) indicate more accurate estimations and better correlation with the observed values, the

fact that our estimation method needs the downstream velocity (v2) as extra information makes it difficult to

conclusively claim that our queue dissipation formulation is better than the other two formulations mentioned

above.

49

3.6 Acknowledgment

This research was sponsored by a research award from BMW Information Technology Research

Center (ITRC) in Greenville, SC, USA. I am thankful for the support provided by Mr. Andre Luckow from

BMW ITRC. I also thank Mr. Nainfeng Wan who traveled and collected the travel trajectories of public buses

in the city of San Francisco.

50

Chapter 4

Back-End System Architecture

4.1 Introduction

Many in-vehicle applications have the potential to benefit from Signal Phase and Timing (SPaT) data

in order to achieve better fuel efficiency, emission control, and safety features [6, 55, 56, 57]. The Velocity

Advisory Systems [6, 55], and Start/Stop systems [56] are such applications with fuel efficiency benefits

reported in [58, 59, 60]. Also a Collision Avoidance System [57] can benefit from SPaT information in order

to foresee potential signal violations at signalized intersections. In addition to in-vehicle applications, there

are also many arterial performance measurement methods that use SPaT as their input [46, 47].

The main challenges in providing real time SPaT to aforementioned in-vehicle applications are in

first finding an inexpensive and reliable data communication technology, and second structuring SPaT infor-

mation from various and disparate data sources in standard and uniform formats. In this chapter, we explain

the implemented system architecture of how we get SPaT information from different data sources and com-

municate that to a connected vehicle. The whole system was developed at BMW Group Technology Office

USA in Mountain View, CA; however, the contribution of this dissertation is delivering the bus-crowdsourced

SPaT data to the connected test vehicle.

This chapter is also a sequel to the previous two chapters as it provides an in-depth overview of the

back-end implementation of the crowdsourcing algorithms as well as the whole system developed at BMW

Group Technology Office USA in Mountain View, CA. At first, Section 4.2 explains the hardware architecture

of the back-end system which provides the SPaT data to connected vehicles through disparate data sources.

Section 4.3 describes the software techniques of delivery of the SPaT information to a connected test vehicle

51

through I2V communications. Section 4.4 and 4.5 explain the computational back-end nodes that specifically

process the incoming crowdsourced data, and estimate SpaT information. The last section explains all the

verification tools that were developed to collect ground truth data and compare it to our estimations.

4.2 System Overview

Ideally, a connected vehicle receives upcoming SPaT information from Traffic Management Centers

(TMC) or directly from the intersection using Infrastructure-to-Vehicle (I2V) communication. However, for

those signals which are not connected, SPaT estimation prediction is used based on crowdsourced data. For

this reason, a prototype system and a test vehicle as demonstrated in Figure 4.1 were developed at the BMW

Technology Office USA that is capable of building prediction from crowdsourced GPS traces as well as

crowdsourced in-vehicle camera data.

Figure 4.1: System overview of the path of data from data sources to server to a connected vehicle.

The test vehicle contains a MobilEye camera that contains an image processing system (EYE-Q)

capable of detecting traffic signals [61]. From the data collected by the cameras, a database of traffic signal

locations and statuses are built and stored in a database. It must be emphasized that the main contribution

of the first part of the dissertation is SPaT predictions from crowdsourced GPS traces; and as provided in

Section 4.6, the in-vehicle cameras were used here only to verify the accuracy of these predictions.

52

4.3 Software Architecture

Figure 4.2 demonstrates the software architecture of the implemented system. The inputs of the

system are the different data sources, described in previous section. The output is a collection of SPaT infor-

mation which can be sent to any in-vehicle application of connected vehicles that seeks SPaT information.

The following subsections will describe Figure 4.2 including how the system interact with the disparate data

sources and multiple connected vehicles.

protobuf
Protocol Buffers

Driver‐Facing
User Interface

Probe Data

SPaT

Cloud‐based
Server

Crowdsourced‐Data
Translator

Su
bs

cr
ib
e\
U
ns

ub
sc
ri
be

In‐Vehicle
Application

SPaT

TMC‐Data
Translator

SPaT

Crowdsourced‐Data
Translator

Camera Data

User‐Datagram Protocol (UDP) messages
Transmission Control Protocol (TCP) messages

SP
aT

protobuf
Protocol Buffers

Figure 4.2: The software architecture of the traffic signal state communication through a cloud-based server.

4.3.1 Data Translation

As shown in Figure 4.2, the I2V communication happens through the cloud-based server. The cloud

is actually the link between the connected vehicles and the data sources. In order to keep the design of the

cloud-based server consistent, data translation is used for importing data from disparate data sources and then

transmitting in one single format. In our application, the data translators shown in Figure 4.2 import data from

the TMC and crowdsourced data sources and transmit the data to the cloud in a data structure represented by

the Protocol Buffer (protobuf) data formats [62]. As claimed by Google and as evaluated in [63], the Protocol

53

Buffer leads to fast data transfer over the web comparing to eXtensible Markup Language or XML [39]. This

is mainly because the Protocol Buffer uses binary format to serialize structured data.

Every time a new phase-change is predicted for an Intersection-Phase, the data translator serializes

the phase-change information into the binary Protocol Buffer structure and sends the information to the

cloud-based server through a User-Datagram Protocol or UDP [64] unconnected datagram sockets.

Although the delivery is not guaranteed using UDP, this is preferable to Transmission Control Pro-

tocol or TCP [65] in our application. The TCP is actually slower for sending the phase-change updates of all

the intersections; and the cloud-based server cannot handle receiving all these updates in TCP. However, if

the signal state communicating system is being used for a safety-focused driver assistance system such as a

redlight-runner predictor, the communication technologies could be changed to ensure the vehicles receipt of

all safety messages.

4.3.2 Vehicle Subscription

While the connected vehicles are traveling, the embedded in-vehicle computing devices search

among the list of the intersections within a specified range of the vehicles, and they identify the most rel-

evant Intersection-Phase to the vehicles movements. As demonstrated in Figure 4.2, the JavaScript Object

Notation (JSON) [66] is used to represent this list which contains the attributes of each Intersection-Phase

such as GPS location of the traffic light, entry and exit headings, and city zip code.

Afterwards, the connected vehicles send subscription requests for the identified Intersection-Phase

to the cloud, as shown in Figure 4.2. An unsubscribe message is later sent from the vehicles to the cloud at

the time the vehicles pass the previously relevant intersections. During the subscription period, the relevant

Intersection-Phase updates are forwarded by the cloud to the connected vehicles every time an update is

available.

4.4 Crowdsourcing Engine

This section presents the general back-end mechanisms for crowdsourcing GPS traces. The output

of the crowdsourcing engine consists of two parts: First is traffic signal baseline timing that includes cycle

time, phase lengths (red and green intervals), and signal offset changes. Second is phase-change (sync) data,

that is green-initiation or start-of-green. Figure 4.3 demonstrates the mechanisms that the Crowdsourcing

Server uses in back-end to predict and estimate this collection of traffic signal information. After being

54

Figure 4.3: The functional architecture of the Crowdsourcing Server.

initialized, the Crowdsourcing Server goes through three processes which are separated by dashed lines in

Figure 4.3:

• Data Collection, in which probe vehicle data is continuously collected and stored in the MySQL

database.

• High-Frequency Process (Phase-Change Estimation/ Prediction), in which only the green-initiations

are predicted with high frequency. In fact, the green-initiation prediction is the process of predicting

the next transition to green; and because of the clock drift of a traffic signal throughout a day, the next

green-initiations should be continuously predicted based on the most recent probe data. In our appli-

cation, every time the execution of this process cycle begins, the most updated probe data collected

during the last few hours is first retrieved from the MySQL database, as shown in Figure 4.3. After

preprocessing this data, the green-initiations of each Intersection-Phase are predicted and finally stored

in the MySQL database.

• Low-Frequency Process (Baseline Timing Estimation), in which the traffic signal baseline timings

are estimated. Traffic Signals are typically re-timed infrequently; as a result, this process needs to be

executed with very low frequency (once per month in our application).

55

4.5 Crowdsourcing Methodologies

This section presents the algorithms applied in the crowdsourcing processes of previous section. The

basic steps, named in Figure 4.3 as Initialization, Data Collection, and Data Preprocessing, are described. All

other algorithms involved in the SPaT estimations/ predictions were previously explained along with results

in Chapter 2 and Chapter 3.

4.5.1 Initialization

The Crowdsourcing Server initializes its objects and variables once it’s fired up. The initial pa-

rameters are predefined by either the web user or the administrative user of the server. The objects such as

MySQL database, intersection-phase geometry, and the probe vehicle average acceleration are initialized by

the initialization function as follows:

• MySQL database: The connection to the database is established using Java Database Connectivity

Driver (JDBC) [67] for MySQL; and the tables are created to store data sets.

• Intersection-Phase: The geometry of the desired intersection-phase pairs should be predefined by

either the web user or the server administrator. In fact, the coordinates of three points should be defined

by the user in order to define and initialize every Intersection-Phase pair. The three-point definition

method covers all the possible movements at intersections. This definition includes one point on the

upstream, one point on the downstream, and a middle point at the intersection center. As an example,

Figure 4.4 (a) and (b) show through movement and left turn definitions respectively. Note that with

additional algorithms, not described in this paper, it would be possible to automatically crowdsource

the geometry instead of manually defining it.

In fact, a path is constructed by the aforementioned points. This path is supposed to be as close as

possible to the path that would be traveled by each vehicle in real world. As a result, the user should

assign the points in such a way that the error between the estimated and actual paths is minimized. It

is obvious that the wider the street is, the higher the imposed error would be.

• Vehicle: The general characteristics of the probe vehicles should be defined and initialized for crowd-

sourcing and plotting reasons. The estimated acceleration/deceleration given in Section 2.4 are some of

the characteristics of the buses at the San Francisco Muni (sf-muni); however, they may be applicable

to other agencies if similar buses are utilized.

56

(a) (b)

Figure 4.4: Three-Point definition of an Intersection-Phase: (a) Through movement. (b) Left turn. (The desired intersection is shown in
shaded color)

4.5.2 Data Collection

A public feed of bus location and velocity data in the city of San Francisco is used here to crowd-

source the traffic signal information. The feed is provided by NextBus Incorporated through eXtensible

Markup Language or XML [39] which can be accessed using URLs with parameters specified in the query

string [16]. Each vehicle (bus) sends a probe update every 200 meters approximately or 90 seconds, whichever

comes first [25]. As shown in Figure 4.3, the Data Collection process periodically inquires the XML feed

data of each route. It is crucial to set this process in such a way that its clock is automatically synchronized

to a Network Time Protocol (NTP) server; in this work the clock is synchronized with the NIST time server

[45] every 10 minutes.

The interval between successive XML inquiries have to be less than the minimum interval between

successive probe updates; otherwise some updates sent by probe vehicles would be missed. Nevertheless, a

high inquiry frequency should be avoided so as not to violate the restrictions on data usage.

4.5.3 Data Preprocessing

The first step in data preprocessing is Data Cleaning which consists of identifying the useful probe

data to be mined. The second step prepares the probe data for possible use in SPaT estimations; this step

is named Data Transformation and actually transforms the single probe updates to travel trajectories which

are desirable for SPaT estimation purposes. These two steps can be found in Figure 4.3 and are described as

follows:

57

A. Data Cleaning

The Data Cleaning in this manuscript refers to the process of identifying the desired probe data out

of the collected probe data. This process consists of: (1) identifying the probe vehicle reports that are within

the three-point definition, (2) detecting and separating each pass of each vehicle, and finally (3) discarding

the vehicle passes not on the desired direction.

As described in Subsection 4.5.1, each three-point definition includes upstream and downstream

parts. Here, we are interested in identifying the probe vehicle reports that have happened within either the

upstream or downstream part. Figure 4.5 shows the upstream part as an example; where dupstream is the

distance of a probe report to the upstream point, dmiddle is the distance of the same probe report to the

middle point, and Lupstream is the length of the upstream part. It is obvious that if the condition Lupstream =

dupstream + dmiddle is satisfied then it can be concluded that the vehicle had sent the location report exactly

on the straight line between the upstream and middle points. However, it is less likely for the vehicle to

be exactly on the straight line between the two points, especially on wide streets. Because of this and the

inevitable error in GPS position reports, the following conditions are verified instead:

dupstream +dmiddle < Lupstream +∆L

dupstream < Lupstream +∆L

dmiddle < Lupstream +∆L

(4.1)

where ∆L is a small value added to account for the street width as well as for the errors in the probe vehicle

reports. A similar approach is used to verify whether a probe report is within the downstream part or not.

Finally, the distinct passes of vehicles are detectable due to the fact that each probe vehicle report is

labeled with a vehicle ID number. And the direction of a distinct vehicle pass is detectable by inspecting the

distance between the probe location reports and the upstream point of the intended Intersection-Phase.

Figure 4.5: A probe location report that has been sent within the upstream part of an Intersection-Phase.

58

B. Data Transformation

As explained in Section 2.3 and 3.2, there should be sufficient probe data points in an identified

vehicle pass for SPaT estimations. But because the utilized probe data is sparse and the consecutive data

points of each pass are far away from each other, we need to approximate a vehicle trajectory between

each two probe reports. This is actually a data transformation process where low frequency probe data are

transformed and consolidated into vehicle trajectories. The following steps are executed in the back-end

system for this purpose:

• Step 1: For a given intersection, we first select bus passes that have update points within a given

interval before and after that intersection (in other words, within the three-point defined in Figure 4.4).

For example for the Clement Intersection shown in Figure 2.2, we select bus passes that updated in

[480m, 780m] position interval.

• Step 2: To determine if a bus stopped at an intersection, we propose to approximate the intersection

delay, td , by the previously given Equation 2.14.

If td 6 0, we postulate that the bus had no delay and that it passed the intersection during a green

interval. Otherwise, we may attribute the delay to a stop at red, which will be further confirmed in the

next step.

• Step 3: When td > 0, we check the consistency of the trajectory shown in Figure 2.4 and Figure 3.1(a-

b) with data. Using the trapezoidal geometry of the curves, we can estimate the time a bus comes

to a stop tstop and the time the bus leaves the intersection tstart as previously given in Equation 2.2

and Equation 2.1, respectively. Obviously if tstop > tstart , the postulated trajectory is invalid and the

associated bus pass will be discarded. When tstop 6 tstart , we accept the trajectory as valid and estimate

that the bus came to a full stop at a red light.

4.6 Ground Truth Verification Tools

Generally, the following tools were utilized to verify the SPaT estimations/ predictions as well as

the proposed queue formulations based on the collected ground truth data.

59

4.6.1 Web-based Verification

The web-based verification tool not only enables us to do comparisons locally at the intersections

but also to have an estimate of the light’s actual state when we are not present at the intersections. For this

reason, as previously shown in Figure 1.4, a web interface with PHP interpreter was implemented with the

following features:

• On-site Synchronization: The user has the option to store a sample of green-initiation for a desired

intersection by simply clicking on a button on web-page once the light turns green. Using the stored

sample of green-initiation, the state of the traffic signal is demonstrated by a countdown counter (the

left counter of Figure 4.6(a)). If the drifting of traffic light can be neglected then this counter can be

used as a measure of the light’s actual state.

• Visualizing Crowdsourced Data: Using the web interface, each intersection can be monitored through

the Intersection−Dashboard which demonstrates the crowdsourced SPaT data as shown in Figure

4.6(a). The right countdown counter of this figure demonstrates the estimated time remaining to the

end of each signal (green, yellow, or red). In order to do the countdown the web server connects to an

SQL database to read the most updated predicted green-initiations as well as the baseline timing of the

desired Intersection-Phase.

In addition to the countdown counters, the Probability of Green, extracted in Section 2.9, is also demon-

strated in Figure 4.6(a) through a polar histogram. The polar histogram has a smooth running second

clock-hand which demonstrates the current state of the traffic light by moving counter clock wise.

• Animation: The web server parses the previously stored XML updates and then as shown in Figure

4.6(b), animates each probe vehicle (bus) according to its direction, position and velocity along a

sample segment of Van Ness street in San Francisco. In this way, the accuracy of the parsed position

and velocity of each XML update was verified during on-site ground truth tests.

4.6.2 Verification of Queue Formulations

The queue formulations proposed in Section 3.4 were verified by riding in buses and recording the

trajectory at high frequency using a handheld Garmin GPS receiver. The verification results can be found in

Section 3.5.2.

60

(a) (b)

Figure 4.6: The features of the web interface: (a) Monitoring via Intersection−Dashboard (b) Animating the probe vehicles

4.6.3 Green-Initiation Verification

• Verification by Computer: As it was previously explained in Section 2.10 and Section 3.5.1, in order

to verify the accuracy of green-initiation predictions, we collected the actual green-initiations locally

at a sample intersection by a computer program that would log the time whenever the observer pressed

a key at the change of red to green. The program was synchronized to the NIST time server [45].

• Verification by Camera: The prediction quality of the bus-crowdsourced phase-change (green-initiation)

information was verified using the on-board camera data which was collected during on-site ground

truth tests. The camera only records the status of the traffic light; as a result the collected data is pro-

cessed to find the signal changes and their timestamps. A comparison between detected phase-change

data along the test route in San Francisco using the MobilEye camera [61] and our bus-crowdsourced

phase-change predictions is reported in Table 4.1. From the camera recorded data we can calculate

phase-changes to within < 100ms accuracy, as a result of the frequency of camera/CAN-BUS updates,

and the implementation of Network Time Protocol (NTP) synchronization on the recording computer

to ensure that timestamps are valid.

The Root Mean Square Error (RMSE) between the predicted phase-changes and the camera-detected

phase-changes was 2.4 seconds. The average error is 0.98 seconds and, as shown in the box plot of the

error, given in Table 4.1, the median error was 0.63 seconds.

It is obvious that concurrent with running the laps in the test field, the crowdsourcing server is also col-

lecting the real-time probe data and predicting the phase-changes (green-initiations) using the average

of multiple observed green-initiations (please see Section 2.7 and 3.3.3). However, the average green-

61

initiation is not necessarily relevant to the camera-detected green-initiation. In fact, the last updated

green-initiation average can be few minutes to couple hours before the camera-detected one, depending

on the number of the probe vehicles (buses) and the likelihood that their travel trajectories are fitted to

the desirable trajectory (Figure 3.1). This time-difference between the last bus-crowdsourced and the

camera-detected green-initiations is denoted as ∆t as follows:

∆t = tSoG,cam− t̄SoG (4.2)

where t̄SoG and tSoG,cam are the bus-crowdsourced and camera-detected green-initiations respectively

both in Unix-Time. However, because of the cyclic periodicity in fixed-time lights, the actual error

between the last bus-crowdsourced green-initiation and the camera-detected green-initiation, as given

in Table 4.1, is:

Error = ∆t− round(∆t/C)C (4.3)

where C is the cycle time, and the function round(.) rounds its argument to the nearest integer.

4.7 Acknowledgment

This work was performed in collaboration with, and supported by, BMW Group Technology Office

USA, Mountain View, CA, USA. The author thank Mr. Andreas Winckler and Mr. M. Filusch of BMW Group

Technology Office, USA in Mountain View, California and Mr. Grant Mahler from Clemson University

for developing the in-vehicle system and the vehicle subscriptions system. Mr. Grant Mahler who spent

long hours setting up the in-vehicle camera and collecting the ground truth data was invaluable to the work

presented here.

62

Table 4.1: Difference in seconds between the camera-detected phase-changes and the bus-crowdsourced phase-change predictions.

Intersection Error (sec) Box Plot
at VanNess

Greenwich

-1.22

−10

−8

−6

−4

−2

0

2

4

6

8

10

1

E
rr
or

(s
ec
)

-1.36
-1.53
-1.42
-1.41
-0.25

Filbert

2.67
2.50
3.08
2.82
2.72
5.75
2.75
3.00

Union 0.63

Broadway -2.01

Pacific -0.76

Jackson -0.44

Washington 3.12

63

Chapter 5

Conclusions for Part I

In the first part of this dissertation we demonstrated the feasibility of estimating timing of pre-timed

traffic lights by observing statistical patterns in sparse probe vehicle data feeds. In particular we showed,

for example intersections in the city of San Francisco, the feasibility of estimating cycle time, red time, start

of green, and signal schedule change. This was achieved without directly estimating the queue lengths and

despite traffic influence. Extensive use of data filtering/ pre-processing is elemental to the successes found at

the given intersections. The obtained SPaT information is ultimately fed into an in-vehicle computing device.

A complementary approach to estimating SPaT from probe data is also proposed in this dissertation

to include the influence of queue delay. In case of a low-frequency data source, less challenge is expected in

the estimation procedure if we only use the probe data that can be fitted into the predefined desired trajectories.

Also if we identify and remove the probe data that appear to be influenced by heavy traffic then the more

complex queue formulations are not needed in estimations. However, these measures eliminate a large portion

of data; and any SPaT estimation method that filters out huge amount of data is subject to error. This is mainly

due to the signal clock drift throughout a day that makes it crucial to have recent SPaT.

It is also shown that adding the trajectories that have been influenced by queue delay allows us to

access a larger portion of data. This is the reason that the phase-change estimation results remain accurate

even during heavy traffic. Also as it was expected, more accurate baseline timing estimations are achieved if

we use the trajectories that include at least one report sent while waiting in queue.

64

Part II

Arterial Traffic Signal Optimization

with Connected Vehicles

65

Chapter 6

Vehicle-Intersection Coordination under

the Connected Vehicles Environment

6.1 Introduction

The coordination and optimal timing of traffic signals are by nature complex problems and backed by

years of research in traffic engineering and operations research. Current signal timings are mostly scheduled

offline using sophisticated software packages; the optimized timings are then deployed as fix timetables for

different times of the day. Many signals are actuated by traffic and have rules to override their pre-optimized

timetables based on the state of their loop-detectors to reduce idling at intersections. While traffic responsive

control strategies such as SCOOT [68] and SCATS [69] calculate their timing in real-time [70], they act based

on the immediate state of loop-detectors. Unfortunately, in these systems the light triggers to green only when

an idling queue of vehicles is already formed over its loop-detector. Furthermore, traditional detectors mostly

rely on point detection which provide a very limited information such as passage of a vehicle at a fixed

location [18, 19].

Smart traffic signal controllers will do more than just signaling right of ways and act intelligently as

hubs that sense, route, and harmonize the flow of arterial traffic. More recent research has focused on signal

to vehicle communication for improving efficiency by providing speed advisory to individual vehicles [6, 32].

In addition, the two-way communication, under the connected vehicle environment, allows the geographical

data (positions, headings, and speeds) of the connected vehicles to be also wirelessly transmitted in real-

66

time to smart traffic signal controllers [17]. Taking advantage of the two-way communication capabilities

between the smart traffic signal controllers and the connected vehicles, this section presents the development

of an algorithm for vehicle-intersection coordination system that not only can adjust the traffic signal timing

based on the prevailing traffic conditions, but also can guide the connected vehicles for a timely arrival at

intersection. The proposed algorithm is presented for an autonomous driving environment (100% penetration

rate of equipped vehicles) at an intersection with no traffic lights; however, as a future research direction, it

might be possible to modify the proposed algorithm to be applied to a mixed traffic consisting of autonomous-

controlled and human-controlled vehicles. In a mixed traffic environment, a physical traffic light is needed,

and a minimum green time needs to be considered because the signal cannot rapidly change the direction of

priority without considering the reaction times of drivers [23].

In recent years, there have been a great deal of attention paid to intersection control under the con-

nected vehicle environment. Towards the most related work, Raravi et al. [71] determined the merge sequence

in which vehicles cross the intersection region by formulating an optimization problem with constraints to

ensure safety. The key difference between our work and [71] is that the formulations proposed in [71] are

nonlinear, and, as a result, Matlab optimization toolbox fmincon is used which may only give local solutions

[72] and does not guarantee a global optimum [71]. In addition to this, Lee et al. [73] also employed optimal

control for a cooperative vehicle intersection control. In this work, the trajectories of any two conflicting au-

tonomous vehicles are modified to optimize an objective function: minimize the overlap of trajectories in the

intersection area. This would not always be a collision-free solution, and would not always provide a feasible

solution because of the complexity of the optimization formulations (the objective function and constraints

are nonlinear and non-convex) [23, 74]. For this reason, [73] first tries active-set algorithm, and, if it fails,

the interior point algorithm is tried next, and, finally, if both fails then genetic algorithm is employed which

all adds to the complexity of the solution.

Some other works such as [75, 76] used job-scheduling techniques [77] where the intersection is

considered a machine. Colombo et al. [75] view the time interval that each vehicle spends in the intersection

as the length of the job to be executed on the machine. Similarly, Xie et al. [76] view clusters in the aggregate

flow representation of different routes as the jobs on the machine; where clusters are a basic representation of

a vehicle or group of vehicles [78]. They use an approximate dynamic programing [79, 80] procedure, called

Controlled Optimization of Phases [81], to obtain a near optimal solution. Also Ahn et al. [82] translated

the intersection collision avoidance to a job-shop scheduling problem assuming first-order dynamics for the

vehicles. In the field of multi-agent systems (driver agents and intersection manager agents), the solution

67

provided by Dresner et al. [83, 20, 84] is based on a reservation paradigm which allows the vehicles to

reserve a block in space-time in the intersection. The solution is not optimal in the sense that it is based on

the First Come, First Serve methodology, and a reservation is rejected if any part of the requested space-time

block has been previously reserved or occupied by another vehicle. In addition, this reservation-based system

may have some safety flaws, mainly because it relies on an extremely advanced and precise automated driving

system [85]. A detailed review of cooperative intersection management systems can be found in [86].

The second part of this dissertation formulates the vehicle-intersection coordination problem as a

mixed-integer linear programming (MILP) problem to coordinate the vehicle arrivals and the status of the

virtual traffic signals [87]. The proposed MILP-based controller receives the probe vehicles’ online informa-

tion and gives each vehicle the advice of an optimal time to access the intersection. The controller assigns the

access times to vehicles minimizing the stopped delay and ensuring no crashes occur at the intersection while

considering the travel velocities that are desirable to the vehicles. The problem is formulated as a MILP for

which commercial and open-source solvers are available. MILP has been used in various path planning appli-

cations with collision avoidance, such as airplanes and spacecrafts [88, 89, 90, 91] and autonomous vehicles

[92]. In the field of vehicle-intersection coordination, Zhu et al. [74] used a lane-based traffic flow model to

optimize the total travel time; however, the objective function does not consider the travel times and veloci-

ties that are desirable to the individual vehicles. The output solution of the optimization problem is the traffic

flow from one lane to another lane through the conflict point model. Although it is mentioned that this output

solution can be viewed as the time schedule that the vehicle moves from one end to the other end of the inter-

section, the vehicles’ capability to make the time schedule on time is not specifically addressed by the authors

in [74]. No microsimulations are provided, and only numerical case studies are provided to demonstrate the

effectiveness of the proposed algorithm. This dissertation, however, provides microsimulations and real test

vehicle interacting with the intersection control cyber-layer to specifically see if the connected vehicles can

make the intersection controller’s advice on time.

Also in the area of phase and timing optimization for standard two-phase or eight-phase controller,

a set of Mixed Integer Linear Programming (MILP) formulations have been proposed in the literature. Most

of these formulations can be applied to a mixed traffic consisting of autonomous-controlled and human-

controlled vehicles; however, they either use off-line historical traffic data or they assume a one-way com-

munication where the connected vehicles only report information to an intersection controller but their travel

trajectory cannot be controlled. As an example, He et al. [93] used probe vehicles’ on-line information to

identify pseudo-platoons and found an optimal signal plan using MILP. Early works, however, have used

68

the average flow on each link of intersections as the input to their optimization; for example, Gartner et al.

[94] formulated a MILP-based delay minimization problem to determine the parameters of two-phase traffic

signals including cycle time, green splits, and offsets in a signal-controlled street network. Little’s MILP for-

mulation [95], and a recent work in [96], solves the bandwidth maximization problem, and assigns optimal

offsets to the standard traffic signals in a two-way arterial. Other works in this area use Model predictive

control for traffic signal control problem and formulate it as a MILP problem [97, 98, 99].

As it was previously mentioned in this section, because each proposed intersection control unit com-

municates with approaching vehicles, it can act much more effectively than even the advanced intersection

control systems that currently exist. Moreover, by encouraging platoon formations, the intersection through-

put is expected to significantly increase. We propose a novel intersection control scheme at the cyber-layer

to facilitate uninterrupted intersection passage and encourage platoon formation. We were encouraged by the

recent simulation results presented in [100, 22] indicating the more than doubling of capacity and flow in an

urban network if vehicles pass intersections in platoons. Simulations show benefits of such systems greatly

increase if vehicles move in platoons, in certain cases doubling the arterial network capacity with the coordi-

nation of platoons and intersections [100]. In our proposed research, the objective of increasing intersection

throughput will be formalized as an optimization problem. The optimization goal is to find the sequence and

times of arrival for each vehicle such that the expected arrival times of the last subscribed vehicle in a given

time window is minimized and any potential collisions is also prevented. This objective will maximize the

number of vehicles that clear the intersection in a given time. Furthermore, we incorporate the desired arrival

time of the vehicles into the optimization problem in such a way that vehicles would not face extreme delay or

expedition compared to their desired arrival times. Our optimization method encourages platooning although

it is not explicitly incorporated into our formulations.

In this chapter, first, the vehicle-intersection coordination problem is stated in simple language and

a solution to an example problem is provided in Section 6.2. The notations used in the second part of the

dissertation are explained in Section 6.3. Our proposed formulations for the problem and the methods to

identify and handle their disjunctions are provided in Sections 6.4 and 6.5, respectively. Finally, in Section

6.6, the proposed formulations are solved by MILP and a simplified case study problem is solved only to see

an example numerical output of our formulations. In Chapters 7-9, we will further evaluate our approaches

via microsimulations and with real vehicles interacting with the intersection control cyber-layer and a virtual

road network environment.

69

6.2 Problem Statement

In this section, we seek an intersection controller that harmonizes the flow of the approaching Con-

nected Vehicles (CVs). Taking advantage of the two-way communication capabilities between the smart

intersection controllers and the CVs, the controller not only can adjust the traffic signal status based on the

prevailing traffic conditions, but also can guide the connected vehicles for a timely arrival at intersection. For

this reason, we will set up computational servers that process connected vehicle instantaneous data and create

a live picture of evolving traffic conditions. Advanced and fast optimization algorithms then optimally sched-

ule the intersection access-times for the vehicles and adjust the status of the virtual traffic signal. Finally, the

scheduled access-times (arrival-times) are sent to all approaching CVs so that they can adjusts their speed

accordingly. However, the question is still open as to how to find appropriate access-times to be assigned to

the vehicles in the context of traffic flow, and safety.

Figure 6.1 demonstrates a sample scheduling problem at a signalized intersection. Ignoring all the

turns for simplicity’s sake, we assume a two-phase/four-movement intersection. As shown in Figure 6.1(a),

Phase X corresponds to a set of two traffic movements: (1) south-bound denoted as dark letter X or X′ in text;

(2) north-bound denoted as light letter X or X′′ in text. Similarly, Phase O corresponds to a set of two traffic

movements: (1) west-bound denoted as dark letter O or O′ in text; (2) east-bound denoted as light letter O or

O′′ in text. The y-axis of Figure 6.1(b) indicates the remaining distance from the current position of vehicles

to the intersection access point (stop position). Please note that the y-axis values are actually the remaining

distances on four different movements which are projected on one single axis. As shown on the y-axis, it is

assumed that at the starting time, five connected vehicles denoted by cv2, cv4, cv5, cv6, and cv8 are traveling

on Phase X and four vehicles cv1, cv3, cv7, and cv9 are traveling on Phase O. An intersection controller is

sought in this chapter of the dissertation that is capable of scheduling the vehicle arrivals as shown on the

horizontal axis of Figure 6.1(b), as an example. The provided sample solution assigns virtual green splits to

Phase X and O (see green/red timings in Figure 6.1(b)) in such a way that all the vehicles are served without

stopping at red. The solution assumes that:

• cv2 can slow down to pass the intersection with the southbound platoon on Phase X.

• cv3 can speed-up so the southbound platoon on Phase X does not slow down or stop at red.

• cv8 can speed-up to catch up with the green light on Phase X.

• cv7 and cv9 adjusts their speed to build a westbound platoon on Phase O.

70

Phase X

Phase O

Intersection
access point

Distance to
intersection access point

Time of
Arrival

Phase X Timing

Phase O Timing

Red Red

RedGreen

Green

Green´

´´

´
´´

(a) (b)

cv1

cv3

cv7

cv9

cv2

cv4
cv5
cv6

cv8
´

´

Figure 6.1: Scheduling the vehicles arrivals (an example).

6.3 Definitions and Notations

Achieving an optimal solution such as the example shown in Figure 6.1(b), requires to first formalize

the problem objective as well as the constraints with which the vehicles must deal. Before providing the

proposed formulations, in this section we first introduce the notations and their definitions. Table 6.1 and

Table 6.2 summarize the notations that our proposed intersection controller uses to express the attributes of

the intended intersection and the connected vehicles subscribed to that intersection, respectively.

Connected Vehicles. For each intersection, we will introduce a subscription process (Section 7.4)

by which the approaching connected vehicles send subscription requests to the intersection control server

and announce their presence as well as their intended time of arrival. We represent the list of all subscribed

connected vehicles as CV = {cvi}n
i=1 where n is the size of CV . The list of connected vehicles is sorted by

distance to the intersection where cv1 is the closest vehicle to the intersection. The length of the vehicle is

denoted by L, and is taken to be 5.0 meter [52].

Intersection. It is assumed that the intersection is square and has the width of W=10 m. As shown

in Figure 6.1(a), we consider a two-phase intersection consisting of Phase X and Phase O as φ = {φX,φO}.

Each phase includes a set of non-conflicting movements and M = {O′,O′′,X′,X′′} is the set of movements

used in this part of the dissertation (see Figure 6.1(a)). It is assumed that all intersecting roads have the same

71

Table 6.1. Notations used to express intersection attributes.

Description

W width of the intersection (10 m)

dsa f ety estimated distance required to stop a vehicle
when a dangerous situation is detected

O′ the west bound movement

O′′ the east bound movement

X′ the south bound movement

X′′ the north bound movement

M set of the movements in this dissertation
M = {O′,O′′,X′,X′′}

φX Phase X, the combination of non-conflicting concurrent movements
φX = {X′,X′′}

φO Phase O, the combination of non-conflicting concurrent movements
φO = {O′,O′′}

φ the combination of all phases
φ = {φX,φO}

cv the connected vehicle subscribed to the intersection

CV the list of all the vehicles subscribed to the intersection
sorted by distance to the intersection

CV = {cvi| cvi is subscribed, 1≤ i≤ n, di ≤ di+1}

n the number of all the vehicles subscribed to the intersection (n = #CV)

speed limit denoted by vmax.

Time Instances. For each vehicle approaching an intersection, we are interested in the following

time instances: (1) time when the front of the vehicle enters the intersection area at the stop-bar; (2) time

when the rear of the vehicle exists the intersection area; (3) time when the front of the vehicle reaches a

safety distance from the intersection. As shown in Figure 6.2(a), these time instances are denoted by tenter,

texit , and taccess, respectively. In this figure, the intersection area and the safety area are shown by shaded

area and solid box, respectively; and dsa f ety is the estimated distance gap required to stop the vehicle before

crossing the intersection when a dangerous situation is detected. Based on [22], Equation (6.1) gives this

distance gap as a function of the arterial road average speed vavg:

dsa f ety = tres.vavg +
0− v2

avg

2.adec,max
(6.1)

where tres = 0.5 sec is the response time of an autonomous vehicle, and adec,max = -4 (m/s2) is the maximum

declaration rate considered for passenger cars when a dangerous situation is detected. We obtain dsa f ety ≈ 38

72

cvi´
Intersection Area

Safety Area

taccesstentertexit

Connected VehicleL W dsafety

taccess

tenter

texit
time

distance

L
W

d
safety

d
i
(a) (b)

Figure 6.2: Visualization of the intersection-entering, intersection-exiting, and safety area accessing times described (a) at intersection
(b) in space-time diagram.

m by setting vavg=35 mph.

It should be emphasized that the entering times into the safety area are denoted by taccess because

the access to the intersection is granted to the vehicle that is entering the safety area; and all other vehicles

with conflicting trajectories must access the intersection later by a sufficient time gap. Figure 6.2(b) also

visualizes the aforementioned time instances by showing the position of the vehicle head as a function of

time. The distance of the vehicle cvi to the access point is also denoted by di (see Figure 6.2(b)).

Vehicle Attributes. The attributes of each vehicle cvi ∈ CV (1 ≤ i ≤ n) that is subscribed to the

intended intersection controller are described by:

cvi = 〈mi, φi, di, vi, taccess,i, taccess,des,i, texit,i〉 (6.2)

and explained in Table 6.2. Please note that in this paper, we assume that all vehicles prefer to travel at

the average velocity vavg=35 mph; and as a result, their distance divided by vavg yields their desired access

times with respect to current time (t0=0 sec). The vehicle reports its previously assigned access time as

its new desired access time (taccess,des,i = taccess,i) in each communication with the intersection controller.

This approach reduces the chance of assigning widely varying access times to each vehicles in subsequent

assignments. This is intended to minimize the deceleration and acceleration required each time the vehicle

receives a new assigned access time which is more fuel efficient.

73

Table 6.2. Notations used to express connected vehicles.

Description

mi the vehicle movement mi ∈M reported from cvi to the intersection controller

φi the phase φi ∈ φ that cvi movement is associated with

di the distance of cvi to the intersection access point at current time

vi the velocity of cvi at current time

taccess,i the assigned time-stamp for cvi to access the intersection (assigned access time)

taccess,des,i the cvi’s desired access time

texit,i the intersection-exiting time instance associated with taccess,i

6.4 Problem Formulation

In this section, we formulate the problem of how to assign access-times to vehicles so that the per-

formances of the signalized intersection and connected vehicles are both improved compared with traditional

traffic signal controls. This, in particular, means minimizing the stopped delay and ensuring no crashes occur

at the intersection while considering the travel velocities that are desirable to the vehicles.

6.4.1 Assumptions

We make the following assumptions:

• The intersection controller can access the privacy-protected information of the approaching connected

vehicles.

• The connected vehicle cvi is assumed to be automated and capable of deciding on its motion to reach

the safety area at the assigned access time.

• Each cvi can decide on its preferred access time and send it to the intersection controller at the time of

subscription. This desired access time (taccess,des,i) can be computed based on the average speed of the

arterial road, the historical average speed of cvi, and also the speed preferences of the passengers in the

autonomous car.

6.4.2 Objective

The intersection throughput is expected to significantly increase using the proposed formulations.

The major goal is to find the optimal sequence and times of arrival (taccess) for each vehicle such that the dif-

74

ference between the current time (t0) and the expected arrival time of the last vehicle passing the intersection

in a given time window is minimized:

argmin J1 = arg min
taccess, j

(taccess, j− t0)

s.t. taccess, j = max({taccess,1, ..., taccess,n})
(6.3)

Although the aforementioned objective will maximize the number of vehicles that clear the intersection in a

given time, it would cause a situation where the vehicles end up traveling near the speed limit even if they

do not prefer to. As a result, we state an additional optimization as given in Equation (6.4) to also take the

desired intersection-accessing times of the vehicles into account. In this way, the objective is found in such a

way that vehicles would not face extreme delay or expedition compared to their desired arrival-times.

argmin J2 = arg min
taccess,i

n

∑
i=1
|taccess,i− taccess,des,i| (6.4)

A multi-objective optimization can then be stated by the weighted sum method which is the most widely used

method for this reason [101]. This method transforms multiple objectives into one function as:

J = w1J1 + w2J1 (6.5)

where w1 and w2 are the weights that should be assigned by the intersection controller. We propose that

this multi-objective optimization will lead in reductions in fuel consumption, and stopped delay, although

these factors are not explicitly incorporated into the individual objective functions. At the end of this chapter,

a simulation approach is employed to observe the effectiveness of the proposed formulation based on the

assumptions given in Subsection 6.4.1. It will be later observed in Section 6.6 that platoon formations will

also be indirectly encouraged by the proposed signal control. The detailed simulation and experimental

results with measure of effectiveness (MOE) analysis will be given later in Chapter 9.

6.4.3 Constraints

Several constraints are imposed to ensure safety. The main challenge is expressing the constraints

as a function of access times so that a linear constrained optimization problem can be derived at the end.

75

taccess,min,i

vi dive
lo
ci
ty

time
t0

∆t1 ∆t2

ଵൌݐ∆ min ௜ݒ௠௔௫ିݒ
ܽ௜

, ௜ܽ௜ݒିݒ
	௩ୀ ௩೔మାଶ௔೔ௗ೔

vmax

ଶൌݐ∆ max
݀௜
௠௔௫ݒ

െ
௠௔௫ݒ

ଶ
௜ݒି

ଶ

2ܽ௜ݒ௠௔௫
, 0

௔௖௖௘௦௦,௠௜௡,௜ݐ ൌ ଴ݐ ൅ ଵݐ∆ ൅ ଶݐ∆

ܽ௜ ൌ ܽ௔௖௖,௠௔௫

(a) (b)

Figure 6.3: Earliest access time possible based on the speed limit and maximum acceleration rates.

A. Speed limit and maximum acceleration

For each vehicle cvi, we should consider the speed limit requirement vi ≤ vmax as well as the maxi-

mum acceleration rate ai ≤ aacc,max; where vi and ai are the velocity and acceleration rate of the vehicle, vmax

is set based on the speed limit of the arterial road, and aacc,max is the maximum acceleration and is consid-

ered +3 m/s2 in this part of the dissertation. We introduce taccess,min,i as the earliest time that cvi can access

the intersection if it travels at maximum acceleration and maximum speed possible. Then we rephrase our

aforementioned speed and acceleration constraints as:

taccess,i ≥ taccess,min,i (6.6)

This earliest access time, taccess,min,i, is calculated as explained in Figure 6.3. This time instance depends on

the distance of cvi to the access point (di) and the max(.) and min(.) functions shown in Figure 6.3 handle

this dependency problem.

B. Safe gap on the same movement

Two consecutive vehicles that are traveling on the same movement (e.g. east bound) should be sep-

arated by a safe gap (headway). This is independent of the vehicles speed [22] (except at very low speeds),

and actually is the minimum following time gap to avoid a rear end collision. In the first part of the disser-

tation (Subsection 3.4.3), the saturation headway value of h=1.47s was estimated and was found consistent

with the measurements in literature for conventional cars [28]. On the other hand, the computer control in

autonomous vehicles will eliminate human reaction times; and assuming a very small communication delay,

a time headway of 0.2s may be sufficient for safe automatic vehicle following [102]. Considering a tolerance

parameter, it is suggested in [22] that a 1 sec headway reasonably upper bounds the response time of an

76

autonomous vehicle. However, a 1 sec headway is not sufficient at very low speeds such as when discharging

from a queue. We observed in simulations that when discharging from a queue, the headway between the first

vehicle and the second vehicle leaving the stop position can be as large as 2.3 sec. As a result, we default to

tgap1 = 2.5 sec in our optimization formulations; only if it is determined that a vehicle will access intersection

at a large enough speed we set tgap1 = 1 sec. To enforce the headway, we add the following constraint on any

two consecutive vehicles traveling on the same movement:

taccess, j− taccess,k ≥ tgap1

s.t. (cv j,cvk) ∈CV, d j ≥ dk;

(m j,mk) ∈M, m j = mk.

(6.7)

C. Safe gap on different movement

Two vehicles traveling on different phases (conflicting movements) also need to be separated by a

safe gap. This time gap, if selected properly, guarantees that the second vehicle would not be within the

safety area before the first vehicle leaves the intersection area. Considering two vehicles cv j and cvk that are

on the different phases of φ j ∈ φ and φk ∈ φ (φ j 6= φk), there are four possible situations with just enough safe

gap between the vehicles. These situations are shown in a space-time diagram in Figure 6.4 by projecting

the vehicles trajectories on one single distance axis. It can be concluded from this figure that the following

constraints cover all the possible situations where ∨ is the OR operator:

taccess, j− texit,k ≥ 0
∨

taccess,k− texit, j ≥ 0

s.t. (cv j,cvk) ∈CV ;
(φ j,φk) ∈ φ, φ j 6= φk.

(6.8)

Although Equation (6.8) mandates at least 0 sec gap between the accessing and exiting time instances of

the first and second vehicle, it does not explicitly state the gap needed between the accessing times of those

vehicle. We are specifically interested in the time gap between accessing timestamps so that, at the end, we

can derive a linear constrained optimization problem based on access times only. For this reason, we define

77

(b)

cvk

taccess,k

time

distance

L
W

d
safety

(a) (c) (d)

cvj

texit,j

cvk

taccess,j

time

distance

cvj

texit,k

taccess,k

time

distance

texit,j

cvk

taccess,j

time

distance

cvj

texit,k

cvk

cvj

Figure 6.4: Possible scenarios of two vehicles passing an intersection with just enough safe gap between them. (a),(d) cvk accessing
right after cv j exiting. (b),(c) cv j accessing right after cvk exiting.

texit = taccess +∆ttravel where ∆ttravel is the travel time between access point and exit point of a vehicle. For

simplicity’s sake, we assume the intersection is square and the two intersecting roads have the same speed

limits. As a result, the travel time does not depend on phase. Now, by substituting texit = taccess +∆ttravel into

Constraint (6.8), we can rephrase this constraint as:

taccess, j− taccess,k ≥ (tgap2 = ∆ttravel)

∨
taccess,k− taccess, j ≥ (tgap2 = ∆ttravel)

s.t. (cv j,cvk) ∈CV ;
(φ j,φk) ∈ φ, φ j 6= φk.

(6.9)

where tgap2 is the safe gap we need between access points. The travel time between the access point and the

exit point of a vehicle is equal to the time period it needs to first pass the safety area, then pass the intersection

area, and finally exit the intersection completely. The longest travel time a vehicle could take is when it is

stopped behind the safety area and accelerates at its assigned access time as shown in Figure 6.5(a). We set an

average acceleration rate of 2 m/s2 for the vehicles and obtain ∆ttravel= 7.3 sec as calculated in Figure 6.5(b).

We set tgap2=7.5 sec in our formulations.

6.5 Handling of Removable Discontinuities

We plan to solve the formulations proposed in the previous section by linear programming. As

a result, any discontinuity and disjunction in the formulations need to be removed first. There are three

disjunctions found in the previous section:

78

texit

d=L+W+dsafetyve
lo
ci
ty

time
taccess

∆t1 ∆t2

ଵൌݐ∆ min
௔௩௚ି0ݒ
ܽ௜

, 0ܽ௜ିݒ
	௩ୀ ଶ௔೔ௗ

avg

ଶൌݐ∆ max
݀
௔௩௚ݒ

െ
௔௩௚ݒ
2ܽ௜

, 0

ܮ ൌ 5݉,ܹ ൌ 10݉ሻ

௧௥௔௩௘௟ൌݐ∆ ଵݐ∆ ൅ ଶൌݐ∆ 7.3	sec

∆ttravel

(a) (b)

ሺܽ௜ൌ 2
݉
ଶݏ , ௔௩௚ݒ ൌ ,݄݌݉	35 ݀௦௔௙௘௧௬ ൌ 38݉,

Figure 6.5: The longest possible travel time between the accessing and exiting points.

6.5.1 Discontinuity in Constraint

Our first step to handle disjunctions is to identify any formulations with if-then-else statement or in

”OR” logic symbolic form. The Constraint (6.9) has discontinuity and is not linear because it includes the

OR logic operator (∨). The goal here is to convert this constraint into an AND-combination of two or more

equations in such a way that if one equation holds true then the other equations are always redundant. The

most widely known method to handle disjunctions is the big-M method that, in our application, requires a

binary variable B and a parameter M [103]. For each set of Constraint (6.9) applying on two vehicles of cv j

and cvk, we add one artificial binary variable Bi (1≤ i≤ # of constraints) to take care of the discontinuity as:

taccess, j− taccess,k +M.Bi ≥ tgap2

∧
taccess,k− taccess, j +M.(1−Bi)≥ tgap2

s.t. (cv j,cvk) ∈CV ;
(φ j,φk) ∈ φ, φ j 6= φk;
Bi binary

(6.10)

where Bi can be either 0 or 1, M is a large enough number, and ∧ is AND operator. If Bi=0 then the first

equation of the above constraint holds true if taccess, j − taccess,k ≥ tgap2 and the second equation (taccess,k −

taccess, j ≥ (tgap2−M)) is redundant and always hold true if M is big enough. If Bi=1 then the first equation

(taccess, j−taccess,k≥ (tgap2−M)) is redundant and always hold true if M is big enough, and the second equation

holds true if taccess,k− taccess, j ≥ tgap2.

It is possible to predict how big M must be: either of the redundant equations discussed above need

to be always fulfilled; and this requires that M ≥ tgap2 + taccess, j− taccess,k. Considering the fact that tgap2 is

79

small, and can be neglected comparing to M, a lower bound to M is equal to the latest access time minus

the most recent access time that may be assigned to two vehicles. As a worst-case example, the first vehicle

would access the intersection at as early as the current time (t0) and the second vehicle would travel the whole

subscription distance (e.g. 4 km) in a very low speed (e.g. 10 mph) and would stop waiting excessively

to access the intersection (e.g. 500 sec); that totally leads to 1394 sec gap between the two vehicles and

consequently we choose to set M = (2000 ≥ 1394).

6.5.2 Discontinuity in Cost Function J1

The cost function J1, introduced in Equation (6.3), is discontinuous in the sense that it includes the

largest (latest) access time variable which is not assigned to any specific vehicle till we obtain the optimization

results. One solution is to always assign the latest access time to the furthest subscribed vehicle that is cvn

considering the fact that the list of all subscribed vehicles (CV) is sorted by distance to the intersection. We

then rephrase the optimization objective and constraint as given in Equation (6.11) where taccess,n is the access

time assigned to the cvn and should be larger than or equal to the access times of all other vehicles.

argmin J1 = arg min
taccess,n

(taccess,n− t0)

s.t. n = #CV

taccess,n ≥ ({taccess,1, ..., taccess,n−1})

(6.11)

6.5.3 Discontinuity in Cost Function J2

The absolute value signs cannot be included in a linear programming formulation. As a result, the

cost function J2, introduced in Equation (6.4), needs to be restated. Although, this is possible by using the big-

M method, we restate J2 by adding a new so-called slack variable ∆taccess,abs,i = |taccess,i− taccess,des,i|. Then,

considering the fact that |x|= max{x,−x} for any real number x, we can add two constraints of ∆taccess,abs,i ≥

(taccess,i−taccess,des,i) and ∆taccess,abs,i≥−(taccess,i−taccess,des,i) in order to ensure that our added slack variable

is equal to |taccess,i− taccess,des,i|. In summary, the restated cost function and the added constraints are as

80

follows:

argmin J2 = arg min
taccess,i

n

∑
i=1

∆taccess,abs,i

s.t. ∆taccess,abs,i ≥ (taccess,i− taccess,des,i)

∆taccess,abs,i ≥−(taccess,i− taccess,des,i)

(6.12)

6.6 Mixed-Integer Linear Programming Case Study

The linear objective function/constraints and mixed-integer variables in the optimal solution make

our formulations a Mixed Integer Linear Programming (MILP) problem for which efficient solution exists.

Since the intersection control algorithm runs on powerful backend clouds, the computational complexity will

be manageable in real time. Our detailed simulation and experimental results with measure of effectiveness

(MOE) analysis will be given later in Chapter 9; however, this section employs a simplified case study only

to observe an example numerical outputs of the proposed formulations.

To solve this MILP problem in this section, we use the intlinprog function in Matlab (version

R2016a) from Optimization toolbox. We simulate the same example as previously shown in Figure 6.1

including n=9 connected vehicles cvi (1 ≤ i ≤ 9). We set speed limit vmax=45 mph, and average arterial road

speed vavg=35 mph. We assume that the current state of all the vehicles is available: they are all traveling in

vavg and their distance to the safety area are [690 m, 750 m, 780 m, 900 m, 990 m, 1080 m, 1170 m, 1230 m,

1290 m], respectively.

Figure 6.6(a-d), demonstrates the optimal solutions to the aforementioned problem found by MILP.

As shown in Figure 6.6(a), by setting w1=%100 and w2=%0, all the weight is given to intersection throughput

improvement (J1, Cost Function (6.11)), and, as a result, some vehicles end up traveling near the speed limit

(solid red lines). On the other hand, by setting w1=%0 and w2=%100 in Figure 6.6(b), all the weight is given

to satisfying the desired speeds of all vehicles (J2, Cost Function (6.12)); and, as a result, the intersection

clearance time was increased for 17 sec compared with Figure 6.6(a). Two compromised solutions are also

demonstrated in Figure 6.6(c) and (d) for comparison purposes. For the rest of the dissertation, we set

w1=%80 and w2= %20.

A feature of our formulations is that two vehicles that are traveling on different parallel traffic move-

ments (e.g. cv4 vehicle moving north bound on X′′ and cv2 moving south bound on X′) can be served almost

at the same time (or in other words, overlapped arrival-times can be assigned to them). Most important fea-

81

cv1
cv3

cv7
cv9

cv2

cv4
cv5
cv6

cv8

cv
1

cv
3

cv
7

cv
9cv

2
cv

4
cv

5

cv
6

cv
8

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

Min. Access Time (taccess,min,i)
Desired Access Time (taccess,des,i)

Intersection clearance time = 69 sec

(a) (b)

(c) (d)

w1
w2

=%100
=%0

w1
w2

=%0
=%100

cv1
cv3

cv7
cv9

cv2

cv4
cv5
cv6

cv8

cv
1

cv
3

cv
7

cv
9

cv
2

cv
4

cv
5

cv
6

cv
8

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

Intersection clearance time = 86 sec

w1
w2

=%50
=%50

cv1
cv3

cv7
cv9

cv2

cv4
cv5
cv6

cv8

cv
1

cv
3

cv
7

cv
9

cv
2

cv
4

cv
5

cv
6

cv
8

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

Intersection clearance time = 82 sec

w1
w2

=%80
=%20

cv1
cv3

cv7
cv9

cv2

cv4
cv5
cv6

cv8

cv
1

cv
3

cv
7

cv
9

cv
2

cv
4

cv
5 cv
6

cv
8

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

i=
8

i=
9

Intersection clearance time = 72 sec

Figure 6.6: Scheduling the arrivals of vehicles using the proposed MILP model, solved by intlinprog function in Matlab R2016a (y-
axis: projected remaining distance to the safety area, x-axis: assigned access times); (a) all weight given to intersection throughput
improvement (b) all weight given to satisfying the desired speeds of all vehicles (c) %50 \%50 compromised solution (d) %80 \%20
compromised solution.

ture, that can also be identified in the Figure 6.6(a), is that since tgap2 > tgap1, platoon formations will be

encouraged, otherwise lone vehicles have to clear the intersection with the longer safe gap tgap2 with respect

to opposing movements which reduces intersection capacity.

82

Chapter 7

Cyber-physical Test Environment

7.1 Introduction

The development of Intelligent Transportation Systems (ITS), especially intelligent traffic signal

control, is difficult because these systems must be tested in the real world or near real world conditions (micro-

simulations). The existing traffic signal controllers do not generally allow data communication between the

controller and a simulation [104]. Moreover, they are not designed to benefit from the data streams sent

from real connected vehicles. In this chapter, we aim at providing a methodology and a Vehicle-In-the-Loop

(VIL) simulation platform which can incorporate most of the real time signal control methods for verification

purposes.

Traffic microscopic simulation has been widely used for the purpose of evaluating ITS systems.

However, the way of interfacing micro-simulations with traffic signal controllers can be different in every

application based on the evaluation purposes. Stevanovic et al. describes two main methods of connecting a

traffic micro-simulator with a traffic signal controller as follows [105]:

• Software-in-the-loop (SIL) simulation: where the micro-simulation and virtual traffic signal con-

troller run on the same computer. As a result, no hardware interface is needed between the simulation

and the virtual controller. This allows a faster simulation compared to other configurations [106].

Figure 7.1(a) demonstrates a software-in-the-loop configuration for the application of this dissertation.

• Hardware-in-the-loop (HIL) simulation: where a piece of network interface hardware (Physical layer

interface) connects the traffic simulation engine and the traffic signal controller. The traffic simulation

83

(a) (b)

Virtual
Traffic Signal
Controller

Software‐in‐the‐loop

Traffic Signal
Controller

Hardware‐in‐the‐loop

Ph
ys
ic
al
 L
ay

er
In
te
rf
ac

e

Microscopic
Traffic

Simulation
Microscopic

Traffic
Simulation

Figure 7.1: (a) Software-in-the-loop and (b) Hardware-in-the-loop confguration in the traffic simulation applications.

must run on a real-time basis [105]. Figure 7.1(b) demonstrates a hardware-in-the-loop configuration

for the application of this dissertation.

It is possible to incorporate one or more real test vehicles into the microscopic traffic simulation at

an intersection. This vehicle-in-the-loop (VIL) configuration can be included in either configurations of the

HIL or SIL shown previously in Figure 7.1. However, adding a real vehicle to a SIL onfiguration requires the

fast simulation speed of the SIL to be downgraded to acheieve real-time simulation. This eliminates the main

advantage of the SIL configurations and, as a result, is not used here in this dissertation.

Instead, adding real vehicles to HIL configuration is advantageous for several reasons. Testing

conditions in a VIL setup is configurable [107], reproducible, and repeatable [108] comparing to real traffic

conditions. Moreover, VIL is a safe solution for systems, such as collision mitigation systems [24], that their

testing in real test driving maneuvers is nearly impossible. It should be emphasized that the VIL concept

should not be confused by Vehicle-Hardware-in-the-Loop (VeHIL), where a chassis dynamometer emulates

the road interaction [109, 110].

Besides all the benefits mentioned above, VIL test setup usually requires adding virtual objects to

the real scene that a driver views in the test vehicle. This can be accomplished, for example, by an optical

see-through Head Mounted Display as used in [24, 111]. However, this dissertation aims at the efficiency

and connectivity of traffic signal controllers at signalized intersections only. As a result, the movements at

intersection can be assigned to the virtual and real vehicles in such a way that there is no need to project

the virtual vehicles into the driver’s gaze. A future research focusing on collision avoidance at signalized

intersections would add an optical see-through Head Mounted Display as a possible visualization method for

our application.

To the best of our knowledge, to date, only the traffic signal microsimulation presented by Quinlan

et al. [112] is also implemented in a vehicle-in-the-loop manner. The HIL traffic signal simulations presented

in [105, 113] couple external traffic signal controllers with microsimulations only, and Day et al. [106] study

84

(a) (b)

Traffic Signal
Controller

Hardware‐in‐the‐loop

Ph
ys
ic
al
 L
ay

er
In
te
rf
ac

e

Physical Layer
Interface

Vehicle‐in‐the‐loop

Traffic Signal
Controller

Hardware‐in‐the‐loop

Ph
ys
ic
al
 L
ay

er
In
te
rf
ac

e

Microscopic
Traffic

Simulation

Physical Layer
Interface

Vehicle‐in‐the‐loop

Virtual
Traffic Lights

Connected
Traffic Lights

Microscopic
Traffic

Simulation

Figure 7.2: Adding vehicle-in-the-loop to a hardware-in-the-loop configuration with (a) actual traffic lights or (b) virtual traffic lights.

the event-based performance measures by integrating a real world adaptive signal controller with software-

in-the-loop simulated controllers.

As the last drawback of adding a real vehicle to HIL, a traffic light is needed locally at the inter-

section, as shown in Figure 7.2(a), to notify the driver of signal status. However, a physical traffic signal,

similarly used in testbeds of [114, 115], requires at least a modem for connection to our custom traffic signal

control server, and a computer for data translation between the server and the traffic signal’s embedded sys-

tem. This adds to complexity and cost of the testbed, and can be detrimental to reproducibility feature of the

proposed VIL testbed.

In view of these issues, a virtual traffic signal is a solution as it appears on the display of our virtual

driver assistant and displays the signal status to the driver (see Figure 7.2(b)). Moreover, if a vehicle is

autonomous, then displaying the signal status is not even necessary. What we are proposing is actually an

infrastructure-based approach to virtual traffic signals which needs wireless connection to a remote traffic

signal control server in order to receive its status or SPaT data. However, the proposed concept of virtual

traffic signals presented in [116, 21] and also used in [117] does not need any infrastructure-based traffic

control and receives on-demand SPaT information in an ad hoc manner by V2V communication. In general,

virtual traffic signals presented here and in [116, 21, 117] are all in-vehicle representations of actual traffic

signals supported by the connectivity available within a connected vehicle environment.

In any VIL configuration for autonomous-targeted research, it would be very difficult to utilize an

autonomous vehicle as a test vehicle for several reasons. Implementing custom algorithms into an intelli-

gent vehicle needs access to the in-vehicle application which are not available due to proprietary reasons and

85

consequently requires a close partnership with the manufacturer of that vehicle. Moreover, it is an expen-

sive technology and there is great deal of challenge and research in building autonomous test vehicles from

scratch because it includes guidance, sensors and sensing strategy, navigation, cartography and motion plan-

ning [118]. Last, and most important, testing legislations as well as insurance liability must be considered

depending on the country and the state where the test is conducted. For example, at least $5 million in in-

surance coverage is required by California and Florida states; and California’s Department of Licensing must

permit the testing plan before it is executed [119, 120].

Because of these issues, we use a conventional vehicle as our test vehicle. In fact, considering the

application of this dissertation, a conventional vehicle can be assumed as an autonomous test vehicle because:

• The objective is to test the efficiency of intersection signal control not the functionality of autonomous

vehicle itself.

• The driver is guided via a virtual driver assistant so that she or he can follow the planned speed. The

assistant also notifies the driver when to stop at red or start moving at green light. Being aware of the

start of the green light ahead of time, decreases the driver’s start-up reaction time.

An in-vehicle implementation of a virtual driver assistant system requires a close partnership with

car makers or OEMs that is not possible at this stage of our research. As a result, an application running on a

smart-phone is a reasonable alternative. The idea is to display the planned speed to the driver as green zone

on a GPS speedometer. This way of recommendation display was adopted from [114, 115].

In this chapter, we will introduce a novel cyber-physical virtual testing environment, in which actual

test vehicles at the physical layer interact with 1) simulated vehicles in a traffic micro-simulation layer, and

2) intersection controller that run and interact on a back-end cloud. First, the vehicle-in-the-loop (VIL)

configuration is explained in Section 7.2. The components of our VIL setup including virtual traffic signal,

and virtual driver assistant are explained in the subsequent sections. Our proposed data structure and the

utilized communication technology are introduced in Section 7.4. We use SIL simulations as well as VIL

simulations in this dissertation, and their results are given in Chapter 9; however, the simulation setup is

explained shortly in Section 7.5 of this chapter.

86

Virtual Driver Assistant

Simulated
Vehicles

Real Vehicles
(VIL)

Intersection Controller

Bi‐directional User‐Datagram Protocol UDP messages

Virtual Traffic Signal

GPS
Position/Time

Simulated
Real (VIL)

(a) (b)

Cellular Broadcast

Figure 7.3: Vehicle-In-Loop (a) back-end configuration (b) visualization at intersection.

7.2 Vehicle-In-Loop Configuration

We add one single real vehicle to HIL configuration at an intersection testbed. Both simulated

and real vehicles are treated similarly by the intersection controller. This, in particular, means that they all

send and receive data in the same structure and format (see Figure 7.3(a)). Furthermore, they all follow the

same subscription/un-subscription process that will be explained later in Section 7.4. The proposed approach

addresses many limitation of a simulation only environment, while also ensures a safer environment for test

vehicles because conflicting movements (and potential crashes) occur in a simulated environment.

Figure 7.3(b) demonstrates that the phases and movements are assigned to the simulated and the real

vehicle in such a way that the simulated environment does not need to be visualized to the test driver while

she/he is driving the real vehicle. A possible visualization method for our future research would be an optical

see-through Head Mounted Display as used in [24]. Comparing to Figure 6.1(a), the real vehicle (VIL) only

moves north bound on X′′ movement and the simulated vehicles travel on all other movements of our virtual

road network environment (O′, O′′, X′). Figure 7.4(a), shows a screenshot of the real vehicle interacting with

hundreds of simulated vehicles in our microsimulation environment.

If any collision happens between the VIL and a simulated vehicle, the test driver does not notice

and the collision will be flagged by offline data analysis after the road test. Nevertheless, we mounted our

simulator node inside the test vehicle as shown in Figure 7.4(b) so that collisions could be identified visually

by our colleague who physically sat in the vehicle.

87

(a) (b)

Figure 7.4: Vehicle-In-Loop (a) screenshot of the vehicle interacting with the simulator (b) in-vehicle setup.

7.3 Virtual Driver Assistant

Although, in this part of dissertation, we derive optimal vehicle arrivals for the approach of au-

tonomous vehicles, we use a conventional vehicle as our test VIL. As a result, a driver assistant is needed to

guide the driver for a timely arrival at intersection. We developed an iOS virtual driver assistant specifically

for the application of this dissertation that displays the appropriate speed recommendation to the driver as

green zones on a GPS speedometer (please see Figure 7.4(b)). The virtual traffic signal is also shown to the

driver on the same display as the speed recommendation is. The application runs on iOS devices (iPhone, or

iPad) and the designed human machine interface (HMI) is explained in Figure 7.5. The HMI shown in this

figure is displayed to the driver only when the upcoming intersection and phase are identified as explained in

next subsection.

Distance to
stop‐bar

Speed‐Advice
(green zone on speedometer)

Identified
Intersection‐Phase

Seconds left to
access intersection

Figure 7.5: Description of HMI of the Virtual Driver Assistant and the Virtual Traffic Signal implemented on iOS iPhone device.

88

7.3.1 Intersection and Phase/Movement Identification

In determining which intersections and which traffic signal phases/movements are relevant to a

vehicle along a trip, a list of intersections and their traffic signal phases (so called intersection-phase pairs

in this dissertation) is preloaded into the virtual driver assistant (stored locally in the iOS device). The

JavaScript Object Notation (JSON) [66] is used to represent this list which contains the attributes of each

intersection-phase such as GPS location of the intersection center, intersection ID number, phases according

to the standard NEMA phase numbering scheme, monitoring radius for each intersection, and entry and exit

headings of each phase.

The implemented driver assistant is a location-based application and, immediately after the applica-

tion is initiated, it starts monitoring the intended intersections with the monitoring radii predefined in JSON

list. Once the vehicle enters the monitoring region (see the circular region in Figure 7.6(a)) the relevant

intersection specification is loaded from the JSON file. In order to identify the most relevant traffic sig-

nal phase/movement to the vehicle direction of travel, the driver assistant compares the vectors of relevant

signal phase entry headings (θ json, loaded form the JSON file) with the current vehicle direction of travel

(θiOS, reported by the GPS hardware of the iOS device). The difference between each phase/movement en-

try heading and vehicle heading is denoted as ∆θ; and if ∆θ is less than the heading difference threshold,

the phase/movement will be identified as the actual phase/movement that the vehicle is traveling towards.

As shown in Figure 7.6(a), we accept a heading difference threshold of θthr = 25deg. The pseudo-code for

phase/movement identification is reported in Algorithm (1).

Please note that GPS hardware of the iOS device can report the heading (the direction in which an

iOS device is pointing) as well as the course (the direction in which an iOS device is moving) [121]; as a

result, we use the course information of the iOS device as the vehicle direction of travel.

Algorithm 1 Phase/Movement Identification using Heading Information

1: procedure LOAD INFO FROM JSON FILE

2: procedure START MONITORING INTERSECTIONS

3: procedure IDENTIFY PHASE/MOVEMENT IF VEHICLE cvi ENTERED AN INTERSECTION REGION
4: θiOS← iOS GPS Hardware
5: for all m ∈M = {O′,O′′,X′,X′′} do
6: θ json← entry heading of m from JSON file
7: find possible heading difference ∆θ1 = |θ json−θiOS|
8: find possible heading difference ∆θ2 = 360deg−|θ json−θiOS|
9: find heading difference ∆θ = min{∆θ1,∆θ2}

10: if ∆θ≤ (θthr = 25deg) then
11: set mi← m as the actual phase/movement of cvi return true

return false

89

´

´´ cv8

´´
json

js
on

´

json

json

Distance by Haversine Formula
Distance by iOS mapping framework (MapKit)

(a) (b)

thr=25 deg

Figure 7.6: Virtual Driver Assistant (a) Identifying the Phase/Movement after entering the intersection monitoring region (b) Calculating
the distance between the vehicle and the intersection center.

7.3.2 Speed-Planner for the Virtual Driver Assistant

Right after identifying the relevant intersection-phase, the vehicle sends a subscription request to

the intersection controller (see Section 7.4 for details). The intersection controller, in return, sends the Signal

Phase and Timing (SPaT) if the traffic signal is pre-timed or sends the assigned access time if the traffic signal

is MILP-based. Based on the distance of the vehicle to the intersection, the appropriate speed to be followed

by the driver is computed by an embedded speed-planner engine. The computed speed is then displayed to

the driver as green zones on the speedometer (adopted from [114, 115]), as seen in Figure 7.5. The goal is

to guide the driver for a timely arrival at intersection in almost the same way that a real autonomous vehicle

would do.

The speed-planner runs locally on the iOS device, and computes a feasible trajectory to reach a goal.

The goal depends on our test scenarios and is explained later in next chapter. As an example test scenario,

the goal point for an autonomous vehicle connected to our MILP-based intersection controller is to reach

the intersection at the assigned access time. Please note that in this dissertation, we present a simple speed-

planning component that is used to navigate through urban environments with no anomalous or road hazard

conditions. To simplify the model of an autonomous vehicle, we assume there is no obstacle to avoid and

lane-changing is not allowed also. Furthermore, the speed-planner embedded in our virtual assistant, does

not include any car following model because we have only one real vehicle-in-the-loop that is not sharing its

90

driving lane with simulated vehicles. Even if a future work will utilize two or more real vehicles, the follower

drivers will be capable of keeping a safe distance to the vehicles in front.

7.3.3 Distance Calculation

The distance between the connected vehicle and the intersection must be calculated in order to be

sent to the intersection controller, and also to be used in planned-speed display. Once the vehicle enters the

monitoring region, the driver assistant application uses the MapKit - mapping framework in iOS [122] to

find the rout-based distance between the iOS device and the intersection center (available from JSON file).

MapKit includes an API, which can provide either walking or driving directions (distances) between two

points. We use the walking mode and a sample walking direction is shown by dashed line in Figure 7.6(b).

Because of possible positional error associated with the device GPS location and with the intersection center

coordinates, these two points may represent two locations on different sides of the road, and, as a result, the

API’s driving direction may include a U-turn or a reroute. This is the reason we don’t use the driving mode.

Nevertheless, the aforementioned API needs to query Apple’s servers each time the updated distance

is needed. Although, there are no requests limits [122], the queries are server-based and the response may

be returned with delay based on the server load and the network connection. For this reason, we also use

Haversine Formula [40] to calculate the straight distance between the two points, as shown by solid line

in Figure 7.6(b). Once the vehicle is going straight to the intersection, the Haversine and API results are

approximately equal. Our virtual driver assistant detects this, stops querying Apple’s server, and continue

using Haversine formula till the vehicle exits the intersection area. Last, by considering the width of the

intersection, the distance to stop-bar is estimated and is also shown on the top left corner of the iOS device

display, as shown in Figure 7.5.

7.4 Data Structure and Communication

The V2I communication between connected vehicles (real and simulated vehicles) and intersection

controller presents us with two challenges:

• Scalability and Bandwidth: communicating a large amount of data can be very expensive given that

we use cellular networks technology. Also as the number of vehicles increases, bandwidth challenges

are imposed on the server side.

91

• Versatility and Universality: generating software to transmit data to and from a variety of systems

with different data streams and different implementation languages can be quite complex and very time

consuming. A unified and versatile data model is sought so that minimal data translation is needed for

importing data from disparate data sources.

To address the first challenge, we send and receive the information through a User-Datagram Proto-

col or UDP [64] unconnected datagram sockets. In addition, we propose a vehicle subscription/unsubscription

process which also reduces the amount of data exchanged. To address the second challenge, we propose to

serialize the data, using for instance Google Protocol Buffers. The descriptions are given in the subsequent

subsections.

7.4.1 User-Datagram Protocol (UDP)

Although the delivery is not guaranteed using UDP, this is preferable to Transmission Control Proto-

col or TCP [65] for our application because our servers deal with small data packets sent from a large number

of connected vehicles. The TCP is actually slower for exchanging the instantaneous location reports of a large

number of vehicles (the real and simulated vehicles in our application); and our cloud-based server (intersec-

tion controller) may not handle receiving all these reports in TCP. It should be emphasized that concurrent

with receiving a large number of probe reports, the intersection controller is also responsible to send the

assigned access times or the status information of the corresponding traffic signal to the subscribed vehicles.

7.4.2 Vehicle Subscription

As it was mentioned in previous section, while a connected vehicle is traveling, our virtual driver

assistant searches among a predefined list of the intersections within a specified range, and it identifies the

most relevant intersection-phase to the vehicle movement. The vehicle then sends a subscription request

for the identified intersection-phase to the intersection controller server and announces its intended time of

arrival. An unsubscribe message is later sent from the vehicle to the server at the time the vehicle clears the

intersection. Thus, data is exchanged only during the subscription period and only when new information is

available from the vehicle or the intersection controller. The data exchanged during this period (transmitted

from and received by the vehicle) is summarized in Figure 7.7.

It should be noted that the VIL simulation environment is designed in a such a way that the simulated

vehicles follow the same subscription/unsubscription process as described above and as shown in Figure 7.7.

92

TX: Updates in Geographical data (location, speed)
RX: Updated optimal time of arrival

TX: Subscription request (Intersection‐Phase Identification)
TX: Intended time of arrivals

TX: Un‐subscription

TX: Transmit Transactions
RX: Receive Transactions

RX: Optimal time of arrival
RX: Assigned ID

Figure 7.7: Data exchanged between a connected vehicle approaching a signalized intersection and the intersection controller (remote
server).

The only difference between the simulated vehicles and the real vehicle is that the simulated vehicles do not

search among the list of the intersections to find the relevant one.

7.4.3 Google Protocol Buffers

Protocol buffers are a mechanism to serialize data. We specify the structure of the data in a protocol

buffer message format [62] which can be used to transfer data between connected vehicles and our servers

regardless of their implementation language. As claimed by Google and as evaluated in [63], the Protocol

Buffer leads to fast data transfer over the web comparing to eXtensible Markup Language or XML [39]. This

is mainly because the Protocol Buffer uses binary format to serialize structured data.

According to Figure 7.7, the data exchanged between the connected vehicles and the intersection

controller lies in three categories: 1) A vehicle transmitting (Un)Subscription messages to the intersection

controller, 2) A vehicle transmitting its updates (velocity, distance, and desired access time) to the intersection

controller, and 3) The controller sending the assigned access time and vehicle ID to the subscribed vehicle

(may be repeated to update the assigned access time). We also add an emergency message in case two or

more vehicles of conflicting movements are simultaneously within the safety area. This emergency message

causes all vehicle already inside the safety area to stop as soon as possible and all vehicles outside the safety

93

are to stop behind the safety area waiting till new access times are assigned and the alert is over. All the

four aforementioned messages and their data structure are shown in Figure 7.8(a,b,c,d), respectively. The

contents of each message is encoded and serialized by Google Protocol Buffers, and then is preceded with a

predefined preamble before being sent. It should be emphasized that the preamble is unique for each message

type, and, as a result, reveals the message type that a receiver has just received. The preamble should not

be serialized; otherwise, the receiver should decode the received packet by trying all possible message type

which can impose a huge performance penalty.

The interesting feature of google protocol buffers is that we can add new fields to our message

formats without breaking backwards-compatibility [62]; the code can still read data encoded with the old for-

mat. Moreover, our intersection controller server (developed in Java) can easily share data with applications

written in different languages (e.g. our virtual driver assistant developed in Objective-C).

7.5 Traffic Microsimulation

7.5.1 Simulation Setup

The simulation tools developed in this dissertation model the autonomous vehicles as agents that

decide about their desired trajectory by their individual speed-planners. A two-phase/four-movement inter-

section is simulated, as previously explained in Chapter 6. Each intersecting road has one lane per direction,

and no turning is allowed at the intersection.

Although, the ultimate goal is to evaluate our MILP-based intersection controller in a vehicle-in-

the-loop (VIL) simulation setup, we also implement a software-in-the-loop (SIL) simulation environment.

The SIL-simulation determines what the maximum achievable is, as there is no communication overhead and

packet drop. The SIL- and VIL-simulations are similar except that the VIL-simulations run on a real-time

basis, and the simulated vehicles in the VIL-configuration communicate with the intersection controller server

utilizing Google Protocol Buffer messages and UDP unconnected datagram sockets. No communication is

needed for the SIL-simulation as both the intersection controller and simulated vehicle run on the same

computer. Please see Figures 7.1(a) and 7.2(b) for implemented SIL and VIL simulation environments.

The SIL and VIL microsimulations were both implemented using Java and its multi-threading capa-

bility. The real-time Java simulation and the traffic signal controller interact in such a way that the system can

tolerate the simulation engine failures to meet its deadlines. In other words, if the simulation is overloaded

94

Identification (Un)Subscription
flag

error
flag

Preamble
#1

City ID
Vehicle ID (cvi)
Intersection ID

Phase ID

0: SUBSCRIPTION
1: UN SUBSCRIPTION

0: OK
1: ERROR

IdentificationTimestamp error
flag

Preamble
#3

Start-of-green
Cycle

Green Split
Yellow Split

Signal
Status

Signal
Mode

Pre-timed
SPaT

Assigned
Access Time

0: Pre-timed
1: Adaptive

0: GREEN
1: YELLOW
2: RED

Identification Timestamp error
flag

Preamble
#2

Vehicle
Attributes

Velocity (vi)
Desired Access Time (taccess,des,i)
Distance to stop-bar: API Calculated (di,API)

Haversine Calculated (di,HAVER)

Identification Timestamp error
flag

Preamble
#4

0: Ignore previous emergency message
1: Stop at safety area

Emergency flag

(a)

(c)

(b)

(d)

(Un)Subscription Message:

Intersection Controller Message:

Probe Vehicle Message:

Emergency Message:

Figure 7.8: Four different message types implemented for the test environment (Protocol buffer structured messages preceded with a
preamble).

95

and cannot model the dynamics of the simulated vehicles on time, the simulation is not interrupted and can

still report the updated positional data of the vehicle but in a timestamp not at the prescheduled time.

7.5.2 Speed-Planner for the Microsimulations

Same as virtual driver assistant described in Section 7.3, the simulated vehicles compute their own

trajectories by identical speed-planner engines. The speed-planners incorporated into the simulated vehicles

and the one incorporated into the virtual driver assistant are similar and the main difference between them is

that the speed-planning for simulated vehicles needs an autonomous car following model. The detailed speed-

planning, which depends on our test scenarios, is explained in next chapter where we present out simulation

and experimental results. The car following model is explained in Appendix A.

7.6 Acknowledgment

Some of the ideas presented in this section started to take shape when my advisor, Prof. Ardalan

Vahidi, and I were both working at BMW Technology Office USA in Mountain View, CA. I would like to take

this opportunity to thank Mr. Andreas Winckler from that office for sharing his insight and ideas, specifically,

on speed recommendation display design, (un)subscription procedure, and intersection detection.

96

Chapter 8

Estimating Fuel Consumption using

Vehicle Diagnostic Data

8.1 Introduction

To evaluate our MILP-based intersection control in improving intersection performance, a number

of variables need to be analyzed during our road tests. We choose the fuel consumption of our test vehicle

as the major measure of effectiveness (MOE). However, appropriate equipment are required to obtain the

vehicle fuel consumption, so that the fuel consumption reduction of the implemented system can be evaluated.

This dissertation obtains the vehicle’s fuel consumption rate through OBDII port (On-Board Diagnostic port,

version II). The On-Board Diagnostic (OBD) regulations requires the passenger cars to provide a minimum

set of diagnostic information to off-board test equipment [123]. Usually, these diagnostic information do not

include the fuel rate information; and, an estimation method is required to translate the real-time OBD data

into the fuel flow of the engine. Some vehicles provide enhanced OBD data including the engine’s fuel rate

estimate but this enhanced data needs to be first evaluated, and may not be accurate [124]. Unfortunately,

there is no formal fuel estimation methods suggested by relevant standards such as SAE J1979 [123] and ISO

15031-5 [125]; and diverse formulas are introduced in literature to estimate the actual fuel rate by OBDII

basic data [124, 126, 127, 128, 129].

In this chapter, we propose two methods for estimating fuel consumption using the basic engine

diagnostic information: 1) estimation based on engine’s Mass Air Flow rate (MAF-based) 2) estimation based

97

on engine’s Fuel Injection Flow rate (FIF-based). Both methods are formulated for gasoline engines equipped

with mass air-flow (MAF) sensor; however, they can be modified for engines with Manifold Pressure (MAP)

sensors as well. We verified the accuracy of our methods by road tests. In each test, basic OBD data was

collected by our developed iOS application that connects to a commercial Wi-Fi OBDII reader. The Vehicle

used in all road tests is Honda Accord LX 2.4L 4-Cylinder SI gasoline engine with automatic transmission.

In this chapter, after a background introduction, we introduce our developed OBDII Logger appli-

cation that runs on iOS devices. In Section 8.4, the methods proposed to identify the state of the engine via

OBDII data are explained with on-road tests. We introduce our two methods for fuel estimation with exper-

imental results in Sections 8.5 and 8.6. The details of the test criteria and methods used to obtain the actual

fuel consumption of the test vehicle are provided in the last section.

8.2 Engine Fuel Management: Background

Engine fuel management systems have two major operating modes of closed-loop and open-loop:

Closed-loop: The main goal of the engine’s Electronic Control Unit (ECU) in closed-loop mode of

operation, is to control the air to fuel ratio mainly via feedback from the exhaust system. Fine tuning the air

to fuel ratio by ECU, allows the vehicle’s catalytic converter to reduce the pollutants contained in the exhaust

gas most efficiently. The optimum ratio depends on the engine defects, and fuel impurities/compositions

but is close to the stoichiometric gasoline combustion Air/Fuel Ratio of 14.64:1 (AFRstoich = 14.64) [127].

Even in a perfect closed fuel loop engine operation, the actual air/fuel ratio (AFR) would deviate from the

stoichiometric air/fuel ratio; and this deviation is usually denoted by λ = AFR
AFRstoich

.

The ECU commands to have a rich mixture (λ < 1), lean mixture (λ > 1), or stoichiometric mixture

(λ = 1) based on its inputs from various sensors including the oxygen (O2) sensor for exhaust gas. The

ECU-commanded-λ can be slightly different from the actual-λ interpreted from the oxygen sensor readings

[128]. The ECU-commanded-λ is available via basic OBD data, namely, OBD Commanded Equivalence

Ratio (EQR). Based on the aforementioned explanations, if the actual-lambda and the mass air flow into the

engine (MAF) are available then a fairly accurate estimate for the fuel flow is MAF
14.64×λ

.

The ECU commanded air/fuel ratio is then translated to the desired fuel mass for each cylinder,

and, subsequently, the appropriate fuel injector pulse width [130]. The OBD fuel trim (FT) parameter is a

numerical multiplier that denotes by what scaling factor the ECU is modifying the injectors base pulse width.

The ECU modifies this base pulse width according to the percentage of oxygen present in the exhaust gases.

98

As an example, a fuel trim of 0% means that the injectors’ pulse width needs no modification compared to

the base pulse width, a positive FT of 10% means that the pulse width needs to be increased (10% more

fuel than the calibrated amount) in a lean mixture condition, and a negative FT of -10% means that the pulse

width needs to be decreased (10% less fuel) in a rich mixture condition. The total fuel trim actually consists

of two separate OBD values: summation of 1) OBD Short Term Fuel Trim (SHORT FT), and 2) OBD Long

Term Fuel Trim (LONGFT). The OBD short term fuel trim is the immediate or on-the-fly ECU’s response,

and it fluctuates above and below zero as the vehicle’s operating conditions vary. On the other hand, the OBD

long term fuel trim is learned by the deviations corrected by short term fuel trim over the operational lifetime

of a vehicle; and is stored in a non-volatile memory [130]. As an example, when the short term fuel trim hits

its upper/lower limit, the ECU increments/decrements the long term fuel trim by one count.

Open-loop: The closed-loop operation is not always possible. Generally, the following conditions

causes an open-loop mode of operation:

• Cold-start: The closed-loop mode is not possible during a cold-start because the oxygen sensor should

reach a certain temperature before it can be functional. The cold-start period depends on the type and

temperature of the oxygen sensor and is short for the oxygen sensors equipped with built-in heaters.

DeFries et al. [124] reported that their test vehicle (2009 Saturn Outlook) was running lean during cold

start. This lean condition could be the result of fast idle control and spark retard technologies used in

some vehicles to warm the catalyst up quickly after cold starts [124]. They obtained λ = 1/0.77 as this

value best fit their dyne-measured fuel rates. We used the same value in this dissertation, although we

had a different test vehicle.

• WOT: Wide Open Throttle (WOT) is when the gas pedal is fully or almost-fully depressed, and the

engine runs in full load condition. During WOT, the mass air flow (MAF) is large, and the OBD

calculated engine load value (LOADPCT) reaches about 100%. In WOT condition, the engine does

not account for the exhaust oxygen percentage because it needs a rich mixture to reach the maximum

power. The intake air/fuel ratio is a function of engine RPM [128], and can be in the range of 10 to 14

during WOT [131, 132].

• Deceleration fuel cutoff: Fuel is entirely cutoff by ECU when the accelartor pedal is released to cruise

or decelerate. However, based on our observations, it seems that fuel is not cutoff when the vehicle is

going below a certain speed or the engine is running below a certain RPM.

99

8.3 iOS-based OBDII Data Logger

An iOS application has been developed that logs the vehicle On-board diagnostics (OBDII) data

as well as the iOS device sensor data. As shown in Figure 8.1, the OBD Log application can connect to

commercial Wi-Fi OBDII readers supporting ELM327. In fact, there are several OBD protocols that none of

them are directly usable by PCs or smart devices; and ELM327 is a chip programmed by ELM Electronics

that acts as an interpreter bridge between these OBD protocols and our iOS device [133]. At this time, our

developed iOS application is compatible with 29-bit CAN protocol (ISO 15765-4 [134]). Future releases of

our smart phone application will support other protocols such as 11-bit CAN [134] and SAE J1850 [135].

SmartPhone
(Implemented OBDII Data Logger App)

WiFi

ODBII Port

Crowdsourced
Data

Data
Transfer

Data Analyst

ODBII WiFi
Reader

Figure 8.1: Functional architecture of the developed iOS OBD Logger App.

The OBD Log users can select up to six individual OBD data values that they are interested to

monitor. The OBD Log App then requests and collects those six data values at 2 Hz max. The collected data

not only is shown real-time on the display but also will be available in a Comma Separated Values file format

through iTunes for further off-line data analysis (see Figure 8.1). Our proposed fuel estimation methods are

incorporated into the OBD Log App using only the basic OBD data as given in Table 8.1.

Figure 8.2(a) shows the setup in our test vehicle where the Wi-Fi OBDII reader is connected to OBD

port by a cable. Figure 8.2(b) demonstrates the designed user interface for the main and settings pages. The

designed user interface provides Play/Pause buttons so that the driver, driving in our experimental testbeds,

can control when to collect data (iOS GPS and fuel consumption information).

Although several commercial applications are available for OBD data logging, we built a custom

OBD logger from scratch because: 1) our proposed fuel consumption estimator needed to be incorporated

into the application; 2) we needed to request all the possible six OBD data values in one packet and at the

100

Table 8.1. Basic OBD Data used for fuel rate estimation .

OBD Data Notation PID*

Fuel System Status FUELSY S 0x03

Commanded Equivalence Ratio EQR 0x44

Mass Air-flow (g/s) MAF 0x10

Short Term Fuel Trim (%) SHRT FT 0x06

Long Term Fuel Trim (%) LONGFT 0x07

Calculated Load Value (%) LOADPCT 0x04

* PIDs (Parameter IDs) are codes used to specify OBD data.

(a) (b)

Figure 8.2: The implemented OBD Log application: (a) test vehicle setup (b) designed user interface.

highest frequency possible which is not always provided by the commercial loggers; 3) Play/Pause buttons

were needed to freeze or continue data collection during our road tests.

8.4 Engine State Identification

The goal of this section is to identify the engine’s mode of operation based on basic OBD data. As it

was mentioned as a background introduction in Section 8.2, the engine has two modes of operation, namely,

closed-loop and open-loop fuel control. We are particularly interested in identifying the conditions leading to

open-loop mode (non-stoichiometric operation). Identifying those conditions (cold starts, high load (WOT),

and fuel cutoff) and correcting our fuel rate estimation method accordingly, will reduce the overall estimation

errors. It is possible to track the engine status via OBD’s Fuel System Status data, denoted as FUELSY S

in Table 8.1. However, the OBD standard descriptions on FUELSY S [123, 125] do not discuss the possible

101

conditions causing an open-loop operation; and we found out those specific conditions by conducting road

tests. For each possible value for FUELSY S, we summarize the standard descriptions as well as our findings

in Table 8.2.

Table 8.2. Partial identification of (non)stoichiometric conditions using OBD’s Fuel System Status data (FUELSY S) .

FFFUUUEEELLLSSSYYY SSS OBD standard description [123, 125] Road test findings

0x00 - Engine is Off (Open-Loop)

0x01 Open-Loop due to unsatisfied conditions Cold start || Open-Loop due to unknown reasons

0x02 Normal Closed-Loop -

0x04 Open-Loop due to driving conditions Fuel cutoff ||WOT*

0x08 Open-Loop with error (Fault**) -

0x10 Closed-Loop with error (Fault**) -

* WOT: Wide Open Throttle.

** Fault conditions never happened during road tests.

We also had other three observations during our road-tests that, if combined with the information of

Table 8.2, can reveal the full working conditions of the engine: 1) Open-loop operation because of cold start

only happens during the first few seconds after starting the car. Considering this fact, if FUELSY S = 0x01

and the run time since engine start is long enough (e.g. 60 sec) that we are sure the oxygen sensor has reached

its normal operating temperature, then we flag the engine state as open-loop but by unknown reasons (Open-

Loop (Unknown)). 2) During open-loop operation due to fuel cutoff, the car manufacturer feeds a default

value to OBD commanded equivalence ratio, EQR = 1.998817 ≈ 2. This is also observed by DeFries et al.

in [124]; 3) High load or wide open throttle can be identified when engine is in open-loop due to driving

conditions (FUELSY S = 0x04) and, simultaneously, air flow sensor indicates high load (e.g. MAF ≥ 50 g/s).

Based on the aforementioned descriptions, a logic can be constructed for engine state identification

using basic OBD data. We applied this logic on an OBD data set collected by our iOS data logger and plotted

the engine state indicators versus time in Figure 8.3(a). This figure shows that all the indicators given in

last column of Table 8.2 can be identified individually. No fault condition occurred during our road tests.

It should be emphasized that WOT is when the gas pedal is fully or almost-fully depressed and, as a result,

WOT does not usually occur in normal driving conditions. In this specific road test, depicted in Figure

8.3(a), we deliberately caused WOT by sudden accelerations for demonstration purposes only. Figure 8.3(b)

demonstrates estimated fuel rates based on the identified engine state. Two proposed fuel rate estimation

methods will be introduced later in Section 8.5 and 8.6.

102

(a)

(b)

0

1
0.
0

3.
6

7.
1

10
.4

14
.1

17
.6

21
.1

24
.6

28
.1

31
.5

35
.0

38
.6

41
.9

45
.4

49
.2

52
.6

56
.1

59
.6

63
.1

66
.6

69
.9

73
.6

77
.1

80
.4

83
.9

87
.7

91
.1

94
.6

98
.1

10
1.
6

10
4.
9

10
8.
4

11
2.
1

11
5.
6

11
9.
1

12
2.
6

12
6.
0

12
9.
4

13
3.
1

13
6.
6

14
0.
1

14
3.
6

14
6.
9

15
0.
6

15
4.
1

15
7.
6

16
1.
1

16
4.
6

16
8.
1

17
1.
6

17
5.
1

17
8.
6

18
2.
1

18
5.
4

18
9.
1

19
2.
6

19
5.
9

19
9.
4

20
3.
2

20
6.
6

21
0.
1

21
3.
6

21
7.
1

22
0.
6

22
4.
2

22
7.
6

23
1.
1

23
4.
6

23
8.
1

24
1.
6

24
4.
9

24
8.
6

25
2.
1

25
5.
6

25
9.
1

26
2.
7

26
6.
1

26
9.
6

27
3.
1

27
6.
6

27
9.
9

28
3.
6

28
7.
1

29
0.
6

29
4.
1

29
7.
6

30
1.
1

30
4.
6

30
7.
9

31
1.
6

31
5.
0

31
8.
5

32
1.
9

32
5.
6

32
9.
1

33
2.
6

33
6.
1

33
9.
6

34
3.
0

34
6.
6

35
0.
1

35
3.
4

35
7.
1

St
at
e

In
di
ca
to
r Fuel Cutoff

0

1

0.
0

3.
6

7.
1

10
.4

14
.1

17
.6

21
.1

24
.6

28
.1

31
.5

35
.0

38
.6

41
.9

45
.4

49
.2

52
.6

56
.1

59
.6

63
.1

66
.6

69
.9

73
.6

77
.1

80
.4

83
.9

87
.7

91
.1

94
.6

98
.1

10
1.
6

10
4.
9

10
8.
4

11
2.
1

11
5.
6

11
9.
1

12
2.
6

12
6.
0

12
9.
4

13
3.
1

13
6.
6

14
0.
1

14
3.
6

14
6.
9

15
0.
6

15
4.
1

15
7.
6

16
1.
1

16
4.
6

16
8.
1

17
1.
6

17
5.
1

17
8.
6

18
2.
1

18
5.
4

18
9.
1

19
2.
6

19
5.
9

19
9.
4

20
3.
2

20
6.
6

21
0.
1

21
3.
6

21
7.
1

22
0.
6

22
4.
2

22
7.
6

23
1.
1

23
4.
6

23
8.
1

24
1.
6

24
4.
9

24
8.
6

25
2.
1

25
5.
6

25
9.
1

26
2.
7

26
6.
1

26
9.
6

27
3.
1

27
6.
6

27
9.
9

28
3.
6

28
7.
1

29
0.
6

29
4.
1

29
7.
6

30
1.
1

30
4.
6

30
7.
9

31
1.
6

31
5.
0

31
8.
5

32
1.
9

32
5.
6

32
9.
1

33
2.
6

33
6.
1

33
9.
6

34
3.
0

34
6.
6

35
0.
1

35
3.
4

35
7.
1

St
at
e

In
di
ca
to
r WOT

0

1

0.
0

3.
6

7.
1

10
.4

14
.1

17
.6

21
.1

24
.6

28
.1

31
.5

35
.0

38
.6

41
.9

45
.4

49
.2

52
.6

56
.1

59
.6

63
.1

66
.6

69
.9

73
.6

77
.1

80
.4

83
.9

87
.7

91
.1

94
.6

98
.1

10
1.
6

10
4.
9

10
8.
4

11
2.
1

11
5.
6

11
9.
1

12
2.
6

12
6.
0

12
9.
4

13
3.
1

13
6.
6

14
0.
1

14
3.
6

14
6.
9

15
0.
6

15
4.
1

15
7.
6

16
1.
1

16
4.
6

16
8.
1

17
1.
6

17
5.
1

17
8.
6

18
2.
1

18
5.
4

18
9.
1

19
2.
6

19
5.
9

19
9.
4

20
3.
2

20
6.
6

21
0.
1

21
3.
6

21
7.
1

22
0.
6

22
4.
2

22
7.
6

23
1.
1

23
4.
6

23
8.
1

24
1.
6

24
4.
9

24
8.
6

25
2.
1

25
5.
6

25
9.
1

26
2.
7

26
6.
1

26
9.
6

27
3.
1

27
6.
6

27
9.
9

28
3.
6

28
7.
1

29
0.
6

29
4.
1

29
7.
6

30
1.
1

30
4.
6

30
7.
9

31
1.
6

31
5.
0

31
8.
5

32
1.
9

32
5.
6

32
9.
1

33
2.
6

33
6.
1

33
9.
6

34
3.
0

34
6.
6

35
0.
1

35
3.
4

35
7.
1

St
at
e

In
di
ca
to
r

Time (sec)

Open Loop (Unknown)

0

1

0.
0

3.
6

7.
1

10
.4

14
.1

17
.6

21
.1

24
.6

28
.1

31
.5

35
.0

38
.6

41
.9

45
.4

49
.2

52
.6

56
.1

59
.6

63
.1

66
.6

69
.9

73
.6

77
.1

80
.4

83
.9

87
.7

91
.1

94
.6

98
.1

10
1.
6

10
4.
9

10
8.
4

11
2.
1

11
5.
6

11
9.
1

12
2.
6

12
6.
0

12
9.
4

13
3.
1

13
6.
6

14
0.
1

14
3.
6

14
6.
9

15
0.
6

15
4.
1

15
7.
6

16
1.
1

16
4.
6

16
8.
1

17
1.
6

17
5.
1

17
8.
6

18
2.
1

18
5.
4

18
9.
1

19
2.
6

19
5.
9

19
9.
4

20
3.
2

20
6.
6

21
0.
1

21
3.
6

21
7.
1

22
0.
6

22
4.
2

22
7.
6

23
1.
1

23
4.
6

23
8.
1

24
1.
6

24
4.
9

24
8.
6

25
2.
1

25
5.
6

25
9.
1

26
2.
7

26
6.
1

26
9.
6

27
3.
1

27
6.
6

27
9.
9

28
3.
6

28
7.
1

29
0.
6

29
4.
1

29
7.
6

30
1.
1

30
4.
6

30
7.
9

31
1.
6

31
5.
0

31
8.
5

32
1.
9

32
5.
6

32
9.
1

33
2.
6

33
6.
1

33
9.
6

34
3.
0

34
6.
6

35
0.
1

35
3.
4

35
7.
1

St
at
e

In
di
ca
to
r

Chart Title

Engine Off Cold Start Closed Loop

0

2

4

6

8

10

12

0.
0

3.
6

7.
1

10
.4

14
.1

17
.6

21
.1

24
.6

28
.1

31
.5

35
.0

38
.6

41
.9

45
.4

49
.2

52
.6

56
.1

59
.6

63
.1

66
.6

69
.9

73
.6

77
.1

80
.4

83
.9

87
.7

91
.1

94
.6

98
.1

10
1.
6

10
4.
9

10
8.
4

11
2.
1

11
5.
6

11
9.
1

12
2.
6

12
6.
0

12
9.
4

13
3.
1

13
6.
6

14
0.
1

14
3.
6

14
6.
9

15
0.
6

15
4.
1

15
7.
6

16
1.
1

16
4.
6

16
8.
1

17
1.
6

17
5.
1

17
8.
6

18
2.
1

18
5.
4

18
9.
1

19
2.
6

19
5.
9

19
9.
4

20
3.
2

20
6.
6

21
0.
1

21
3.
6

21
7.
1

22
0.
6

22
4.
2

22
7.
6

23
1.
1

23
4.
6

23
8.
1

24
1.
6

24
4.
9

24
8.
6

25
2.
1

25
5.
6

25
9.
1

26
2.
7

26
6.
1

26
9.
6

27
3.
1

27
6.
6

27
9.
9

28
3.
6

28
7.
1

29
0.
6

29
4.
1

29
7.
6

30
1.
1

30
4.
6

30
7.
9

31
1.
6

31
5.
0

31
8.
5

32
1.
9

32
5.
6

32
9.
1

33
2.
6

33
6.
1

33
9.
6

34
3.
0

34
6.
6

35
0.
1

35
3.
4

35
7.
1

Fu
el
 R
at
e
(g
/s
)

Time (sec)

Chart Title

Estimation based on Mass Air Flow (MAF)

Estimation based on Fuel Injection Flow (FIF)

0

10

20

30

40

50

60

70

0.
0

3.
6

7.
1

10
.4

14
.1

17
.6

21
.1

24
.6

28
.1

31
.5

35
.0

38
.6

41
.9

45
.4

49
.2

52
.6

56
.1

59
.6

63
.1

66
.6

69
.9

73
.6

77
.1

80
.4

83
.9

87
.7

91
.1

94
.6

98
.1

10
1.
6

10
4.
9

10
8.
4

11
2.
1

11
5.
6

11
9.
1

12
2.
6

12
6.
0

12
9.
4

13
3.
1

13
6.
6

14
0.
1

14
3.
6

14
6.
9

15
0.
6

15
4.
1

15
7.
6

16
1.
1

16
4.
6

16
8.
1

17
1.
6

17
5.
1

17
8.
6

18
2.
1

18
5.
4

18
9.
1

19
2.
6

19
5.
9

19
9.
4

20
3.
2

20
6.
6

21
0.
1

21
3.
6

21
7.
1

22
0.
6

22
4.
2

22
7.
6

23
1.
1

23
4.
6

23
8.
1

24
1.
6

24
4.
9

24
8.
6

25
2.
1

25
5.
6

25
9.
1

26
2.
7

26
6.
1

26
9.
6

27
3.
1

27
6.
6

27
9.
9

28
3.
6

28
7.
1

29
0.
6

29
4.
1

29
7.
6

30
1.
1

30
4.
6

30
7.
9

31
1.
6

31
5.
0

31
8.
5

32
1.
9

32
5.
6

32
9.
1

33
2.
6

33
6.
1

33
9.
6

34
3.
0

34
6.
6

35
0.
1

35
3.
4

35
7.
1

Sp
ee
d
(m

ph
)

Figure 8.3: Preliminary road test results: (a) engine state indicators, identifed based on basic OBD data (b) estimated fuel rate using the
proposed methods.

8.5 Estimation based on Mass Air Flow rate (MAF-based)

As it was explained in Section 8.2, the stoichiometric or optimum air to fuel ratio (AFRstoich) is

about 14.7 for gasoline engines. However, the engine control unit constantly corrects this ratio via feedback

from exhaust system. The goal of this section is to find the correction factor, namely λ, so that we can obtain

the MAF-based Fuel Rate (FRMAF–based) as given in Equation (8.1). One solution seems to be λ = EQR,

where EQR is the OBD commanded equivalence ratio. However, EQR is the λ value commanded from ECU

103

and, as observed in [128], it is slightly different from the λ measured from oxygen sensor. This causes a fuel

flow estimation error that can be accumulated in cumulative fuel usage tracking. As an example, assuming

λ = EQR in all operating modes of the engine, the cumulative fuel usage was underestimated by 12.7% and

13.5% in our test drivings of 43 miles and 70 miles, respectively. In contrary to what suggested in [129],

applying OBD calculated load value (LOADPCT) in addition to EQR did not lead to accuracy improvement,

and even resulted in doubled error.

FRMAF−based =
MAF

AFRstoich×λ
(8.1)

Based on the aforementioned explanation and road tests, we propose to assume λ = EQR only in

open-loop mode of operation caused by high load (WOT) or unknown reasons. In fact, the error in com-

manded equivalence ratio can be ignored during these modes of operation because they do no occur as fre-

quently as the closed fuel loop operation does. For the closed-loop mode of operation, we utilize the short and

long term fuel trim data (SHRT FT and LONGFT) as air to fuel correction factors. The fuel trims are essen-

tially the fuel correction factors and they modify the pulse width of the fuel injector; what we are proposing

here is that if ECU is modifying the injector’s base pulse width for e.g. 10% more fuel because of a lean

condition, then the engine is perhaps operating 10% leaner than the stoichiometric air-fuel ratio. As another

example, -10% less fuel injection corresponds to -10% richer mixture than the stoichiometric mixture. As

a result, we set λ = 1+ (SHRT FT+LONGFT)
100 in closed-loop mode of operation. This is similar to the formula

presented in [127], but we have incorporated the short term fuel trim into the formulation also. The summary

of our MAF-based estimation logic is given in Table 8.3 and a sample fuel flow estimation is shown in Figure

8.3(b) in a solid light-color line. Please note that Figure 8.3(b) includes some deliberate WOT intervals. The

air to fuel ratio can be in the range of 10 to 14 during WOT [131, 132]; and considering a very large air flow

of MAF=120 g/s, the obtained peak fuel flow rate would be about 12 g/s during WOT which is consistent

with Figure 8.3(b).

We applied our test criteria, explained later in Section 8.7, to the MAF-based fuel flow estimation

method. We conducted five road tests in a three months period and the results are given in Table 8.4. For

comparison reasons, we applied the fuel estimation methods of [124, 126, 127] on Test-5 and we obtained

10.38%, 12.8%, and 5.8% under-estimation errors in estimated cumulative fuel usages, respectively. It should

be emphasized that no explanation was found in [126] regarding the engine state identification, and the

approach of [127] assumes that engine always stays in closed loop mode after cold start [136]. We added an

104

Table 8.3. MAF-based fuel flow estimation summary .

Identified engine state Assigned λ

Engine Off || Fuel cutoff λ = ∞ (zero fuel flow)

Cold start λ = 1/0.77

WOT || Open-loop (Unknown) || Fault λ = commanded equivalence ratio (EQR)

Closed-loop λ = 1+ (SHRT FT+LONGFT)
100

extra fuel cutoff identification to these two works before obtaining their fuel estimation errors.

Table 8.4. Road test results for fuel rate estimation based on mass air flow rate .

Test Actual* cumulative Engine-starts Estimated cumulative fuel used***
No. fuel used counts** by proposed MAF-based method

Test
2.34 (Liter) 5

2.14 (Liter)
1 (-8.5%)

Test
3.41 (Liter) 8

3.49 (Liter)
2 (2.35%)

Test
9.26 (Liter) 21

9.11 (Liter)
3 (-1.6%)

Test
11.51 (Liter) 21

10.69 (Liter)
4 (-7.1%)

Test
47.03 (Liter) 53

45.17 (Liter)
5 (-4%)

* Actual fuel usages were measured by re-filling the test vehicle’s tank at gas station.

** Fuel used during engine startups are considered in the estimations.

*** Gasoline density is set 739.3 g/L in calculations.

8.6 Estimation based on Fuel Injection Flow rate (FIF-based)

Some vehicles provide enhanced OBD data which includes the engine’s fuel rate estimate; however,

this OEM-specific data needs to be first evaluated, and may not be accurate enough for our application. As an

example, DeFries et al [124] found some incorrect fuel rates reported from a 2012 Toyota Camry’s enhanced

OBD fuel rate. Furthermore, not all vehicles, like our test vehicle, provide the fuel injector rate as an OEM-

specific parameter. What we are proposing here is a calibration-based method that estimates the real-time

fuel injection flow rate of the engine using only basic OBD data. We name the obtained fuel flow rate (FR)

as Fuel Injection Flow-based or FIF-based rate (FRFIF–based).

The proposed approach is based on measuring the base fuel injection flow of the vehicle via calibra-

tion and translating this base flow to an actual fuel flow. Base fuel rate can have different definitions based

105

on the model formulations. Here, by base fuel injection rate (FRbase), we mean the summed total fuel rate

(mass per second) of all injectors under maximum engine load and zero fuel trims. This base fuel flow rate is

compensated by the engine ECU based on the information obtained from many sensors. We assume that the

base fuel flow is adjusted by the ECU using multiplicative feedback corrections as:

FRFIF−based = FRbase× (1+
(SHRT FT +LONGFT)

100
)× LOADPCT

100
×X (8.2)

where 1+ (SHRT FT+LONGFT)
100 denotes by what scaling factor the ECU is modifying the base fuel flow rate

according to the percentage of oxygen present in the exhaust gases; and LOADPCT
100 denotes by what scaling

factor the ECU is modifying the base fuel flow rate according to the engine load percentage. All other possible

factors contributing to fuel injection flow are denoted by X . These factors, such as engine coolant temperature

and battery voltage, are assumed to have a very minimal contribution to the fuel delivery. As a result, in this

dissertation, we set X=1.

By calibration, we mean the estimation of the base fuel flow rate of the vehicle (FRbase). In order

to calibrate the model, the user should fill the fuel tank, drive the car while OBD Log application is logging

data, refill the fuel tank at the same fuel dispenser, and record the total fuel used. Then the logged data is

used to calibrate the model and find the best base fuel flow value that results in minimal commutative fuel

estimation error for the specific vehicle.

The summary of our FIF-based estimation logic is given in Table 8.5 and a sample fuel flow estima-

tion is shown in Figure 8.3(b) in a solid dark-color line. We applied our test criteria, explained above and also

later in Section 8.7, to the FIF-based fuel flow estimation method. We conducted five road tests in a three

months period and we found the best base fuel flow for each test. The obtained FRbase values are 2.79, 2.71,

2.78, 2.74, and 2.74, for five road tests. As a result, we set FRbase=2.75 g/s as our best calibration result. The

estimation results using FRbase=2.75 g/s are given in Table 8.6. We did not find any similar calibration-based

method in literature to be compared to the results obtained in this section.

8.7 Test Criteria

In this section, we describe the test criteria that we constructed to obtain the fuel estimation errors

reported in previous sections of this chapter. Each test was initiated by filling the fuel tank at a filling station

with automatic fuel dispensing nozzles. An automatic fuel dispensing nozzle can shut down the flow of gas

106

Table 8.5. FIF-based fuel flow estimation summary .

Identified engine state Assigned Fuel flow rate (FRFIF−based)

Engine Off || Fuel cutoff FRFIF−based = 0

Cold start FRFIF−based = MAF
AFRstoich×(λ=1/0.77)

WOT || Open-loop (Unknown) || Fault FRFIF−based = MAF
AFRstoich×(λ=EQR)

Closed-loop FRFIF−based = FRbase× (1+ (SHRT FT+LONGFT)
100)× LOADPCT

100

Table 8.6. Road test results for fuel rate estimation based on fuel-injector .

Test Actual* cumulative Engine-starts Estimated*** cumulative fuel used
No. fuel used counts** by proposed FIF-based method

Test
2.34 (Liter) 5

2.30 (Liter)
1 (-1.7%)

Test
3.41 (Liter) 8

3.46 (Liter)
2 (1.5%)

Test
9.26 (Liter) 21

9.15 (Liter)
3 (-1.2%)

Test
11.51 (Liter) 21

11.55 (Liter)
4 (0.3%)

Test
47.03 (Liter) 53

47.27 (Liter)
5 (0.5%)

* Actual fuel usages were measured by refilling tank at gas station.

** Fuel used during engine startups are considered in the estimations.

*** Estimated fuel usages were obtained by setting FRbase=2.75 g/s.

when the tank is almost full. The weather temperature and the fuel dispenser identity (gas pump number)

were recorded at the time of filling. The test was followed by day-to-day driving for a period of time with the

OBD Log application running on an iPhone device. The test was finalized by re-filling the fuel tank at the

same fuel dispenser assuming that the auto fuel-shutoff sensitivity may differ from nozzle to nozzle even on

the same station. We also assumed that the nozzle’s auto fuel-shutoff sensitivity may be altered based on the

outside temperature because the fuel shutoff is usually accomplished by mechanical valves detecting change

of pressure. As a result, we scheduled the re-filling day in such a way that outside temperature would not be

very different form that of the filling day. At the end, the estimated cumulative fuel usage was obtained by

downloading and analyzing the OBD log files. The estimation was then compared with the amount of fuel

used to refill the fuel tank.

All tests were conducted by one driver using the test vehicle as his personal vehicle for day-to-day

driving. Because of this, a single test would include multiple engine-starts. Our fuel flow estimation methods

107

do not consider the fuel used during a startup transient; however, the counts of engine-starts are reported in

Tables 8.4 and 8.6 for possible future research.

8.8 Acknowledgment

I thank the technical staff members of the Mechanical Engineering department at Clemson Uni-

versity, Jamie Cole, Michael Justice, and Stephen Bass, for their forbearance and help throughout this long

project. The staff kindly provided equipment and accommodated my request to conduct my OBD Log appli-

cation development in a garage facility. Mohammad Fazelpour’s help in video recording and photography is

also appreciated.

108

Chapter 9

Experimental and Simulation

Evaluation

9.1 Introduction

It is difficult to implement an appropriate benchmark for our MILP-based intersection control. The

main reason is that other algorithms presented in literature, such as [71, 73, 75, 76, 83, 20, 84, 74, 82],

are verified for different traffic networks and different traffic patterns and, as a result, are not useful for

benchmarking and comparing our MILP-based intersection control. As a possible future work, the most

relevant algorithms in literature, such as [74, 82], can be used as benchmarks only if their control programs

are replicated and verified in the same manner that our proposed MILP-based algorithm is verified.

In an attempt to come up with custom benchmarks for the presented MILP-based algorithm, an ex-

tensive review of the published literature regarding planning the vehicles’ longitudinal trajectories and plan-

ning their timely arrival at signalized intersections was performed through the following two deterministic

paradigms:

• Vision-based Speed-Planning: Based on the observed current state of the signals ahead (green, yel-

low, or red), drivers can adjust their speed. This speed adjustment can be, for example, releasing the

accelerator pedal and minimal use of braking while approaching a red light, cruising to hopefully by-

pass a red signal, or speeding up slightly and safely to get through a green light. In fact, these are

few fuel-efficient driving techniques that any driver would use as soon as they can see a traffic signal

109

on their way. Alternatively, these techniques would be used when traffic signals are not connected,

and autonomous vehicles are equipped with a camera-based traffic signal state detection. There has

been a large amount of research in the area of traffic light detection using on-board cameras and fast

image/video scanning such as [137, 138]. However, this vision-based speed control is limited to the

operating range of the cameras and can be affected by environmental conditions as well. Similar limi-

tations apply to the vision range of the drivers driving conventional vehicles.

• Communication-based Speed-Planning: By communicating the deterministic future state of traffic

signals, the connected vehicle’s speed and its longitudinal trajectory can be controlled for timely ar-

rivals at intersections. The idea of speed advisory is not new and has previously been presented in

[6, 55, 139, 140, 141, 142, 143]. The communication-based speed planners can be programmed into

the in-vehicle embedded systems of autonomous vehicles, or can be implemented in virtual driver

assistants to manually guide drivers [58, 114].

Please note that the aforementioned speed controls can also be based on the probabilistic SPaT

information. Koukoumidis et al. in [7] predict the future schedule of traffic signals based on camera detected

traffic signals. Mahler et al. in [43, 32] and Apple et al. in [9] calculate the probability of green light for each

traffic signal assuming that the current status updates are communicated from the city traffic management

centers. Nevertheless, the probabilistic knowledge of SPaT information is not in the scope of this dissertation.

Based on the aforementioned introduction, our proposed MILP-based intersection control requires a

communication-based speed-planning; however, instead of communicating the future state of traffic signals,

the optimal arrival of each vehicle at intersection is communicated. The speed-planning algorithm then needs

to be executed separately and locally by individual autonomous connected vehicles. The MILP-based algo-

rithm is tested with two benchmark road tests; we study: 1) autonomous vehicles with vision-based speed-

planning and 2) autonomous vehicles with communication-based speed-planning, approaching a pre-timed

traffic signal control as our benchmark experimental testbeds. In all of our testbeds, we use the same virtual

driver assistant, explained in Section 7.3, but, for each testbed we individually customize the information

shown to the driver (driver assistant’s HMI) as well as the speed-planner algorithm embedded in the driver

assistant. To demonstrate that our MILP-based intersection control can improve intersection performance

compared with the aforementioned benchmarks in the study, a number of variables need to be analyzed. As

it was explained in previous chapter, the fuel consumption of the real test vehicle is chosen as the major

measure of effectiveness (MOE).

110

(b) (c)

(a)

Figure 9.1: Screenshots of the implemented simulation testbeds using Java; (a) Pre-timed signalized intersection with no communica-
tion (Testbed A) (b) Pre-timed signalized intersection with unidirectional communication and speed-advisory (Testbed B) (c) MILP-
controlled intersection with no traffic signal and with bidirectional communication (Testbed C).

In this chapter, first we describe all the test scenarios and benchmarks in Section 9.2. Each test

scenario requires a customized speed-planning which is explained in the same section for each test scenario.

Then Section 9.3 introduces the measures of effectiveness (MOE) used to evaluate the success of the MILP-

based intersection control compared with the benchmarks. The comparison results are given in last two

sections via SIL and VIL simulations, respectively.

9.2 Test Scenarios

9.2.1 Testbed A: Vision-based Speed-Planning at Pre-timed Signalized Intersection

Autonomous vehicles approaching a pre-timed traffic signal control provide a baseline testbed,

against which we can benchmark and compare our MILP-based intersection controller. In this specific

testbed, we also assume that the autonomous vehicles are equipped with a camera-based traffic signal state

detection. As it was previously mentioned in Section 9.1, this means that these vehicle can only observe the

current state of the signals ahead, like the drivers of conventional vehicles do. In order to model this test

environment, we set our simulation program and our virtual driver assistant in such a way that vehicles will

receive the traffic signal-related speed advice from their speed-planning engines only when they are within

the range of their imaginary camera. We set this range as 300 m as measured from the signal ahead. A

screenshot of the implemented simulation environment is shown in Figure 9.1(a).

The goal for an autonomous vehicle equipped with a camera-based traffic signal state detection is

111

only to adjust speed for an efficient stop at red or a safe pass though green light. As a result, the customized

speed-planning algorithm for this testbed is simple with features as follows:

• In free flow, the vehicles drive at average speed vavg.

• As soon as a vehicles is within the range of its imaginary camera (300 m), the current state of the

simulated traffic light is fed into its speed-planner. In case of a red light, the vehicle decelerates slowly

to a low cruising speed (e.g 25 mph) to hopefully bypass the red signal without stopping. In case of a

green light, the vehicle maintains its speed; alternatively, if the vehicle is moving slowly and the posted

speed limit allows, the vehicle speeds up slightly to get through the green light.

• While approaching the intersection, the speed-planning engines constantly estimate the distance re-

quired to stop the vehicles before crossing the intersection. In order to avoid sudden slowdowns for

fuel saving, this distance is calculated considering a low to medium deceleration (2 m/s2) as follows:

dstop = tres.vi +
0− v2

i
2.adec

(9.1)

where tres = 0.5 sec is the response time of an autonomous vehicle, vi is the current speed of the

connected vehicle, and adec = -2 (m/s2) is the desired declaration rate considered for passenger cars in

this part of the dissertation.

• Upon reaching the stop distance from the intersection (calculated by Equation (9.1)), if the light is still

red even after cruising in low speed, then the vehicle decelerates to come to a complete stop at the

intersection. If the light turns from green to yellow while the vehicle is within dstop then the speed-

planner decides to continue at the current speed through the intersection or come to a complete stop

based on its distance to the intersection.

The aforementioned speed-planning algorithm was then incorporated into the simulations. Further-

more, the signal phase and timing (SPaT) information for the simulated pre-timed traffic signal was obtained

off-line from SYNCHRO (Trafficware 2011) optimization program. This optimized SPaT was then used in

the microsimulation to model the current state of the traffic light detected by the vehicles’ imaginary camera.

The SIL/VIL simulation results of this testbed are given in Sections 9.4 and 9.5.

112

9.2.2 Testbed B: Communication-based Speed-Planning at Pre-timed Signalized In-

tersection

We also consider a benchmark algorithm, namely communication-based speed-planning at pre-timed

signalized intersection, where all autonomous vehicles are assumed to be able to receive the deterministic

future state of traffic signals via unidirectional wireless communications. Although, the communication

between the vehicles and a local signal controller can be achieved by Dedicated short Range Communication

(DSRC), we assume that vehicles are connected to a signal controller server via cellular networks technology

because of the limited communication range of DSRC. In order to model this test environment, we set our SIL

simulation program in such a way that vehicles will receive the traffic signal phase and timing information

(SPaT) when they are within 2 km of the intersection. However, we decrease this range to 1.2 km in our

VIL simulation program because of the test track limitations. For our real vehicle, we set the radius of the

intersection monitoring region to 1.2 km as shown in Figure 7.6; and the iOS driver assistant subscribes to

the intersection and receives the corresponding SPaT as soon as the vehicle enters the intersection monitoring

region. A screenshot of the implemented simulation environment is shown in Figure 9.1(b).

The goal for an autonomous vehicle that is approaching a pre-timed signalized intersection and is

equipped with a communication-based speed-planning is to calculate velocity trajectories that reduce idling

time at red signals and therefore improve fuel efficiency. As a result, a customized speed-planning algorithm

for this testbed is implemented here by modifying the speed advisory proposed by our group in [6]. The

programming details are not included here to keep the section brief, and only an example is depicted in

Figure 9.2 to demonstrate our speed-planning algorithm. Figure 9.2 shows the feasible speed intervals that a

vehicle traveling at a speed of vi can follow without stopping at red signals. These speed intervals are limited

to the speed limit vmax (e.g. 45 mph) and the minimum cruising speed possible vmin (e.g. 20 mph). In this

dissertation, we add a constant safety buffer ∆t=4 sec after each start-of-green so that a vehicle would never

cross the stop-bar at red signal. Among the available speed intervals shown in Figure 9.2, we choose a target

speed as close as possible to the desired average speed vavg.

At this testbed, we are assuming that the autonomous vehicles have information about the instanta-

neous queue size when they are within 300 m of the intersection. If the queue information is available then

the vertical axis of Figure 9.2 is changed from the distance to stop-bar to the distance to the rear end of the

queue. In this case, the safety buffer ∆t, added after each start-of-green, compensates in part for the queue

dissipation time.

113

Distance to stop‐bar
or rear end of queue

cvi

time

Green split

∆t ∆t ∆t

Red split
Suggested velocity
intervals

Yellow split

Figure 9.2: Schematics map of green splits distributed over space-time. The graphics shows how a speed-planner find the feasible
velocity intervals in order to avvoid stopping at red.

The vehicles equipped with speed advisory system, form platoons to pass through green splits,

although platooning is not incorporated into the speed-planning algorithm. It should be emphasized that our

speed advisory algorithm does not take the vehicles that are following a platoon’s lead vehicle into account.

This means that the lead vehicle may adjust its speed to pass at almost the end of a green split, ignoring all

following vehicles that may get stuck at the upcoming red signal.

The aforementioned speed-planning algorithm was then incorporated into the simulations as well as

the iOS driver assistant. Furthermore, the same signal phase and timing (SPaT) information of testbed A was

used here for the virtual pre-timed traffic signal. This SPaT (optimized by SYNCHRO (Trafficware 2011))

was communicated to the vehicles during road tests and simulations so that they could adjusts their speed

based on future state of the virtual traffic signal. The SIL/VIL simulation results of this testbed are given in

Sections 9.4 and 9.5. It should be emphasized that we are assuming that the autonomous vehicles, traveling

in this testbed, do not have information about future queue size that they would face at their arrival times.

The potential gain in traffic flow, if the future queue information is integrated in the algorithm, is left as future

research.

9.2.3 Testbed C: Communication-based Speed-Planning at MILP Controlled Inter-

section

The testbed explained in this subsection includes our proposed MILP-based intersection control.

This testbed will be benchmarked and compared against Testbeds A and B which were explained in previous

114

subsections. Similar to Testbed B, we assume all autonomous vehicles are able to receive data via wireless

communications; however, this testbed is expanded to include two-way communication between moving con-

nected vehicles and upcoming MILP-based intersection controller. The exchanged data mainly include the

access times that the signal controller server assigns to each approaching vehicle as well as the geographical

data of the connected vehicles wirelessly transmitted in real-time to the MILP-based intersection controller.

In order to model this test environment, we set our SIL simulation program in such a way that the simu-

lated vehicles will subscribe to the intersection controller when they are within the range of 2 km from the

intersection. However, we decrease this range to 1.2 km in our VIL simulation program because of the test

track limitations. For our real vehicle, we set the radius of the intersection monitoring region to 1.2 km as

shown in Figure 7.6; and the iOS driver assistant subscribes to the intersection and receives the corresponding

access time as soon as the vehicle enters the intersection monitoring region. A screenshot of the implemented

simulation environment is shown in Figure 9.1(c).

The goal for an autonomous vehicle connected to our MILP-based intersection controller is to reach

the intersection access point at its assigned access time. As a result, a customized speed-planning algorithm

for this testbed is sought to be incorporated into our simulations to guide the simulated vehicles and the real

vehicle accordingly. This simplified algorithm actually plans the vehicles’ longitudinal trajectories in such a

way that each individual vehicle reaches the access area (safety area) at it assigned timestamp. The basic fact

to be considered before explaining the algorithm is that if a vehicle’s remaining travel time to the intersection

safety area at current speed is equal to the remaining time to its assigned access time, then, obviously, it is not

necessary to adjust its speed. As shown in Figure 9.3(a), this means that the vehicle can continue driving at

its current speed if ∆t = taccess,i− t0 = di
vi

, where di and vi are the current distance and velocity at current time

t0, and taccess,i is the assigned access time. Most often, however, the speed-planning engine should consider

acceleration/deceleration maneuvers to adjust the vehicle speed at the following two situations:

• Acceleration: If taccess,i < t0 + di
vi

then the vehicle cannot make it to the access point at its assigned

access time, if it keeps driving at its current speed. As a result, the vehicle needs to accelerate to a

cruising speed. As shown in Figure 9.3(b), the vehicle should keep that speed (vcruise,i) till it reaches

the intersection area. Knowing the desired acceleration rate aacc, the cruising speed can be calculated

by:

vcruise,i = vi +aacc∆t−
√

2aacc(
1
2

aacc∆t2 + vi∆t−di) (9.2)

where ∆t is the remaining time to the assigned access time, di is the remaining distance to the access

115

taccess,i

vi dive
lo
ci
ty

timet0

ݐ∆ ൌ
݀௜
௜ݒ

taccess,i

vi

di

ve
lo
ci
ty

timet0taccess,i

vi
dive

lo
ci
ty

timet0

ݐ∆ ൐
݀௜
௜ݒ

ݐ∆ ൏
݀௜
௜ݒ

(a) (b) (c)

vcruise,i
vcruise,i

Figure 9.3: Preliminary speed-planning for vehicles that can pass the MILP controlled intersection with no stop.

point, and vi is the vehicle’s velocity at current time. We set aacc = 2m/s2 as the desired acceleration

rate of vehicles only if it satisfies the condition of 2m/s2 ≥ 2(di−vi∆t)
∆t2 to avoid taking the square root of

negative number in Equation (9.2); otherwise, we set aacc =
2(di−vi∆t)

∆t2 .

• Deceleration: If taccess,i > t0+ di
vi

then the vehicle would be early at access point if it continues traveling

at the current speed. Thus, the vehicle needs to decelerate to a cruising speed (vcruise,i), and, as shown

in Figure 9.3(c), the vehicle should keep that speed till it reaches the intersection area. Knowing the

desired deceleration rate adec, the cruising speed can be calculated by:

vcruise,i = vi +adec∆t +

√
2adec(

1
2

adec∆t2 + vi∆t−di) (9.3)

where ∆t is the remaining time to the assigned access time, di is the remaining distance to the access

point, and vi is the vehicle’s velocity at current time. We set adec =−2m/s2 as the desired deceleration

rate of vehicles only if it satisfies the condition of −2m/s2 ≤ 2(di−vi∆t)
∆t2 to avoid taking the square root

of negative number in Equation (9.3); otherwise, we set adec =
2(di−vi∆t)

∆t2 .

The aforementioned equations do not always have solutions. In other words, it is not always possible

for a connected vehicle to pass the intersection without stopping. For this reason, we also add the following

two special cases to our speed-planning algorithm, in which a complete stop at intersection is inevitable.

These two added cases are explained as follow:

• Stop due to missed assigned access time: If the access time is assigned too early such that the vehicle

cannot make it, then the vehicle should be prepared to stop. If no other appropriate access time is

assigned by the intersection controller while the vehicle is approaching the intersection, then the vehicle

must come to a complete stop at access point because it missed its reserved access time. To be prepared

116

taccess,max,i

vi

di
ve

lo
ci
ty

time
t0

∆t1 ∆t2

ଵൌݐ∆ min ௜ݒ௠௜௡ିݒ
ܽ௜

, ௜ܽ௜ݒିݒ
	
௩ୀ ୫ୟ୶ሼ௩೔

మାଶ௔೔ௗ೔,଴ሽ

vmin
ଶൌݐ∆ max

݀௜
௠௜௡ݒ

െ
௜ݒ௠௜௡ଶିݒ

ଶ

2ܽ௜ݒ௠௜௡
, 0

௔௖௖௘௦௦,௠௔௫,௜ݐ ൌ ଴ݐ ൅ ଵݐ∆ ൅ ଶݐ∆

ܽ௜ ൌ ܽௗ௘௖

Figure 9.4: Latest access time possible based on the minimum cruising speed (vmin) and desired deceleration rates (adec).

well ahead for this stop, we introduce taccess,min,i in our algorithm as the earliest time that the vehicle

can access the intersection if it travels at maximum acceleration and maximum speed possible. Then,

the vehicle needs to be prepared for a complete stop if taccess,i ≤ taccess,min,i. This earliest possible

access time is computed locally by speed-planning engine of each vehicle in a similar way that it was

implemented in the intersection controller and was previously explained in Figure 6.3.

• Stop due to a late assigned access time: If the assigned access time is far away in time such that even a

very slow-moving vehicle reaches the intersection before that time, then the vehicle should be prepared

to stop. After stopping at access point, the vehicle waits for its reserved access time before it starts to

move and proceeds to the intersection. In other words, if the vehicle cannot delay its intersection access

even by traveling in lowest possible velocity, then the vehicle stops behind the safety area waiting for

its assigned access time. To formulate this into our speed-planning algorithm, we introduce taccess,max,i

as the latest time that the vehicle can access the intersection if it travels at minimum cruising speed

(vmin) and maximum deceleration rate possible. Then, the vehicle needs to be prepared for a complete

stop if taccess,i ≥ taccess,max,i. The taccess,max,i is locally computed by the speed-planning engine of each

vehicle as explained in Figure 9.4. This time instance depends on the distance of the vehicle to the

access point (di) and the max(.) and min(.) functions shown in Figure 9.4 handle this dependency

problem.

The aforementioned speed-planning algorithm was then incorporated into the simulations as well as the iOS

driver assistant. It should be emphasized that this algorithm is continuously applied on each vehicle; as

a result, if there is an unwanted change in speed, e.g. because of a slow-moving vehicle ahead, then the

algorithm updates the travel trajectory based on the new situation. Next subsection explains how the vehicles

in front can affect the speed of the follower vehicles. The SIL/VIL simulation results of this testbed are given

in Sections 9.4 and 9.5.

117

9.3 Performance Metrics (MOE)

Here, we want to analyze the impact of the MILP-based intersection control, comparing certain

measures of effectiveness (MOEs) of connected vehicle that travel the same distance on the same road con-

ditions. The MOEs studied in our SIL and VIL simulations are: (1) the intersection total number of stops,

(2) the intersection total stopped delay, (3) the average stopped delay per stopped vehicle, and (4) the average

travel time per vehicle. Because the OBDII data of the real vehicle can be constantly collected by our iOS

application during road tests, we can also report OBD-based measures of effectiveness that are not usually

reported in literature. We report the fuel consumption as a OBD-based MOE for the real vehicle in our VIL

simulations. In addition, we extract the sum of engine fuel cutoff intervals using OBD logged data, and

we report the percentage of fuel cutoffs during the road test. Improvement in fuel cutoff percentage means

less harsh braking, prolonged deceleration without braking, and cruising at more than average speeds. The

summary of the reported MOEs for SIL and VIL simulations is given in Table 9.1.

Table 9.1. MOEs reported for both SIL & VIL simulations, and OBD-based
MOEs reported for the real vehicle only.

Test Configuration MOE

SIL & VIL

Intersection total number of stops

Intersection total stopped delay

Average stopped delay per Stopped Vehicle

Average travel time per Vehicle

VIL
Fuel consumption (liter)

Fuel cutoff (%)

9.4 SIL Simulation Results

As it was explained in Section 7.5, by studying SIL simulation results, we try to determine what

the maximum achievable is in a MILP controlled intersection. The simulated vehicles arrive using a stochas-

tic generation method (negative Exponential distribution were used for 750 vehicles/hour for all four ap-

proaches); however, their arrival pattern is recorded and replayed for each testbed. In this way, the same

arrival pattern was exactly replicated for each testbed. A total of 3 simulations were conducted for the

testbeds (Testbeds A, B, and C (MILP)). The average and maximum speeds were set to vavg=35 mph and

vmax=45 mph, respectively. The subscription distance was set to 2 km. The measure of effectiveness (MOE)

118

results of the SIL simulations are given in Table 9.2 for each testbed, where the performance improvements

achieved by our MILP-based intersection controller are also provided comparing to Testbeds A and B. In

SIL simulations for Testbed C, the mixed-integer linear programming problem was solved by IBM’s CPLEX

optimization package.

Table 9.2. SIL simulation results for all vehicles; and the overall performance improvements achieved by MILP-based intersection
controller (Testbed C) .

MOE* Testbed Testbed Testbed Gain achieved comparing to
(for all simulated vehicles) A B C Testbed A Testbed B

Intersection traversals 2900 2900 2900 - -

Test duration 1h 5min 1h 5min 1h 5min - -

Total intersection number of stops 1162 370 11 %99.1 %97.0

Total intersection stopped delay 6h 41min 4h 59min 109sec %99.5 %99.4

Average stopped delay per Stopped Vehicle 21sec 49sec 10sec %52.4 %79.6

Average travel time per Vehicle 2min 26sec 2min 22sec 2min 15sec %7.5 %4.9

* All MOEs reported for the subscription distance (2 km).

As shown in Table 9.2, by using our MILP-based control at Testbed C, the intersection delay and

number of stops were significantly reduced compared to pre-timed intersection benchmarks. Also our linear

formulations did not compromise the average travel time. By using the speed advisory at Testbed B, the total

number of stops at intersection (370 counts) was significantly less than that of Testbed A. However, a stopped

vehicle at Testbed B, on average, stopped for a longer interval compared to the situation at Testbed A where

only instantaneous traffic signal information is available within a short range from traffic signal ahead. The

reason is that the vehicles in a speed advisory situation form platoons to pass through green splits; and the

vehicles at the end of the platoons may get stuck at the beginning of red signals. This is why most of the

stopped vehicles at Testbed B, actually stopped for almost the whole red split.

9.5 VIL Simulation Results

In this section, a MILP-based intersection control (Testbed C) is tested with two benchmarks in a

vehicle-in-the-loop configuration (VIL). The detailed explanation for the VIL test environment can be found

in Chapter 7. A test track at International Transportation Innovation Center (ITIC) [144] in Greenville, South

Carolina was used to validate the proposed intersection control scheme in a Vehicle-In-the-Loop platform.

The ITIC testing infrastructure is embedded at the South Carolina Technology & Aviation Center (SCTAC).

119

As shown in Figure 9.5(a), ITIC provides a 600-acre closed test site. We drove our test vehicle on a 5,500 x

300-foot controlled asphalt straightaway located at ITIC test area and shown in 9.5(b).

(a) (b)

Figure 9.5: Google satellite view of (a) International Transportation Innovation Center (ITIC) test site (b) the 5,500 x 300-foot asphalt
straightaway used to execute the vehicle-in-the-loop tests.

As shown in Figure 9.6, an imaginary intersection was set up using traffic cones. A stop sign

was also placed at the safety area border so that the test driver would stop at that location if a stop was

asked by the virtual driver assistant. Similar to our SIL simulations, the simulated vehicles arrive using

a stochastic generation method (negative Exponential distribution were used for 750 vehicles/hour for all

three approaches); and their arrival pattern is recorded and replayed for each testbed. In this way, the same

arrival pattern was exactly replicated for each testbed. A total of 3 vehicle-in-the-loop simulation tests were

conducted for Testbed A, B, and C (MILP). The average and maximum speeds were set to vavg=35 mph and

vmax=45 mph, respectively. The subscription distance was 1.2 km. Each test consisted of 12 laps around

the test track with wide U-turns at both ends of the track. After each lap, there was a different period of

rest (between 10sec and 60sec) so that the obtained results would not be affected by the cyclic periodicity

of the pre-timed intersection benchmarks. Each time the test driver stopped at the predefined rest location,

a countdown timer showed the remaining rest period via the virtual driver assistant. The rest periods were

randomly generated for the 12 laps: 60, 39, 20, 21, 45, 42, 39, 57, 14, 53, 59, and 51 seconds, respectively.

The results of the VIL simulations for each testbed are given in Table 9.3, where the performance

improvements achieved by our MILP-based intersection controller are also provided comparing to Testbeds A

and B. In VIL simulations for Testbed C, the mixed-integer linear programming problem was solved by IBM’s

CPLEX optimization package. As it was mentioned above, 750 vehicles/hour were set for three approaches

of the intersection and one approach was reserved for one real test vehicle. This, and the shorter subscription

distance are the reasons that there were different results obtained at test beds compared with those of Table

120

Figure 9.6: The vehicle-in-the-loop test area at International Transportation Innovation Center (ITIC).

Table 9.3. VIL simulation results for all vehicles; and the overall performance improvements achieved by MILP-based intersection
controller (Testbed C) .

MOE* Testbed Testbed Testbed Gain achieved comparing to
(for all vehicles) A B C Testbed A Testbed B

Intersection traversals 2147 2147 2147 - -

Test duration 1h 4min 1h 4min 1h 3min - -

Total number of stops 900 142 0 100% 100%

Total intersection stopped delay 5h 13min 1h 56min 0sec 100% 100%

Average stopped delay per Stopped Vehicle 21sec 49sec 0sec 100% 100%

Average travel time per Vehicle 1min 36sec 1min 32sec 1min 15sec 21.8% 18.2%

* All MOEs reported for the subscription distance (1.2 km).

9.2. However, the results obtained here also showed that by using our MILP-based control, the intersection

delay and number of stops were significantly reduced compared to pre-timed intersection benchmarks.

The measures of effectiveness were also extracted specifically for the real vehicle only. Using the

implemented OBD data logger application, the OBD-based MOEs were also reported for the real vehicle. The

results are given in Table 9.4. The test vehicle passed the MILP-based imaginary intersection 12 times without

stopping that resulted in 19.5% and 18.0% benefit in fuel consumption comparing to benchmark Testbeds A

and B, respectively. Benefiting from the optimal solutions of the MILP-based controller in Testbed C, the

vehicle completed the 12-lap test in 51min and 11sec which was significantly shorter than the time it took

in pre-timed intersection benchmarks. It should be emphasized that the vehicle also had no stopped delay in

Testbed B which was due to the fact that there were no other real vehicles traveling along the vehicle’s route.

121

Although the speed-advisory engine used in Testbed B reduced the stopped delay significantly compared to

the baseline Testbed A, it did not result in significant fuel consumption reduction. The reason was that the

speed-advisory imposed travel delays to the test driver by recommending very low speeds.

Table 9.4. VIL simulation results only for the real vehicle; and the overall performance improvements achieved by
MILP-based intersection controller (Testbed C) .

MOE* Testbed Testbed Testbed Gain achieved comparing to
(for real vehicle only) A B C Testbed A Testbed B

Intersection traversals 12 12 12 - -

Test duration 57min 31sec 55min 4sec 51min 11sec - -

Total number of stops 10 0 0 100% 0%

Total stopped delay 4min 19sec 0sec 0sec 100% 0%

Average stopped delay 26sec 0sec 0sec 100% 0%

Average travel time 1min 48sec 1min 39sec 1min 19sec 27.2% 20.8%

Fuel consumption (liter) 1.13 1.11 0.91 19.5% 18.0%

Fuel cutoff** (%) 11.6 9.1 12.2 5.2% 34.1%

* All MOEs reported for the subscription distance (1.2 km).

** This MOE is obtained by dividing the sum of fuel cutoff time intervals by the total travel time.

9.6 Acknowledgment

I would like to thank Dr. Joachim Taiber and the staff members of International Transportation

Innovation Center (ITIC) for providing me with access to a closed test site in ITIC facilities in Greenville,

S.C. This test site enabled me to evaluate the proposed intersection control scheme and gather data under near

real world conditions.

122

Chapter 10

Conclusions for Part II

We proposed a novel intersection control scheme to encourage platoon formation and facilitate un-

interrupted passage for autonomous vehicles at intersections. Our three key contributions are in: i) an in-

tersection control algorithm that anticipate vehicle arrivals and guides them into fast moving platoons, ii)

reducing the vehicle-intersection coordination problem to a mixed-integer linear program, and iii) developing

a customized microsimulation test environment in which simulated vehicles are guided by our MILP-based

controller. Microsimulation results demonstrated that our linear formulations not only minimized the inter-

section delay and number of stops significantly compared to pre-timed intersection benchmarks, but also

ensured no crash occurred and did not compromise the average travel time.

In communication, and experimental point of view, our novel scalable mechanism allowed a large

number of vehicles to subscribe to the intersection controller via cellular networks technology. This research

also provided a vehicle-in-the-loop testbed with a real vehicle interacting with the intersection control cyber-

layer and with the microsimulations in a virtual road network environment. In order to estimate the fuel

consumption reduction of the implemented system, a new method was proposed to estimate fuel consumption

using the basic engine diagnostic information.

While the proposed algorithm eliminates the need for physical traffic signals in an autonomous

driving environment (100% penetration rate of equipped vehicles), the focus of a future work can be on what

it will be like for a driver or a passenger in the vehicle approaching such intersections. However, it might

be possible to modify the proposed algorithm to be applied to a mixed traffic consisting of autonomous-

controlled and human-controlled vehicles. In a mixed traffic environment, a physical traffic light is needed, a

minimum green time needs to be considered, and the minimum headway between vehicles should satisfy the

123

human reaction time.

The proposed signal control algorithm can be improved if a scalable coordination scheme between

multiple intersection controllers is incorporated into the formulations. In fact, an effective passage of platoons

requires real-time coordination of neighboring intersection controllers that can be quite challenging. How-

ever, presence of intersections controllers on the same back-end node makes communication of decisions

very efficient.

124

Appendices

125

Appendix A Autonomous Car Following Model

The speed-planner embedded in our virtual assistant, does not include any car following model

because we have only one real vehicle-in-the-loop that is not sharing its driving lane with simulated vehicles.

However, a car following model needs to be incorporated into our simulated vehicles. There has been a

large amount of research in the area of car following models for vehicles driven by humans. Safety-distance

models (collision avoidance models) are a class of car-following models that assume the follower vehicle

always keeps a safe distance to the vehicle in front [145]. For example, the car-following model of AIMSUN

software [146] is of this type, developed by P.G. Gipps [147]. In the Gipps car-following model, as one of

the earliest models, the vehicle’s speed is constrained to obtain a safe space headway to the vehicle in front

[145]. As another example, Newell [148] presented a simplified car-following theory that is less elaborate

than its predecessors [149].

To design a car following model applicable to autonomous driving, it should be noted that the com-

puter control in autonomous vehicles will eliminate human reaction times [102]. In this dissertation, we need

such a car following model to plan the simulated vehicles’ longitudinal trajectories. Our model is based on

the fact that if the current spacing between the follower vehicle and the lead vehicle needs to be decreased for

∆S meter then the follower should travel a distance of ∆S meter greater than that of the lead vehicle. On the

other hand, if the current spacing between the two vehicles needs to be increased by ∆S meter then the fol-

lower should travel a distance of ∆S meter less than that of the lead vehicle. The time that it takes a follower

vehicle to adjust its spacing depends on many factors such as its speed compared with that of the lead vehicle

and also its actual spacing compared with the optimal spacing. We use the aforementioned facts to formalize

our simple car following model; however, our detailed formulations are not presented here because it is not

in the scope of this dissertation.

In summary, in this dissertation, the vehicles speed are constrained by (1) their desired speed in free

flow, (2) the traffic signal-related speed planning, and (3) the car following-related speed planning. If the

vehicle is approaching the traffic signal area then its speed is determined by traffic signal status as well as its

desired speed. If there is a vehicle traveling at lower speed in front, then the vehicle speed is constrained by

the car following model even if the vehicle would miss the green light or miss its assigned access time. It

should be emphasized that an autonomous vehicle adopts the velocity of the leading vehicle only once it has

reached the spacing predefined for that velocity.

126

Bibliography

[1] Intelligent Transportation Systems Joint Program Office U.S. Department of Transportation. Con-
nected Vehicle Research in the United States. Web. http://www.its.dot.gov/connected_

vehicle/connected_vehicle_research.htm.

[2] 2013 motor vehicle crashes: Overview. Traffic Safety Facts Research Note. Report No. DOT HS 812
101. Technical report, National Highway Traffic Safety Administration, Washington, D.C., 2013.

[3] David Schrank, Bill Eisele, and Tim Lomax. TTI 2012 urban mobility report. Texas A&M Transporta-
tion Institute. The Texas A&M University System, 2012.

[4] Intelligent Transportation Systems U.S. Department of Transportation. Joint Program Office. Web.
http://www.its.dot.gov/its_jpo.htm.

[5] E. A. Mueller. Aspects of history of traffic signals. IEEE Transactions on Vehicular Technology,
VT19(1):6–17, 1970.

[6] B. Asadi and A. Vahidi. Predictive cruise control: Utilizing upcoming traffic signal information for
improving fuel economy and reducing trip time. IEEE Transactions on Control Systems Technology,
19(3):707–714, 2011.

[7] E. Koukoumidis, L.-S. Peh, and M. Martonosi. Signalguru: leveraging mobile phones for collaborative
traffic signal schedule advisory. In Proceedings of the 9th international conference on Mobile systems,
applications, and services, pages 127–140. ACM, 2011.

[8] Department of Transportation. Cooperative Intersection Collision Avoidance Systems. Web. http:

//www.its.dot.gov/cicas.

[9] Jim Apple, Paul Chang, Aran Clauson, Heidi Dixon, Hiba Fakhoury, Matthew L Ginsberg, Erin
Keenan, Alex Leighton, Kevin Scavezze, and Bryan Smith. Green Driver: AI in a microcosm. In
Twenty-fifth AAAI conference on Artificial Intelligence, 2011.

[10] National Transportation Operations Coalition. National traffic signal report card. http://www.ite.
org/REPORTCARD/.

[11] D. B. Work, O.-P. Tossavainen, S. Blandin, A. M. Bayen, T. Iwuchukwu, and K. Traction. An en-
semble kalman filtering approach to highway traffic estimation using gps enabled mobile devices. In
Proceedings of 47th Conference on Decision and Control, Cancun, Mexico, 2008.

[12] J. C. Herrera, D. B Work, R. Herring, X. Ban, Q. Jacobson, and A. M. Bayen. Evaluation of traffic
data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation
Research part C, 18:568–583, 2010.

[13] A. Hofleitner, R. Herring, P. Abbeel, and A. Bayen. Learning the dynamics of arterial traffic from probe
data using a dynamic bayesian network. IEEE Transactions on Intelligent Transportation Systems,
13:1679–1693, 2012.

127

http://www.its.dot.gov/connected_vehicle/connected_vehicle_research.htm
http://www.its.dot.gov/connected_vehicle/connected_vehicle_research.htm
http://www.its.dot.gov/its_jpo.htm
http://www.its.dot.gov/cicas
http://www.its.dot.gov/cicas
http://www.ite.org/REPORTCARD/
http://www.ite.org/REPORTCARD/

[14] X. Ban, R. Herring, P. Hao, and A. Bayen. Delay pattern estimation for signalized intersections using
sample travel times. Transportation Research Record: Journal of the Transportation Research Board,
2130:109–119, 2009.

[15] Cabspotting. http://cabspotting.org/.

[16] Nextbus. http://www.nextbus.com/.

[17] N. J. Goodall, B. L. Smith, and B. Park. Traffic signal control with connected vehicles. Transportation
Research Record: Journal of the Transportation Research Board, 2381(1):65–72, 2013.

[18] David Kari, Guoyuan Wu, and Matthew J Barth. Development of an agent-based online adaptive signal
control strategy using connected vehicle technology. In Intelligent Transportation Systems (ITSC),
2014 IEEE 17th International Conference on, pages 1802–1807. IEEE, 2014.

[19] L. A. Klein, M. K. Mills, and D. RP Gibson. Traffic Detector Handbook: -Volume II Report No.
FHWA-HRT-06-139. Technical report, Federal Highway Administration , U.S. DOT, McLean, VA,
2006.

[20] Kurt Dresner and Peter Stone. A multiagent approach to autonomous intersection management. Jour-
nal of artificial intelligence research, pages 591–656, 2008.

[21] Michel Ferreira and Pedro M d’Orey. On the impact of virtual traffic lights on carbon emissions
mitigation. Intelligent Transportation Systems, IEEE Transactions on, 13(1):284–295, 2012.

[22] Remi Tachet, Paolo Santi, Stanislav Sobolevsky, Luis Ignacio Reyes-Castro, Emilio Frazzoli, Dirk
Helbing, and Carlo Ratti. Revisiting street intersections using slot-based systems. PloS one,
11(3):e0149607, 2016.

[23] S Ilgin Guler, Monica Menendez, and Linus Meier. Using connected vehicle technology to improve
the efficiency of intersections. Transportation Research Part C: Emerging Technologies, 46:121–131,
2014.

[24] Thomas Bock, Markus Maurer, and Georg Farber. Validation of the vehicle in the loop (VIL); a
milestone for the simulation of driver assistance systems. In Intelligent Vehicles Symposium, 2007
IEEE, pages 612–617. IEEE, 2007.

[25] S. A. Fayazi, A. Vahidi, G. Mahler, and A. Winckler. Traffic signal phase and timing estimation from
low-frequency transit bus data. IEEE Transactions on Intelligent Transportation Systems, 16(1):19–28,
Feb 2015.

[26] A. Vahidi, S. A. Fayazi, G. Mahler, and A. Winckler. Systems and methods for estimating traffic signal
information, November 10 2015. US Patent 9,183,743.

[27] S. A. Fayazi and A. Vahidi. Crowdsourcing phase and timing of pre-timed traffic signals in the pres-
ence of queues: Algorithms and back-end system architecture. IEEE Transactions on Intelligent Trans-
portation Systems, 17(3):870–881, 2016.

[28] R. Akçelik and M. Besley. Queue discharge flow and speed models for signalised intersections. In
Transportation and Traffic Theory in the 21st Century, Proceedings of the 15th International Sympo-
sium on Transportation and Traffic Theory, Adelaide, Australia, 2002.

[29] M. J. Lighthill and G. B. Whitham. On kinematic waves. ii. a theory of traffic flow on long crowded
roads. In Proc. of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
volume 229, pages 317–345. The Royal Society, 1955.

128

[30] A. Kouvelas, J. Lioris, S. A. Fayazi, and P. Varaiya. Maximum pressure controller for stabilizing
queues in signalized arterial networks. Transportation Research Record: Journal of the Transportation
Research Board, 2421(1):133–141, 2014.

[31] V. Khakhutskyy. Signal phase and timing prediction for intelligent transportation systems. M.S. thesis,
Der Technischen Universitat Munschen, Munich, Germany, 2011.

[32] G. Mahler and A. Vahidi. An optimal velocity-planning scheme for vehicle energy efficiency through
probabilistic prediction of traffic-signal timing. IEEE Transactions on Intelligent Transportation Sys-
tems, 15(6):2516–2523, Dec 2014.

[33] P. Hao, X. Ban, K. P. Bennett, Q. Ji, and Z. Sun. Signal timing estimation using sample intersection
travel times. IEEE Transactions on Intelligent Transportation Systems, 13(2):792–804, 2012. ID: 1.

[34] M. Kerper, C. Wewetzer, A. Sasse, and M. Mauve. Learning traffic light phase schedules from ve-
locity profiles in the cloud. In Proceedings of the 5th International Conference on New Technologies,
Mobility and Security (NTMS), Istanbul, Turkey, 2012.

[35] Y. Cheng, X. Qin, J. Jin, and B. Ran. An exploratory shockwave approach for signalized intersection
performance measurements using probe trajectories. In Proceedings of the Transportation Research
Board 89th annual meeting, Washington, D.C., 2010.

[36] Y. Chuang, C. Yi, Y. Tseng, C. Nian, and C. Ching. Discovering phase timing information of traffic
light systems by stop-go shockwaves. IEEE Transactions on Mobile Comp., 14(1):58–71, 2015.

[37] NGSIM: The Next Generation SIMulation Community by The Federal Highway Administration
(FHWA) U.S. Department of Transportation. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[38] Y. Zhu, X. Liu, M. Li, and Q. Zhang. Pova: Traffic light sensing with probe vehicles. IEEE Transac-
tions on Parallel and Distributed Systems, 24(7):1390–1400, 2013.

[39] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible markup language
(xml) 1.0. W3C Recommendation, 2008 (http://www.w3.org/TR/REC-xml/).

[40] Roger W. Sinnott. Virtues of the haversine. Sky and telescope, 68:158, 1984.

[41] J. L. Gattis, S. H. Nelson, and J.D. Tubbs. School bus acceleration characteristics. Technical Report
FHWA/AR-009, Mack-Blackwell Transportation Center, University of Arkansas, 1998.

[42] S. Yoon, H. Li, J. Jun, J. Ogle, R. Guensler, and M. Rodgers. A methodology for developing transit bus
speed-acceleration matrices to be used in load-based mobile source emission models. In Proceedings
of Transportation Research Board annual meeting, 2005.

[43] G. Mahler and A. Vahidi. Reducing idling at red lights based on probabilistic prediction of traffic signal
timings. In Proceedings of the American Control Conference, pages 6557–6562, Montreal, Quebec,
2012.

[44] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[45] Official United States Time by National Institutue of Standards and Technology. http://nist.time.gov/.

[46] A. Skabardonis and N. Geroliminis. Real-time estimation of travel times on signalized arterials. In
Proc. of the 16th Int’l Symposium on Transportation and Traffic Theory, College Park, Maryland, 2005.

[47] H. Liu, X. Wu, W. Ma, and H. Hu. Real-time queue length estimation for congested signalized inter-
sections. Transportation research part C: emerging technologies, 17(4):412–427, 2009.

129

http://www.w3.org/TR/REC-xml/

[48] Gregory Stephanopoulos, P. G. Michalopoulos, and George Stephanopoulos. Modelling and analy-
sis of traffic queue dynamics at signalized intersections. Transportation Research Part A: General,
13(5):295–307, 1979.

[49] Y. Cheng, X. Qin, J. Jin, B. Ran, and J. Anderson. Cycle-by-cycle queue length estimation for sig-
nalized intersections using sampled trajectory data. Transportation Research Record: Journal of the
Transportation Research Board, 2257(-1):87–94, 2011.

[50] N. Rouphail, A. Tarko, and J. Li. Traffic flow at signalized intersections: Revised monograph on traffic
flow theory. Technical report, Federal Highway Administration, U.S. DOT, Washington, D.C., 2005.

[51] Highway Capacity Manual. Transportation research board. National Research Council, Washington,
DC, 2000.

[52] R. P. Roess, E. S. Prassas, and W. R. McShane. Traffic engineering. Prentice Hall, 2011.

[53] M. S. Chaudhry and P. Ranjitkar. Delay estimation at signalized intersections with variable queue
discharge rate. Journal of the Eastern Asia Society for Transportation Studies, 10(0):1764–1775,
2013.

[54] P. Hao, X. Ban, and J. W. Yu. Kinematic equation-based vehicle queue location estimation method
for signalized intersections using mobile sensor data. Journal of Intelligent Transportation Systems:
Technology, Planning, and Operations, 2014.

[55] M. Li, K. Boriboonsomsin, G. Wu, W. Zhang, and M. Barth. Traffic energy and emission reductions
at signalized intersections: a study of the benefits of advanced driver information. Int’l Journal of
Intelligent Transportation Systems Research, 7(1):49–58, 2009.

[56] K. P. Sanketh, S. Subbarao, and K. A. Jolapara. I2v and v2v communication based vanet to optimize
fuel consumption at traffic signals. In Proc. of the 13th Int’l IEEE Conf. on Intelligent Transportation
Systems (ITSC), pages 1251–1255, Madeira Island, Portugal, 2010.

[57] M. Maile and L. Delgrossi. Cooperative Intersection Collision Avoidance System for Violations
(CICAS-V) for avoidance of violation-based intersection crashes. In Proc. of the 21st Int’l Conf.
on the Enhanced Safety of Vehicles (ESV), Stuttgart, Germany, 2009.

[58] Audi Travolution Project. https://www.audi-mediaservices.com.

[59] S. A. Fayazi, S. Farhangi, and B. Asaei. Fuel consumption and emission reduction of a mild hybrid
vehicle. In Proc. of the 34th Conf. of IEEE Industrial Electronics (IECON), pages 216–221, Orlando,
Florida, 2008.

[60] S. A. Fayazi, S. Farhangi, and B. Asaei. Power delivery co-ordination to meet driver’s demand in
a mild hybrid vehicle with automated manual transmission. In Industrial Electronics, 2008. IECON
2008. 34th Annual Conference of IEEE, pages 327–332, Nov 2008.

[61] Mobileye. Mobileye development and evaluation platforms. http://www.mobileye.com/

technology/development-evaluation-platforms/.

[62] Google Protocol Buffer. https://developers.google.com/protocol-buffers/docs/

overview.

[63] G. Kaur and M. M. Fuad. An evaluation of protocol buffer. In Proceedings of the IEEE SoutheastCon
2010, pages 459–462, Charlotte-Concord, NC, USA, 2010.

[64] J. Postel. User datagram protocol. STD 6, RFC 768, 1980 (http://www.ietf.org/rfc/rfc0768).

130

http://www.mobileye.com/technology/development-evaluation-platforms/
http://www.mobileye.com/technology/development-evaluation-platforms/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://www.ietf.org/rfc/rfc0768

[65] J. Postel. Transmission control protocol. STD 7, RFC 793, 1981 (http://www.ietf.org/rfc/
rfc0793).

[66] D. Crockford. The application/json media type for javascript object notation (json). RFC 4627, 2006
(http://www.ietf.org/rfc/rfc4627).

[67] JDBC Driver for MySQL. http://dev.mysql.com/downloads/connector/j/.

[68] P.B. Hunt, D.I. Robertson, R.D. Bretherton, and M Cr Royle. The scoot on-line traffic signal optimi-
sation technique. Traffic Engineering & Control, 23(4), 1982.

[69] PR Lowrie. The sydney coordinated adaptive traffic system-principles, methodology, algorithms. In
International Conference on Road Traffic Signalling, 1982, London, United Kingdom, number 207,
1982.

[70] Christina Diakaki, Markos Papageorgiou, and Kostas Aboudolas. A multivariable regulator approach
to traffic-responsive network-wide signal control. Control Engineering Practice, 10(2):183–195, 2002.

[71] Gurulingesh Raravi, Vipul Shingde, Krithi Ramamritham, and Jatin Bharadia. Merge algorithms for
intelligent vehicles. In Next Generation Design and Verification Methodologies for Distributed Em-
bedded Control Systems, pages 51–65. Springer, 2007.

[72] Thomas Coleman, Mary Ann Branch, and Andrew Grace. Optimization toolbox. For Use with MAT-
LAB. Users Guide for MATLAB, 5, 1999.

[73] Joyoung Lee and Byungkyu Park. Development and evaluation of a cooperative vehicle intersection
control algorithm under the connected vehicles environment. Intelligent Transportation Systems, IEEE
Transactions on, 13(1):81–90, 2012.

[74] Feng Zhu and Satish V Ukkusuri. A linear programming formulation for autonomous intersection con-
trol within a dynamic traffic assignment and connected vehicle environment. Transportation Research
Part C: Emerging Technologies, 55:363–378, 2015.

[75] Alessandro Colombo and Domitilla Del Vecchio. Efficient algorithms for collision avoidance at inter-
sections. In Proceedings of the 15th ACM international conference on Hybrid Systems: Computation
and Control, pages 145–154. ACM, 2012.

[76] Xiao-Feng Xie, Stephen F Smith, Liang Lu, and Gregory J Barlow. Schedule-driven intersection
control. Transportation Research Part C: Emerging Technologies, 24:168–189, 2012.

[77] Michael L Pinedo. Scheduling: theory, algorithms, and systems. Springer Science & Business Media,
2012.

[78] Allen Hawkes. Traffic control with connected vehicle routes in surtrac. 2016.

[79] S. A. Fayazi, N. Wan, S. Lucich, A. Vahidi, and G. Mocko. Optimal pacing in a cycling time-trial
considering cyclist’s fatigue dynamics. In 2013 American Control Conference, pages 6442–6447.
IEEE, 2013.

[80] N. Wan, S. A. Fayazi, H. Saeidi, and A. Vahidi. Optimal power management of an electric bicycle
based on terrain preview and considering human fatigue dynamics. In 2014 American Control Confer-
ence, pages 3462–3467. IEEE, 2014.

[81] Suvrajeet Sen and K Larry Head. Controlled optimization of phases at an intersection. Transportation
science, 31(1):5–17, 1997.

131

http://www.ietf.org/rfc/rfc0793
http://www.ietf.org/rfc/rfc0793
http://www.ietf.org/rfc/rfc4627

[82] Heejin Ahn and Domitilla Del Vecchio. Semi-autonomous intersection collision avoidance through
job-shop scheduling. arXiv preprint arXiv:1510.07026, 2015.

[83] Kurt Dresner and Peter Stone. Multiagent traffic management: An improved intersection control
mechanism. In Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 471–477. ACM, 2005.

[84] Kurt Dresner. Autonomous intersection management. PhD thesis, University of Texas at Austin, 2009.

[85] Dave McKenney and Tony White. Distributed and adaptive traffic signal control within a realistic
traffic simulation. Engineering Applications of Artificial Intelligence, 26(1):574–583, 2013.

[86] L. Chen and C. Englund. Cooperative intersection management: A survey. IEEE Transactions on
Intelligent Transportation Systems, 17(2):570–586, Feb 2016.

[87] S. A. Fayazi, A. Vahidi, and A. Luckow. Optimal scheduling of autonomous vehicle arrivals at intelli-
gent intersections via MILP. In 2017 American Control Conference. Under Review, 2017.

[88] Antonio Alonso-Ayuso, Laureano F Escudero, and F Javier Martı́n-Campo. Collision avoidance in air
traffic management: a mixed-integer linear optimization approach. Intelligent Transportation Systems,
IEEE Transactions on, 12(1):47–57, 2011.

[89] Francesco Borrelli, Dharmashankar Subramanian, Arvind U Raghunathan, and Lorenz T Biegler.
MILP and NLP techniques for centralized trajectory planning of multiple unmanned air vehicles. In
American Control Conference, 2006, pages 6–pp. IEEE, 2006.

[90] Arthur Richards, Tom Schouwenaars, Jonathan P How, and Eric Feron. Spacecraft trajectory planning
with avoidance constraints using mixed-integer linear programming. Journal of Guidance, Control,
and Dynamics, 25(4):755–764, 2002.

[91] Kieran Forbes Culligan. Online trajectory planning for uavs using mixed integer linear programming.
PhD thesis, Massachusetts Institute of Technology, 2006.

[92] Esten Ingar Grøtli and Tor Arne Johansen. Path planning for UAVs under communication constraints
using SPLAT! and MILP. Journal of Intelligent & Robotic Systems, 65(1-4):265–282, 2012.

[93] Qing He, K Larry Head, and Jun Ding. Pamscod: Platoon-based arterial multi-modal signal control
with online data. Transportation Research Part C: Emerging Technologies, 20(1):164–184, 2012.

[94] Nathan H Gartner, John DC Little, and Henry Gabbay. Optimization of traffic signal settings by
mixed-integer linear programming: Part i: The network coordination problem. Transportation Science,
9(4):321–343, 1975.

[95] John DC Little. The synchronization of traffic signals by mixed-integer linear programming. Opera-
tions Research, 14(4):568–594, 1966.

[96] G. De Nunzio, G. Gomes, C. Canudas de Wit, R. Horowitz, and P. Moulin. Speed advisory and
signal offsets control for arterial bandwidth maximization and energy consumption reduction. IEEE
Transactions on Control Systems Technology, PP(99):1–13, 2016.

[97] Md Abdus Samad Kamal, Jun-ichi Imura, Tomohisa Hayakawa, Akira Ohata, and Kazuyuki Aihara.
Traffic signal control of a road network using MILP in the MPC framework. International journal of
intelligent transportation systems research, 13(2):107–118, 2015.

[98] Md Abdus Samad Kamal, Jun-ichi Imura, and Tomohisa Hayakawa. Network-wide optimization of
traffic signals using mixed integer programming. Journal of robotics and mechatronics, 26(5):607–
615, 2014.

132

[99] Shu Lin, Bart De Schutter, Yugeng Xi, and Hans Hellendoorn. Fast model predictive control for urban
road networks via MILP. IEEE Transactions on Intelligent Transportation Systems, 12(3):846–856,
2011.

[100] Jennie Lioris, Ramtin Pedarsani, Fatma Yildiz Tascikaraoglu, and Pravin Varaiya. Doubling through-
put in urban roads by platooning. accepted in the IFAC Symposium on Control in Transportation
Systems, 2015.

[101] Il Yong Kim and OL De Weck. Adaptive weighted sum method for multiobjective optimization: a new
method for pareto front generation. Structural and multidisciplinary optimization, 31(2):105–116,
2006.

[102] CC Chien and P Ioannou. Automatic vehicle-following. In American Control Conference, 1992, pages
1748–1752. IEEE, 1992.

[103] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. Reference guide to open source
(mixed-integer) linear programming system (version 5.1.0.0 dated 1 may 2004). available from:
http://lpsolve.sourceforge.net/5.1/.

[104] Li Sheng. The Interactive Hardware-in-loop Simulation System for Traffic Control System Develop-
ment. PhD thesis, University of Akron, 2005.

[105] Aleksandar Stevanovic, Ahmed Abdel-Rahim, Milan Zlatkovic, and Enas Amin. Microscopic model-
ing of traffic signal operations: Comparative evaluation of hardware-in-the-loop and software-in-the-
loop simulations. Transportation Research Record: Journal of the Transportation Research Board,
(2128):143–151, 2009.

[106] Christopher Day, Joseph Ernst, Thomas Brennan Jr, Chih-Sheng Chou, Alexander Hainen, Stephen
Remias, Andrew Nichols, Brian Griggs, and Darcy Bullock. Performance measures for adaptive signal
control: Case study of system-in-the-loop simulation. Transportation Research Record: Journal of the
Transportation Research Board, (2311):1–15, 2012.

[107] Dipl-Ing Sebastian Schwab, Dipl-Ing Tobias Leichsenring, M Sc Marc René Zofka, and Dipl-
Inform Tobias Bär. Consistent test method for assistance systems. ATZ worldwide, 116(9):38–43,
2014.

[108] Björn Blissing, Fredrik Bruzelius, and Johan Ölvander. Augmented and mixed reality as a tool for
evaluation of vehicle active safety systems. In RSS2013 Road Safety and Simulation-International
Conference. October 23-25, 2013. Rome, Italy., 2013.

[109] Olaf Jeroen Gietelink. Design and validation of advanced driver assistance systems. TU Delft, Delft
University of Technology, 2007.

[110] Olaf Gietelink, Jeroen Ploeg, Bart De Schutter, and Michel Verhaegen. Development of advanced
driver assistance systems with vehicle hardware-in-the-loop simulations. Vehicle System Dynamics,
44(7):569–590, 2006.

[111] Yvonne Laschinsky, Von Neumann-Cosel, Mark Gonter, Christian Wegwerth, Rolf Dubitzky, A Knoll,
et al. Evaluation of an active safety light using virtual test drive within vehicle in the loop. In Industrial
Technology (ICIT), 2010 IEEE International Conference on, pages 1119–1112. IEEE, 2010.

[112] M Quinlan, A Tsz-Chiu, J Zhu, N Stiurca, and P Stone. Bringing simulation to life: A mixed reality
autonomous intersection. iros. In IEEE/RSJ International Conference on, 2010.

[113] Pengfei Li and Pitu B Mirchandani. A new hardware-in-the-loop traffic signal simulation framework
to bridge traffic signal research and practice. 2016.

133

[114] H. Xia, K. Boriboonsomsin, F. Schweizer, A. Winckler, K. Zhou, W.B. Zhang, and M. Barth. Field
operational testing of eco-approach technology at a fixed-time signalized intersection. In Proceedings
of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pages
188–193. IEEE, 2012.

[115] A. Weber and A. Winckler. Advanced traffic signal control algorithms, appendix A: Exploratory
advanced research project: BMW final report. Technical Report CA13-2157-B, Caltrans Division of
Research, Innovation and System Information, Sep. 2013.

[116] Michel Ferreira, Ricardo Fernandes, Hugo Conceição, Wantanee Viriyasitavat, and Ozan K Tonguz.
Self-organized traffic control. In Proceedings of the seventh ACM international workshop on VehiculAr
InterNETworking, pages 85–90. ACM, 2010.

[117] Manuel Nakamurakare, Wantanee Viriyasitavat, and Ozan K Tonguz. A prototype of virtual traffic
lights on android-based smartphones. 2013.

[118] T Lozano-Perez, Ingemar J Cox, and Gordon T Wilfong. Autonomous robot vehicles. Springer Science
& Business Media, 2012.

[119] Muhammad Azmat. Impact of autonomous vehicles on urban mobility. PhD thesis, Institut für Trans-
portwirtschaft und Logistik, WU Wien, 2015.

[120] James Barker, Sam Mendez, Evan Brown, Tim Billick, and Justin Glick. Technical and Legal Chal-
lenges : An Overview of the State of the Art in Autonomous Vehicle Technology and Policy. Technical
report, Autonomous Vehicles Team , University of Washington School of Law, Washington: Technol-
ogy Law and Policy Clinic, 2013.

[121] Apple Inc. iOS developer library; location and maps programming guide. https:

//developer.apple.com/library/ios/documentation/UserExperience/Conceptual/

LocationAwarenessPG/Introduction/Introduction.html, accessed May 2016. [Online].

[122] Apple Inc. iOS developer library; the mapkit framework reference. https://developer.apple.

com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/, ac-
cessed May 2016. [Online].

[123] SAE Standard. E/E diagnostic test modes. SAE J1979, 2006.

[124] T.H. DeFries, M.A. Sabisch, and S. Kishan. Light-duty vehicle in-use fuel economy data collec-
tion: Pilot study. Technical report, International Council on Clean Transportation., Washington,
DC, 2013. http://www.theicct.org/sites/default/files/ICCT-131108%20-%20ERG%20-%
20In-Use%20FE%20Pilot-%20V8FInal.pdf.

[125] ISO standard. ISO 15031-5. In Communication between vehicle and external equipment for emissions-
related diagnostics - Part 5: Emissions-related diagnostic services, 2006.

[126] Ilya Kolmanovsky, Kevin McDonough, and Oleg Gusikhin. Estimation of fuel flow for telematics-
enabled adaptive fuel and time efficient vehicle routing. In ITS Telecommunications (ITST), 2011 11th
International Conference on, pages 139–144. IEEE, 2011.

[127] Vitor Ribeiro, Jose Rodrigues, and Ana Aguiar. Mining geographic data for fuel consumption esti-
mation. In Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on,
pages 124–129. IEEE, 2013.

[128] Adriano Alessandrini, Francesco Filippi, and Fernando Ortenzi. Consumption calculation of vehicles
using obd data. In 20th International Emission Inventory Conference- Emission Inventories-Meeting
the Challenges Posed by Emerging Global, National, and Regional and Local Air Quality Issues, 2012.

134

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
https://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
http://www.theicct.org/sites/default/files/ICCT-131108%20-%20ERG%20-%20In-Use%20FE%20Pilot-%20V8FInal.pdf
http://www.theicct.org/sites/default/files/ICCT-131108%20-%20ERG%20-%20In-Use%20FE%20Pilot-%20V8FInal.pdf

[129] ICCT fuel economy data collection pilot study. Technical report, International Council on Clean
Transportation, 2013. http://www.theicct.org/sites/default/files/TNM_ICCT_FE_Data_

Collection_Pilot_Study_ProjectReport_Final2.pdf.

[130] Gary Thomas Pepper. Methods and system for determining consumption and fuel efficiency in vehi-
cles, August 10 2010. US Patent 7,774,130.

[131] Stephen G Russ, Edward W Kaiser, Waiter O Siegl, Diane H Podsiadlik, and Kathy M Barrett. The
effect of air/fuel ratio on wide open throttle HC emissions from a spark-ignition engine. Technical
report, SAE Technical Paper, 1994.

[132] MF Abdul Rahim, MM Rahman, and RA Bakar. Cycle engine modelling of spark ignition engine pro-
cesses during wide-open throttle (WOT) engine operation running by gasoline fuel. In IOP Conference
Series: Materials Science and Engineering, volume 36, page 012041. IOP Publishing, 2012.

[133] ELM327, OBD to RS232 interpreter. ELM Electronics, 2012. Available online: www.

elmelectronics.com/DSheets/ELM327DS.pdf (accessed on May 2016).

[134] ISO standard. ISO 15765-4 CAN. In Road vehicles – Diagnostic communication over Controller Area
Network (DoCAN) - Part 4: Requirements for emissions-related systems, 2011.

[135] SAE Standard. Class B data communications network interface. SAE J1850, 2006.

[136] Vitor Daniel Ferreira da Cunha Ribeiro. Mining geographic data for fuel consumption estimation.
M.S. thesis, University of Porto, Porto, Portugal, 2013.

[137] Jesse Levinson, Jake Askeland, Jennifer Dolson, and Sebastian Thrun. Traffic light mapping, local-
ization, and state detection for autonomous vehicles. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 5784–5791. IEEE, 2011.

[138] Nathaniel Fairfield and Chris Urmson. Traffic light mapping and detection. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages 5421–5426. IEEE, 2011.

[139] Behrang Asadi and Ardalan Vahidi. Predictive use of traffic signal state for fuel saving, pages 484–489.
12 2009.

[140] Sindhura Mandava, Kanok Boriboonsomsin, and Matthew Barth. Arterial velocity planning based on
traffic signal information under light traffic conditions. In Intelligent Transportation Systems, 2009.
ITSC’09. 12th International IEEE Conference on, pages 1–6. IEEE, 2009.

[141] R. K. Kamalanathsharma and H. Rakha. Agent-based simulation of ecospeed-controlled vehicles at
signalized intersections. Transportation Research Record: Journal of the Transportation Research
Board, (2427):1–12, 2014.

[142] Hesham Rakha and Raj Kishore Kamalanathsharma. Eco-driving at signalized intersections using
V2I communication. In Intelligent Transportation Systems (ITSC), 2011 14th International IEEE
Conference on, pages 341–346. IEEE, 2011.

[143] A. Lawitzky, D. Wolherr, and M. Buss. Energy optimal control to approach traffic lights. In Proceed-
ings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo Big
Sight, Japan, November 2013.

[144] International Transportation Innovation Center (ITIC). Web. http://www.itic-sc.com.

[145] Johan Janson Olstam and Andreas Tapani. Comparison of car-following models. Technical report,
Swedish National Road and Transport Research Institute, 2004.

135

http://www.theicct.org/sites/default/files/TNM_ICCT_FE_Data_Collection_Pilot_Study_ProjectReport_Final2.pdf
http://www.theicct.org/sites/default/files/TNM_ICCT_FE_Data_Collection_Pilot_Study_ProjectReport_Final2.pdf
www.elmelectronics.com/DSheets/ELM327DS.pdf
www.elmelectronics.com/DSheets/ELM327DS.pdf
http://www.itic-sc.com

[146] AIMSUN Microscopic Traffic Simulator. TSSTransport Simulation Systems. http://www.aimsun.
com.

[147] Peter G Gipps. A behavioural car-following model for computer simulation. Transportation Research
Part B: Methodological, 15(2):105–111, 1981.

[148] Gordon Frank Newell. A simplified car-following theory: a lower order model. Transportation Re-
search Part B: Methodological, 36(3):195–205, 2002.

[149] Soyoung Ahn, Michael J Cassidy, and Jorge Laval. Verification of a simplified car-following theory.
Transportation Research Part B: Methodological, 38(5):431–440, 2004.

136

http://www.aimsun.com
http://www.aimsun.com

	Clemson University
	TigerPrints
	12-2016

	Connected Vehicles at Signalized Intersections: Traffic Signal Timing Estimation and Optimization
	S. AliReza Fayazi
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Publications
	List of Tables
	List of Figures
	Introduction
	Research Motivation and Background
	Research Contributions
	Thesis Outline

	I Signal Phase and Timing Estimation in Connected Vehicle Environment
	Crowdsourcing Phase and Timing of Pre-Timed Traffic Signals from Low-Frequency Vehicle Probe Information
	Introduction
	Description of the Data Feed
	Data Transformation
	Crowdsourcing Acceleration and Deceleration of Buses
	Estimating Baseline Timing
	Estimating Phase-Change (Green-Initiation)
	Predicting Phase-Change (Green-Initiation)
	Estimating Changes in Signal Schedule
	Direct Estimation of Green Intervals and Probability of Green
	Ground Truth Verification
	Acknowledgment

	Crowdsourcing Phase and Timing of Pre-Timed Traffic Signals in Presence of Queues
	Introduction
	Data Transformation
	SPaT Estimation and Prediction
	Queue Waiting Time
	Ground Truth Verification
	Acknowledgment

	Back-End System Architecture
	Introduction
	System Overview
	Software Architecture
	Crowdsourcing Engine
	Crowdsourcing Methodologies
	Ground Truth Verification Tools
	Acknowledgment

	Conclusions for Part I

	II Arterial Traffic Signal Optimization with Connected Vehicles
	Vehicle-Intersection Coordination under the Connected Vehicles Environment
	Introduction
	Problem Statement
	Definitions and Notations
	Problem Formulation
	Handling of Removable Discontinuities
	Mixed-Integer Linear Programming Case Study

	Cyber-physical Test Environment
	Introduction
	Vehicle-In-Loop Configuration
	Virtual Driver Assistant
	Data Structure and Communication
	Traffic Microsimulation
	Acknowledgment

	Estimating Fuel Consumption using Vehicle Diagnostic Data
	Introduction
	Engine Fuel Management: Background
	iOS-based OBDII Data Logger
	Engine State Identification
	Estimation based on Mass Air Flow rate (MAF-based)
	Estimation based on Fuel Injection Flow rate (FIF-based)
	Test Criteria
	Acknowledgment

	Experimental and Simulation Evaluation
	Introduction
	Test Scenarios
	Performance Metrics (MOE)
	SIL Simulation Results
	VIL Simulation Results
	Acknowledgment

	Conclusions for Part II
	Appendices
	Autonomous Car Following Model

	Bibliography

