
Mobility control via passports

Samuel Hym

To cite this version:

Samuel Hym. Mobility control via passports. Information and Computation, Elsevier, 2009,
207 (2), pp.171-193. <10.1016/j.ic.2007.11.011>. <hal-00140527>

HAL Id: hal-00140527

https://hal.archives-ouvertes.fr/hal-00140527

Submitted on 6 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47121644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00140527

Mobility control via passports

Samuel Hym

PPS, Université Paris Diderot (Paris 7) & CNRS

April 6, 2007

Abstract

Dπ is a simple distributed extension of the π-calculus in which agents
are explicitly located, and may use an explicit migration construct to move
between locations.

In this paper we introduce passports to control those migrations; in
order to gain access to a location agents are now expected to show some
credentials, granted by the destination location. Passports are tied to
specific locations, from which migration is permitted. We describe a type
system for these passports, which includes a novel use of dependent types,
and prove that well-typing enforces the desired behaviour in migrating
processes.

Passports allow locations to control incoming processes. This induces
a major modification to the possible observations which can be made of
agent-based systems. Using the type system we describe these observa-
tions, and use them to build a loyal notion of observational equivalence
for this setting. Finally we provide a complete proof technique in the form
of a bisimilarity for establishing equivalences between systems.

Keywords: control of agent migrations, distributed computation, process
calculus, typed observational equivalence

1 Introduction

Dπ [HR02] is a process calculus designed to reason about distribution of com-
putation. It is built as a simple extension of the π-calculus in which agents are
explicitly located without nesting so that a system might look like:

l1Jc ! 〈b〉P1K | l2JP2K | (new a : E)(l3JP3K | l1Jc ? (x : T) P4K)

where the li are location names and the Pi are processes located in one of
those locations. Here, P1 and P4 are placed in the same location l1, even if
they are scattered in the term. Channels also are distributed: one channel is
anchored in exactly one location: two processes must be in the same location
to communicate. In our example, the system can evolve into

l1JP1K | l2JP2K | (new a : E)(l3JP3K | l1JP4{b/x}K)

when P1 and P4 communicate. This makes Dπ a streamlined distributed version
of the π-calculus, which allows to concentrate our attention on agent migrations.

1

Dπ agents can ask their migration from their current location, say k, to the
location l via the primitive

gotop l

The p, added by the present work, is a passport which must match the actual
migration attempted, from k to l. The intuition of those passports is really
close to passwords, requested whenever trying to enter a location and therefore
allowing that location to control which processes should be granted access.

Some other approaches to control migrations have been investigated in pro-
cess calculi. In Ambients-related calculi, the migrations are particularly hard to
control so many works tried to address this problem: in Safe Ambients ([LS00]),
the destination location must grant access to incoming ambients by using a co-
capability. These co-capabilities have been enriched in [MH06] with passwords:
the password used to migrate is syntactically checked when the migration is to be
granted. This idea of passwords was pursued in the NBA calculus ([BCMS02])
which combines it with another choice to control behaviours of ambients: com-
munications across boundaries are allowed so that the troublesome open primi-
tive from the original Mobile Ambients is not necessary to obtain an expressive
calculus. This second approach was also used in different hierarchical calculi
like Seal [CN02] or Kell [SS04].

In non-hierarchical calculi, we have a better handle over migrating behaviours
so that more powerful techniques can be employed, for instance leveraging type
systems. In [HMR03], access to a location is a capability tied to that location
via its type. In [HRY05], access requires the knowledge of a port which also
governs subsequent resource accesses by typing the migrating processes, using
for this complex process types developed in particular accesses. This approach
is strongly constraining processes and requires higher order actions. In [MV05],
access to locations and resources is conditioned by policies based on the history
of migrations of the agent.

The present work provides a first-order theory that could serve as a foun-
dation for a fine-grained control of comparable power to [HRY05]. The only
location of the history taken into account to grant access is the origin of the mi-
grating process: we will define a simple setting in which it is possible to describe
“trust sub-networks” such as an intranet. Furthermore, the origin of a process
seems easier to assert realistically than its full history. The simplicity of this
setting can also be seen in the choice of regular names for passports: thanks to
this, the calculus is homogeneous.

In the present work, we associate rights to the names of the passports via
typing: for instance, the type l 7→ k is attached to some passport granting access
to k from l. The typing system will therefore have to include dependent types to
describe the link between passports and the locations they are attached to. But
this approach to tie rights to types provides type-based tools and techniques to
reason about security properties.

In particular, we will investigate the notion of typed observational equiv-
alence inherited from [BS98]. The founding intuition of observational equiva-
lences is to distinguish two systems only when it is possible to observe a differ-
ence between them through a series of interactions. In a typed observational
equivalence where types represents permissions, the barbs the observer is al-
lowed to see are conditioned by the permissions he managed to get access to.

2

Since permissions are represented by types, a normal type environment is used
to describe the observer’s rights.

Control of migrations has a great impact on the set of possible observations:
since all interactions are performed over located channels, permissions to ac-
cess these locations, i.e. passports, are mandatory to observe anything if the
observer abides by the rules. We will therefore introduce an intuitive typed con-
gruence that takes into account the migration rights of such a loyal observer.
As usual, the closure of the equivalence over all admissible contexts makes this
equivalence intractable. So we will provide an alternative coinductive definition
for this equivalence as a bisimilarity based on actions which identify the possi-
ble interactions between the system and its observer. This alternative definition
reveals a difficulty arising from dependent types: as an artefact of dependencies,
some name scopes must be opened even when the name itself is not revealed to
the observer.

Outline The rest of this paper is structured as follows. The calculus modi-
fied with passports is presented in Section 2, in particular with its complex type
system including subtyping order. Then an observational equivalence that char-
acterises how systems can use passports to protect themselves from observers is
defined in Section 3. A proof technique, in the form of a bisimilarity, is provided
in Section 4 to alleviate the complexity of the observational equivalence defined
in Section 3; we also sketch in this section why this proof technique is complete.
Finally, we finish with some concluding remarks and perspectives.

2 Typed Dπ with passports

We present here a stripped-down version of the Dπ-calculus to focus on migra-
tion control. In particular, this version does not include recursive processes, that
were thoroughly dealt with in [HH07]. An account of the complete calculus is
presented in [Hym06]. Most of it is inherited from previous works, like [HR02],
so we will insist mostly on the differences. Let us start by looking at passports
on examples.

2.1 Overview of passports

Dπ describes distributed computation as explicitly located processes that may
may migrate between locations. To allow those locations to control incoming
processes, we devise a system in which they can deliver passports which will be
required from processes trying to enter the location. So the construct goto k
now becomes gotop k, where p is the actual passport invoked to authorise access
to k.

The control we propose is finer that a mere control of the name of the
passport an incoming process use: a location is also allowed to control that the
origin of the incoming process corresponds to the passport. Passports can then
be delivered for specific communications. In the case of a simple client-server
situation, the client can deliver a passport only for the response coming from
the server. It might be formalised as:

clJnewpass pass from sv in

gotopsv
sv. req ! 〈cl, (quest, res,pass)〉 | . . . res ? (x) P K

(1)

3

where the client cl generates a passport pass specific to the server sv before
going there (using the passport psv) and requesting some computation while
waiting for the result on the channel res in cl. The corresponding server might
look like:

svJ∗req ? (xcl, (xquest, xres, xpass) : T) · · · gotoxpass
xcl. xres ! 〈r〉K (2)

This example suggests a smooth enforcement of the origin control: a public
server might want to accept every request, whatever the originating location.
The passports corresponding to such a policy, like psv in the example, can be
created by

newpass psv from ⋆

where ⋆ stands for anywhere.
Since passports allow a location to choose the locations it is accepting pro-

cesses from, a location can thus express the trust it is putting in its surrounding
locations. So we can set up a situation where some locations l1, . . . , ln form a
sub-network and trust each other: to achieve this the location li would provide a
passport pli granting access to every process coming from one of the locations lj
but it would deny access to any process coming from another location. It would
look like:

N = (new pl1 : l2, . . . , ln 7→ l1) · · · (new pln : l1, . . . , ln−1 7→ ln) l1JP1K | · · · | lnJPnK

where every process coming from any other location than one of the lj would
be simply denied access if it tried to use a passport pli . This is indicated by the
type annotation, for instance l2, . . . , ln 7→ l1 for the passport pl1 .

Building on this example, we can add a gateway location gw through which
every process coming from outside would have to go:

(new pgw

li
: gw 7→ li) · · ·N | gwJPgwK

where the optional passports pgw

li
would define the access policy of the inner

locations for the processes which are incoming from the gateway. For instance,
when modelling a firewalled sub-network, the passports pgw

li
would be revealed

only to processes originally created inside li: these processes would naturally be
allowed to enter back into the sub-network to bring the result of their investi-
gation.

Let us now describe formally the calculus with passports.

2.2 Syntax & semantics

Processes are described using names (usually written a, b, . . ., reserving c, d for
channel names, k, l for locations and p, q for passports) and variables (usually
written x, y, . . .). When both names and variables can be used, we will talk of
identifiers and write them u, v, We will write ũ for a set of identifiers and ~u
for a tuple. We will also write ũ⋆ when either ũ or ⋆ is expected. Finally, we will
use capital letters when tuples are allowed so V can represent (v1, (v2, v3), v4)
or any other value, composed of identifiers and X any pattern, composed of
variables.

The syntax of Dπ is given in Figure 1. Our contributions are:

4

Figure 1 Syntax for the Dπ-calculus

M ::= Systems
lJP K Located process
M1 |M2 Parallel composition
(new a : E) M Name scope
0 Inactive system

P ::= Processes
u ! 〈V 〉P Writing on channel
u ? (X : T) P Reading on channel
if u1 = u2 then P1 else P2 Condition
gotov u. P Migration
newchan c : C in P Channel generation
newloc l, (~c), (~p), (~q) : LwithPl inP Location generation
newpass p from ũ⋆ inP Passport generation
P1 |P2 Parallel composition
∗P Replication
stop Termination

• The migration construct gotov u now mentions the passport v to get access
to the location u.

• The new construct to generate passports, newpass, provides two kinds of
origin control:

– passports that allow migration from a given set of originating loca-
tions ũ are created by newpass p from ũ; thus a location can express
its trust in the sub-network ũ: every process from any location in ũ
will be granted access;

– universal passports, that allow migration from any location (for in-
stance to describe the behaviour of a public server) are created by
newpass p from ⋆.

Of course, the location a passport grants access to is the location where
the passport is generated: that is the only way to allow locations to control
incoming processes.

• The construct to generate new locations, newloc, is enriched: passports
to access the new location (child) or the location where the construct
is called (mother) can be generated on the fly. This solves a potential
deadlock situation: if passports to access the child were always created
from inside the child itself, some passports granting access from the child
would be needed to export them. . .

Let us consider now the semantics associated with the calculus, defined by
the rules given in Figure 2 using the standard structural congruence. The first
three rules concern particularities of the present work, the other ones are in-
herited. For instance (r-comm) is a really standard communication reduction
rule between a sender and a receiver: the substitution of the pattern X by the
actual content of the message V is triggered.

5

Figure 2 Reduction semantics

(r-goto) lJgotop k. P K −→ kJP K

(r-newloc) lJnewloc k, (~c), (~p), (~q) :
∑

x : loc. TwithPk inP K

−→ (new
〈

k, ((~c), (~p), (~q)) : T{l/x}
〉

)(kJPkK | lJP K)

(r-newpass) lJnewpass p from k̃⋆ inP K −→ (new p : k̃⋆ 7→ l) lJP K

(r-comm) lJa ! 〈V 〉P1K | lJa ? (X : T) P2K −→ lJP1K | lJP2{V/X}K

(r-if-v) lJif a = a then P1 else P2K −→ lJP1K

(r-if-f) lJif a1 = a2 then P1 else P2K −→ lJP2K when a1 6= a2

(r-newchan) lJnewchan c : C in P K −→ (new c : C@l) lJP K

(r-split) lJP1 |P2K −→ lJP1K | lJP2K

(r-rep) lJ∗P K −→ lJP K | lJ∗P K

M1 −→ M ′
1

(r-c-par)
M1 |M2 −→ M ′

1 |M2

M1 −→ M ′
1

(r-c-new)
(new a : E) M1 −→ (new a : E) M ′

1

M1 ≡ M2 −→ M ′
2 ≡ M ′

1
(r-struct)

M1 −→ M ′
1

The new reduction rules are fairly unsurprising since passports are homo-
geneously added to the calculus. In the reduction rule for the migration (r-
goto), the passport involved is simply ignored: the verification of the passport
will be performed using types. In the reduction rules of the constructs gener-
ating names, types are instantiated in a similar way to what is usually done
for channels: when passports are actually generated in (r-newpass), they are
tied to the location to which they will grant access, by getting the type k̃ 7→ l
(from k̃ to l). As for (r-newloc), the main operation taking place is the gen-
eration of a set of news, one for each of the names actually generated. Again,
this operation involves modifications in the type annotations. These are taken
care of via the expansion 〈· · · 〉 which sequentializes the value (k, ((~c), (~p), (~q)))
into a list of names while attaching some type to every name. Since this relies
heavily on the type system, it will be explained with it.

2.3 Type system for the language

Using the standard approach, the type system for Dπ is built by attaching
types to identifiers. Following the approach used in previous works on Dπ,
types describe permissions. This view is highly relevant for passports: the
type l 7→ k we can attach to a passport indicates the authorisation to migrate
from l to k. The typechecking performed on processes and systems is then based
on a set of hypotheses, which associate types to names, and verifies that every
use of identifiers is allowed, i.e. done according to the permissions tied to types.
Again, we provide here only a simple presentation of the set of types to focus on
passports. In particular, we got rid of the recursive types which are completely

6

Figure 3 Syntax of pre-types

C ::= Local channel types
r〈T1〉 Right to read values of type T1

w〈T2〉 Right to write values of type T2

rw〈T1,T2〉 Intersection of the two previous types

E ::= Identifiers types
loc Location
C@u Channel in location u
ũ⋆ 7→ v Passport from ũ⋆ to v

T ::= Transmissible values types
E Identifier
C Local channel
→֒ v Local passport to v

(T1, . . . ,Tn) Tuple
∑

~x : ~loc. T Dependent sum

L ::= Types to declare locations
∑

x : loc.
∑

y : loc. (C1@y, . . .), (ũ⋆
1 7→ y, . . .), (ṽ⋆

1 7→ x, . . .)

orthogonal to passports types; see [HH07] for a detailed account of recursive
types.

2.3.1 Types for identifiers and values

The definition of the types that can be associated with identifiers is stratified:
the types for channels mention the types of the values exchanged over it. So
the types for identifiers and for values are defined at the same time: they are
summed up in Figure 3. In fact, the syntax given in this figure describes pre-
types. We will explain shortly which pre-types are actual types.

Two major modifications are made in types. Firstly, we introduce new types
for passports:

• ũ 7→ v will be the type of a passport to access v from one of the locations
in ũ and ⋆ 7→ v of a universal passport to v;

• when passports to v are communicated inside a location l to be used to
migrate from l, we call them local passports and we can give them the
facility type →֒ v.

Secondly, we add a dependent sum type for values that are transmitted over
channels: since the type for a passport mentions the names of the source and tar-
get locations, the dependent sum provides a way to send those names (locations
and passport), packed together. This way, a location l and a local passport p to
migrate to l might form a pair (l, p) of dependent type

∑

x : loc. →֒ x. The
type T in the server of our first example (2) would be such a dependent sum,
with a tuple as the second value.

Those dependent types are also used to describe the tie between the loca-
tions and the passports in the newloc construct, as described by the declarative

7

Figure 4 Expansion of values

〈u : C〉 @w = u : C@w
〈u : C@w0〉 @w = u : C@w0

〈u : loc〉 @w = u : loc

〈((~u), V) :
∑

~x : ~loc. T〉 @w = u1 : loc, . . . ,
〈

V : T{~u/~x}
〉

@w
〈(V1, . . . , Vn) : (T1, . . . ,Tn)〉 @w =〈V1 : T1〉 @w, . . . ,〈Vn : Tn〉 @w
〈u : ṽ⋆ 7→ v′〉 @w = u : ṽ⋆ 7→ v′

〈u : →֒ v′〉 @w = u : w 7→ v′

types L. As mentioned before, the system

lJnewloc k, (~c), (~p), (~q) : LwithPk inP K

will generate a new location k together with a set of passports ~p to access k (for
instance from l), a set of passports ~q to access l (for instance from l) and, finally,
a set of new channels ~c located inside k. The tie between those passports and the
locations they grant access to are encoded in dependencies: in the types of the
form L, the type variable x will be bound to the name of the mother location
(l in our example), and y to the child location (here k). As the reduction
rule (r-newloc) indicates, when the type L used in the newloc construct is of
the form

∑

x : loc. T, the actual binding of x to l is performed by a simple
substitution {l/x} on T. On the other hand, the binding of y to k results from
the expansion

〈

k, ((~c), (~p), (~q)) : T{l/x}
〉

.
The expansion is formally described in Figure 4: 〈V : T〉 @w intuitively cor-

responds to the reception of the value V at the type T in the location w. More
specifically it plays two roles: it takes into account the location where the expan-
sion is performed to transform every local channel type and every local passport
type into their located equivalents; and it extracts from T the type that corre-
spond to every identifier appearing in the value V . This is done by generating
a list of identifier : type. The rules in Figure 4 show that, when the type does
not contain any local channel or local passport, the expansion is independent
of the location where it is performed. In that case, we will use the unlocated
expansion (without the location @w). That is why, in the rule (r-newloc)
where the specific form of the types L prohibits local channel types and local
passport types, the expansion is used unlocated to resolve the newloc into a list
of news.

Dependent sums and the fact that they can bind a variable in a type play a
very important role in our setting: they allow to avoid unbound identifiers in the
type of the values exchanged over some channel. So, for instance, r〈r〈@〉x〉@k
will not be a valid type for a channel even if it is in the syntax of pre-types.
Thanks to dependent sums, we can thus avoid substitution of variables in types
when they are instantiated after a communication. This constraint of closure
of the scopes of all identifiers appearing inside value types is one of the two
properties that differentiate pre-types from types. The second constraint bears
on types of the form rw〈Tr,Tw〉 When values are sent at type Tw and received at
type Tr, the types Tw and Tr must be related: considering only the permissions
conveyed via types, all the received rights must have been sent. We therefore
formalise this relationship between types as a subtyping order.

8

2.3.2 Subtyping

We inherit from previous works on Dπ a subtyping order. This order is extended
in a fairly natural way on passport (pre-)types: for instance, a universal passport
to access l allows to come from anywhere so should be a subtype of any passport
to l. The following inference rules sum up subtyping for passports:

ũ′ ⊆ ũ
(sr-pass)

ũ 7→ v <: ũ′ 7→ v
(sr-pass-*) ⋆ 7→ v <: ũ⋆ 7→ v

(sr-local-pass) →֒ v <: →֒ v

The rule for dependent sums is even simpler:

T1 <: T2
(sr-dep)

∑

~x : ~loc. T1 <:
∑

~x : ~loc. T2

We refer the reader to previous works (in particular [HH07]) for a complete
presentation of subtyping in Dπ.

Now that subtyping is properly defined, we can formally define types:

Definition 2.1 (Types). A pre-type T is a type when:

• for every occurrence of a type of the form rw〈Tr,Tw〉 it contains, Tw <:
Tr;

• for every occurrence of a type of the form C it contains, every identifier
appearing in C is bound by a dependent sum.

The new subtyping rules have only a small impact over the theory of types,
i.e. the structure of the ordered set of types, for the calculus. Indeed, since
any two passport types can have a common subtype only when they grant
access to the same location, we see easily that they must have a greatest lower
bound, i.e. a meet, as soon as they have a common subtype. We write the fact
that T1 and T2 share a common subtype as T1 ↓ T2 and we say that they are
↓-compatible. So the property of partial meets, preserved in the present setting,
can be stated as:

Theorem 2.1 (Partial meets). Any two ↓-compatible types have a meet.

We can now build a type system for processes and systems upon this struc-
tured set of types for identifiers and values.

2.3.3 Typechecking processes and systems

As usual, the type system relies on type environments, written Γ,Φ,Ω, which
are lists of hypotheses, i.e. associations of types to identifiers, for instance
l : loc, k : loc, p : ⋆ 7→ k, . . . Based on those environments, the typechecking
of systems is layered as follows.

• The consistency of environments must be checked: when a given iden-
tifier is given two different types, we must verify that those two types
are ↓-compatible. This ensures that we cannot end up associated both
a location type and a passport type to a single identifier, for instance.

9

This is performed using inference rules the conclusions of which look like:
“Γ ⊢ env” to mean that the environment Γ is well-formed. The rule for
passports simply reads:

Γ ⊢ env w : loc ∈ Γ ∀wi ∈ w̃, wi : loc ∈ Γ
(e-pass) ↓(Γ(u)∪{w̃⋆ 7→w})

Γ, u : w̃⋆ 7→ w ⊢ env

which means that the extension of the well-formed environment Γ with
hypothesis u : w̃⋆ 7→ w does not break the consistency of the environment
whenever:

– w and all the identifiers in w̃ already appear as locations in Γ;

– all the types that are already associated with u in Γ, written Γ(u),
must be ↓-compatible with w̃⋆ 7→ w; by Theorem 2.1 this means that
the set of all those types must have a meet which sums up all the
rights granted on u.

The verification is similar for the other identifier types and is therefore
given only in appendix (see Figure 7).

• Some inference rules then correspond to judgments of the form Γ ⊢ u : E

meaning that the type E can be associated to u under the set of hypothe-
ses Γ. In particular, subtyping has to be taken into account for this, for
instance to prove

l : loc,~l : loc, p : l1, l2 7→ l, p : l3, l4 7→ l ⊢ p : l1, l3 7→ l

i.e. where the two types associated with p in the environment have to be
combined to conclude that p authorises migrations from both l1 and l3.
Another set of rules builds on them to obtain statements about values.
The major difference is the fact that those judgements are localised : in
the previous environment, it is possible to conclude that p has the lo-
cal passport type →֒ l only when the value will be used in one of the
locations l1, . . . , l4. Consequently the judgments take the form

Γ ⊢u V : T

where u is the location in which the value V can be given the type T

under the hypotheses Γ. As for the well-formedness of environments, the
corresponding rules are fairly straightforward and are then given only in
appendix (see Figure 8).

• Typechecking of processes must be performed according to the location
where the process is running: the process a ! 〈〉 can be correct only when
it is launched in the location of the channel a. Consequently, as for the
typechecking of values, the statements for typechecking of processes take
the following form:

Γ ⊢u P

which intuitively states that running the process P in location u will re-
quire at most the permissions contained in Γ.

10

Let us first consider the typing rules for the use and the creation of pass-
ports.

Γ ⊢ u : w 7→ v Γ ⊢v P
(t-goto)

Γ ⊢w gotou v. P

Γ ⊢ ũ : ˜loc Γ; p : ũ⋆ 7→ w ⊢w P
(t-newpass)

Γ ⊢w newpass p from ũ⋆ inP

These rules should be self-explanatory: to migrate between its “current”
location and a location v, a process must own an appropriate passport.
Since the rules for typing identifiers can use subtyping, the hypothesis Γ ⊢
u : w 7→ v in (t-goto) is simply stating that the passport u must be valid
to enter v from any set of locations containing w. The rule (t-newpass)
is even simpler: it simply forges the passport type by using the current
location so that the creation of passports to enter a given location can
happen only from inside that location. This simple property ensures that
a location has an actual control over the set of passports that grant access
to it.

As we already mentioned, passports can also be generated at the same time
as a location: without the possibility to set up passports at the same time
as the child location, processes coming from the mother would be denied
access and vice versa. We want to be able to express all the possible links:
whether the mother location gives access to the processes coming from its
child location, etc.

Γ;〈(k, ((~c), (~p), (~q))) : T{w/x}〉 ⊢k Pk

Γ;〈(k, ((~c), (~p), (~q))) : T{w/x}〉 ⊢w P
(t-newloc)

Γ ⊢w newloc k, (~c), (~p), (~q) :
∑

x : loc. TwithPk inP

This typing rule uses a small “trick” with the dependent sum. Recall that
the type

∑

x : loc. T appearing in the newloc construct is of the form

∑

x : loc.
∑

y : loc. (C1@y, . . .), (ũ⋆
1 7→ y, . . .), (ṽ⋆

1 7→ x, . . .)

The set of names ~p are passports to y, the second dependent variable,
which will be associated to the new location k by virtue of the expansion
of the dependent sum. But the passports ~q should grant access to the
location w where the construct is invoked, which is why the reduction rule
instantiates on the fly the variable x by the name of the location. The
first dependent sum serves thus only the role of binder for that variable.

Finally, let us look at another rule of interest:

Γ ⊢w P2 [Γ]u1=u2
⊢w P1 when [Γ]u1=u2

⊢ env

(t-if)
Γ ⊢w if u1 = u2 then P1 else P2

This rule simply states that all the permissions available after a failed
comparison between two identifiers u1 and u2 are only the available per-
missions before the test. But in the other case, the process “knows” that
the two identifiers are identical: we want to merge all the permissions the
process owns over those two identifiers. This is performed using [·]u1=u2

11

Figure 5 Bracket extension of environments

[Γ, ui : E]u1=u2
= [Γ]u1=u2

, u1 : E, u2 : E

[Γ, v : C@ui]u1=u2
= [Γ]u1=u2

, v : C@u1, v : C@u2 if v 6∈ {u1, u2}
[Γ, v : w̃ 7→ ui]u2=u1

= [Γ]u2=u1
, v : w̃ 7→ u1, u : w̃ 7→ u2 if (w̃ ∪ {v}) ∩ {u1, u2} = ∅

[Γ, v : ui, w̃ 7→ w]u2=u1
= [Γ]u2=u1

, v : u1, u2, w̃ 7→ w if {v, w} ∩ {u1, u2} = ∅
[Γ, v : ui, w̃ 7→ uj]u2=u1

= [Γ]u2=u1
, v : u1, u2, w̃ 7→ u1, v : u1, u2, w̃ 7→ u2 if v 6∈ {u1, u2}

[Γ, v : ⋆ 7→ ui]u2=u1
= [Γ]u2=u1

, v : ⋆ 7→ u1, v : ⋆ 7→ u2 if v 6∈ {u1, u2}
[Γ, v : E]u1=u2

= [Γ]u1=u2
, v : E otherwise

which modifies the environment to duplicate any statement about u1 into
a statement about u2 and vice versa. So, for instance, if Γ contains the
two hypotheses u1 : r〈〉@l and u2 : w〈〉@l, [Γ]u1=u2

will contain the four

u1 : r〈〉@l u2 : r〈〉@l u2 : w〈〉@l u1 : w〈〉@l

The operation is slightly more complex when the ui can appear in the
set w̃ in a passport type w̃ 7→ w. The full set of cases to define the
bracket extension of environments is given in Figure 5. Notice that, when
the environment contains a hypothesis u1 : C@u2, all substitutions are
not performed. But that case can fail: if u2 appears to be a location
while u1 is a channel, the test of their equality will always turn out to
be false. That is why the rule (t-if) will enforce the typechecking of the
process P1 only when the environment [Γ]u1=u2

is actually well-formed:
two identifiers with incompatible types cannot be equal so P1 will never
be triggered in that case.

The test of compatibility raises a problem. Consider the following envi-
ronment:

Γ = p : l0 7→ l, xl : loc, xp : l0 7→ xl

and the test that xp is equal to p. [Γ]p=xp
will contain p : l0 7→ l

and p : l0 7→ xl. With the definition of ↓-compatibility we gave (the fact
that they share a subtype), the environment would not be well-formed
because subtyping over passport types enforces the equality of the desti-
nations (l and xl). So we use a weak ↓-compatibility : two passport types
with different destinations are weakly ↓-compatible when at most one of
the destinations is a name, all the other ones must be variables. Indeed the
cases of weak ↓-compatibility will be encountered in well-formed environ-
ments only because of the bracket extension, i.e. only in the true branch
of a test: the variables (and the eventual name) have been compared
and found equal. So those passport types can be considered compati-
ble since we know that they will share the same destination. The weak
↓-compatibility is also defined in the same way for channel types.

The other rules of typechecking for processes are pretty much standard;
for the sake of completeness we provide the full set in appendix, Figure 9.

12

• Finally, systems can be typechecked. The most typical rule simply states:

Γ ⊢ l : loc Γ ⊢l P
(t-proc)

Γ ⊢ lJP K

Again, these rules are completely inherited (see Figure 10 for the complete
set).

2.3.4 Properties of the type system

The complex type system explained in the previous sections gives two standard
properties: subject reduction and type safety.

Theorem 2.2 (Subject reduction). Γ ⊢ M and M −→∗ N imply Γ ⊢ N .

The use of bracket extensions makes the proof of that standard theorem more
complex, mostly because of the interactions between the substitutions and the
extensions. The interested reader will find in [Hym06] a detailed account of this
proof.

The property of type safety is more relevant in the present work. Let us state
here only the important part as far as passports are concerned. Following the
approach developed in [WF94], we define erroneous reduction of a system M ,
written M err−→Γ , by a set of rules. The rule about passports states:

lJgotop k. P K err−→Γ if Γ 6⊢l p : l 7→ k

in any context. The erroneous reduction expresses then the fact that an ap-
propriate passport is mandatory to migrate, and the type safety property will
allow to conclude that no process in a well-typed system will ever try to enter
a location without proper right to do so.

Theorem 2.3 (Type safety). Γ ⊢ M implies M 6err−−→Γ .

The proof of this theorem follows directly from the typechecking rules.

3 Loyal observational equivalence

The main goal of passports is to allow a location to control the processes it
accepts. Naturally, this implies that the observable behaviour of a system de-
pends on the actual authorisations the observer is granted. Let us then define an
equivalence that takes passports into account drawing inspiration from [MS92],
namely an equivalence in which the observer does not “cheat” and sees only
what the system allows it to see.

For this, we will describe explicitly the knowledge of the observer, i.e. the
rights he got access to, including his passports, using a type environment writ-
ten Ω. Following [HMR03], we will therefore consider configurations, writ-
ten Ω ✄ M , when the system M is facing an observer knowing Ω. That con-
figuration will be meaningful only when Ω and M agree in some sense: if M is
the system aJP K, Ω should not associate a passport type to a. To avoid such
conflicts, we will restrict our attention to well-formed configurations, i.e. con-
figurations Ω ✄ M for which there exists some environment Γ such that Γ ⊢ M
and Γ <: Ω (<: is extended from types to environment in the natural way).

13

The relations will also mention the observer’s knowledge by relating config-
urations. Since we will mostly insist on equivalence relations where two systems
are impossible to distinguish for the same observer, we will write Ω � M S N
when (Ω ✄ M)S(Ω ✄ N).

To obtain an observational equivalence, let us first define the basic observa-
tions. They must be interactions with the studied system, i.e. communications
over some channels. Since channels are located, this will be possible only when
the observer is granted access to their location. To actually allow the system to
“choose” which locations should be reachable, we decided to place the observer
into a fresh location. This implies that the only directly reachable locations are
the destinations of the universal passports in Ω. So we define barbs thus:

Definition 3.1 (Barbs). M shows a barb on c to Ω, written Ω ✄ M ⇓ c,
whenever there exist a location l and a passport p such that:

• Ω ⊢ p : ⋆ 7→ l;

• Ω ⊢ c : r〈T〉@l, for some type T;

• there exist some P , M ′ and (~a : ~E) with c, l 6∈ ~a and such that M −→∗≡

(new~a : ~E)(M ′ | lJc ! 〈V 〉P K).

Some observer knowing Ω will be able to distinguish two systems as soon
as they show different sets of barbs. To get an equivalence out of this simple
property, the observer is usually allowed to test the system by putting it in any
context in order to eventually obtain a distinguishing barb. In our setting, we
should consider only loyal contexts, i.e. contexts which use only rights available
to the observer: they should not try to launch code in unreachable locations and
access channels without the corresponding permissions. We formally define a
location l as reachable knowing Ω when there exist p : ⋆ 7→ l1, p1 : l1 7→ l2,
. . . , pn : ln 7→ l in Ω. We will write RΩ for the set of such reachable locations.
Then a context of the form [·] | lJP K is loyal only when l is reachable and P is
well-typed in Ω. The observer must also be loyal when introducing new names
(for instance to be used in P):

Definition 3.2 (Loyal extension). Γ′ is a loyal extension of Γ when:

• Γ; Γ′ is a well-formed environment;

• for every u : ṽ⋆ 7→ w and u : C@w in Γ′ when w appears in Γ, then w ∈ RΓ.

Finally, we define the loyal contextuality of a relation S. The loyal barbed
congruence follows from this notion.

Definition 3.3 (Loyally contextual relation). A relation S is said loyally con-
textual only when:

• If Ω � M S N and Ω′ is a loyal extension of Ω such that for every
hypothesis a : E in Ω′, a is fresh, then Ω; Ω′

� M S N .

• If Ω � M S N , k ∈ RΩ and Ω ⊢ kJP K then Ω � M | kJP K S N | kJP K.

• If Ω; a : E � M S N and both configurations Ω ✄ (new a : E) M and Ω ✄

(new a : E) N are well-formed, then Ω � (new a : E) M S (new a : E) N .

Definition 3.4 (Loyal barbed congruence). We call loyal barbed congruence,
written ∼=l, the biggest symmetric loyally contextual relation that preserves barbs
and is closed over reductions.

14

Figure 6 Labelled transition system, significant rules

(lts-goto) Ω ✄ lJgotop k. P K τ−→ Ω ✄ kJP K

l ∈ RΩ Ω ⊢l a : r〈T〉 where T = Ωr(a)
(lts-w)

Ω ✄ lJa ! 〈V 〉P K a!V−−→ Ω,〈V : T〉 ✄ lJP K

l ∈ RΩ Ω ⊢l a : w〈T′〉 Ω ⊢l V : T′

(lts-r)

Ω ✄ lJa ? (X : T) P K a?V−−→ Ω ✄ lJP{V/X}K

ΩM ✄ M (Φ)a!V−−−−→ Ω′
M ✄ M ′

ΩN ✄ N (Φ)a?V−−−−→ Ω′
N ✄ N ′

(lts-comm)

Ω ✄ M |N τ−→ Ω ✄ (newΦ) M ′ |N ′

Ω ✄ N |M τ−→ Ω ✄ (newΦ) N ′ |M ′

Ω ✄ M µ−→ Ω′
✄ M ′

(lts-c-par)

Ω ✄ M |N µ−→ Ω′
✄ M ′ |N

Ω ✄ N |M µ−→ Ω′
✄ N |M ′

Ω ✄ M µ−→ Ω′
✄ M ′

(lts-c-new) a 6∈ n(µ)
Ω ✄ (new a : E) M µ−→ Ω′

✄ (new a : E) M ′

Ω ✄ M (Φ)a!V−−−−→ Ω′
✄ M ′

(lts-open)
b 6= a
b ∈ fn(V) ∪ fn(Φ)Ω ✄ (new b : E) M (b:E;Φ)a!V−−−−−−→ Ω′

✄ M ′

Ω; Ωe ✄ M (Φ)a?V−−−−→ Ω′
✄ M ′

(lts-weak)
dom(Ωe) ∩ ({a} ∪ fn(M)) = ∅
Ωe is a loyal extension of ΩΩ ✄ M (Ωe;Φ)a?V−−−−−−−→ Ω′

✄ M ′

4 Loyal bisimilarity

The definition given for the loyal barbed congruence is justified by intuitions
but it is complex and highly intractable. So we also propose a complete proof
technique for this equivalence: a bisimilarity. The idea of the bisimilarity is to
provide an alternative but equivalent definition of the semantics using a Labelled
Transition System (LTS) where the labels represents the possible interactions
between the system and its environment. Then two systems can be distinguished
if, after some preliminary interactions, one can perform a transition the other
cannot.

4.1 Labelled transitions system

The way the LTS is built is completely standard: we associate the label τ to
every internal reduction a system can perform, to indicate that the environment
is not involved. This means that every reduction rule of Figure 2 but (r-comm)
becomes a transition labelled by τ . For instance, let us mention the rule (lts-
goto):

Ω ✄ lJgotop k. P K τ−→ Ω ✄ kJP K

15

Note that, since the interactions we are characterising are between some sys-
tem M and an observer knowing Ω, we define transitions on configurations.
Also note that the knowledge of the observer is left untouched in a τ transition
since he is not interacting with the system. We present in Figure 6 only some
significant rules: all the other ones are τ transitions that can be directly derived
from the reduction semantics.

Let us explain the major rules of the LTS and start with (lts-w). The
conditions of this rule are similar to the ones for barbs. Indeed an observer
knowing Ω will be able to interact with a system outputting a message V on
a channel a in a location l only when l is reachable (l ∈ RΩ) and when the
observer can input on that channel (Ω ⊢l a : r〈T〉). The knowledge of the
observer will consequently be enriched by the message: Ω becomes Ω,〈V : T〉
along that transition. In this expression, the type T indicates all the rights
the observer learns, calculated using the meet of the types associated with the
channel. Suppose for instance that the meet of all the types associated with a
in Ω is rw〈T1,T2〉@l; then T1 sums up all the rights that can be obtained by
inputting on a. We denote that type T1 as Ωr(a) in (lts-w).

The rule (lts-r) is symmetrical: the observer also needs to have access to
the location where the interaction takes place and to be allowed to actually send
the message that the observed system will receive. Of course, the knowledge of
the observer is not increased by the message since it is its author.

As usual, the rules (r-comm) and (lts-comm) have little in common: in
the reduction semantics, the possibility to interact for two processes that are
not syntactically close is guaranteed via the structural congruence; in the LTS,
this is replaced by the fact that a system containing a process about to send
a message will be able to perform an output transition ·!·−→. But in the typed
LTS we present here, the type environment representing the knowledge of the
observer must allow the input and the output to be performed. To ensure this,
note that (lts-comm) does not specify the type environment in which both the
output and the input are possible: ΩM and ΩN are simply two environments
in which the transitions can be proved. And, as soon as two such environments
exist, we can conclude that the two subsystems can communicate. We can also
notice that (lts-comm) must close, as usual, the scopes of the names, scopes
that must be opened by (lts-open) to permit the communication: here this
implies that the output labels have to contain the types associated with all the
names; this is why we reuse the notation for type environments (Φ) in labels.

Finally, let us look at the rule (lts-weak). Exactly as (lts-w) which
closely matches the criterium used in defining barbs, that rule is constrained in
the same way as the loyal contextuality (Definition 3.3).

Since the LTS defines some semantics for the calculus, we want to make sure
that the semantics coincide with the reduction semantics:

Theorem 4.1 (Coincidence of semantics). The reduction semantics and the
semantics extracted from the LTS coincide in the sense of the following two
properties:

• Ω ✄ M τ−→ Ω ✄ M ′ implies that M −→ M ′;

• M −→ M ′ implies that there exists some M ′′ ≡ M ′ with Ω✄M τ−→Ω✄M ′′.

16

4.2 Bisimilarity equivalence

With the LTS defined above, we would like to define an equivalence R as a
standard bisimulation: when Ω � M R N and Ω ✄ M µ−→ Ω′

✄ M ′ then there
must exist some N ′ such that Ω ✄ N µ̂=⇒ Ω′

✄ N ′ and Ω′
� M ′ R N ′ where

τ̂=⇒ = τ−→∗ and µ̂=⇒ = τ−→∗ µ−→ τ−→∗ when µ 6= τ . Remark that the use of
the same Ω′ for M and N is not constraining: the knowledge of the observer is
modified in exactly the same way along the transitions µ−→ and µ̂=⇒, whatever µ
may be.

But this definition cannot be used right away in our case, because of de-
pendent types. Let us consider a case where the discrepancy appears. Suppose
some channel c in l on which a passport can be transmitted (so c is of type
rw〈

∑

x, y : ~loc. x 7→ y〉@l) and consider the following two systems:

(new k′ : loc) (new p : k, k′ 7→ l) lJc ! 〈(k, l), (p)〉 d ! 〈k′〉K (1)

(new k′ : loc) (new p : k 7→ l) lJc ! 〈(k, l), (p)〉 d ! 〈k′〉K (2)

The only difference is the fact that the passport p can be used also from the new
location k′ in the first system. Since the observer receives p at the type k 7→ l in
both cases, it should not be able to make the difference. But, they can perform
the following transitions with distinct labels (for simplicity, we ignore the type
annotations in the labels):

Ω ✄ (1) (k′,p)c!((k,l),(p))−−−−−−−−−−→ Ω, p : k 7→ l ✄ lJd ! 〈k′〉K
d!k′

−−→ Ω, p : k 7→ l, k′ : loc ✄ lJstopK
Ω ✄ (2) (p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k 7→ l ✄ (new k′ : loc) lJd ! 〈k′〉K

(k′)d!k′

−−−−→ Ω, p : k 7→ l, k′ : loc ✄ lJstopK

namely not opening the scope of k′ in the same transition. To avoid this problem,
we annotate configurations with a set of names whose scopes have been opened
because of type dependencies, not because they were revealed. The labels are
modified accordingly to mention only the names that are actually revealed.

Definition 4.1 (Actions). The annotated configuration Ω ✄ã M can perform
the action µ and become Ω′

✄ã′ M ′ when:

• if µ is τ or (Φ)a?V : the transition Ω ✄ M µ−→ Ω′
✄ M ′ is provable in the

LTS and ã = ã′;

• if µ is (b̃)a!V : the transition Ω ✄ M (Φ)a!V−−−−→ Ω′
✄ M ′ is provable in the

LTS, b̃ = fn(V) ∩ (dom(Φ) ∪ ã) and ã′ = (dom(Φ) ∪ ã) \ fn(V).

So the definition of actions enforces that the names b̃ mentioned in an out-
put action are indeed revealed to the observer, since they must appear in the
message (i.e. in the set fn(V)), whether their scopes is opened by this action
(so appearing in dom(Φ)) or kept hidden in the annotation ã.

So, starting the two previous systems with empty annotations, they can
perform the following actions:

Ω ✄∅ (1) (p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k 7→ l ✄{k′} lJd ! 〈k′〉K
(k′)d!k′

−−−−→ Ω, p : k 7→ l, k′ : loc ✄∅ lJstopK
Ω ✄∅ (2) (p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k 7→ l ✄∅ (new k′ : loc) lJd ! 〈k′〉K

(k′)d!k′

−−−−→ Ω, p : k 7→ l, k′ : loc ✄∅ lJstopK

17

Using those annotated configuration, it becomes possible to define a mean-
ingful equivalence as a bisimilarity.

Definition 4.2 (Loyal bisimilarity). The loyal bisimilarity, written ≈al, is the
largest bisimulation defined in the standard way over actions of annotated con-
figurations.

4.3 Equivalences coincidence

Since the bisimilarity has been introduced as a proof technique, we have to prove
that, under some conditions, the two equivalences coincide. The proof of that
property is significantly more complex than its equivalent in the literature (see
for instance [HMR03]). We will describe here only the main steps of the proof;
it is fully detailed in [Hym06].

4.3.1 Dealing with annotations

The first difference to take into account is the fact that the bisimilarity is de-
fined over annotated configurations contrary to the barbed congruence. This is
bypassed by simply considering annotated typed relations, written

Ω � M ãM
S ãN

N

Using those annotated relations, we can define again a notion of contextual-
ity: the only difference with the definition 3.3 is the fact that contexts of the
form [·] | lJP K can be used with the hypothesis Ω � M ãM

S ãN
N only when none

of the free names of that context are in the annotations ãM and ãN . This is a
mere consequence of the fact that the names in the annotations are still hidden
to the observer.

To obtain an annotated barbed congruence, we should also define the barbs
of annotated configurations. But the possible interactions of Ω ✄ã M are ex-
actly the interactions of Ω ✄ M since the names ã are hidden to the observer
so Ω ✄ M will never show a barb on some name a when a ∈ ã. This annotated
contextuality therefore immediately induces an annotated loyal barbed congru-
ence, written ∼=al.

By definition, ∼=al is thus the biggest relation verifying some conditions which
never modify the annotations. Because of this, we directly obtain that ∼=l is
equal to ∅

∼=al
∅. Now we can prove that ∼=al and ≈al coincide by proving both

inclusions.

4.3.2 The bisimilarity is included in the barbed congruence

The proof of this inclusion is mainly the proof of the fact that the bisimilar-
ity is contextual. This is naturally done by checking all three items defining
contextuality, the major property to check being:

Theorem 4.2 (Bisimilarity is closed on parallel contexts). If Ω � M ãM
≈al

ãN

N , l ∈ RΩ, Ω ⊢ lJOK and fn(O) ∩ (ãM ∪ ãN) = ∅ then Ω � M | lJOK ãM
≈al

ãN

N | lJOK.

Sketch of proof 1. To get this result we simply build a relation and prove that
it is a bisimulation which induces the fact that it is included in the biggest

18

bisimulation, ≈al. Because that relation must be closed on reductions, we will
consider a relation S in which systems have a very general form:

Ω � (new ΦM)(M |
∏

i

liJOiK) ãM
S ãN

(new ΦN)(N |
∏

i

liJOiK)

The main difficulty to tackle is the fact that, along reductions, the knowledge of
the observer, initially completely located in Ω (because lJOK is well-typed in Ω),
is split between Ω and

∏

i liJOiK. In particular, a part of the environments Φ and
annotations ã should be included in the general knowledge of the observer since
they might have been communicated to the processes Oi. A precise account of
this knowledge is kept to preserve the full-strength of the initial hypothesis of
bisimilarity between M and N . So we will impose the following conditions on
the relation S.

• There exists some environment ΩO that can be split into two parts (where X
stands for both M and N):

– a subtype environment of Ω (that can contain some knowledge about ãX

but none about the names in ΦX);

– a supertype environment of ΦX .

The way ΩO is split into those two pieces is, in general, different for M
and N .

• There exists some set of names NO that contains all the names which are
known to the observer. That set contains in particular all the names in ΩO

and all the names appearing in Oi.

• ΩO; p1 : ⋆ 7→ l1, . . . � M ãi
M
≈al

ãi
N

N where the passports pi are fresh

and ãi
X are the names actually hidden to the observer (ãi

X = (dom(ΦX)∪
ãX) \ NO). The passports pi represent the fact that the observer has
access, via the processes Oi, to the locations li.

• The names which are bound in dom(ΦX) ∪ ãX and which are known to
the observer (i.e. are in NO) must be the same for M and N . Formally,
(dom(ΦM) ∪ ãM) ∩NO = (dom(ΦN) ∪ ãN) ∩NO.

• Finally, the processes Oi controlled by the observer must use only permis-
sions he managed to get so ΩO ⊢

∏

i liJOiK.

The complete proof that S is indeed a bisimulation (up to structural congru-
ence to tidy terms) is rather tiring and decomposed as usual: for every action
performed by a system, we identify which parts are actually involved (M alone;
∏

i liJOiK alone; or a communication between those two). The major care that
must be taken in checking this property is to preserve the annotations.

The other property that requires some care is the proof that bisimilarity
is closed on contexts of the form (new a : E)[·]. Again, annotations makes this
more complex: the scope of the name a can be opened without revealing it to
the observer, namely by adding it to the annotation. The result is then obtained
by considering the two possibilities for the place where a is bound ((new a : E)
or annotation) for both M and N .

We do not insist any further here on the proofs that ≈al verifies the other
defining properties of ∼=p, which allow to conclude:

19

Theorem 4.3. ≈al ⊆ ∼=p

4.3.3 The barbed congruence is included in the bisimilarity

The proof of the converse involves another equivalence relation to be used as an
intermediary: the choice of that equivalence must facilitate both the proof of
its inclusion into ≈al and the proof that it includes ∼=al. The relation we used
is a parallel congruence, namely the biggest relation which is closed on parallel
context and extension of the observer’s environment but not on contexts of the
form (new a : E)[·]. The result that the parallel barbed congruence contains the
normal barbed congruence is then immediate. So we simply have to prove that
the parallel congruence is included in the bisimilarity.

The guiding idea of the definition of the actions was to identify all the possi-
ble interactions between a system and its observer. So the proof of that inclusion
can be based on the definition of contexts that characterise a given action of
the system. Those contexts use the fact that we can put any environment Γ in
a normal form looking like:

w1 : loc, . . . , wm : loc,
u1 : w̃i1 7→ wi1 , . . . , un : w̃in

7→ win
,

v1 : C1@wj1 , . . . , vo : Co@wjo

where

• the wk are all distinct;

• uk = uk′ only if k = k′ or if wik
6= wik′

;

• vk = vk′ only if k = k′ or if wjk
6= wjk′

.

This follows from two facts: types can depend only on location identifiers so
that all the locations can be listed first; the well-formedness of environments
ensures that any two types associated with a given identifier must be weakly
↓-compatible.

This normal form of environments is relevant for the contexts that char-
acterise the actions of a system because they provide a way to encode every
environment into a value of the calculus.

Definition 4.4 (Reification of environments). To an environment of the fol-
lowing (normal) form

w1 : loc, . . . , wm : loc,
u1 : w̃i1 7→ wi1 , . . . , un : w̃in

7→ win
,

v1 : C1@wj1 , . . . , vo : Co@wjo

we associate the value

VΓ = ((w1, . . . , wm), (u1, . . . , un, v1, . . . , vo))

of type

TΓ =
∑

x1, . . . , xm : ˜loc. x̃⋆
i1

7→ xi1 , . . . , x̃
⋆
in

7→ xin
,C1@xj1 , . . . ,Co@xjo

20

Proposition 4.5 (Soundness of the reification). For any well-formed environ-
ment Γ and any location w defined in Γ, Γ ⊢w VΓ : TΓ.

Thanks to this reification of environments, we can proceed as usual, namely
we can define some system C

Ω
N ((b̃)c!U) so that M |CΩ

N ((b̃)c!U) will be sending
the value VΩ,〈U :Ωr(c)〉 on some specific channel ω if and only if the system M

has actually sent the message U over the channel c to C
Ω
N ((b̃)c!U). So such a

context would be of the form lJOK where l is the location of the channel c in
which the action takes place. Note that the observer can launch some process
in l since the action (b̃)c!U is visible to the observer Ω: by rule (lts-w) this
implies that l is in RΩ. Then O performs the following steps.

1. It waits for a message on the channel c and, in parallel, exhibit a barb on
some special channel δ.

2. It checks that the received value matches the expected U : this relies on
the possibility to test the equality and inequality of names; in particular,
to check that the names in b̃ are indeed fresh, the context is parameterised
with a finite set of existing names N which contains all the names that
are known to the observer. This test matches exactly the definition of
the set b̃ in output actions: this set contains only the names which were
hidden within the system or the annotation and which are revealed to the
observer.

3. It finally cancels the barb on δ and outputs the value VΩ,〈U :Ωr(c)〉 on the
channel ω.

The channel δ used in the context serves only one purpose: to check that the
step 2 has actually been performed: since the detected barbs always allow some
preliminary τ transitions, the barb on ω is visible since the very beginning as
soon as the system can perform the action.

By a very similar technique, it is possible to form contexts that characterise
an input action, so that the following theorem can be proved:

Theorem 4.6. ∼=p ⊆ ≈al

Sketch of proof 2. We simply prove that ∼=p is a bisimulation. For this con-
sider Ω � M ãM

∼=p
ãN

N . When the configuration Ω✄ãM
M performs a τ action

to Ω ✄ãM
M ′, Theorem 4.1 and the closure of ∼=p on reductions allows to find

a N ′ such that Ω � M ′
ãM

∼=p
ãN

N ′.
For the action Ω✄ãM

M α−→Ω′
✄ã′

M
M ′, we know that M |CΩ

N (α) can reduce
into some system (new ΦM) M ′ |λJω ! 〈VΩ′〉K. By contextuality and closure on
reductions, N |CΩ

N (α) should reach an equivalent state, with a barb on ω and
no barb on δ. By definition of the context C

Ω
N (α), that equivalent state must

be of the form (new ΦN) N ′ |λJω ! 〈VΩ′〉K with Ω ✄ãN
N α=⇒ Ω′

✄ã′

N
N ′.

A fairly standard scope extrusion lemma bridges the last gap by concluding
Ω′

� M ′
ã′

M

∼=p
ã′

N
N ′ from

λ, ω, π � (new ΦM) M ′ |λJω ! 〈VΩ′〉K ã′

M

∼=p
ã′

N
(new ΦN) N ′ |λJω ! 〈VΩ′〉K

where: π is a universal passport to λ, ã′
M is (ãM ∪ dom(ΦM)) \ dom(Ω) and a

similar formula for ã′
N .

21

The results stated above directly entails the expected result:

Theorem 4.7 (Full abstraction of ≈al for ∼=l). Ω � M ∼=l N if and only if
Ω � M ∅≈

al
∅ N

5 Conclusion & perspectives

This work presents a new approach to control the migrations of agents in the
context of distributed computation, using simple passports that should corre-
spond to the origin location of the migrating agent. We have developed the full
theory of this idea, with a loyal barbed congruence that takes those passports
into account to distinguish between systems. We have also provided a complete
proof technique for this equivalence as a bisimilarity.

This work provides a solid ground on which to investigate subtler notions of
security like the ones presented in [HRY05] and [CHP+06]. We already started
to study more complex passports in which resources that can be accessed after
the migration depend on the passport actually used: when a new passport is
generated, its type also embed all the rights to be granted to incoming processes.

Acknowledgement The author would like to thank Matthew Hennessy for
numerous helpful discussions and comments.

References

[BCMS02] Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vladimiro Sas-
sone. Communication interference in mobile boxed ambients. In
Manindra Agrawal and Anil Seth, editors, FSTTCS, volume 2556 of
Lecture Notes in Computer Science, pages 71–84. Springer, 2002.

[BS98] Michele Boreale and Davide Sangiorgi. Bisimulation in name-passing
calculi without matching. In Thirteenth Annual Symposium on Logic
in Computer Science (LICS) (Indiana). IEEE, Computer Society
Press, July 1998.

[CHP+06] Karl Crary, Robert Harper, Frank Pfenning, Benjamin C. Pierce,
Stephanie Weirich, and Stephan Zdancewic. Manifest security for
distributed information. White paper, March 2006.

[CN02] Giuseppe Castagna and Francesco Zappa Nardelli. The Seal calcu-
lus revisited: Contextual equivalence and bisimilarity. In Manindra
Agrawal and Anil Seth, editors, FSTTCS, volume 2556 of Lecture
Notes in Computer Science, pages 85–96. Springer, 2002.

[HH07] Samuel Hym and Matthew Hennessy. Adding recursion to Dpi. The-
oretical Computer Science, 373(3):182–212, apr 2007.

[HMR03] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards
a behavioural theory of access and mobility control in distributed
systems. Theoretical Computer Science, 322:615–669, 2003.

22

[HR02] Matthew Hennessy and James Riely. Resource access control in sys-
tems of mobile agents. Information and Computation, 173:82–120,
2002.

[HRY05] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. SafeDpi: a
language for controlling mobile code. Acta Informatica, 42(4-5):227–
290, 2005.

[Hym06] Samuel Hym. Typage et contrôle de la mobilité. PhD thesis, Univer-
sité Paris Diderot – Paris 7, 2006.

[LS00] Francesca Levi and Davide Sangiorgi. Controlling interference in
ambients. In 27th Annual Symposium on Principles of Programming
Languages (POPL) (Boston, MA), pages 352–364. ACM, January
2000.

[MH06] Massimo Merro and Matthew Hennessy. A bisimulation-based se-
mantic theory of Safe Ambients. ACM Transactions on Programming
Languages and Systems, 28(2):290–330, March 2006.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, edi-
tor, 19th ICALP, volume 623 of Lecture Notes in Computer Science,
pages 685–695. Springer-Verlag, 1992.

[MV05] Francisco Martins and Vasco Thudichum Vasconcelos. History-based
access control for distributed processes. In TGC, pages 98–115, 2005.

[SS04] Alan Schmitt and Jean-Bernard Stefani. The kell calculus: A family
of higher-order distributed process calculi. In Corrado Priami and
Paola Quaglia, editors, Global Computing, volume 3267 of Lecture
Notes in Computer Science, pages 146–178. Springer, 2004.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and Computation, 115(1):38–94,
November 1994.

23

A Complete formal definitions

We provide here figures containing the complete sets of inference rules of the
type system.

Figure 7 Well-formed environments

(e-empty) ⊢ env

(e-loc)

Γ ⊢ env

↓(Γ(u)∪{loc})

Γ, u : loc ⊢ env

(e-channel)

Γ ⊢ env w : loc ∈ Γ
↓(Γ(u)∪{C@w})

Γ, u : C@w ⊢ env

(e-pass)

Γ ⊢ env w : loc ∈ Γ ∀wi ∈ w̃, wi : loc ∈ Γ
↓(Γ(u)∪{w̃⋆ 7→w})

Γ, u : w̃⋆ 7→ w ⊢ env

Figure 8 Typing values

(v-id)

Γ, u : E, Γ′ ⊢ env

Γ, u : E, Γ′ ⊢ u : E

Γ ⊢ u : E1 Γ ⊢ u : E2

E1⊓E2<:E3

Γ ⊢ u : E3

(v-inf)

(v-localization)

Γ ⊢ w : loc Γ ⊢ u : E

Γ ⊢w u : E

(v-located-chan)

Γ ⊢ w : loc Γ ⊢ u : C@w

Γ ⊢w u : C

Γ ⊢ u : w 7→ v

Γ ⊢w u : →֒ v
(v-located-pass)

(v-tuple)

Γ ⊢w Vi : Ti

Γ ⊢w (~V) : (~T)

Γ ⊢w ui : loc Γ ⊢w V : T{~u/~x}

Γ ⊢w ((~u), V) :
P

~x : ~loc. T
(v-dep)

24

Figure 9 Typing processes

(t-w)

Γ ⊢w u : w〈T〉 Γ ⊢w V : T Γ ⊢w P

Γ ⊢w u ! 〈V 〉P

(t-r)

Γ ⊢w u : r〈T〉 Γ;〈X : T〉@w ⊢w P

Γ ⊢w u ? (X : T) P

(t-goto)

Γ ⊢ u : w 7→ v Γ ⊢v P

Γ ⊢w gotou v. P

(t-if)

Γ ⊢w P2 [Γ]u1=u2
⊢w P1 when [Γ]u1=u2

⊢ env

Γ ⊢w if u1 = u2 then P1 else P2

(t-newchan)

Γ; c : C@w ⊢w P

Γ ⊢w newchan c : C in P

(t-newloc)

Γ;〈(k, ((~c), (~p), (~q))) : T{w/x}〉 ⊢k Pk Γ;〈(k, ((~c), (~p), (~q))) : T{w/x}〉 ⊢w P

Γ ⊢w newloc k, (~c), (~p), (~q) :
P

x : loc. Twith Pk in P

(t-newpass)

Γ ⊢ ũ : ˜loc Γ; p : ũ⋆ 7→ w ⊢w P

Γ ⊢w newpass p from ũ⋆ in P

(t-par)

Γ ⊢w P1 Γ ⊢w P2

Γ ⊢w P1 |P2

(t-rep)

Γ ⊢w P

Γ ⊢w ∗P

(t-stop)

Γ ⊢ env

Γ ⊢w stop

Figure 10 Typing systems

Γ ⊢ env

(t-nil)

Γ ⊢ 0

Γ; a : E ⊢ M
(t-new)

Γ ⊢ (new a : E) M
Γ ⊢ l : loc Γ ⊢l P

(t-proc)

Γ ⊢ lJP K

Γ ⊢ M1 Γ ⊢ M2

(t-s-par)

Γ ⊢ M1 |M2

25

	Introduction
	Typed Dpi with passports
	Overview of passports
	Syntax & semantics
	Type system for the language
	Types for identifiers and values
	Subtyping
	Typechecking processes and systems
	Properties of the type system

	Loyal observational equivalence
	Loyal bisimilarity
	Labelled transitions system
	Bisimilarity equivalence
	Equivalences coincidence
	Dealing with annotations
	The bisimilarity is included in the barbed congruence
	The barbed congruence is included in the bisimilarity

	Conclusion & perspectives
	Complete formal definitions

