70,274 research outputs found

    A Calculus for Access Control in Distributed Systems

    Get PDF
    We study some of the concepts, protocols, and algorithms for access control in distributed systems, from a logical perspective. We account for how a principal may come to believe that another principal is making a request, either on his own or on someone else’s behalf. We also provide a logical language for access control lists and theories for deciding whether requests should be granted

    Mobility control via passports

    Get PDF
    International audienceDpi is a simple distributed extension of the pi-calculus in which agents are explicitly located, and may use an explicit migration construct to move between locations. In this paper we introduce passports to control those migrations; in order to gain access to a location agents are now expected to show some credentials, granted by the destination location. Passports are tied to specific locations, from which migration is permitted. We describe a type system for these passports, which includes a novel use of dependent types, and prove that well-typing enforces the desired behaviour in migrating processes. Passports allow locations to control incoming processes. This induces a major modification to the possible observations which can be made of agent-based systems. Using the type system we describe these observations, and use them to build a loyal notion of observational equivalence for this setting. Finally we provide a complete proof technique in the form of a bisimilarity for establishing equivalences between systems

    Timing Analysis of TDMA-based Networks using Network Calculus and Integer Linear Programming

    Get PDF
    For distributed safety-critical systems, such as avionics and automotive, shared networks represent a bottleneck for timing predictability, a key issue to fulfill certification requirements. To control interferences on such shared resources and guarantee bounded delays, the Time Division Multiple Access (TDMA) protocol is considered as one of the most interesting arbitration protocols due to its deterministic timing behavior and fault-tolerance features. This paper addresses the problem of computing the worst-case end-to-end delay bounds for traffic flows sharing a TDMA-based network using Network Calculus. First, we extend classic timing analysis to integrate the impact of non-preemptive message transmission and various service policies in end-systems, e.g., First In First Out (FIFO), Fixed Priority (FP) and Weighted Round Robin (WRR). Afterwards, the proposed models are refined using Integer Linear Programming (ILP) to obtain tighter end-to-end delay bounds. Finally, this general analysis is illustrated and validated in the case of a TDMA-based Ethernet network for I/O avionics applications. Results show the efficiency of the proposed models to provide stronger guarantees on system schedulability, compared to classic models

    Using Event Calculus to Formalise Policy Specification and Analysis

    Get PDF
    As the interest in using policy-based approaches for systems management grows, it is becoming increasingly important to develop methods for performing analysis and refinement of policy specifications. Although this is an area that researchers have devoted some attention to, none of the proposed solutions address the issues of analysing specifications that combine authorisation and management policies; analysing policy specifications that contain constraints on the applicability of the policies; and performing a priori analysis of the specification that will both detect the presence of inconsistencies and explain the situations in which the conflict will occur. We present a method for transforming both policy and system behaviour specifications into a formal notation that is based on event calculus. Additionally it describes how this formalism can be used in conjunction with abductive reasoning techniques to perform a priori analysis of policy specifications for the various conflict types identified in the literature. Finally, it presents some initial thoughts on how this notation and analysis technique could be used to perform policy refinement

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    A Distributed Calculus for Role-Based Access Control

    No full text
    Role-based access control (RBAC) is increasingly attracting attention because it reduces the complexity and cost of security administration by interposing the notion of role in the assignment of permissions to users. In this paper, we present a formal framework relying on an extension of the π calculus to study the behavior of concurrent systems in a RBAC scenario. We define a type system ensuring that the specified policy is respected during computations, and a bisimulation to equate systems. The theory is then applied to three meaningful examples, namely finding the ‘minimal’ policy to run a given system, refining a system to be run under a given policy (whenever possible), and minimizing the number of users in a given system without changing the overall behavior

    Predicting global usages of resources endowed with local policies

    Full text link
    The effective usages of computational resources are a primary concern of up-to-date distributed applications. In this paper, we present a methodology to reason about resource usages (acquisition, release, revision, ...), and therefore the proposed approach enables to predict bad usages of resources. Keeping in mind the interplay between local and global information occurring in the application-resource interactions, we model resources as entities with local policies and global properties governing the overall interactions. Formally, our model takes the shape of an extension of pi-calculus with primitives to manage resources. We develop a Control Flow Analysis computing a static approximation of process behaviour and therefore of the resource usages.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    A Calculus of Mobile Resources

    No full text
    We introduce a calculus of Mobile Resources (MR) tailored for the design and analysis of systems containing mobile, possibly nested, computing devices that may have resource and access constraints, and which are not copyable nor modifiable per se. We provide a reduction as well as a labelled transition semantics and prove a correspondence be- tween barbed bisimulation congruence and a higher-order bisimulation. We provide examples of the expressiveness of the calculus, and apply the theory to prove one of its characteristic properties
    corecore