882 research outputs found

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    Rotunda - Vol 72, No 5 - Sept 28, 1992

    Get PDF

    Rotunda - Vol 73, No 6 - Oct 26, 1993

    Get PDF

    Human Centered Computer Vision Techniques for Intelligent Video Surveillance Systems

    Get PDF
    Nowadays, intelligent video surveillance systems are being developed to support human operators in different monitoring and investigation tasks. Although relevant results have been achieved by the research community in several computer vision tasks, some real applications still exhibit several open issues. In this context, this thesis focused on two challenging computer vision tasks: person re-identification and crowd counting. Person re-identification aims to retrieve images of a person of interest, selected by the user, in different locations over time, reducing the time required to the user to analyse all the available videos. Crowd counting consists of estimating the number of people in a given image or video. Both tasks present several complex issues. In this thesis, a challenging video surveillance application scenario is considered in which it is not possible to collect and manually annotate images of a target scene (e.g., when a new camera installation is made by Law Enforcement Agency) to train a supervised model. Two human centered solutions for the above mentioned tasks are then proposed, in which the role of the human operators is fundamental. For person re-identification, the human-in-the-loop approach is proposed, which exploits the operator feedback on retrieved pedestrian images during system operation, to improve system's effectiveness. The proposed solution is based on revisiting relevance feedback algorithms for content-based image retrieval, and on developing a specific feedback protocol, to find a trade-off between the human effort and re-identification performance. For crowd counting, the use of a synthetic training set is proposed to develop a scene-specific model, based on a minimal amount of information of the target scene required to the user. Both solutions are empirically investigated using state-of-the-art supervised models based on Convolutional Neural Network, on benchmark data sets

    Procedures as Programs: Hierarchical Control of Situated Agents through Natural Language

    Full text link
    When humans conceive how to perform a particular task, they do so hierarchically: splitting higher-level tasks into smaller sub-tasks. However, in the literature on natural language (NL) command of situated agents, most works have treated the procedures to be executed as flat sequences of simple actions, or any hierarchies of procedures have been shallow at best. In this paper, we propose a formalism of procedures as programs, a powerful yet intuitive method of representing hierarchical procedural knowledge for agent command and control. We further propose a modeling paradigm of hierarchical modular networks, which consist of a planner and reactors that convert NL intents to predictions of executable programs and probe the environment for information necessary to complete the program execution. We instantiate this framework on the IQA and ALFRED datasets for NL instruction following. Our model outperforms reactive baselines by a large margin on both datasets. We also demonstrate that our framework is more data-efficient, and that it allows for fast iterative development
    corecore