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Abstract

Nowadays, intelligent video surveillance systems are being developed to sup-

port human operators in different monitoring and investigation tasks. Al-

though relevant results have been achieved by the research community in

several computer vision tasks, some real applications still exhibit several

open issues. In this context, this thesis focused on two challenging com-

puter vision tasks: person re-identification and crowd counting. Person re-

identification aims to retrieve images of a person of interest, selected by the

user, in different locations over time, reducing the time required to the user

to analyse all the available videos. Crowd counting consists of estimating

the number of people in a given image or video. Both tasks present several

complex issues. In this thesis, a challenging video surveillance application

scenario is considered in which it is not possible to collect and manually

annotate images of a target scene (e.g., when a new camera installation

is made by Law Enforcement Agency) to train a supervised model. Two

human centered solutions for the above mentioned tasks are then proposed,

in which the role of the human operators is fundamental. For person re-

identification, the human-in-the-loop approach is proposed, which exploits

the operator feedback on retrieved pedestrian images during system opera-

tion, to improve system’s effectiveness. The proposed solution is based on

revisiting relevance feedback algorithms for content-based image retrieval,

and on developing a specific feedback protocol, to find a trade-off between

the human effort and re-identification performance. For crowd counting, the

use of a synthetic training set is proposed to develop a scene-specific model,

based on a minimal amount of information of the target scene required to

the user. Both solutions are empirically investigated using state-of-the-art

supervised models based on Convolutional Neural Network, on benchmark

data sets.
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Chapter 1

Introduction

Intelligent video surveillance systems have had a great diffusion in order to guarantee

security and to prevent acts of terrorism. For instance, a human operator, such as a

Law Enforcement Agency (LEA) officer, often simultaneously monitors several videos

acquired by a video surveillance system. This requires a great attention and a quick

reaction in case of anomalous (e.g., panic escape, unexpected groupings, etc.). An

intelligent video surveillance system can support human operator through different

tools which, for instance,

• analyse human behaviour. In the case of anomalies such as panic escape, the

system raises an alert and the human operator can act accordingly

• recognise a set of people. This can be used in monitoring the entrance in specific

areas of employees in a company or looking for a criminal among all people who

pass through the gait.

• track a suspicious person in real-time. It can be useful to monitor a criminal and

to keep in track its movements

• estimate the number of people in a given area. It can be used, e.g., to guarantee

security in case of overcrowding

• finding a suspicious person in a large amount of recorded videos. This can be

useful in forensics investigation, e.g., to reconstruct the movements of that person

To mitigate the required human effort in real-time video monitoring and in analysing

recorded videos, the research communities of computer vision, pattern recognition and

1



1. INTRODUCTION

machine learning have developed several methods and tools such as object and event

detection, object and pedestrian tracking and recognition. Despite the significant re-

sults achieved so far, many open issues remain in several real-world applications such as

human behaviour analysis, pedestrian tracking in a crowded scene, and real-time crowd

analysis. These tasks are challenging especially in unconstrained scenarios which are

typical of video surveillance applications, making it difficult to satisfy user require-

ments.

This thesis focuses on two computer vision tasks that are of great relevance for

real-world applications, namely person re-identification and crowd counting.

Person re-identification consists of recognising a person of interest, selected by the

user, in a possibly very large amount of recorded videos from non-overlapping cameras.

The main goal of a person re-identification system is to reduce the time required to

human operator to analyse all the available videos.

To this aim, the system automatically compares the query against all pedestrian im-

ages detected in the available videos (template gallery). The output of this comparison

is a ranked list of template gallery images based on their similarity to the query. The

user can then hopefully find the person of interest (if present in the template gallery)

near to the top ranks of that list.

Person re-identification is a challenging task in unconstrained scenarios due to

several issues such as illumination variations, different poses, different cameras, low-

resolution videos and occlusions. Due to these issues, it is not possible to use classical

biometric techniques such as face recognition. “Soft biometric” cues have to be used

instead, among which clothing appearance is the most widely used. State-of-the-art

approaches are based on machine learning, and especially on convolutional neural net-

works, which however require a considerable amount of labelled data. To mitigate the

lack of labelled images in many real-world applications, unsupervised approaches have

been proposed, but they still require images (albeit unlabelled) of the target scene

which is unfeasible or too demanding for some applications or end users. To overcome

this issue, the human in the loop (HITL) approach is considered in this thesis. It con-

sists of exploiting some feedback from a human user to improve system performance,

leveraging the often complementary strengths by humans and machines. This approach

has already been considered in some other computer vision tasks, such as image seg-

mentation and fine-grained image recognition, as well as by a few authors for person

2



re-identification. In a person re-identification system, the inherent interaction with a

human operator can be conveniently exploited, for instance by asking the operator a

feedback on the presence of the query identity, or of similar or very different individuals,

in the top positions of the ranked list; such a feedback can be used to automatically

re-rank the gallery images, aiming at “pushing” images of the query identity (if any)

to the top of the list, which in turn can result in further reducing the time required to

the user to find them.

The second computer vision task considered in this thesis is named crowd count-

ing. It consists of estimating the number of people in a given image or video frame.

In particular, in this thesis the task of estimating in real-time the size of a possibly

dense crowd from a video is addressed. This can lead to useful tools for supporting

human operators (e.g., LEA officer) in monitoring a crowded area, e.g., during mass

gathering events like demonstrations and concerts. Based on the estimated crowd size

over time, further automatic functionalities related to the detection of anomalous crowd

behaviours can be enabled, such as overcrowding and panic escape (which may result

in a sudden decrease of crowd density). The system can then send an alert to the

operator who can act accordingly. The main advantage is the reduction of user’s mon-

itoring effort, especially when several videos possibly coming from different areas have

to be monitored simultaneously. Also this task presents several challenging issues due

to perspective distortion, illumination changes, scale variations due to perspective, dif-

ferent and (often) complex background, and occlusions (especially in dense crowds).

As in the case of person re-identification, state-of-the-art approaches are based on ma-

chine learning and convolutional neural networks, and require a considerable amount

of manually labelled crowd images of the target scene, due to their sensitivity to back-

ground, perspective etc. However, in some challenging real-world application scenarios

such as new installation of cameras by the LEAs that should be operational in a short

time, collecting and manually labelling representative images of the target scene can

be infeasible. This raises the issues of how to develop a scene-specific crowd counting

system when a representative set of labelled images of the target scene is not available.

To this aim, an approach based on building a synthetic training set is proposed in this

thesis. The proposed approach only requires to the user basic information on the target

scene: a background image, the region of interest (where people can appear) and the

perspective map. This information is then used to automatically generate a synthetic

3



1. INTRODUCTION

data set of crowd images of a suitable size, which are automatically labelled with the

exact crowd size.

For both tasks it is essential that the computer vision systems effectively interacts

with human operators with the aim of reducing their effort in routine and boring

tasks; at the same time human capabilities related to tasks that are still challenging

for machines should be leveraged. Therefore effective computer vision solutions should

be human-centred.

1.1 Contributions

This work is the result of research activities that have benefited from the collaboration

in the European Union Project LETSCROWD1 under the HORIZON2020 program.

The project goals included the development of prototype computer vision tools to sup-

port LEA operators in monitoring and investigation activities related to mass gathering

events.

With regard to person re-identification, the HITL approach is used to address

the cross-scene setting, such as the one considered in this thesis. The person re-

identification problem can be considered as an image retrieval one and, as a conse-

quence, content-based image retrieve with relevance feedback (CBIR-RF) techniques

can be used to implement the HITL. This is disregarded by HITL approaches proposed

at the state of the art, which are based on methods quite complex. The contribution

of this thesis consists of investigating well-known CBIR-RF techniques for person re-

identification, and in particular, of developing a feedback protocol which is different

from existing HITL methods. Experimental comparison of UDA methods which are

recently used at the state of the art in cross-scene settings (such as the one considered

in this thesis), but too demanding in the examined application scenario. It was not

possible to make a direct comparison with existing HITL methods since the code was

made not available by authors, and it was not possible to re-implement them by using

the information provided by authors.

Similarly to the person re-identification scenario mentioned above, also with regard

to the crowd counting task, this thesis focuses on a challenging cross-scene application

1“Law Enforcement agencies human factor methods and Toolkit for the Security and protection of

CROWDs in mass gatherings” https://letscrowd.eu/ (May 2017 - October 2019)
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1.2 Organisation

scenario in which collecting and annotating images of the target scene is difficult and

too demanding to the end users. The first contribution of this thesis is an extensive

experimental evaluation of the performance gap between cross- and same-scene perfor-

mance of several state-of-the-art crowd counting methods, which is still missing in the

literature. The main contribution of this thesis is the proposed solution to mitigate this

gap, based on the construction of a synthetic training set of the target scene, inspired

by the use of synthetic images in other computer vision tasks with similar motivations.

The proposed solution is evaluated on methods mentioned above. The results of this

thesis have been partly reported in the following publications:

• Delussu, Rita; Putzu, Lorenzo; Fumera, Giorgio. “Investigating Synthetic Data

Sets for Crowd Counting in Cross-scene Scenarios”. Proc. 15th International

Joint Conference on Computer Vision Theory and Applications (VISAPP), Vol.

4, pp. 365-372, 2020.

• Delussu, Rita; Putzu, Lorenzo; Fumera, Giorgio. “An Empirical Evaluation of

Cross-scene Crowd Counting Performance”. Proc. 15th International Joint Con-

ference on Computer Vision Theory and Applications (VISAPP), Vol. 4, pp.

373-380, 2020.

• Delussu, Rita; Putzu, Lorenzo; Fumera, Giorgio; Roli, Fabio. “Online Domain

Adaptation for Person Re-Identification with a Human in the Loop”. Proc. 25th

International Conference on Pattern Recognition (ICPR), in press

• Delussu, Rita; Putzu, Lorenzo; Fumera, Giorgio. “Scene-specific Crowd Counting

Using Synthetic Training Images”. Pattern Recognition - (under review)

1.2 Organisation

This thesis is organised as follows:

• chapter 2 presents a complete overview of the approaches at the state of the art

for person re-identification (section 2.1) and crowd counting (section 2.2)

• chapter 3 describes the proposed approach for person re-identification and its em-

pirical evaluation, including experimental settings, data sets, performance met-

rics, and a discussion of the results
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• chapter 4 explains in details the proposed approach for crowd counting and its

empirical evaluation

• conclusions and future work are reported in chapter 5
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Chapter 2

State of the art

As described in the previous chapter, this thesis focused on computer vision techniques

that can support human operators, such as LEA officers in monitoring and investigation

tasks.

The tasks of interest are known as person re-identification and crowd counting.

Person re-identification consists of recognising images, acquired from different (non-

overlapping) cameras, of a person of interest, which can be useful, e.g., to reconstruct

the movements of a suspect individual [152, 163]. Crowd counting consists of counting

people in a given image or video frame [85]. Both tasks present several and challeng-

ing issues caused by unconstrained acquisition scenarios that have been mentioned in

the previous section and will be further described below. In particular for person re-

identification, due to these issues, it is infeasible to use classic biometric techniques such

as face recognition and, therefore, it is necessary to exploit different cues. A widely used

cue is clothing appearance, which is however valid only for a limited amount of time. In

other words, it is usually not possible to look for an individual of interest using a query

acquired on a certain date in videos recorded in different days since the person might

change its clothes. The input of a person re-identification system is an image of the

person of interest chosen by the user, named query, and the output is a list of images

of pedestrians automatically detected on the available videos, and sorted based on the

similarity to the query. Early person re-identification techniques consisted of manually

defined features (usually based on colour and texture) and similarity measure [163],

whereas more recent ones, mostly based on Convolutional Neural Networks (CNNs),

can fuse these aspects in a unique framework by automatically extracting discriminant
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2. STATE OF THE ART

features and learning a similarity measure [152]. The main difference between early

and recent approaches is that CNNs require a training phase, which in turn requires a

large amount of manually annotated images.

Until recently, almost all proposed techniques were evaluated in an “ideal” scenario,

i.e. when the training and the testing data belong to the same data set, i.e., when the

corresponding images are acquired from the same set of cameras. However this scenario

does not reflect many real application scenarios where the training and testing data are

different, for instance because a pre-trained re-identification model is deployed by the

end users to new target scenes acquired by different cameras. It is now clear that under

such a cross-scene scenario, through cross-data set experiments, the performance of the

state-of-the-art re-identification models can severely decrease [39, 119, 154]. To over-

come this issue, approaches such as Domain Adaptation (DA) and later Unsupervised

DA (UDA) have been proposed [16, 95]. DA is a technique in which a model trained on

a source domain is applied on a different but related target domain. It is defined super-

vised DA or simply DA if the labels of the target domain are available; otherwise, it is

defined UDA. Substantially, to use these techniques is necessary to re-train or fine-tune

the source model by using images of the target domain. In a person re-identification

system, the use of these approaches consists of training a model by using pedestrian

images from one data set (source domain) and re-training or fine-tuning it by using

images from another data set (target domain). Nevertheless, DA and UDA approaches

require images of the target domain that in challenging real applications, may be not

available. To overcome this issue, another approach, known as Domain Generalisation

(DG), has been proposed. DG aims at improving generalisation capability by training

the source model on several different source domains [51].

The input of a crowd counting system is an image and the output is an estimation

of the number of people in the given image. Early approaches consist of extracting

low-level features such as edges, textures, etc., and of learning a regression model to

estimate the pedestrian count [85]. More recent approaches, as in the case of person re-

identification, are based on CNNs [114]. Also in this task very high performances have

been reported in the literature under the “ideal” same-scene scenario but in cross-scene

settings the performances significantly degrade.

As in the case of person re-identification, DA and UDA approaches have been pro-

posed to address the cross-scene settings [135, 154], but they still require representative
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2.1 Person Re-Identification

Figure 2.1: Scheme of a person re-identification system. All the videos acquired by

network cameras are shown to the user. At the same time, these videos are processed to

automatically detect and extract bounding boxes of pedestrians (pedestrian detector and

bounding box module), then these images are stored in a database (gallery). The user can

select a person of interest (query). The features of query and gallery images are extracted

(feature extraction module) and, then, compared by using a similarity measure. Finally,

the system shows the user a list of images (ranked gallery) ordered by the similarity to the

query.

images of the target scene.

In the next sections, the state of the art of person re-identification and crowd

counting tasks are described in section 2.1 and 2.2, respectively.

2.1 Person Re-Identification

Person re-identification consists of recognising images of a person of interest across

several and non-overlapping cameras. It is a challenging task due to several issues such

as illumination variations, different poses, occlusions, different viewpoints, different

camera resolutions, etc. [152, 163] (fig. 2.2). In a video surveillance system, a person

re-identification system can be used for monitoring and investigation tasks, e.g., to

reconstruct movements of a suspect individual. The advantage for end user consists

of limiting the time required to manually inspect all videos. In fig. 2.1 a scheme of a

person re-identification system is shown. Videos recorded by a camera are shown to
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the user. At the same time these videos are processed by the “pedestrian detector and

bounding box extraction” module that detects and extract images of single pedestrians.

All these images are stored in a database (gallery). The user can select a person of

interest from a video and this image (query) is processed in order to retrieve all images

of the same identity acquired from different cameras. The query is compared against all

images contained in the gallery using the extracted features and using a given similarity

measure. Finally, all images of the gallery are ordered based on their similarity to the

query (ranked gallery).

Implementing the different modules of this system is difficult since each of them

presents several issues. Pedestrian detection and accurate bounding box extraction is

challenging since often there are occlusions either static (objects) and dynamic (overlap-

ping among people). Pedestrian detectors based on tracking can mitigate this problem,

but in case of temporary occlusions the identity labels can be switched, or a single track

can be subdivided into two different ones. In the latter case, more than one bounding

box per track can be extracted. In some cases, more than one person can appear in a

single stored bounding box. In other cases, the bounding box can show a part of person

only. For these reasons, the size of the gallery can be very large, and the bounding

boxes may be inaccurate. All the problems mentioned above can significantly affect

the performances of a person re-identification system. In the remainder of this thesis,

figure 2.1 was simplified to focus on some parts of the scheme.

A large number of person re-identification methods have been proposed so far. These

approaches can be categorised in hand-crafted, metric learning and, the more recent

CNN-based ones. The term hand-crafted indicates approaches that do not require a

learning phase; therefore features and the similarity measure are defined a priori [163].

In principle, hand-crafted methods should be effective in different kinds of scene. In

practice, they achieve a lower accuracy than supervised approaches. Metric learning

approaches, instead, require a learning phase since they focus on the definition of a

similarity measure that keep images of similar individuals close in feature space, and

images of dissimilar individuals farther. Therefore, these approaches are adapted to a

specific scene, and their performances usually decreases in cross-scene settings.

Schemes of two systems that use hand-crafted and metric learning approaches are

shown in figure 2.3. Each system consists of a module that extracts features of the

image of the query and gallery images. The features of the query are compared against
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2.1 Person Re-Identification

Figure 2.2: Examples of person re-identification issues. Couple of images from the same

person (acquired from two different cameras) show different poses (first column), different

resolutions (second column), illumination variations (third column), occlusions (last col-

umn). Images taken from Market-1501 data set (more details can be found in section 3.2.3).

the images in the gallery by using a module (similarity measure or specific measure)

that computes the similarity between image features. The output is, as described in

the previous section, a list of gallery images (ranked gallery) based on the similarity to

the query. In the ranked gallery, the top-rank images usually belong to individuals that

exhibit a similar clothing appearance to the query, whereas the other images (different

from the query) tend to be in the bottom of the list. Both methods present the same

structure (fig. 2.3), but the main difference is that metric learning approaches learn the

similarity measure using manually labelled data.

More recent approaches, based on CNN automatically learn discriminant features,

and can also combine feature extraction and similarity measure learning in a single

“framework”. It is necessary to introduce some key points of the architecture of CNNs.

Figure 2.4 shows an example of CNN architecture. Manual feature extraction of

early methods is replaced by a series of Convolutional (Conv.), Rectified Linear Unit

(ReLU) and Pooling layers. A series of convolutional layers extract low- and high-level

features such as edges, colour, gradient orientations, semantic features etc. ReLU layers

replace all negative values by zeros. Pooling layers reduce the dimension of features

retaining the most essential information. The second part of the architecture handles

the classification that replaces the early similarity measure module. The flatten layer

implements a reshaping of the features and transforms them into a vector. The Fully
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Connected (FC) layer is a traditional multi-layer perceptron. In some architectures, this

layer handles the classification of the extracted features into several classes (identities),

whereas in other architectures the model is learnt to compute a similarity measure

between two images (such as in a Siamese Network). Fig. 2.4 represents the first case,

i.e., pedestrian identity recognition, in which classes correspond to identities (IDs).

Therefore, the output of this layer is a score. The softmax layer takes this vector of

scores and normalises it in order to obtain values between 0 and 1. Therefore for each

image of a person, the score indicates the similarity to the i-th identity.

The learning phase of CNN is usually time consuming with respect to earlier ap-

proaches. During training, a large set of manually labelled examples (training set) is

used to learn the model. After the training phase, the resulting model is evaluated

on a testing set composed of images (queries and template gallery) of people different

from those used for training. During this phase, a single query is compared against the

images contained in the gallery. The output consists of a score vector that indicates

(for each identity) the similarity to the query. By ordering (based on the similarity)

this vector, it is possible to obtain the ranked gallery. In the remainder of this thesis,

the architecture of a CNN is represented by a three-dimensional element (i.e., a cube)

as shown in figure 2.5.

A CNN can be used only as a feature extractor or also for computing image simi-

larity. A drawback of CNN-based approaches is that they require a significant amount

of images for the training phase. Collecting and manually annotating a large set of

images is difficult and laborious. Moreover, in some applications the target scenes

where the system will be deployed are unknown at design (training) phase, which can

significantly affect the performance of supervised approaches such as CNN-based and

metric learning ones.

Supervised approaches reached a very high recognition accuracy on benchmark data

sets under same-scene settings [152]. However, in real-world application scenarios, it

may be difficult or infeasible to collect and label pedestrian images from the target

camera views (i.e., the ones that will be used after system deployment) for training

a person re-identification model. More recent approaches (mainly CNN-based ones)

address more realistic cross-scene settings where the data used to train the model is

different (e.g., comes from different cameras) from the target data. Some approaches

are based on DA which however requires labelled images of the target scene to re-train
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Figure 2.3: Two schemes of systems that show the difference between an hand-crafted

approach (top) and a metric learning approach (bottom). The input (query) and the output

(ranked gallery) of both systems are equal. The difference in these schemes is related to

one of the two internal module, i.e. the module that computes the similarity measure. In

a hand-crafted system, the similarity measure is defined a priori, whereas in the bottom

system the measure is defined after a learning phase (gearwheels). Therefore, the second

system aims to define a specific measure to compute the similarity between the query image

and the images contained in the gallery.

the model. Other authors proposed UDA approaches, that require only unlabelled

images from the target domain, and are typically based on learning shared feature

space between the source and target domain. In other words, these approaches (DA

and UDA) use an auxiliary (for instance a benchmark data set) labelled or unlabelled

images of the target domain to re-train a model. One limitation of these approaches is

that they still require a significant amount of images (even if unlabelled) of the target

domain. However, in a scenario where a new camera installation by LEAs has to be

operational in a short time, it may be unfeasible or too demanding to acquire (and

manually label, if necessary) a sufficient large set of representative of the target scene

In these cases, possible solution is to adopt a human-in-the-loop approach as explained

in section 2.1.3.

Some recent approaches are based on the use of multiple source domains during

the training phase to improve the generalisation capability of a person re-identification
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Figure 2.4: An example of CNN architecture used for person re-identification. The CNN

fuses feature extraction and classification in a unique framework. Convolutional (Conv.),

Rectified Linear Unit (ReLU) and Pooling layers handle feature extraction, whereas Flat-

ten, Fully Connected and Softmax layers handle classification. During the training phase,

a large set of images (top left corner) are used to learn the CNN, whereas a single query

image (bottom left corner) is used to apply the trained model.

model [6, 51]. These approaches are known as Domain Generalisation (DG) [51]. In

contrast, other authors have been proposed to use a fully unsupervised approach in

which the model is trained or learnt by using data without identity labels [28, 76].

To sum up, it is possible to define three main categories of person re-identification

techniques, regardless to the kind of learning (supervised or not), that can be defined

as hand-crafted, metric learning and CNN-based approaches. In contrast to the other

approaches, hand-crafted ones do not require any learning phase. The metric learning

approaches aim to define a specific similarity measure. The more recent approaches

based on CNNs can be categorised in turn into several dimensions (see sect. 2.1.2). In

the next sections an overview of the traditional and CNN-based approaches is given.

2.1.1 Traditional approaches

As mentioned in the previous section, early approaches, named hand-crafted and metric

learning ones, have a similar structure in the scheme of Fig. 2.3 but the second one

requires a learning phase to define the similarity measure. In contrast, the first one

does not require any learning phase since features and similarity measure are fixed.
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The most common features used in literature are related to colours, using either

RGB, or other colour spaces, such as YCbCR, YUV, Color LAB etc. [42, 89, 161]. In

addition other features have been proposed related to texture, edges, and shape, either

global or local [1, 42, 90, 98, 110, 136]. Such features are extracted either from the whole

image, or from uniform horizontal stripes of the same size or by using a more complex

partition of the image (e.g., into head, torso and legs) [5, 136]. Successively, several ap-

proaches have been proposed to improve the robustness of pedestrian descriptors. For

instance, SIFT features have been proposed to achieve scale invariance [84]. In particu-

lar, SIFT extracts local information and is more robust to illumination, translation and

rotation variations. In [151] Salient Colour Names Based Colour descriptor (SCNCD)

is proposed to improve the robustness of RGB colour features. To address viewpoint

changes a Local Maximal Occurrence (LOMO) and Symmetry-Driven Accumulation

of Local (SDALF) feature have been proposed [29, 72]. With regard to the similarity

measure (“similarity measure” module in fig. 2.3), traditional distance metrics have

been used such as Euclidean, city block, cosine etc. To fit the distance measure to data

distribution in feature space, some authors proposed to use distance metric learning

techniques [163]. The most common formulation is based on the Mahalanobis distance

defined as

D(x, x′) =
√

(x− x′)TM(x− x′) (2.1)

where M is a positive semi-define matrix, whereas x and x′ are feature vectors. In-

spired by this formulation, some authors proposed different metric learning approaches

[163]. In [96] local Fisher discriminant analysis (LFDA) was proposed. This approach

combines the advantages of the Fisher discriminant analysis (FDA) [33] and of local

preserving projection (LPP) [46]. By using LFDA it is possible to reduce data di-

mensionality preserving at the same time the local structure of data. In [140] large

margin nearest neighbour learning (LMNN) strategy has been proposed to keeps close

the neighbours from the same class (i.e., feature vectors corresponding to images of the

same identity) and penalise the presence of impostors.

Another information-theoretic approach based on Mahalanobis distance was pro-

posed by [17], named Information Theoretic Metric Learning (ITML); it allows finding

a distance function that satisfies some constraints related to similar and dissimilar im-

age pairs and to the relative ranking of different image pairs. Also in [61] an approach

based on similarity and dissimilarity constraints, named KISSME (keep it simple and
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straightforward method) was proposed. This approach is more scalable than the above-

mentioned ones and replaces their optimization procedure with equivalent constraints

based on likelihood ratio test.

The KISSME and ITML methods require a dimensionality reduction step. Instead

in [89] a method capable of working on high-dimensional data was proposed. This

method, named Pairwise Constrained Component Analysis (PCCA), is applicable on a

sparse set of pairwise similarity constraints. It is an effective approach when the simi-

larity information is available for a few pairs of points. PCCA learns a linear mapping

function avoiding a regularization term and keeping a lower computational complexity

than ITML. An extended version of KISSME, known as Cross-view Quadratic Discrim-

inant Analysis (XQDA), was proposed [72]. This method was used to learn a cross-view

discriminative subspace and a cross-view similarity measure at the same time.

To overcome the problem related to the high non-linearity of person appearance

in feature space across different cameras, some authors proposed to use kernel-based

distance metric learning methods [3, 91, 145]. The key idea of these methods is to

perform a non-linear mapping from the input space to a higher-dimensional feature

space. This allows a linear methods (e.g., KISSME, LFDA, XQDA, etc.) to be extended

to the corresponding non-linear versions (e.g., such as k-KISSME, k-LFDA, k-XQDA).

2.1.2 CNN-based approaches

CNN-based approaches allow fusing the two main components of person re-identification

model (pedestrian descriptor and similarity measure) into a single framework [163].

CNN-based methods can be categorised into several dimensions. A possible cate-

gorisation is the network architecture: i) Siamese [101, 112, 130, 133, 138, 141, 164] or

triplet model [13], ii) a modification of a existing architecture (e.g., ResNet, GoogleNet,

etc.) [10, 49, 59, 78, 120, 121, 123, 124, 132, 137, 150, 169] or iii) a specifically-devised

architecture [66, 69, 128, 168].

The Siamese architecture, in formal terms, consists of two identical CNNs that

share the same parameters [68] (fig. 2.5). For instance, each branch can have the

architecture shown in figure 2.4. A Siamese CNN takes as input two images and output

is a similarity score between them. The score is usually between 0 (no similarity) and

1 (full-similarity).
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Figure 2.5: Siamese Network scheme. The two images are the input (orange boxes) of

the two networks with the same structure and weights. The output features are compared

by the similarity measure module that computes the similarity score (output in green).

A modified Siamese network has been proposed in [101] where the problem of match-

ing pedestrian images at different scales was addressed. A multi-scale deep learning

(MuDeep) model has been proposed to learn more discriminant features at different res-

olutions taking into account the cross-camera problem. The MuDeep structure presents

two different outputs: one defines whether the two input images belong to the same

identity or not, while the other one can predict the identity of the person. In [112] a

module, named “Kronecker product matching”, based on ResNet has been added to

the CNN architecture to match two sets of multi-scale feature maps. Similarly, in [164]

an attention module based on ResNet is added to the Siamese architecture, to focus on

the foreground subject.

The triplet model consists of three identical networks with shared parameters. Dur-

ing training, it takes as input three images, where two of these images belong to the

same person and the other one is from a different person. This framework has been

used by [13] including a triplet loss based on intra- and inter-class constraints. That

loss function aims at learning a feature space where the distance between similar images

is lower than that between different images, with a predefined margin.

Most of the existing frameworks are based on well-known CNN architectures as

ResNet [45], GoogleNet [125], CaffeNet [62], etc. A ResNet backbone was used in
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[10, 49, 78, 124, 132, 137, 150, 169]; a GoogleNet backbone in [78, 120, 121]; and a

CaffeNet backbone in [123]. All these works introduced some modifications to the

corresponding architectures in order to extract more discriminant features or to learn

an improved similarity metric, or both (fig. 2.6).

Figure 2.6: Different improvements (highlighted in red) to CNN-based approaches. Top:

the extraction of more discriminant features is achieved by modifying one or more layers of

the original model. Bottom: the improvement is based on the modification of an existing

similarity metric, or on definition of a specific one.

Specifically-designed architectures aim at extracting robust features and at finding

good similarity metrics.

As a consequence, another possible categorisation can be defined by focusing on

which works use the CNN as a feature extractor and employ a standard (traditional)

metric such as Euclidean distance, cosine distance etc. as shown in fig. 2.6 (top). This

characteristic can be found in [133] where the CNN is used to extract global image

features. In particular, single- and cross-image representations are considered, and a

generalisation of the Euclidean distance is used as a metric. In [123] a singular vector

decomposition (SVD) is used to extract global discriminant features, and a traditional

Euclidean distance is utilised. The standard cosine distance has been used in [49] SIFT

and other features that are designed to be robust to view changes.

An additional categorisation refers to frameworks that focus on improving either

feature extraction or metric learning. Several strategies for improving feature extraction

have been proposed, such as multi-scale analysis of pedestrian images [13, 101, 112, 150],
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local and/or global features extraction [59, 69, 120, 121, 124, 128, 160], the use of

attention modules [10, 118, 132, 164, 169] and other approaches [78, 130]. In particular

in [124, 160] a decomposition of pedestrian body into several parts has been proposed.

Also in [130] the pedestrian images are subdivided into several body parts to extract

discriminant features, named LOMO (Local Maximal Occurrence) and ColorName. In

[78] SIFT (Scale-invariant feature transform) has been used and combined with a view

confusion learning strategy which aims to define features more robust to view changes.

Most of the works mentioned above use the softmax loss [59, 69, 101, 112, 120, 124,

128, 141, 164] or the triplet loss [10, 13, 78, 118, 121, 132, 137], or a combination of them

[168, 169]. A modification of the softmax loss named contrastive loss was employed in

[130].

Most of the above mentioned CNN approaches have been evaluated under an “ideal”

setting where the training and the testing sets belong to the same data set, which corre-

spond to a same-scene application scenario in which manually annotated training data

are available from the same camera views that will be used during system deployment.

This correspond to a supervised setting. More recently, several authors focused on a

more realistic cross-scene scenario in which training and testing sets come from different

data sets. This setting typically leads to a performance decrease [39, 119]. To overcome

this issue, some authors have been proposed approaches based on DA that aim to learn

different but related tasks. In other words, a model trained on a source domain is

adapted to a different (but related) target domain. Typically, DA approaches require

labelled samples of the target domain to train or fine-tune the underlying model [39].

However in many practical application scenarios, including different computer vision

tasks such as person re-identification, it may be difficult to collect labelled samples of

the target domain at the design phase. To address this issues, UDA methods have

been proposed to exploit unlabelled target samples [16, 34, 52, 95, 119, 166]. A com-

mon approach in UDA methods is to learn a shared feature space between source and

target domains by using a known architecture as a backbone [34, 37, 166] or a specifi-

cally design structure [40, 52, 70] to reduce the gap between source and target domain

distributions. Another approach that tries to reduce the mentioned gap is based on ad-

versarial learning, based on generative adversarial networks (GANs) [165]. In [80, 102]

images with different poses are generated to improve robustness to pose variations.

19



2. STATE OF THE ART

Figure 2.7: A person re-identification system with a human in the loop. The modules

handle user’s feedback are shown in red.

Other works focus on cross-camera variation to mitigate the camera discrepancy prob-

lem and different lighting conditions across cameras [4, 100, 126, 167].

Another recent approach, named Domain Generalisation (DG), uses training data

from multiple source domains to improve the generalisation capability of the resulting

model [51]. Since no training data from the target domain is used, its performance is

worse with respect to DA and UDA methods [56].

2.1.3 The Human-in-the-Loop approach

The human-in-the-loop approach has been proposed in the pattern recognition and

machine learning fields to exploit the complementary strengths by humans and ma-

chines in several application domains, including some computer vision tasks that are

still very challenging for machine. This approach is based on some form of interaction

between a human and a system, usually through a feedback which is used to improve

performances of the system itself.

This kind of approach has been employed in different fields such as flight simu-

lators [54], robotics [64], automation engineering [31], remote sensing [22], etc. In

machine learning and image processing, the well known active learning (AL), online

metric learning and content-based image retrieve with relevance feedback (CBIR-RF)

can be considered as early HITL approaches. CBIR consists of retrieving images based
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on visual content, instead of textual labels or tags, by using visual features such as

colour, texture and shape [50, 75, 170]. The key idea of RF (which was previously

used also in text retrieval systems), is to ask the user a feedback about relevant and

irrelevant retrieved images This can allow to reduce the semantic gap in CBIR, between

low-level image features and semantic image content [26, 57]. AL is used instead to

limit the amount of training data that has to be manually labelled [22, 27]. It consists

of automatically selecting the most informative samples among an unlabelled pool, that

a user is asked to manually label, starting from a small amount of labelled data.

Recently, more refined HITL approaches have been proposed for some computer

vision tasks, mainly fine-grained categorisation. The idea was to combine the strengths

of human and machine in order to identify the correct class of an input image as soon as

possible [7, 8, 131]. In these approaches, a human is asked to click on a specific object

part, and/or to answer a limited number of questions based on visual attributes [8],

or to multiple choices questions [7]. A different approach was proposed in [23] to

allow humans to assist the machine in the selection of relevant features for fine-grained

classification.

Despite person re-identification system inherently involve an interaction with a user,

the HITL approach has been considered by few authors so far [2, 47, 63, 77, 134]. A

general scheme of HITL person re-identification system is shown in figure 2.7. The user

can give a feedback about the output of the system (top ranked gallery), which exploits

it to update the ranked list. User feedback can be used to modify either the ranking

module or the similarity measure, as shown in figure 2.8. In [47] each query is compared

with the template gallery by using a given distance metric on a predefined feature space.

The ranked list is shown to the user, who checks whether the query identity is present

in the top-ranked images (fig. 2.9). If the query is not present, a discriminative model

is learnt by using a negative example from the list. Then, an updated ranked list is

shown to the user. More precisely, this system consists of two stages. In the first one,

a set of features as intensity, colour, texture and other visual features are extracted,

and a covariance-based distance is used to define a distance measure between features.

The second stage is used only if the query is not present in the top-ranked images. In

this case, local colour information and Haar features (edges and lines) are extracted to

create a more discriminant descriptor. However this approach requires resources since

a classifier has to be learnt in the second stage. In [2], the initial ranked list is obtained
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Figure 2.8: General scheme of HITL person re-identification system. Top: the feedback

is used to update the ranked gallery. The images of the person of interest are selected

as relevant (highlighted with the tick symbol) whereas the other ones are marked (either

manually or automatically) as non-relevant (“x” mark). Relevant images are pulled to

the top of the ranked list and non-relevant ones are pushed to the bottom. Bottom: the

feedback is used to update the similarity measure.

by using Euclidean distance on descriptors consisting of colour space features and filter

banks (Gabor and Schmid). During the first feedback iteration, the user labels images

of the top-k (k = 24) as relevant and non-relevant. These images are used jointly

with their nearest neighbours to learn a distance metric (Mahalanobis metric), which

is then used to update the ranked list as shown in fig. 2.8 (bottom). Also this approach

presents a disadvantage since it asks the user to label all images in the top ranked

gallery as relevant and non-relevant. A different kind of feedback has been used in [77]

that consists of selecting a “strong” negative and optionally a few “weak” negatives

(fig. 2.10). The first feedback consists of an image that is dissimilar to the query one,

whereas the second one concerns images of different identities that are similar to the

query. The feedback is propagated through the graph and a ranking function is learnt to
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Figure 2.9: Scheme of the feedback approach proposed in [47]. The user checks whether

the query identity is present among the top-ranked gallery images. If not, a discriminative

model is learnt to extract more discriminant features. Finally a refined ranked gallery is

shown to the user.

Figure 2.10: Scheme of feedback proposed in [77]. The user should select a dissimilar

image with respect to the query (strong negative) and (optionally) a weak negative, i.e. a

different identity looking similar to the query individual. User feedback is propagated in a

weighted graph and a ranking function is learnt in order to update the ranked list.

improve the ranked list. However this approach can require significant resources when

the gallery size increases since it built a graph. In other words, it is not scalable. An

incremental approach has been proposed instead in [134] where the initial ranked list,
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Figure 2.11: Scheme of the user feedback approach proposed in [134]. The feedback

consists of selecting a true match (if any), or a strong negative. These information is used

to update the ranked list by optimising incrementally the distance metric (Mahalanobis

distance) in an online modality (online metric learning).

obtained by extracting predefined features and using Euclidean distance, is shown to

the user who indicates a true match (if any) or a strong negative (fig. 2.11). Differently

from previous methods, this one incrementally updates the distance metric, defined

as Mahalanobis distance, after each user feedback, using an online metric learning

algorithm. In principle, this allows the initial re-identification model to adapt to the

target data. A sequential feedback approach has finally been proposed in [63], where

the user is asked to indicate only true matches in the top positions of the initial ranked

list (fig. 2.12). In other words, at each iteration the user checks whether the query

is present in the ranked list of a single camera view. This feedback and the previous

true matches (if any) are used to update the feature representation in the other camera

views. A drawback of this approach is that if a true match is not present in the initial

ranked list (it may happen in practice), the user should analyse the next k images of

the ranked list. This process continues until a true match is found.

I finally points out that although the person re-identification problem can be consid-

ered as a CBIR problem, to my knowledge no work has investigated so far the possibility

to use existing CBIR-RF techniques to implement the HITL approach.
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Figure 2.12: Scheme of the feedback approach proposed in [63]. The requested feedback

is related only to true matches, and is used to update the feature representation.

2.2 Crowd counting

Crowd counting consists of estimating the number of people in a given image or video

frame. In video surveillance systems, automatic crowd counting can support end users

in monitoring activities and in guaranteeing the security of people in an area of interest,

e.g., during demonstrations, concerts, etc. This computer vision task presents several

issues such as different lighting conditions, occlusions, background and perspective

distortions. In figure 2.13 some examples of these issues are shown. The lighting

condition can change depending on the scene, which can be indoor or outdoor (first

and second top images) or can depend on the weather in outdoor scenes (left column).

The background of some scenes can be very complex (centre column). The perspective

distortion is related to the distance of different cameras to the scene they are monitoring

(right column). Some examples of occlusions are shown in figure 2.13 where they

are caused by objects such as the palm tree (top centre image), the road sign (top

and bottom left corner, bottom right corner), the mobile kiosk (top centre), and by

overlapping among people. An additional issue is the crowd size, which can vary from a

sparse crowd (a small number of pedestrians with few or limited occlusions) to a large

and dense crowd, with sever overlapping between pedestrians.

In real application scenarios, crowd counting is still mainly made “manually”, i.e.

human operators (e.g., LEA operators) estimate the number of people in an image or a

video by using techniques such as Jacobs’ method [53]. It consists of dividing the image

into several parts, determining the number of people in a single part and multiplying
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Figure 2.13: Crowd counting issues. Several lighting conditions (left column), different

background (centre column), perspective distortions (right column). Static and dynamic

occlusions caused by objects (the palm tree, the road sign, the mobile kiosk) and overlap-

ping among people. Images taken from PETS2009 and Mall data sets (more details can

be found in sect. 4.3.2).

this number by the number of parts. Such approaches are laborious and require a

significant human effort.

Therefore, several computer vision approaches have been proposed so far for auto-

matic crowd counting. Early approaches were based either on pedestrian/head detec-

tion or tracking, and on regression models trained on low-level image features. More

recent approaches are based on CNN, which usually estimate the crowd count by first

estimating a “density map” of the input image.

Earliest methods focused on counting people by detecting their head or full-body,

or by using tracking-based techniques. These techniques can be effective on small and

sparse crowd, but are not suited to dense crowd [85]. In contrast, regression-based

approaches are suited to dense crowd. Most recent methods are based on the use of

CNN. They can be categorised into several dimensions, as is the case of person re-

identification. Existing CNN architectures for crowd counting are either modifications

of known ones (e.g., VGG) [113] or devised ad hoc for this task [116].

Also for this task most of the existing methods have been evaluated on a supervised

or same-scene setting, i.e., using training and testing data belonging to the same scene

or camera view. Despite the notable results achieved under this scenario, recent research

26



2.2 Crowd counting

efforts are focusing on a more realistic cross-scene scenario where the target scene is

different from those used for training. Accordingly, crowd counting methods are now

often evaluated in a cross-data set setting, to simulate cross-scene application scenarios,

which can lead to a significant performance decrease [154].

This issue is due to the fact that in real-world applications it is often unfeasible

to collect and annotate a representative set of crowd images of the target scene. To

address the cross-scene problem several authors proposed approaches based on DA [114].

However, this approach still requires manually annotated training images of the target

scene. Approaches based on UDA have also been proposed [108], whose performance

is however worse than that of DA and supervised methods, as one can expect.

As a consequence of the cross-scene issues, another relevant issue is the lack of

benchmark data sets representative of different crowd scenes that can be of interest to

crowd counting scenarios in video surveillance applications. In particular, only of a few

dense crowd data sets are available.

To address similar issues in some computer vision tasks, including crowd counting

by detection (which is a different approach than the one considered in this thesis),

the use of synthetic data sets built by using computer graphics tools has been pro-

posed [12, 79, 111, 122]. This solution can be potentially useful also for regression-based

crowd counting, since it would allow to generate synthetic training images of the target

scene and to automatically control every parameter of interest such as the number and

location of pedestrians, the scene perspective, background and illumination. A similar

solution has already been proposed, to my knowledge, only in [135] for CNN-based

crowd counting, but in the context of a DA method which requires crowd images of the

target scene for fine-tuning.

In the next sections, traditional crows counting methods and more recent CNN-

based ones are described in details.

2.2.1 Traditional approaches

Early approaches can be divided into counting by detection, counting by clustering

and counting by regression [85, 114]. Counting by detection is based on pedestrian

detection from still images, either full-body [24, 65] or body part detection [73, 129].

The latter aims to overcome partial occlusions (e.g., overlapping among people) by

detecting head and shoulders [36]. However, this approach is only effective for sparse
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crowds with limited occlusions [85]. Counting by clustering is based on the idea that

coherent feature trajectories can be grouped together to approximate the number of

people; also this approach is effective only on sparse crowd scenes [85]. The counting

by regression approach aims instead at mapping from low-level image features to the

number of people or to the density map of a scene by supervised training of a regression

model. Earliest methods estimated the number of people by using features such as

foreground segment [86], edge [60] and, texture and gradient [92, 144]. Foreground

segments can be obtained by using background subtraction, which is however sensitive

to lighting variations. Edge, texture and gradient features provide information about

local patterns. Noticeable examples of texture and gradient features are Gray-Level

Co-occurrence Matrix (GLCM) [43] and Local Binary Pattern (LBP) [93].

Several regression models have been proposed so far, such as Linear Regression

(LR) [67], Partial Least Squares Regression (PLSR) [38], Kernel Ridge Regression

(KRR) [48], Support Vector Regression (SVR) [144], Gaussian Processes Regression

(GPR) [103] and Random Forest regression (RF) [15]. The simplest model is LR which

outputs a linear combination of the input variables; it is however effective only for

sparse or small crowds with limited occlusions. The drawback of this method is that

its computational complexity increases with data dimensionality, and it is sensitive ti

highly co-linear features. To overcome these problems, either a PLSR model or KRR

can be used. PLSR introduces a decomposition to maximise the covariance between

score matrices, whereas KRR adds a regularisation term to find a trade-off between the

correct measure and the penalty. A significant advantage of KRR, SVR and GPR is

their higher flexibility. However GPR is not scalable to large data sets as RF, and is

more sensitive to parameter values.

2.2.2 CNN-based approaches

Several CNN-based approaches have recently been proposed for crowd counting, based

on a regression approach. In particular, most of them do not directly estimate the crowd

count of input images, but estimate a density map instead, from which the crowd count

is easily derived [114]. The density map consists of an image where each pixel value is

proportional to the number of people per unit image area in the original image. To this

aim, the ground-truth density map of training images is required, which is obtained

by first manually annotating the head locations of each pedestrian; the corresponding
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density map is then computed by summing 2D kernels whose volume is normalised to

1 (typically, Gaussian kernels) centred on the head of each pedestrian. Accordingly, at

the prediction phase the number of pedestrians in a given input image is obtained by

integrating the estimated density map, i.e., by summing up the value of each pixel in

the map.

As in person re-identification, also the existing crowd counting approaches can be

categorised into several dimensions. A first categorisation can be made according to

the CNN architecture, that can be i) a modification of known, “generic” architectures

such as VGG [35, 71, 81, 82, 83, 87, 107, 115, 135, 142, 143, 171], or ii) a specifically

devised architecture [25, 94, 108, 116, 149, 153, 155, 157, 158]. Most authors proposed

architectures (generic or specifically devised) based on branched structures; only in [71,

82, 87, 135, 155] a single-column architecture was proposed. For instance, in [115, 142,

143] a different number of parallel branches has been used, whereas in [107] a tree

structure was used. Another possible categorisation is based on the type of information

extracted from input images and how this information is combined to obtain the density

map. Some authors focused on managing scale variations inside an input image [71,

81, 83, 87, 157]; other authors focused on extracting different features such as low- and

high-level features [142, 155, 158], local and global information [153], and information

from the region of interest (ROI) [82, 143]. For instance, in [158] the first part the

proposed CNN architecture extracts low-level features, which are then used in a module

that extracts multi-level information; a selection of the most informative channels is

then made, followed by their concatenation. In [82] two concatenated modules have

been used. The first one detects regions of interest by using an attention map and a

value that indicates the congestion level of the scene. The second one processes the

output information of the first module and extracts (in addition) low-level features

before estimating the final density map. In [115] the information from different layers

and different branches are fused to obtain the density map. The so-called main branch

consists of a backbone, whereas the other branches extract information from high-

and low-level context in order to fuse them. Also in [155] information extracted from

different layers are merged to obtain the density map, but a single branch structure has

been used with a single filter size. One additional categorisation can be based on the

inference strategy, i.e. whether the CNN is trained by using image patches [82, 87, 94,

108, 142, 149, 153, 157, 158] or whole images [115, 143]. Moreover, data augmentation
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techniques are usually adopted to increase the size of training data. The most used ones

are random horizontal flipping [94, 153, 158] and random crop [82, 87, 94, 142, 157].

Some authors explicitly addressed the cross-scene issues mentioned above. A com-

mon solution to this problem is to use a multi-scene training sets that contain images

from different scene [71, 81, 83, 87]. A different solution has been proposed in [117]

where a weakly supervised approach has been used to train a CNN model by using

six image-level labels (from zero- to very-high density). A DA-based approach has

been used by some authors, such as in [135]. However, all the above approaches still

require labelled images of the target scene. In [154] an unsupervised approach has

been proposed, which however still requires representative images (albeit unlabelled)

of the target scene. Such images are used to re-train or fine-tune the crowd counting

model to improve its performances on the target scene. However, as mentioned above,

in some challenging real-world application scenarios it can be difficult or infeasible

to collect representative (even if unlabelled) images of the target scene. To mitigate

this issue, the use of synthetic images has been proposed so far for other computer

vision tasks including crowd behaviour analysis, pedestrian detection and person re-

identification [12, 14, 44, 58, 79, 109, 111, 122]. The use of synthetic images has also

been proposed for CNN-based crowd counting to my knowledge, only in [135], where

a synthetic data set has been generated using the Grand Theft Auto V (GTA5) video

game to pre-train a CNN model. However, this approach still requires images of the

target scene, although unlabelled.
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Chapter 3

Person re-identification with a

human in the loop

In this chapter, the person re-identification with human-in-the-loop approach proposed

in this work is described. First of all, it is necessary to focus on the goals of this thesis

and on the considered application scenario. As described in the previous section, the

aim of person re-identification system is to support human operators by limiting the

time required to analyse all recorded videos. In this thesis, a challenging cross-scene

scenario was considered when collecting a suitable amount of representative (even un-

labelled) images of target camera view is unfeasible or too demanding for the end users,

especially if the system should be operational in a short time. Under this scenario, it is

not even possible to use UDA approaches, since they require images of the target scene,

albeit unlabelled. In the considered scenario the human-in-the-loop (HITL) approach

seems an interesting alternative to adapt a person re-identification system to the target

scene, taking into account that such systems inherently include interaction with a user.

The main idea of this approach is that of combining the complementary strength of

machines and humans. In particular, since the person re-identification problem can be

considered as an image retrieval problem, this thesis focuses on CBIR-RF techniques,

which have been disregarded so far in literature. As a specific contribution, a feedback

protocol different from those of existing HITL approaches to person re-identification

is proposed, which takes into account the characteristics of both CBIR-RF techniques

and person re-identification systems.

It is worth noting that the HITL approach in the considered application scenario
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presents analogies with online domain adaptation (ODA) approach that has been in-

vestigated in several computer vision tasks such as face detection [55] and pedestrian

detection [148]. For instance, in ODA methods target data are available only during

system operation (online) and usually source data are not reused online for system

update. For the above reasons, the HITL approach can also be viewed as a kind of

ODA approach.

In next sections, the proposed HITL approach is described, followed by its empirical

analysis.

3.1 Approach

As mentioned in previous sections, the HITL approach is based on the interaction

with a user. It is an interesting approach to be investigated in person re-identification

systems, since they include a inherent interaction with an operator. However, it has

been proposed so far by only few authors. In a person re-identification system, the input

query (selected by the user) is compared against the images contained in the gallery by

using a similarity measure, as shown in figure 2.7. The feature extraction module can

be a hand-crafted descriptor (section 2.1.1) or a CNN (section 2.1.2). The similarity

measure module can be implemented in different ways, as described in section 2.1.

The comparison between query and gallery images defines a ranked list based on their

similarity.

In this context, a HITL method can be implemented by adding two other steps:

user feedback and gallery re-ranking. Different feedback protocols have been proposed

so far (more details in sect. 2.1.3) and all of them aim to update and improve the

ranking of the template gallery (gallery re-ranking module). The updated ranked list

has to be analysed again by the user (fig. 2.7).

In the following the main features and limits of existing HITL approaches to person

re-identification, described in sect. 2.1.3, are pointed out. Limits can be categorised in

two main groups: human effort and resource consuming. In [2] the user should label all

images of the top-k ranked gallery as relevant and non-relevant. This is not practical

in many real application scenario. In [47] a classifier has to be learnt for each query

by using top-k ranked images as negative examples, requiring significant resources. A

similar drawback can be found in [77] since a graph over all gallery images has to be
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build. This approach is not scalable when a large gallery is used. All above mentioned

approaches do not use an incremental approach, which instead is proposed in [134].

Although this approach can improve its performance, a complex optimisation problem

has to be solved after each feedback to update the similarity metric. A similar approach

has been proposed in [63], where a sequential methods is used. In contrast to above

mentioned approaches, the ranked gallery shown to to the user is not limited. In other

words, the user should analyse all images of the template gallery until a true match is

found. This requires a huge human effort, especially when the template gallery is large.

Let’s start with the consideration that the person re-identification task can be seen

as a problem of image retrieval since the aim is to retrieve images of pedestrians sim-

ilar to the query [163]. The kind of user interaction that can be used in person re-

identification systems is similar or comparable to the one used by CBIR-RF algorithms,

that have been used since a long time in the image processing field [99]. Additionally,

many CBIR-RF algorithms present a relatively low computational complexity with re-

spect to existing HITL methods for person re-identification. Despite this, they have

not been considered so far for person re-identification, except for some experimental

comparisons with the proposed HITL techniques [77, 134]. Toward the adoption of

CBIR-RF algorithms for person re-identification, the most relevant aspect to investi-

gate is the feedback protocol.

Feedback Protocol. Almost all existing HITL methods propose to use a feedback

protocol that in this thesis is called “single-feedback”, which consists of requiring the

user to select a single image (and optionally another one) on the top-k of the ranked

list. This protocol was analysed since it requires a small human effort. The single-

feedback protocol considered in this thesis consists of asking the user to select a single

image, that can be either the true match (if any) or a strong negative (i.e. a person

image very different from the query) image in the top-k of the ranked list. However,

this kind of approach appears sub-optimal for RF algorithms since they benefit from

a large amount of feedback. In many real application, it is not possible to ask a user

feedback on a large amount of images. To find a trade-off between a sufficient amount

of images and the human effort, it can be useful to focus the human feedback on the

top-k images; moreover, it is necessary to take into account two cases: i) the presence

of true matches and ii) the absence of them. In the first case, the user can be interested

to retrieve other true matches. In the second case, it is necessary take into account
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that some RF algorithms require relevant and non-relevant images. For this reason, the

feedback protocol proposed in this thesis consists of asking the user to select all true

matches (if any) in the top-k ranked list, whereas the other images are automatically

considered as non-relevant [21]. Accordingly, call this protocol multi-feedback. Exam-

ples of the two kind of feedback are reported in figure 3.1. In the first two rows, two

examples of single-feedback are shown. In the first one, the user selects the first strong

negative found, whereas in the other row a single true match (the top-ranked one) is

selected. In the last row of fig. 3.1, the user selects all true matches in the top ranked

list and the remaining images are automatically labelled as negative.

Ranked GalleryRanked Gallery

Target Query Target Query

Ranked Gallery

Target Query

Target Query

Ranked Gallery

Ranked Gallery

Target Query

Figure 3.1: Single-feedback protocol: the user selects either a positive match (if any)

among the top-k gallery images (middle row) or a strong negative (top row). Multi-feedback

protocol (bottom row): the user selects all true matches (if any), and the remaining images

are automatically labelled as negatives.

The proposed multi-feedback protocol may appear too demanding for the end user

since it requires to select all true matches in the top-k ranks. Nevertheless, the value of

k considered in existing HITL person re-identification methods is small. Moreover, for a

very large template galleries that are typical of real-world applications involving hours

of video footage acquired by many different surveillance cameras, the number of true

matches in the top-k ranks is likely to be very limited, especially in the first feedback

iterations. I also point out that selecting all true matches reflects application scenarios

related to forensic investigations in which users want to retrieve all the images of query

identity, e.g., to reconstruct the movements of the person of interest in the monitored

area.
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Now it is necessary to point out some aspects. In CBIR-RF algorithms, it is possible

to use incremental techniques as in [134]. This allows to incrementally update the

system module modified by the considered RF algorithm (e.g., similarity measure). In

the one hand, the system performance improves. In the other hand, the processing

time increases. For this reason, this thesis focuses on non-incremental RF algorithms.

From a point of view, some CBIR-RF algorithms present a sort of limitation since they

require relevant and non-relevant images. Nevertheless, they can be used under the

proposed feedback protocol by adapting them (if necessary) to take into account if no

true matches (relevant images) are found in the top-k ranked gallery. Therefore, it is

possible to use CBIR-RF algorithms also in the case mentioned above, preserving a low

processing time. With regard to possible low performances, it is possible to consider

several feedback rounds. However, in this thesis the required human effort is take into

account, and, for this reason, a fixed value of feedback rounds is considered.

3.2 Experiments

In this section, some well known CBIR-RF algorithms are considered to implement

the HITL approach based on the proposed feedback protocol. A direct comparison

should be done by using the existing HITL approaches at the state of the art. How-

ever, the corresponding codes were not made available by the authors and it is not easy

re-implement these approaches by using information provided by authors. In addition,

existing HITL approaches were applied on different and smaller data sets than the cur-

rent benchmark ones. For these reasons, I had to renounce this comparison. Methods

suited to a scenario that can be similar to that considered in this thesis are selected

for comparison. These methods, i.e. UDA, however still require images of the target

scene.

To simulate the considered cross-scene scenario, cross-data set experiments were

carried out by using benchmark data sets (sect. 3.2.3). This kind of experiments consist

of using one data set as the source domain and a different one as the target domain

(target scene). For a fair comparison, it was necessary that the considered approaches

present the same model trained on the source domain, and that the comparison is made

on the test set of the target domain. For UDA approaches unlabelled images of training

set of the target domain were used to fine-tune the underlying model. In contrast, RF
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approaches were directly applied on the test of the target domain. In other words, their

model was trained on the source domain only, and applied on the test of the target

domain without any fine-tuning.

In the next sections, the person re-identification methods (UDA and HITL) con-

sidered in this work are described in details, as well as benchmark data sets and per-

formance metrics. Then, a discussion about results and about the HITL approach is

given.

3.2.1 Person re-identification methods

As mentioned in the previous section, for a fair comparison between HITL and UDA

methods it is necessary to use for HITL methods the same UDA model trained only

on the source domain. Among existing UDA methods only for Mutual Mean Teaching

(MMT) [37] and Exemplar Camera Neighbour (ECN) invariance [166] the cose made

available by the respective authors allows also to train the underlying model on the

source data only. For this reason, only these two UDA methods have been used in

these experiments. Both MMT and ECN use ResNet-50 pre-trained on ImageNet [106]

as a backbone. MMT is a cluster-based approach that employs soft- and hard-pseudo

labels in which pseudo-labels and better features are progressively learned. The archi-

tecture consists of two networks, initialised by using different weights, that are jointly

learnt on the source domain. During this phase, hard pseudo-labels are generated for

the target images. Simultaneous training is the key idea of the teacher-student approach

proposed by [127]. Then, these networks are jointly trained on the target domain to

predict soft pseudo-labels, starting from the hard ones. The final model of MMT is

obtained by averaging models mentioned above and it is used as a feature extractor

during the testing phase. ECN consists of a classification and exemplar memory mod-

ules developed after the ResNet backbone. The classification module is used for source

data, therefore for labelled images. The other module is used for invariance learn-

ing and for target data (unlabelled images). The considered kinds of invariances are

exemplar-invariance, camera-invariance and neighbour-invariance. The first one aims

to distinguish the same identity from the others. The camera-invariance forces images

of the same person but from different cameras to be close. The last one aims to relate

similar images in feature space.
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3.2.2 Relevance feedback algorithms

Concerning the HITL approaches, the Query Shift (QS) [74], also known as Rocchio, the

Relevance Score (RS) [41], Efficient Manifold Ranking (EMR) [147], Passive-Aggressive

(PA) online learning and Means-Relevance Score (M-RS) were considered. QS is a the

classic RF algorithm [105]. Although it was not designed for CBIR systems, it was

adopted in this kind of systems later and it is still widely used. QS is a cluster-based

algorithm which works in feature space. It exploits user feedback to move the query

near to positive samples and far from negative ones. Therefore, the query xq is moved

near to the positive (relevant) images and far from the non-relevant ones accordingly

to the user feedback on the positive (Np) and negative (Nn) images

xnewq =
1

Np

∑
i∈Np

xi −
1

Nn

∑
i∈Nn

xi (3.1)

where Np and Nn are the sets of positive and negative images, respectively, and xi

denotes the feature representation of the i-th image. RS is an effective RF algorithm

and it is still widely used among algorithms that compute a score for each image [99].

RS uses the Nearest-Neighbour (NN) approach and defines, for each image, a relevance

score by using distances in feature space [41]. This algorithm allows to increase the

distance between positive and negative samples and produces a small distance between

positive images. Formally, RS computes a relevance score sNN (x) as follows:

sNN (x) =
‖x− xNN

n ‖
‖x− xNN

p ‖+ ‖x− xNN
n ‖

(3.2)

where xNN
p and xNN

n denote the nearest positive and negative neighbouring images,

respectively, and ‖ · ‖ is the metric used in the feature space, for example Euclidean

distance. QS and RS do not use an online learning phase, and require a low processing

time. EMR belongs to Manifold Ranking (MR) approaches which graph-based models

are used [146]. The EMR algorithm was originally not designed for RF, but is considered

in these experiments for completeness, since it was used for comparison in [134]. It

is a graph-based Manifold Ranking (MR) algorithm but, rather than using the k-NN

algorithm, it uses k-means which exhibits a lower complexity [147]. Moreover, to speed-

up the calculation a lower-dimensional feature space is considered. The ranking function

r used in EMR is defined as follows:

r = (In − αHTH)−1y (3.3)
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where α is a smoothing parameter, H = ZD−
1
2 and y is the score vector. Z is the ma-

trix representing the new feature space and D is a diagonal matrix where each element

represents the sum of correlation between the i-th and j-th elements. PA algorithm

is an interpretation of RF feedback in term of passive aggressive online learning ap-

proaches [97]. The PA algorithm is considered in this thesis to analyse its behaviour in

a person re-identification system and to verify whether the images of query individual

can be linearly separated to the other ones. In contrast to the other algorithms, it is

based on online learning and its aim is to maximise the following objective function:∑
∀p∈Np

∑
∀n∈Nn

w(xp − xn) (3.4)

where Np and Nn are the sets of positive and negative images, and w is weight vector.

The goal of PA is to adapt the weight vector in each iteration to obtain that behaviour

w · xp > w · xn. In other words, it defines a linear function that separates positive from

negative images. M-RS is a modification of RS approach evaluated in this work. It

is considered to investigate if it is possible to create hyperspefic clusters. In contrast

to RS, M-RS determines only two clusters (relevant and non-relevant). M-RS consists

of using the mean of positive and negative images instead of the nearest positive and

negative images to the query to compute the score (sM−RS):

sM−RS =
‖x− µn‖

‖x− µp‖+ ‖x− µn‖
(3.5)

where µp and µn denote the mean of positive and negative images, respectively.

3.2.3 Data set

Performances have been evaluated on three benchmark data sets, namely DukeMTMC-

reID, Market-1501 and MSMT17.

Duke Multi-target multi-camera, known as DukeMTMC-reID consists of 1404

identities and (IDs) acquired from 8 cameras [159]. A Faster RCNN [104] was used

to extract all pedestrian bounding boxes. Market-1501 consists of 32,668 bounding

boxes and 1501 IDs acquired from six cameras placed in front a supermarket [162]. A

Deformable Part Model (DPM) was used to extract all bounding boxes from videos [30].

Market-1501 contains also ”distractors” and ”junk” images which present extensive

variations in pose, resolution, etc. Distractors and junk images also denote false alarm
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Figure 3.2: High-level view of UDA and HITL approaches to person re-identification.

They both start from a model trained offline on source data. UDA refines it offline (before

deployment) using unlabelled target data. HITL refines online (during operation) the

ranked list of target gallery images provided by the source model, exploiting user’s feedback

(online updating of the distance metric, external to the source model, is also carried out

in [134]).

or irrelevant images. The Multi-Scene Multi-Time (MSMT17) data set is larger and

more recent than the previous ones. It consists of 126,441 bounding boxes and 4,101

identities acquired by using 15 cameras (12 outdoor and 3 indoor) [139]. All recorded

videos were acquired with different weather conditions and at different times, and

processed to extract all bounding boxes by using Faster RCNN [104].

Further details about the above data sets can be found in tab. 3.1.

#IDs / #images #Cameras

Data set Train Query Gallery -

Market-1501 751 / 12936 750 / 3368 751 / 15913 6

DukeMTMC-reID 702 / 16522 702 / 2228 1110 / 17661 8

MSMT17 1041 / 30248 3060 / 11659 3060 / 82161 15

Table 3.1: Data sets details: number of identities and of images (# IDs / # images) in

the training, query and gallery sets, and number of cameras.
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3.2.4 Metrics

Performances are evaluated by using two common metrics: Cumulative Matching Char-

acteristic (CMC) curve at rank 1, 5, 10, 20 and mean average precision (mAP).

The CMC describes the likelihood of finding a correct identity within the top ranks.

It is defined as the sum of P (k):

CMC(k) =
k∑

r=1

P (k) (3.6)

where P (k) denotes the probability of associating the identity at the rank k.

The mean average precision is defined as follow:

mAP =
1

Q

Q∑
q=1

AveP (q) (3.7)

where Q is the number of queries and AveP (q) is the average precision for a given

query q.

3.2.5 Experimental Setup

Cross-data experiments were carried out to simulate the considered cross-scene scenario.

Each of the considered data sets, in turn, was used as the source domain and the other

ones as the target domain. As in [134], the user is asked a feedback on the top-k

rank gallery, with k = 50. The proposed multi-feedback protocol is compared with

the single one, used in the existing HITL approaches. In these experiments, some

algorithms considered in this thesis, such as QS, RS and EMR, are evaluated under

the single-feedback protocol since they were considered for experimental comparison

in [77, 134]. However, it is necessary to point out that the single-feedback appear

sub-optimal for RF algorithms that usually benefit from a large number of feedback.

Simulating the user feedback, e.g., using volunteers, would have required a considerable

human effort and a long time. Therefore, the feedback has been simulated by exploiting

the ground truth of the considered data sets. In particular all the gallery images (multi-

feedback) labelled with the same identity of the query image, among the top-k ranked

ones, have been automatically selected as true matches, without the involvement of

human users. On the one hand, this can be seen as a best-case feedback scenario, when

an operator never makes errors in recognising the true matches. On the other hand,
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this is not an unrealistic scenario; moreover, the proposed feedback protocol does not

require the selection of strong or weak negatives as other HITL methods for person re-

identification, which are much more difficult to simulate, instead (using the similarity

scores to distinguish strong and weak false matches would not be effective, since the

scores of top-k ranked images are usually very similar for values of k much smaller than

the gallery size).

For performance evaluation, a subset of the query set from the test set of the

considered data sets was used, due to the time required to collect user feedback. As

in [134], the number of the considered queries was 300. Moreover, three feedback rounds

were carried out, as in [134].

To further assess the performance of the considered RF algorithms, a value of k

(lower than 50) was also considered, in particular, k = 10. In this case only the best

RF algorithm under the multi-feedback protocol was evaluated. With regard to the

UDA methods, they have been evaluated using the same number of queries mentioned

above, for a fair comparison. For a complete overview of results, the baseline results

are also reported, denoted as “source model”, which corresponds to a model trained

on a source data set and directly applied on a target data set (without using UDA nor

HITL).

3.2.6 Results

In this section, results are reported and discussed. As mentioned above, experiments

aimed to evaluate the effectiveness of the HITL approach to person re-identification

implemented using CBIR-RF algorithms with the proposed feedback protocol, and to

compare its performance to that of UDA methods which can also exploit unlabelled

target images for model fine-tuning.

Comparison between HITL-RF and UDA approaches. Table 3.2 reports

the overall results obtained by the baseline (source model), UDA methods (MMT and

ECN) and the CBIR-RF algorithms used to implement HITL (QS, RS and EMR). In

particular, results of HITL approaches after three feedback round under both single-

and multi-feedback protocols are reported. In general, all methods achieved better

performances when the target domain is Market, and DukeMTMC-reID is the source

domain. UDA methods outperformed the source model (table 3.2). Moreover, MMT

outperformed ECN in all ranks and in mAP in both target data sets. Also HITL
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methods outperformed the source model in both target data sets, and achieved better

performances under the proposed multi-feedback protocol than under single-feedback.

By comparing each HITL approach under the two feedback protocols, it is possible

to make the following observations. QS achieved a performance improvement from

single to multi-feedback of around 9% in mAP and about 6.92% on average in all ranks

when the target domain is DukeMTMC-reID; when Market-1501 is the target domain,

the improvement was about 13.74% in mAP and 7.25% on average in all ranks. RS

achieved the highest performance improvement when multi-feedback was used. Indeed,

when DukeMTMC-reID is used as target domain, it achieved an improvement of around

18.07% in mAP and 9.67% on average in all ranks, and an improvement of 33.4% in

mAP and 12.17% on average in all ranks when Market-1501 was the target domain. In

contrast to QS and RS, EMR achieved limited performance improvements.

These results confirmed that CBIR-RF approaches benefit from a larger amount

of feedback compared to the one used in HITL re-identification methods at the state

of the art. Comparing HITL methods under the multi-feedback protocol with UDA

methods, it can be seen that RS outperformed the best UDA method (MMT) in all

rank and in mAP when DukeMTMC-reID was used as target data set. In contrast,

when Market-1501 is the target data set, RS outperformed MMT in mAP and rank-

1 only (tab. 3.2). It is worth reminding the reader that mAP measure gives a more

complete overview than CMC curve of the ranks of all the images of the query identity

in the ranked gallery: therefore, even if MMT outperformed RF for ranks 5, 10 and

20, the higher mAP achieved by RS means that the re-ranking obtained by using the

proposed HITL feedback protocol is more effective than using of a large amount of

unlabelled target images offline to fine-tune the source model.

A more detailed analysis of the results of CBIR-RF algorithms after each round

under single- and multi-feedback protocols in Tables 3.3 and 3.4, respectively. By

comparing such results to the one of the source model (tab. 3.2), it is possible to make

the following observations. Under the single-feedback protocol, after the first feedback

round QS and RS achieved the highest improvement in Market-1501 and DukeMTMC-

reID, respectively (tab. 3.3). In particular, RS achieved an improvement of around

12.34% in mAP and about 10% on average in all ranks. In contrast, it achieved a

lower improvement in each rank than QS when Market-1501 was the target domain.

The improvement obtained by RS and QS when Market-1501 was used as a target, was
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comparable in mAP and rank-1, but in the other ranks on average it is better for QS

than RS. Under the multi-feedback protocol, after the first round, for both target data

sets RS outperformed by a higher amount than the other RF algorithms (see tab. 3.4).

RS achieved an improvement of 28.62% (31.15%) in mAP and around 21.25% (17.33%)

on average in all ranks when the target was DukeMTMC-reID (Market-1501). The

other algorithms achieved similar improvements with respect to the source model both

in mAP and in all ranks when DukeMTMC-reID was the target domain, except for EMR

when Market-1501 was the target domain: in this case, the improvement achieved by

EMR in mAP was lower than that of QS. Although QS achieved a limited improvement

over the feedback rounds compared to RS, it benefited from the multi-feedback protocol.

In particular, for both target domains the improvement was 7% on average in all ranks,

whereas mAP improved 9% on DukeMTMC-reID and 14% on Market-1501.

With regard to HITL and UDA, by comparing tables 3.3 and 3.2, it can be seen that

RS achieved better results than ECN model in all ranks (except for rank-10 and rank-

20) and in mAP since after second round, when DukeMTMC-reID was the target data

set, whereas when Market-1501 was used as the target data set RS outperformed ECN

only in mAP and rank-1. Among the other HITL algorithms, only QS (with the single-

feedback protocol) achieved comparable results to ECN, overcoming it only in rank-1 for

both target data set since after the second round. A similar behaviours can be observed

for RS under the multi-feedback protocol (table 3.4). Indeed, it outperformed ECN in

all ranks and mAP in both target data sets since after the first round. RS outperformed

MMT in all ranks and mAP when DukeMTMC-reID was used as a target since after

the second feedback round, whereas it exhibited results slightly lower than MMT when

Market-1501 was the target data. Also, when Market-1501 was the target domain,

the performances of QS improved under the multi-feedback protocol. In particular, it

outperformed ECN in all ranks (except for rank-20) and mAP since after the first round.

Instead, when DukeMTMC-reID is used as the target data set, QS outperformed ECN

in mAP, rank-1 and rank-5 after the first round.

In general, improvements achieved by QS and EMR in each round were lower than

those achieved by RS. In particular, QS exhibited a slight improvement among rounds

under both feedback protocols, whereas the improvements of EMR were more limited

than those of RS.
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Table 3.2: Results of cross-data set experiments (source → target) for the source model

(baseline), UDA methods (ECN, MMT), and HITL methods (QS, EMR, RS) after three

rounds of single- and multi-feedback protocols. Best results in each column are highlighted

in bold.

Method Market-1501−→ Duke DukeMTMC-reID −→ Market

mAP Rank-1 Rank-5 Rank-10 Rank-20 mAP Rank-1 Rank-5 Rank-10 Rank-20

Source model 29.1 47.7 61.3 66.0 72.0 25.5 54.3 72.0 79.0 81.7

ECN 43.2 66.7 77.3 81.0 82.7 34.9 64.3 80.3 86.0 91.0

MMT 60.8 76.0 85.3 88.0 90.3 69.4 87.0 95.3 97.0 97.7

QS-single 42.71 68.67 74.33 76.33 78.0 33.9 71.0 78.0 82.0 84.0

EMR-single 36.79 72.33 72.67 73.33 73.67 30.41 70.33 72.0 73.33 75.33

RS-single 56.6 82.33 82.67 83.0 83.67 41.69 77.0 80.33 81.33 85.0

QS-multi 51.74 73.67 82.67 83.67 85.0 47.64 80.67 87.33 88.0 88.0

EMR-multi 47.23 74.0 74.33 74.33 74.33 36.13 70.67 71.67 72.0 72.0

RS-multi 74.67 92.0 92.67 92.67 93.0 75.09 92.67 92.67 93.33 93.67

These results showed that the HITL approach is able to reduce the performance gap

in a cross-view scenarios, with respect to the UDA approach, by using the user feedback

acquired online during system operation, even through relatively simple RF algorithms,

and without requiring any (even unlabelled) target image offline, during system design.

To this aim, it is necessary to clarify some details about the required user’s feedback

under the multi-feedback protocol. In the experiments, 18 positive matches on average

were present among the top-50 ranks at the first feedback round. This means that the

overall number of feedback the user had to provide in next feedback rounds was k−18.

After the first round, these images were present and then the user did not have to select

them again. By comparing the number of images required by RS and UDA approaches,

UDA approaches use a considerable amount of unlabelled training images of the target

data. The number of unlabelled images is about two orders of magnitude larger than

those used by RS.

Since HITL methods was more effective than UDA ones in term of the number of

target images used to improve the results of the source model, the performances of

HITL methods were further evaluated also for a lower value of k that the one (k = 50)

considered in the previous experiments. In particular, k = 10 was considered which

requires the user a significantly lower effort. In this experiment only RS approach

was used since it achieved better results than the other ones under both feedback
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Table 3.3: Results of cross-data set experiments for the HITL methods after each round

of the single-feedback protocol. Best results in each column are highlighted in bold.

Method Round
Market-1501 −→ DukeMTMC-reID DukeMTMC-reID −→ Market-1501

mAP Rank-1 Rank-5 Rank-10 Rank-20 mAP Rank-1 Rank-5 Rank-10 Rank-20

QS

1 40.49 64.33 70.0 73.0 76.0 29.59 61.33 73.67 79.33 82.67

2 41.79 69.0 74.33 76.0 78.33 32.4 67.33 75.0 79.67 83.0

3 42.71 68.67 74.33 76.33 78.0 33.9 71.0 78.0 82.0 84.0

EMR

1 33.24 61.67 64.33 67.33 70.0 23.67 50.67 60.0 63.67 68.33

2 36.62 68.67 71.0 72.33 73.33 27.93 65.33 68.33 70.33 74.0

3 36.79 72.33 72.67 73.33 73.67 30.41 70.33 72.0 73.33 75.33

RS

1 41.44 65.67 70.33 74.0 77.33 29.09 61.0 70.0 76.33 80.67

2 49.51 75.67 79.0 79.0 80.33 37.11 72.67 74.67 78.33 82.0

3 56.6 82.33 82.67 83.0 83.67 41.69 77.0 80.33 81.33 85.0

Table 3.4: Results of cross-data set experiments for the HITL methods after each round

of the multi-feedback protocol. Best results in each column are highlighted in bold.

Method Round
Market-1501 −→ DukeMTMC-reID DukeMTMC-reID −→ Market-1501

mAP Rank-1 Rank-5 Rank-10 Rank-20 mAP Rank-1 Rank-5 Rank-10 Rank-20

QS

1 47.68 71.0 79.0 79.67 81.33 43.23 79.67 85.67 86.67 88.0

2 50.89 73.67 81.67 83.33 85.0 46.9 81.0 87.33 88.0 88.0

3 51.74 73.67 82.67 83.67 85.0 47.64 80.67 87.33 88.0 88.0

EMR

1 46.27 76.0 76.33 76.33 76.33 34.86 71.0 71.33 71.33 71.33

2 47.19 74.33 74.33 74.67 75.33 36.14 73.67 74.0 74.33 74.33

3 47.23 74.0 74.33 74.33 74.33 36.13 70.67 71.67 72.0 72.0

RS

1 57.72 81.0 83.0 83.67 84.33 56.65 88.0 88.33 89.0 91.0

2 68.06 87.67 88.0 89.0 90.33 68.44 91.33 92.33 92.33 92.67

3 74.67 92.0 92.67 92.67 93.0 75.09 92.67 92.67 93.33 93.67

protocols. Table 3.5 reports cross-data set results for the source model, the two UDA

methods, and RS under the multi-feedback protocol applied to the top-10 images in

the ranked gallery. By using k = 10, RS was outperformed by MMT approach in both

target domains (except for rank-1, when DukeMTMC-reID was the target domain).

Nevertheless, the improvement of RS with respect to the source model was higher

than 20% in mAP and 30% in rank-1, on both target data sets, after the third round;

moreover, since the first round RS achieved an improvement of more than 13.5% in

mAP and 20% in rank-1 for both target domains.

Moreover, further feedback rounds were carried out to investigate whether they

could provide a further performance improvement, but the observed improvements (not
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Table 3.5: Results of cross-data set experiments for the source model, UDA methods

(ECN and MMT), and the HITL method RS after each round of the multi-feedback

protocol on top-10 gallery images. Best results in each column are highlighted in bold.

Method Round
Market-1501 −→ DukeMTMC-reID DukeMTMC-reID −→ Market-1501

mAP Rank-1 Rank-5 Rank-10 Rank-20 mAP Rank-1 Rank-5 Rank-10 Rank-20

Source model – 29.1 47.7 61.3 66.0 72.0 25.5 54.3 72.0 79.0 81.7

ECN – 43.2 66.7 77.3 81.0 82.7 34.9 64.3 80.3 86.0 91.0

MMT – 60.8 76.0 85.3 88.0 90.3 69.4 87.0 95.3 97.0 97.7

RS

1 43.19 69.67 73.33 75.33 77.67 39.32 76.67 80.33 81.67 83.0

2 48.43 75.67 78.0 79.0 81.67 44.32 81.67 83.33 86.0 86.33

3 50.9 79.0 81.67 82.67 85.0 47.95 85.33 87.0 87.67 89.0

reported here) were very limited and therefore would not justify the corresponding user

effort.

Further investigation on relevance feedback algorithms. The first set of

experiments aimed to assess whether the HITL approach implemented using RF algo-

rithms under the proposed feedback protocol can be an effective alternative to UDA in

the considered scenario. Since they exhibited good performances, to extend this anal-

ysis other RF algorithms were considered, PA and M-RS. They were evaluated only

under the multi-feedback protocol, which clearly outperformed the single-feedback one

in previous experiments. In particular, PA is an algorithm that uses an online metric

learning approach, whereas M-RS is a simple modification of RS that, in contrast to RS,

defines only two clusters (relevant and non-relevant). These experiments were carried

out on the same data sets used in the previous experiments, as well as on to another

data set (i.e., MSMT17) that is the largest one among all data set considered in this

thesis. Tables 3.6, 3.7 and 3.8 report results of these experiments. For an easier com-

parison, the results of the previous set of experiments are also reported. In general, PA

and M-RS confirmed that RF under the proposed feedback protocol is more effective

than UDA. By comparing results obtained by RF algorithms, it is possible to note that,

as expected, M-RS exhibited a similar performance to RS on both target domains, since

it is a simple modification of RS. In contrast, PA achieved better performances than

those obtained by other RF algorithms. In particular, RS and M-RS achieved after the

third round performances comparable to those achieved by PA after the second round.

Before further analysing the results on MSMT17 I focus on the two previous data

sets, by comparing the performances of PA and M-RS against UDA and RF algorithms.
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These results are reported in table 3.6 (left) and table 3.7 (left). Both PA and M-RS

achieved good performances compared to UDA methods (MMT and ECN). PA outper-

formed MMT in mAP and in all ranks when the target domain was DukeMTMC-reID,

after the third round. In particular, it achieved an improvement of 20% in mAP and

on average around 9.2% in all ranks. M-RS achieved similar results; indeed, it outper-

formed MMT in mAP and in all ranks. Moreover, both PA and M-RS outperformed

ECN since the first round. It can also be observed that PA achieved the best results

when Market-1501 and DukeMTMC-reID were used as source and target domains, re-

spectively. In contrast, these when DukeMTMC-reID and Market-1501 were the source

and target domains (tab. 3.7). PA and M-RS outperformed MMT only in mAP and

in rank-1, whereas they outperformed ECN in all ranks (except for rank-20 of M-RS)

and mAP.

Regarding the performances of RF algorithms obtained by using MSMT17 either as

the source or the target domain, in most cases they were better than those of both UDA

methods. In particular, ECN was outperformed in mAP and in all ranks since after the

first round when MSMT17 was either the source domain or the target domain as shown

in table 3.6, table 3.7 and table 3.8. Only QS did not outperform ECN, in rank-20,

when MSMT17 was the target domain and DukeMTMC-reID was the source domain,

as shown in table 3.8 (right). Moreover, performances achieved by RF algorithms are

comparable with each other, except for QS that exhibited in most cases slightly lower

results than the other ones.

Considering the results achieved when MSMT17 was used as source domain (ta-

bles 3.6, 3.7 - right), it is possible to note that the best performances was achieved by

one or more RF algorithms. In particular, when the target domain is DukeMTMC-

reID the best performances was achieved by PA in terms of mAP and rank-1, and by

M-RS in the other ranks (after the third feedback round). Moreover, these algorithms

outperformed MMT of around 25% (PA) and 21% (M-RS) in mAP, after the third

round. In some cases, RF algorithms outperformed UDA methods since after the first

round. For instance, this is the case in which DukeMTMC-reID was used as the target

domain (see table 3.6 - right). When Market-1501 was used as target domain, three

RF algorithms outperformed MMT (table 3.7 - right). In particular, the best result

in terms of mAP was achieved by PA, which showed an improvement (with respect

to MMT) of around 23%, whereas the best results in all ranks were achieved by RS
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and M-RS, showing an improvement of around 5%. Also, in this case, RF algorithms

outperformed UDA methods before the third feedback round. In particular, M-RS and

PA outperformed MMT in mAP and in all ranks since the second round, whereas RS

did not outperform MMT only in rank-20. Only QS exhibited lower performances than

the other algorithms and did not outperform MMT. In other words, after the third

round, QS achieved similar performances that the other RF algorithms exhibited after

the first round. It is worth noting that, when MSMT17 was used as the target domain,

the performances of all the considered HITL and UDA methods decreased. In particu-

lar, UDA methods exhibited a significant performance decrease (see table 3.8), whereas

the one of RF algorithms was more limited. More precisely, UDA methods showed a

reduction in mAP of one order of magnitude with respect to RF algorithms. The best

performances were achieved by M-RS and PA when Market-1501 and DukeMTMC-

reID were the source domains. In the first case (i.e., when Market-1501 was the source

domain), PA achieved the best results in terms of mAP, rank-1, rank-5 and rank-10,

whereas for rank-20 the best performances were achieved by M-RS (table 3.8 - left). In

particular, after the third round PA and M-RS exhibited an improvement with respect

to MMT of around 17% and 13%, respectively, in mAP, and and of about 23% on

average in all ranks. RF algorithms outperformed UDA since the first or the second

feedback round in mAP and in all ranks, in most of the cases. Also in the other case

(DukeMTMC-reID as the source domain) PA and M-RS achieved the best results (ta-

ble 3.8 - right). In particular, PA achieved the best result in terms of mAP and M-RS

in all ranks, after the third feedback round. Although M-RS is a simple modification

of RS, it achieved an improvement with respect to RS of around 5% in mAP and in all

ranks when DukeMTMC-reID was the source domain.

Influence of pedestrian detection and bounding box extraction. During the

above experiments, some issues related to the considered data sets were noticed, that

might penalise the HITL approach more than UDA. Although different images of the

same individual present typical issues for person re-identification (e.g., different lighting

conditions and different colour calibration), also differences in the image aspect ratio

turned out to be present. They can be caused by the Deformable Part Model pedestrian

detection algorithm that was used in Market-1501 to extract bounding boxes with a

fixed size. Some examples of this issue can be found in figure 3.3. This kind of image

may make more difficult for the user to recognise different identities exhibiting a similar
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Table 3.6: Results of cross-data set experiments (source −→ target) for source model,

UDA methods (ECN, MMT), and RF algorithms (QS, RS, M-RS, PA) after each round of

multi-feedback protocol. In particular, ResNet models were trained on Market-1501 (left)

and MSMT17 (right), and tested on the target domain DukeMTMC-reID. Best results for

each column are highlighted in bold.

Methods Round
Market-1501 −→ DukeMTMC-reID MSMT17 −→ DukeMTMC-reID

mAP Rank-1 Rank-5 Rank-10 Rank20 mAP Rank-1 Rank-5 Rank-10 Rank20

Source model - 29.1 47.7 61.3 66.0 72.0 42.6 60.3 72.3 79.3 83.7

ECN - 43.2 66.7 77.3 81.0 82.7 42.8 67.0 78.3 81.0 83.7

MMT - 60.8 76.0 85.3 88.0 90.3 64.3 78.7 86.7 90.0 91.7

QS

1 47.68 71.0 79.0 79.67 81.33 60.72 81.67 87.33 88.67 90.33

2 50.89 73.67 81.67 83.33 85.0 64.92 85.67 92.0 92.67 94.0

3 51.74 73.67 82.67 83.67 85.0 66.35 86.67 92.33 93.33 94.33

RS

1 57.72 81.0 83.0 83.67 84.33 69.71 89.33 91.0 91.33 92.0

2 68.06 87.67 88.0 89.0 90.33 79.93 94.0 94.33 94.67 94.67

3 74.67 92.0 92.67 92.67 93.0 84.81 95.33 95.33 95.33 96.0

M-RS

1 56.44 79.0 82.67 84.67 87.0 69.22 88.67 90.33 91.67 93.0

2 69.71 89.67 91.33 91.33 92.33 80.8 94.0 96.67 97.33 98.0

3 75.46 91.33 92.67 93.33 93.33 86.21 97.33 98.33 98.33 98.33

PA

1 59.1 81.0 84.0 88.0 90.0 71.17 89.0 92.33 92.33 93.33

2 74.83 91.67 93.0 93.67 93.67 84.83 96.33 97.33 97.33 98.0

3 80.8 94.0 94.0 94.0 94.33 89.75 98.0 98.0 98.0 98.0

appearance. This issue is not likely to be present in a real person re-identification

system, where images extracted by a pedestrian detector would be not resized.

Besides the above mentioned aspect ratio issue, some annotation errors were also

observed. In particular, in the Market-1501 data set different images of the same indi-

vidual were found to be annotated with different IDs, whereas some images belonging

to different individuals were annotated with the same ID. Some examples of annotation

errors are reported in figure 3.4. Moreover, also in DukeMTMC-reID annotation errors

due to pedestrian tracking were observed due to static and dynamic occlusions. These

annotation errors can influence the performances of HITL methods to a higher extent

than UDA methods.

3.3 Discussion

In this chapter the use of CBIR-RF algorithms with a specifically devised feedback

protocol was proposed to implement HITL person re-identification system, focusing on

cross-view application scenarios, in which representative images of the target domain
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Table 3.7: Results of cross-data set experiments (source −→ target) for source model,

UDA methods (ECN, MMT), and RF algorithms (QS, RS, M-RS, PA) after each round of

multi-feedback protocol. In particular, ResNet models were trained on DukeMTMC-reID

(left) and MSMT17 (right) and tested on the target domain Market-1501. Best results for

each column are highlighted in bold.

Methods Round
DukeMTMC-reID −→ Market-1501 MSMT17 −→ Market-1501

mAP Rank-1 Rank-5 Rank-10 Rank20 mAP Rank-1 Rank-5 Rank-10 Rank20

Source model - 25.5 54.3 72.0 79.0 81.7 31.7 57.3 74.0 80.3 85.7

ECN - 34.9 64.3 80.3 86.0 91.0 38.3 68.7 82.7 87.0 92.0

MMT - 69.4 87.0 95.3 97.0 97.7 67.2 84.7 93.3 95.3 96.3

QS

1 43.23 79.67 85.67 86.67 88.0 53.07 86.0 91.0 91.67 93.0

2 46.9 81.0 87.33 88.0 88.0 57.29 87.67 93.0 93.33 93.67

3 47.64 80.67 87.33 88.0 88.0 58.32 88.33 93.33 93.67 94.0

RS

1 56.65 88.0 88.33 89.0 91.0 65.41 92.0 93.33 93.33 94.0

2 68.44 91.33 92.33 92.33 92.67 76.87 95.0 95.33 95.67 96.0

3 75.09 92.67 92.67 93.33 93.67 84.17 97.33 97.33 97.33 97.33

M-RS

1 54.72 86.0 88.0 89.0 90.67 65.94 92.0 93.33 93.67 95.0

2 69.31 90.67 92.67 93.0 93.33 79.71 95.67 96.0 96.67 97.0

3 76.89 92.67 94.0 94.0 94.0 86.39 97.33 97.33 97.33 97.33

PA

1 57.2 86.0 88.33 90.33 91.67 70.09 93.0 94.33 94.33 94.67

2 76.85 93.67 93.67 93.67 94.0 85.43 96.0 96.0 96.0 96.33

3 82.75 94.67 94.67 94.67 94.67 89.97 96.33 96.33 96.33 96.33

Figure 3.3: Examples of considerable appearance changes in Market-1501: colour (first

three columns) and shape (last two columns).

are not available during system design. The performance of the proposed approach

was evaluated on three benchmark data sets in cross-data set setting, and compared

with representative methods of UDA approach, that require unlabelled images of the

target domain during design. A direct comparison with existing HITL methods for
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Table 3.8: Results of cross-data set experiments (source −→ target) for source model,

UDA mehtods (ECN, MMT), and RF algorithms (QS, RS, MM, PA) after each round

of multi-feedback protocol. In particular, ResNet models were trained on Market-1501

(left) and DukeMTMC-reID (right) and tested on target domain MSMT17. Best results

for each column are highlighted in bold.

Methods Round
Market-1501 −→ MSMT17 DukeMTMC-reID −→ MSMT17

mAP Rank-1 Rank-5 Rank-10 Rank20 mAP Rank-1 Rank-5 Rank-10 Rank20

Source model - 1.9 6.3 10.7 14.0 18.7 2.8 10.0 16.0 21.7 28.0

ECN - 3.8 8.7 19.3 22.7 31.3 5.6 19.0 28.3 35.0 40.3

MMT - 5.6 14.3 25.0 29.3 33.7 7.4 19.7 31.0 35.0 42.0

QS

1 4.69 20.0 24.0 26.33 27.33 7.39 27.33 33.33 36.33 38.33

2 5.6 22.0 26.67 29.67 30.0 9.27 32.33 37.67 40.0 40.33

3 6.02 22.67 27.0 30.0 30.67 10.1 34.33 39.0 40.67 41.0

RS

1 7.44 26.67 29.0 30.0 33.0 11.87 37.67 42.0 46.0 49.33

2 13.21 37.33 39.0 39.67 41.0 21.38 55.0 57.0 58.33 61.67

3 18.11 44.0 45.0 45.0 45.33 28.06 64.67 65.67 66.0 66.67

M-RS

1 7.0 25.33 29.67 33.67 35.0 11.93 34.33 42.67 49.33 56.0

2 13.72 39.0 40.33 41.33 43.67 24.13 61.33 62.67 65.33 67.67

3 18.16 46.33 47.67 48.67 50.0 33.1 69.67 70.33 70.67 72.67

PA

1 7.97 28.33 32.33 35.0 37.0 12.96 38.33 47.0 51.0 57.0

2 16.68 44.33 44.33 44.67 46.0 27.74 64.67 65.0 65.33 66.33

3 22.21 47.67 48.33 48.33 48.33 37.16 68.67 68.67 68.67 69.0

Figure 3.4: Examples of images of the same individual labelled with different IDs (first

two columns: Market-1501; third and fourth column: DukeMTMC-reID), and of images of

different individuals labelled with the same IDs (last two columns, DukeMTMC-reID).

person re-identification was not possible, due to the unavailability of their source code

and to their much higher complexity than RF algorithms, that did not allow a re-

implementation. First, the considered implementation of HITL approach clearly out-
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3. PERSON RE-IDENTIFICATION WITH A HUMAN IN THE LOOP

performed the source model in cross-data set experiments, since the first round, in

all target data sets. Moreover, the proposed multi-feedback protocol allowed the con-

sidered RF algorithms to achieve a significant performance improvement with respect

to the single-feedback protocol used in existing HITL person re-identification methods.

Finally, even when implemented through simple CBIR-RF algorithms, in most cases the

HITL approach achieved comparable or better performances than UDA methods, de-

spite the latter exploited a much higher amount of target data (although unlabelled) at

the design phase. This shows that, CBIR-RF algorithms can attain an effective trade-

off between re-identification performances and processing cost in challenging cross-view

scenarios, without requiring images of the target view during system design, as the UDA

approaches, but leveraging instead the feedback that the operator can give online, dur-

ing system operation, on a much smaller number of target images.

Some issues of the proposed HITL approach are now discussed. One limitation

might be represented by the size of the gallery, which in application scenarios charac-

terised by hours of video footage acquired by many cameras can be very large. In this

case, the algorithm should process all images of the ranked gallery to retrieve other

relevant images taking into account the feedback provided on the top-k ranks. This

process can require more time. In this case, HITL approach to speed up the process

could examine only a subset of the ranked gallery assuming that images of people from

a certain position in the ranked list are too different or dissimilar from the query.

Another issue concerns the human effort, i.e., the number of feedback. In the

proposed implementation of the HITL approach, the user should select all true matches

in the top-k ranked gallery images, contrary to existing HITL methods that require a

single feedback. Selecting all true matches may appear too demanding for the end

user. On the other hand, as the size of the gallery increases, it becomes less likely

to find several true matches in the top-k ranks (I point out that in real application

scenarios the gallery can be order of magnitude larger than in benchmark data sets).

In particular, in my experiments 18 true matches on average were present among the

top-50 ranks in the first feedback round; moreover, in the next rounds such images are

still present in the top-k ranks and therefore the user does not have to select them

again. This means that the human effort after each round would be limited also under

the multi-feedback protocol. Another issue, related to the considered RF algorithms

to implement the HITL approach, is that with respect to state-of-the-art methods
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[134], it does not modify or update the feature representation or the similarity measure

incrementally, over different queries. On the one hand, this may limit the capability of

the proposed implementation to adapt the source model to the target domain. On the

other hand, this makes the considered HITL implementation much faster in re-ranking

the gallery images, which is useful for very large galleries.

Thanks to the participation of LETSCROWD project, I had the opportunity to

test a prototype of the person re-identification system developed in this thesis during

practical demonstrations on a real and challenging application scenario. This allowed

collecting feedback of potential end users (LEAs officers) on different aspects of the

prototype, beside its re-identification performance. The practical demonstrations were

fundamental to assess performances of the proposed re-identification system on real

data, and in particular the gap with the performance on data from benchmark data

sets, as well as its usability by the end users and their general expectations about this

kind of supporting tool.

As expected, other issues emerged beside the ones mentioned above. One is related

to the presence of “false positives” in the ranked gallery obtained for a given query

image, i.e., images of individuals different from the query individual, and sometimes

exhibiting a significantly different clothing appearance. This is unavoidable in the

person re-identification task, especially when the size of the template gallery is very

large (which is typical of real applications). It is worth reminding that the images (in

term of bounding boxes) contained in the template gallery are automatically extracted

by a pedestrian detector or tracker. These bounding boxes can be not precise, i.e.,

the bounding box can present missing parts of a person, or can be not tight enough.

As a consequence, the background can cover a considerable portion of the bounding

box, affecting the feature extraction significantly, which in turn negatively influences

the matching phase. As a consequence, the ranked gallery can present several “false

positives” even in the top ranks. However, it turned out that the end users involved

in practical demonstrations had relatively demanding expectations about person re-

identification tools: they did not expect false positive at the top of the ranked gallery,

not even images of people with similar appearance as the query, but only images of the

same person of interest acquired by the available cameras. Therefore false positives were

interpreted simply as errors made by the system: from their viewpoint, false positives

indicated a low accuracy of the system. This highlights that for an effective and useful
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deployment of computer vision supporting tools, even if semi-automatic (e.g., with a

human in the loop), a suitable training of the end users is necessary, to allow them

understand the operating principles and characteristics such as the expected accuracy

in different operating conditions. This would enable end users to understand the actual

potentiality and limitations of a computer vision tool, and to correctly interpret its

outputs.

Another issue is related to regulatory constraints, and in particular privacy-related

ones, due to , e.g., General Data Protection Regulation (GDPR)1 or to country-specific

regulations. It is worth knowing that, in some countries like Germany, person re-

identification systems cannot be used in real-time, i.e., during an event. More precisely,

a person re-identification system can be used only offline, during an official investigation,

authorised by the judicial authority, and therefore in a post-event phase. In this kind

of application constraints on processing time are likely to be less severe, and it may be

possible to trade a higher accuracy (e.g., through more complex and more discriminative

features) for a higher processing time.

1https://gdpr.eu/
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Chapter 4

Scene-specific crowd counting

with synthetic training images

Crowd counting and density estimation are useful functionalities useful in several security-

related applications involving monitoring and analysis of crowds through video surveil-

lance systems. In the computer vision research community, this is still a challenging

task for unconstrained scenes, due to issues like perspective distortions, illumination

changes, occlusions, scale variations, complex backgrounds etc. An additional issue is

related to the need of labelled data by state-of-the-art supervised techniques, which

might be very difficult or too demanding to collect, especially in real, cross-scene ap-

plication scenarios where the target scene where a crowd counting system will be used

during operation are unknown during system design. For instance, this is the case of

a new camera installation by LEAs which should be operational in a short time. In

such a case it is unfeasible to require to the end users (e.g., LEA operators) to collect

and annotate a sufficient amount of representative crowd images of the target scene.

To evaluate the cross-scene performance of crowd counting methods, cross-data exper-

iments are reported in literature using source and target benchmark data sets that are

different in terms of background, illumination, perspective, scale, size of crowd, etc.

Reported results clearly show a significant performance drop by even state-of-the-art

supervised techniques with respect to the same-scene scenario, when training (source)

and testing (target) data come from the same data set [18, 154]. Accordingly, recent

research effort is being devoted to developing solutions robust to cross-scene issues,

including the use of DA and UDA.
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This thesis focuses on a possible solution to address challenging cross-scene appli-

cation scenarios where it is not possible to obtain labelled nor unlabelled images of the

target scene during system design for fine-tuning a crowd counting model. The first

contribution of this work is an extensive assessment of the performance gap between

same- and cross-scene scenarios both in traditional (i.e., regression-based) and in re-

cent (i.e., CNN-based) crowd counting approaches [18]. The second contribution of

this work consists of an alternative technique to reduce this gap, with respect to the

ones proposed so far in the literature. Inspired by recent work in other computer vision

tasks [12, 14, 44, 58, 79, 109, 111, 122], this thesis propose the use of synthetic im-

ages was proposed to mitigate the lack of representative image to build a scene-specific

training set for a specific target camera view (target scene), by requiring minimal effort

to end users. This approach has some potential advantages: i) synthetic images can be

automatically annotated, and therefore do not require any annotation effort to human

users; ii) for the same reason synthetic images can be free from annotation errors; iii)

since no collection and annotation effort is required, it is possible to create a large

amount of representative (synthetic) images of the target scene, capable to fulfil the

needs of demanding supervised methods such as the ones based on CNNs.

In particular, the approach proposed in this work requires from the end user a

single background image of the target scene, the ROI in terms of a binary map, and

the perspective map. This information can be provided with low effort through an

appropriate user interface, e.g., embedded in software suites currently used to manage

video surveillance camera networks.

In the next sections, motivations of the proposed approach are presented 4.1, fol-

lowed by its description 4.2, and by its extensive experimental evaluation and com-

parison on several state-of-the-art methods 4.3. Finally, the discussion is reported in

sect. 4.5.

4.1 Motivations

This thesis focuses on real-world, cross-scene scenarios in which it is infeasible for the

end users to collect and possibly annotate a sufficient amount of representative images

of the target scene, for instance, when a new camera installation is operated by LEAs,

which should be operational in a short time. Under this scenario it is not possible to use
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crowd counting approaches that require either annotated or non-annotated images of

the target scene to address the cross-scene scenario, such as DA and DA. In particular,

manual image annotation requires a huge human effort by state-of-the-art supervised

CNN-based approaches, since their ground truth consists not of the number of people in

an image, but of the head position of each pedestrian. To overcome this issue, inspired

by previous work in other computer vision tasks [12, 14, 44, 58, 79, 109, 111, 122], the

use of synthetic training images was proposed in this thesis.

The main advantages of such a solution, mentioned above, are particularly appealing

for CNN-based methods, as synthetic images allow automatic generation and annota-

tion of a large and representative training set of target scene, e.g., containing different

crowd sizes and configurations of pedestrians. This is beneficial for the generalisation

capability of any supervised crowd counting model, and especially for CNN-based ones,

which require a significant amount of training data. In particular, in this challenging

computer vision task it is useful that training images have the same background and

perspective of the target scene. The former is important since features used by crowd

counting models are typically affected by the background. The latter is useful to limit

performance degradation in a cross-scene scenario [18]. Clearly, these two requirements

might be not fulfilled in cross-scene scenarios in which the target scene is not known

in advance. Despite its potential advantages, to my knowledge this kind of approach

(i.e. synthetic training images) has not been used for regression- and CNN-based crowd

counting, the only exception is [135], which however still requires images of the target

scene, although not annotated, to fine-tune the source model during design: this is not

feasible under the application scenario considered in this thesis.

4.2 Approach

Starting from a background image of the target scene, its ROI and perspective map,

the idea of the approach proposed in this thesis is to build a training set of synthetic

images obtained by superimposing to the background image pedestrian images placed

in random locations of the ROI, properly scaled through the perspective map. The gen-

erated synthetic images should present different crowd sizes and different configurations

of people to favour generalisation capability, and their number should be sufficiently

large to fulfil the requirements of the underlying supervised crowd counting model.
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The three elements mentioned above can be provided by the user with a low effort:

a background of the target scene, its ROI and its perspective map [20]. A background

image of the target scene should be provided, possibly without pedestrians or other

non-fixed objects (for instance, cars etc.). Such an image can be easily collected during

camera set-up. If the acquired image contains pedestrians or non-fixed objects, it is

possible to remove them by using image subtraction algorithms on a short video (a few

frames can be sufficient). The ROI of the background image can be provided in terms

of binary map which defines the image region where the pedestrians can appear. Static

objects (if any) should be manually removed from the image. The ROI can be easily

drawn by the human operator through an appropriate user interface, e.g., as a polygon

area. The perspective map is an image in which the value of each pixel corresponds to

the height, in pixels, of a standard adult at the corresponding location. This allows

to properly scale synthetic pedestrian images at each image location. The perspective

map can be automatically computed by asking the user to manually select the bounding

boxes of a few pedestrians in images of the target scene acquired during camera set-

up. In particular, for a flat target scene, three bounding boxes are sufficient [85]. An

additional information that can be defined by the user is the expected range of crowd

size during system operation (e.g., the maximum crowd size which is expected by LEAs

during a public demonstration, in the venue region corresponding to the camera view).

It allows to precisely limit the range of the number of pedestrians to be generated in

synthetic images.

Once the above information has been acquired by the user, it is possible to proceed

with the generation of synthetic data set of the target scene.

To this aim, a collection of pedestrian images is necessary. These images can be

collected from the web or can be generated by computer graphics tools, by system

designers. In particular, these images should not include background (i.e., they should

present a transparency layer), and should be set to a standard height, to simplify

their re-scaling according to the perspective map. The proposed approach consists

of superimposing on the background image of the target scene synthetic images of

pedestrians, positioned in random locations on the ROI and scaled according to the

perspective map. To reproduce a realistic overlapping among people, pedestrian images

can be added one at time from the farthest to the nearest location to the camera. By
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Background ROI Perspective Map

BBOx selection

Synthetic Image Generator (SIG)

Pedestrian Images

Information provided 
by the user

Computed by the 
system

Inputs for the SIG

Figure 4.1: Scheme of the proposed procedure for generating synthetic training images of

the target scene. The orange arrows indicate the information required to the user, i.e. an

image of the background, the region of interest (ROI) and the selection of three bounding

boxes in the target scene. The ROI defines the area in which pedestrian can appear. The

selection of three bounding boxes is necessary to automatically compute the perspective

map that in turn is used to compute the correct size of synthetic pedestrian images. The

blue arrows mean that the corresponding output images are automatically computed. In

particular, the perspective map is computed by using the selected bounding boxes; and the

final synthetic image is generated through the Synthetic Image Generator (SIG) by using

the input information highlighted in green. The white dots in the output (synthetic) image

represent the automatically annotated head positions of pedestrians, which are required

by CNN-based methods.

positioning pedestrians in random locations, it is possible to build images of the target

scene with different configurations of people.

To generate images with different crowd sizes the following procedure can be fol-

lowed, starting from the expected range of crowd size provided by the end user. The

number N of synthetic images to be generated can be set by system designers, depend-

ing on the underlying crowd counting model. The number of pedestrians n in each

synthetic image can be defined based on the maximum number of pedestrians nmax

provided by the user: if nmax = qN , where q ∈ R+, each synthetic image will contain n

pedestrians, with n = 1, d1 + q, d1 + 2q, · · · , nmax. Each generated image can be auto-
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matically annotated in terms of either the number of pedestrians, or the head locations

of each pedestrian and the corresponding density map, as required by the underlying

crowd counting model. To automatically annotate the head location of each synthetic

pedestrian basic human anatomy notions can be exploited, according to which the head

is 1/8 of the total body [88] and the head point is located at 1/16 height and 1/2 width

of the image. The above procedure is shown in Fig. 4.1. All the synthetic images gener-

ated by using the proposed approach are used as training data to learn the considered

crowd counting model. It is worth noting that the proposed approach is computational

much simpler than the ones of [135], which is based on graphical engine and on GANs.

4.3 Experiments

The experiments reported in this section are aimed first at assessing the performance

gap of state-of-the-art crowd counting methods in cross-scene settings with respect

to the same-scene setting, and then at evaluating the effectiveness of the proposed

approach in mitigating such a gap, for the same crowd counting methods. Among

state-of-the-art methods, four early regression-based methods and nine CNN-based

ones were selected (sect. 4.3.1). They are applied to six benchmark data sets (more

details in sect. 4.3.2). In particular, five of the selected data sets are single-scene,

whereas the other one is a multi-scene data set. The term “multi-scene” refers to data

sets that contain images of many different scenes, with one or few images of each scene.

To simulate a cross-scene setting, each single-scene data set (one by one) is used as the

target scene, and a different one is used as the source (training) data. Moreover, the

multi-scene data set is also used as the training set, which is a possible proposed in

literature solution for improving cross-scene performances. Experiments under same-

scene setting (i.e., training and testing on the same data set) have then been carried

out to evaluate the performance gap.

In subsequent experiments, for each target scene (data set), a synthetic training set

is built by using a background image of the same target scene (see sect. 4.2). Perfor-

mances obtained by using a synthetic data set as training set have been evaluated for all

the crowd counting methods considered before. In the next sections the experimental

set-up and the obtained results are described in details.
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4.3.1 Crowd counting methods

Regression-based crowd counting methods require the selection of a set of low-level fea-

tures and a regression model (sect. 2.2.1). Among all features used in early regression-

based approaches, two common foreground features as segment [86] and edges [60],

and Grey-Level Co-occurrence Matrix (GLCM) [43] and Local Binary Pattern (LBP)

texture [92] features are considered in the following experiments. Segment and edge

features focus on extracting complementary information, i.e., global and local informa-

tion, respectively. In particular, global features extract properties of the image as area

and perimeter; instead, edge features extract information as the number and the orien-

tation of edge pixels. GLCM aims to extract information about the spatial relationship

of pixels, whereas LBP identifies texture patterns in an image. In the following ex-

periments the above features are concatenated into a single feature vector. It is worth

pointing out that the above features are seriously affected by the background.

Concerning the regression models, global ones are considered in these experi-

ments. In particular, Linear Regression (LR), Partial Least Square (PLS) regression,

Random Forest (RF) and Support Vector Regression (SVR) with Radial Basis Func-

tion (RBF) kernel have been considered. The first two are linear models, whereas the

others are non-linear. LR is the most simple approach that combines the input vari-

ables linearly. As described in sect. 2.2.1, the drawback of this approach is related to

its computational complexity that grows excessively with high-dimensional data. In

contrast, PLSR does not present this disadvantage; in particular, a decomposition of

input and target variable is used to maximise the covariance between score matrices.

GPR model is an approach more flexible than the previous ones. However it is not

scalable to large data sets and is more sensitive to parameter values than the other

methods. One of these issues is overcome by RF, that is scalable to large data sets.

Regarding the CNN-based models, nine state-of-art methods, whose source code

was made available by the authors have been considered. The Multi-Column CNN

(MCNN) architecture can be defined as multi-branch or multi-column; indeed it consists

of three columns that share the same configuration except for the size of filters (large,

medium and small, respectively) [157]. All the information extracted by these branches

are merged by a final module to obtain the density map. Also the Cascaded Multi-Task

Learning (CMTL) architecture is a multi-column. In particular, CMTL is composed
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of two columns that work on two related sub-tasks which share the first layers [116].

The first sub-task focuses on the crowd count categorisation into ten crowd levels,

whereas the second one defines the density map. The Deformation Aggregation Network

(DAN) consists of two parts [171]. The first one, which is made up of the first eight

layers of VGG, is used to obtain feature maps, whereas the other part consisting of

deform blocks aims to preserve the correlation between the image and the density

map. Finally, an adaptive fusion module is used to combine the feature map and

the output of deform blocks by using different weights. The Spatial Fully Connected

Network (SFCN) uses ResNet as a backbone and an encoder, placed in the top of

ResNet, is used to improve the density map estimation [135]. The Congested Scene

Recognition Network (CSRN) consists of VGG backbone and dilated modules that aim

to extract discriminant information without increasing the required resources [142].

The Context-Aware Network (CAN) uses VGG as a backbone and combines feature

maps extracted from the backbone with weighted feature maps to obtain the density

map [83]. The Spatial-/ Channel-wise Attention Regression (SCAR) network is based

on two modules that can be defined as two variant of self-attention modules [35]. The

first one, named Spatial-wise Attention Module (SAM), aims at improving the accuracy

of head detection. The other, called Channel-wise Attention Module (CAM), defines

the relationship between channel-maps mitigating errors. The Deep Structured Scale

Integration Network (DSSI-Net, for short DSSI) consists of three columns that share

the same parameters [81]. Each column considers a different scale of the input image

to address scale variation issues. Then, all outputs are fused to obtain the density

map. The Bayesian Loss (BL+) approach uses a loss function to alleviate the large

scale variation [87]. Table 4.1 summarises the main features of CNN-based methods

including other information as augmentation techniques, loss function, type of kernel

used to compute the density map, and details about the inference time.

4.3.2 Real data sets

The scene-specific setting considered in this thesis implies that crowd counting models

should be evaluated on a testing set made up of video frames coming from a same scene

(different from the ones used for training); moreover, dense crowds are more interest

than sparse crowds for the considered application scenario (e.g., monitoring of mass

gathering events by LEAs). However, current benchmark data sets do not satisfy these
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Table 4.1: Main features of the CNN-based methods used in these experiments. Network

architecture: pre-trained backbone network (– denotes a network trained from scratch),

number of columns, loss function (Mean Squared Error, MSE; Binary Cross Entropy, BCE;

Bayesian loss). Input: type of input images (whole image or crop, and augmentation

technique – flip, noisy, scale), and kernel used for computing the density map. Speed:

inference time (in ms) on a reference input image of size 640× 480

Method
Network architecture Input Speed

backbone columns loss images kernel
MCNN [157] – 3 MSE Crop Fixed 130
CMTL [116] – 2 MSE&BCE Crop&Flip&Noisy Fixed 350
DAN [171] VGG16 5 MSE Crop Fixed 210
SFCN [135] ResNet – MSE Whole Fixed 900
CSRN [71] VGG16 – MSE Crop&Flip Fixed 480
CAN [83] VGG16 4 MSE Crop&Flip Fixed 450
SCAR [35] VGG16 2 MSE Whole Fixed 412
DSSI [81] VGG16 3 MSE 3 scales Adaptive 510
BL+ [87] VGG19 – Bayesian Crop&Flip Adaptive 260

requirements. Indeed, data sets of dense crowds mainly contain distinct images coming

from different scenes; in the case when several video frames coming from a same scenes

are available, their number is too limited for the purpose of these experiments. For

these reasons, only three benchmark data sets containing small crowds are considered,

namely Mall, UCSD and PETS2009, since they are made up of a sufficient number

of video frames from a same scene. Although other data sets such as ShanghaiTech,

UCF-QNRF and World Expo Shanghai 2010 contain dense crowd images, they do not

contain a significant number of images of a same scene. Although the selected data

sets (Mall, UCSD and PETS2009) do not contain dense crowd scenes, they present

challenging scenarios such as lighting variations, perspective distortion and occlusions.

Mall consists of 2000 frames from a single scene acquired by using a camera placed

in a shopping mall [11]. The resolution of images is fixed at 320×240 pixels. This data

set contains 62,325 pedestrians, with 13 to 53 people per frame. The first 800 frames

are used as the training set, and the remaining ones for testing.

UCSD consists of 49,885 pedestrians acquired by a low-resolution camera in a Uni-

versity campus with a frame size of 238×158 [9]. The training set contains 800 frames,

and the testing set consists of the remaining 1,200 frames.

PETS2009 is composed of different challenging tasks, such as pedestrian count and

63



4. SCENE-SPECIFIC CROWD COUNTING WITH SYNTHETIC
TRAINING IMAGES

density estimation, people tracking and event recognition [32]. The first part, named

S1, is related to crowd counting and is divided into three different parts with different

challenging levels. This data set does not contain a single scene, and the available

frames are taken from different camera views. In this case, frames from the same

camera view are grouped together to obtain a single scene data set for the purpose of

these experiments. Then, three single-scene data sets, named PETSview1, PETSview2

and PETSview3, have been created. These new datasets contain 1,229 total frames,

that I split into training, validation and test set of size 361, 128 and 740 respectively.

Since the original PETS2009 data set does not contain the head locations for each

frame, I used the ground truth provided in [156].

ShanghaiTech is instead a multi-scene data set made up of distinct images acquired

from different scenes. It contains 1,198 frames and 330,165 pedestrians in total acquired

with different cameras, different resolutions, and different crowd size [157]. The data

set is divided into two parts, named Part A and Part B, that contain 482 and 716

images, respectively. Both partitions are further divided into a training and a testing

set made up of 300/182 images for Part A and 400/316 images for Part B. Fig. 4.2

shows examples of frames from the above data sets, whereas table 4.2 summarises their

main features.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Example of frames from the data sets used in the experiments: (a) Mall, (b)

UCSD, (c) PETSview1, (d) PETSview2, (e) PETSview3, (f) ShanghaiTech.
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Table 4.2: Statistics of real and synthetic data sets used in the experiments.

Type Data set Image size
Number of images Pedestrian count

total training validation test total min avg max

R
ea

l

Mall 480× 640 2,000 600 200 1,200 62,235 13 31 53
UCSD 158× 238 2,000 600 200 1,200 49,885 11 25 46

PETSview1 576× 768 1,229 361 128 740 32,719 1 27 40
PETSview2 576× 768 1,229 361 128 740 36,458 2 30 40
PETSview3 576× 768 1,229 361 128 740 41,873 11 34 40

S
y
n
th

et
ic

Mall 480× 640 1,000 800 200 – 50,500 1 50 100
UCSD 158× 238 1,000 800 200 – 50,500 1 50 100

PETSview1 576× 768 1,000 800 200 – 50,500 1 50 100
PETSview2 576× 768 1,000 800 200 – 50,500 1 50 100
PETSview3 576× 768 1,000 800 200 – 50,500 1 50 100

4.3.3 Synthetic data set

In a real application scenario, once the information (see sect. 4.2) has been collected, it is

possible to proceed with the generation of the synthetic data set. The first requirement

is the background. To this aim, in these experiments for each data set (sect. 4.3.2) a

few images of the target scene are used to obtain the background by using the image

subtraction technique. Then, it is necessary to obtain the ROI in terms of a binary map

(second requirement). It is defined as a polygon drawn on the background image by the

user. The third requirement is the perspective map that is computed by selecting three

bounding boxes at different locations by the user on one or more images of the target

scene during camera set-up. Finally, the number of synthetic images to be generated

had to be defined. Considering the size of original data sets, and to guarantee an

equal number of images for each nmax value, a value of N = 1000 (the total number

of images of the synthetic data set) was selected. The maximum number of pedestrian

nmax = 100 was set while taking into account the characteristics of the target scene and

the size of the ROI. For each value in range [1, nmax], N/nmax = 10 synthetic images

were generated obtaining 50500 pedestrian in total. The resulting synthetic data set

was divided into a training and a validation set. In particular, 800 images were used

for training, whereas the remaining images were used for validation. In table 4.2 details

about the generated synthetic data set are reported.
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4.3.4 Metrics

Crowd counting accuracy is evaluated by using two common metrics: mean absolute

error (MAE) and root mean squared error (RMSE)

MAE =
1

N

N∑
i=1

|ηi − η̂i| , (4.1)

RMSE =

√√√√ 1

N

N∑
i=1

(ηi − η̂i)2 , (4.2)

where ηi and η̂i are the exact count (ground truth) and the estimated count for the

i-th image respectively, and N is the total number of images. The MAE evaluates the

mean of absolute error between the actual count and the estimated one. The RMSE

evaluates the root squared error between the exact count and the estimated one, and

therefore penalises larger errors more than smaller ones.

4.3.5 Results

The experiments aimed at evaluating i) the performance gap between cross- and same-

scene setting of early and state-of-the-art crowd counting methods and ii) whether

the use of a synthetic training set of the target scene is an effective approach to reduce

such gap when representative images of the target scene are not available. In particular,

cross-scene experiments were carried out by using single- and multi-scene training sets

as described in section 4.3. As mentioned before, the cross-scene setting was simulated

by training a model on a single-scene or multi-scene data set, and testing it on a different

(target) data set. The same-scene performance was evaluated by training and testing

on the same data set. This results reported in the following extend the ones published

in [18, 19]. Finally, cross-scene performances were compared with results obtained by

using a synthetic training set of the corresponding target scene.

Tables 4.3 and 4.4 report performances of early regression-based and CNN-based

approaches by using single-scene data sets, respectively. Table 4.5 show results obtained

by using a multi-scene training set. For an easy comparison, the best and the worst

cross-scene performances are reported in table 4.4. Table 4.6 reports performances

obtained by using synthetic data sets. Also in this table, for an easy comparison, the

best same-scene and the best cross-scene performances are reported.
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Table 4.3: Cross-scene MAE and RMSE of early regression-based methods (LR, RF, SVR

and PLS) using single-scene training sets. Same-scene results (when training and testing

images belong to the same data set) are also reported for comparison, highlighted in grey.

The best cross-scene result for each target data set is reported in bold.

Training set
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

L
R

Mall 2.74 3.49 9.59 11.63 289.2 294.4 348.7 349.0 268.1 270.9
UCSD 67.3 78.75 2.9 3.54 334.6 347.9 369.2 374.0 128.2 146.6

PETSview1 276.9 277.0 577.1 577.2 6.25 7.91 33.43 38.04 9.35 11.17
PETSview2 210.2 210.3 308.4 308.4 97.86 127.0 4.85 5.98 159.4 160.2
PETSview3 12.15 14.01 29.09 29.93 110.3 110.7 125.1 126.6 6.84 8.42

R
F

Mall 3.82 4.85 5.12 7.42 9.27 12.43 12.15 13.96 4.44 6.59
UCSD 5.83 6.98 3.82 4.66 9.12 11.45 8.06 10.46 5.22 5.94

PETSview1 3.89 5.07 6.92 8.12 9.47 11.03 13.59 14.98 8.36 9.31
PETSview2 6.88 8.57 5.38 7.31 8.01 8.94 9.56 11.05 6.27 8.14
PETSview3 5.52 7.07 6.34 7.73 10.11 11.54 11.59 12.54 11.41 12.49

S
V

R

Mall 4.8 6.29 8.15 9.18 9.56 10.45 9.8 10.68 8.74 9.55
UCSD 7.68 9.32 5.38 7.31 10.74 12.08 12.09 13.15 12.86 13.88

PETSview1 12.26 13.57 6.21 8.52 12.82 15.25 14.85 16.79 17.67 18.56
PETSview2 8.54 10.12 5.13 7.3 11.06 12.62 12.6 13.81 13.78 14.8
PETSview3 5.11 6.71 7.52 8.61 9.76 10.61 10.2 11.04 9.5 10.37

P
L

S

Mall 3.16 4.1 110.7 110.9 51.97 65.77 16.97 20.94 53.4 61.05
UCSD 266.3 268.0 2.6 3.23 99.38 109.1 428.7 429.9 460.9 467.7

PETSview1 49.0 49.37 13.0 14.21 8.46 10.13 20.39 24.53 21.07 26.56
PETSview2 23.01 23.42 103.9 104.1 57.72 68.15 7.65 9.06 103.1 103.8
PETSview3 18.05 18.67 5.1 7.27 14.55 16.86 25.12 26.75 9.03 10.06

Regression-based approaches achieved a remarkable same-scene performance

(table 4.3) on Mall and UCSD data sets. The best same-scene performances are re-

ported by LR and PLR, whereas they exhibited worse performance than other methods

in the cross-scene setting. In particular, these methods achieved an MAE lower than

3.2 in the same-scene setting, but the lower cross-scene MAE is 49. In contrast, RF

and SVR exhibited a limited performance degradation in most cross-scene experiments.

For instance, the RF model trained on Mall and tested on UCSD achieved an MAE

lower than 5.5, whereas the same-scene (Mall-Mall) MAE is 3.82. In some cases, the

best cross-scene performances (highlighted in bold) of RF and SVR are comparable,

and sometimes they are even better than those obtained in the same-scene setting.

This last behaviour was exhibited by RF when the training-testing sets pairs were

PETSview2-PETSview1, UCSD-PETSview2 and Mall-PETSview3 whose scenes are

similar in terms of perspective and scale, especially in the case of Mall and of the three

views of PETS2009.
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Table 4.4: Cross-scene MAE and RMSE of CNN-based methods using single-scene train-

ing sets. Same-scene results are also reported for comparison, highlighted in grey. The

best cross-scene result for each target data set is reported in bold.

Training set
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
C

N
N Mall 5.33 6.17 24.64 25.75 5.94 7.83 9.67 10.95 9.9 11.22

UCSD 86.39 88.04 2.3 2.84 144.9 149.6 49.4 56.85 180.6 181.2
PETSview1 19.54 20.16 24.18 25.28 6.2 7.86 22.05 23.59 9.77 11.75
PETSview2 3.39 4.27 19.62 20.92 20.93 22.19 4.23 5.08 24.29 27.72
PETSview3 4.31 5.35 21.28 22.47 19.54 21.63 10.37 11.66 4.18 5.13

C
M

T
L Mall 5.53 6.39 23.42 24.58 5.77 7.42 17.65 19.28 11.41 12.79

UCSD 189.1 191.1 2.04 2.50 213.7 217.9 111.9 113.7 298.5 300.8
PETSview1 9.93 10.73 24.18 25.13 5.11 6.29 15.56 17.20 4.46 5.95
PETSview2 4.68 5.95 24.63 25.76 36.85 38.49 4.80 6.06 47.34 50.96
PETSview3 4.61 5.79 21.94 23.12 21.90 24.54 11.50 13.97 4.23 5.06

D
A

N

Mall 5.43 6.42 25.42 26.54 7.51 9.43 11.7 13.14 8.84 10.27
UCSD 164.1 166.1 5.18 6.39 185.9 192.1 61.76 66.53 227.3 228.5

PETSview1 7.97 9.06 26.1 27.09 4.92 6.15 16.41 19.12 6.34 7.74
PETSview2 28.95 29.54 27.86 29.0 26.43 28.38 28.68 30.37 32.89 33.38
PETSview3 7.9 9.48 18.8 20.12 18.02 20.45 13.2 15.15 4.63 5.92

S
F

C
N

Mall 4.05 5.02 28.15 29.27 19.37 20.85 27.66 28.72 71.38 71.87
UCSD 880.2 882.1 2.91 3.64 853.5 859.6 634.3 635.5 988.4 990.6

PETSview1 8.33 9.64 27.13 28.1 6.32 7.57 12.83 14.5 10.74 12.05
PETSview2 36.55 38.35 25.93 26.85 85.29 87.81 8.1 9.81 106.9 108.6
PETSview3 14.78 15.98 28.23 29.36 11.49 13.64 10.03 12.74 4.35 5.68

C
S

R
N

Mall 6.57 7.73 24.51 25.8 21.55 23.89 19.08 21.61 15.37 16.38
UCSD 70.78 71.46 6.2 7.01 57.52 61.86 28.29 31.21 69.06 69.36

PETSview1 14.51 14.96 27.33 28.43 5.54 6.83 15.62 17.46 20.57 21.11
PETSview2 12.15 12.66 27.06 28.16 10.14 11.82 7.09 7.9 8.42 9.53
PETSview3 9.21 9.89 27.49 28.62 5.84 6.8 9.66 10.56 2.9 3.76

C
A

N

Mall 2.59 3.21 28.09 29.23 8.28 10.36 17.49 20.02 29.54 30.11
UCSD 281.6 283.1 4.73 6.16 173.5 176.9 133.4 135.2 252.0 252.4

PETSview1 10.5 11.17 27.5 28.56 6.33 7.5 8.43 9.25 3.94 4.84
PETSview2 27.59 28.51 27.1 28.15 24.62 26.03 6.07 7.67 5.09 6.77
PETSview3 6.73 7.7 27.55 28.7 7.5 9.07 11.54 12.78 6.82 7.84

S
C

A
R

Mall 3.99 4.75 372.28 372.8 42.3 45.41 55.78 56.46 93.3 93.51
UCSD 19.43 20.98 4.19 5.24 19.45 21.11 6.67 8.19 15.3 17.83

PETSview1 265.37 265.53 503.0 504.1 3.38 4.07 122.04 128.9 134.72 135.23
PETSview2 314.63 315.81 574.18 577.12 13.47 17.53 5.09 6.32 123.88 124.16
PETSview3 36.1 37.14 575.91 578.83 11.88 13.53 38.03 44.03 8.39 10.32

D
S

S
I

Mall 5.44 7.09 37.35 37.81 22.81 23.56 18.1 19.03 13.78 14.98
UCSD 25.6 26.84 21.75 23.2 27.36 28.53 26.92 28.11 26.52 27.72

PETSview1 9.87 14.1 69.02 69.8 18.0 20.44 12.63 15.0 10.31 11.36
PETSview2 8.02 12.5 66.81 67.57 20.25 22.26 14.64 16.51 11.31 12.21
PETSview3 4.14 6.47 62.54 62.8 24.09 24.75 17.32 18.22 11.46 12.46

B
L

+

Mall 2.18 2.74 152.76 153.63 6.9 7.86 15.12 16.08 8.22 9.98
UCSD 23.96 25.05 2.5 3.57 22.65 23.8 21.17 22.0 23.66 24.77

PETSview1 10.09 11.81 127.26 129.71 3.75 5.12 12.41 14.34 10.49 12.86
PETSview2 15.73 17.91 77.63 80.9 15.35 17.78 5.8 6.57 10.22 11.68
PETSview3 26.01 26.69 132.99 133.57 18.69 19.53 7.44 9.0 4.72 5.61

Also the CNN-based methods achieved high performances in same-scene settings,

with some exceptions such as DAN in PETSview2, and DSSI in UCSD and in all views of
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PETS. In cross-scene settings, also these approaches exhibited a performances decrease.

In particular, the gap between same- and cross-scene performance is clear when UCSD

is used either as training or as testing set (target scene). This can be explained by the

fact that this data set exhibits a significant difference in terms of perspective and scale

from the other data sets. The best cross-scene performances (highlighted in bold in

table 4.4) in some cases are comparable to the ones obtained in same-scene settings.

In some other cases, cross-scene performances are even better than those obtained in

same-scene setting. For instance, this result was observed when CAN was tested on

PETSview3, and when DSSI was tested on Mall.

By comparing tables 4.3 and 4.4 related to regression- and CNN-based ap-

proaches, respectively, it can be seen that the performances of the latter are better

in the same-scene setting. In contrast, regression-based methods (in particular RF and

SVR) achieved better cross-scene performances than the CNN-based ones. Therefore in

cross-scene setting, regression-based approaches turned out to be as more robust than

CNN-based ones.

As mentioned before, a multi-scene data set (ShanghaiTech) was also considered in

these experiments as the training set, since this is the one of the approaches employed

in literature to improve cross-scene performances of CNN models [71, 81, 83, 87]. No

experiments using a multi-scene training set have been carried out for early regression-

based approaches, since a regression model needs different background images of each

scene to compute edges and foreground features, whereas a single image for each scene

was available in ShanghaiTech. To speed up these experiments, models already trained

on ShanghaiTech and made available by the authors were used. In table 4.5 the cor-

responding cross-scene results of CNN-based methods are reported. The highlighted

results show in which cases using a multi-scene training set provided a better perfor-

mance than the best cross-scene one achieved using a single-scene training set, on the

same target data. In particular, the performances achieved by CAN, DSSI and BL+

using a multi-scene training set were comparable to the best cross-scene achieved on a

single-scene training set. In some cases, models achieved significantly different results

when were trained on Part A or Part B: this is the case of such as MCNN and CMTL on

PETSview3, and of SFCN on UCSD, Mall and PETSview3. In contrast, performances

of the SCAR model were poor in all target data sets. The reason of this behaviour is

not clear, and are probably due to overfitting.
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Table 4.5: Cross-scene MAE and RMSE of CNN-based methods when the multi-scene

ShanghaiTech data set was used for training, either part A (ShTechA) or part B (ShTechB).

For comparison, best and worst cross-scene results achieved on single-scene training data (S-

best and S-worst) are reported from Table 4.4. For each method and target data set, multi-

scene results that are better than the best single-scene ones are highlighted in boldface.

Training
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
set MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
C

N
N ShTechA 16.16 16.77 18.88 19.64 9.3 10.04 10.26 11.98 33.9 38.67

ShTechB 21.03 21.58 22.01 22.86 7.51 8.58 23.2 24.86 6.55 8.12
S-best 3.39 4.27 19.62 20.92 5.94 7.83 9.67 10.95 9.77 11.75

S-worst 86.39 88.04 24.64 25.75 144.9 149.6 49.4 56.85 180.6 181.2

C
M

T
L ShTechA 17.71 18.33 21.0 21.84 8.51 9.39 10.36 11.92 33.46 40.68

ShTechB 13.92 14.6 22.26 23.02 10.32 11.38 17.95 19.89 9.61 12.39
S-best 4.61 5.79 21.94 23.12 5.77 7.42 11.5 13.97 4.46 5.95

S-worst 189.1 191.1 24.63 25.76 213.7 217.9 111.9 113.7 298.5 300.8

D
A

N

ShTechA 16.76 17.32 23.96 24.67 8.88 10.21 14.49 16.56 15.68 16.68
ShTechB 18.02 18.64 22.82 24.01 8.93 10.71 19.19 22.03 20.13 21.11

S-best 7.9 9.48 18.8 20.12 7.52 9.43 11.7 13.14 6.34 7.74
S-worst 163.1 166.1 27.86 29.0 185.9 192.1 61.76 66.53 227.3 228.5

S
F

C
N

ShTechA 773.2 777.4 5.42 7.55 30.59 31.5 802.1 802.3 683.6 687.4
ShTechB 31.21 32.4 322.7 323.7 10.88 12.46 238.5 238.5 33.8 34.3

S-best 8.33 9.64 25.93 26.85 11.49 13.64 10.03 12.74 10.74 12.05
S-worst 880.2 882.1 28.23 29.36 853.5 859.6 634.3 635.5 988.4 990.6

C
S

R
N ShTechA 14.64 15.1 26.58 27.63 8.58 10.08 8.92 10.17 15.45 16.55

ShTechB 10.61 11.1 28.06 29.2 10.97 12.11 12.28 13.83 15.44 16.62
S-best 9.21 9.89 24.51 25.8 5.84 6.8 9.66 10.56 8.42 9.53

S-worst 70.78 71.46 27.49 28.62 57.52 61.86 28.29 31.21 69.06 69.36

C
A

N

ShTechA 9.72 10.28 27.04 28.16 5.04 5.87 6.2 7.46 10.3 11.67
ShTechB 3.6 4.56 28.05 29.18 6.53 8.25 10.31 11.49 15.57 16.55

S-best 6.73 7.7 28.09 29.23 7.5 9.07 8.43 9.25 3.94 4.84
S-worst 281.6 283.1 28.09 29.23 173.5 176.9 133.4 135.2 252.0 252.4

S
C

A
R ShTechA 738.4 739.2 520.4 521.1 997.9 999.5 918.9 919.9 911.7 913.5

ShTechB 512.9 513.5 326.2 327.2 813.5 815.5 829.9 811.7 825.6 826.1
S-best 19.43 20.98 372.3 372.8 11.88 13.53 6.67 8.19 15.3 17.83

S-worst 314.6 315.8 575.9 578.8 42.3 45.4 122.5 128.9 134.7 135.2

D
S

S
I ShTechA 8.44 9.16 20.41 21.06 7.91 9.46 8.91 9.9 11.73 13.55

ShTechB 12.93 13.47 26.24 27.2 13.47 15.52 9.88 11.68 25.65 26.1
S-best 4.14 6.47 37.35 37.81 20.25 22.46 12.63 15.0 10.31 11.36

S-worst 25.6 26.84 69.02 69.8 27.83 28.53 26.92 28.11 26.52 27.72

B
L

+

ShTechA 6.07 7.05 16.63 17.08 5.28 6.28 7.77 9.48 16.51 17.36
ShTechB 6.78 7.57 18.52 19.2 4.21 5.34 7.05 8.9 10.07 11.85

S-best 10.09 11.81 77.63 80.9 6.9 7.86 7.44 9.0 8.22 9.98
S-worst 26.01 26.69 152 153.63 22.65 23.8 21.17 22.0 23.66 24.77
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Table 4.6: Comparison between the performance (MAE and RMSE) attained by all the

considered crowd counting methods using as a training set: scene-specific synthetic images

of the target data set (“Synthetic”), real images from the same scene (“Real-same”), and

real images from different scenes (“Real-cross”: best results over all single-scene training

sets for early regression-based methods, and over the two ShanghaiTech training sets for

CNN-based methods). For each data set and method the cases in which using synthetic

training sets outperformed the best cross-data set results are highlighted in bold.

Testing set (target scene)
Method Training Mall UCSD PETSview1 PETSview2 PETSview3

set MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LR
Real-same 2.74 3.49 2.9 3.54 6.25 7.91 4.85 5.98 6.84 8.42
Real-cross 12.15 14.01 9.59 11.63 97.86 127.0 33.43 38.0 9.35 11.17
Synthetic 14.94 16.34 4.74 7.09 23.25 27.08 19.14 30.16 26.6 33.19

RF
Real-same 3.82 4.85 3.82 4.66 9.47 11.03 9.56 11.05 11.41 12.49
Real-cross 3.89 5.07 5.12 7.42 8.01 8.94 8.06 10.46 4.44 6.59
Synthetic 6.76 8.1 3.12 3.59 7.51 9.13 18.35 23.41 7.82 9.61

SVR
Real-same 4.8 6.29 5.38 7.31 12.82 15.25 12.6 13.81 9.5 10.37
Real-cross 5.11 6.71 5.13 7.3 9.56 10.45 9.8 10.68 8.74 9.55
Synthetic 7.98 9.57 2.85 4.13 6.96 8.66 8.83 10.63 4.6 6.54

PLS
Real-same 3.16 4.1 2.6 3.23 8.46 10.13 7.65 9.06 9.03 10.06
Real-cross 18.05 18.67 5.1 7.27 14.55 16.86 16.97 20.94 21.07 26.56
Synthetic 13.39 16.29 5.16 6.46 17.06 21.32 29.1 30.59 11.22 14.05

MCNN
Real-same 5.33 6.17 2.3 2.84 6.2 7.86 4.23 5.08 4.18 5.13
Real-cross 16.16 16.77 18.88 19.64 7.51 8.58 10.26 11.98 6.55 8.12
Synthetic 20.73 21.68 2.94 3.65 12.22 13.43 17.86 18.67 11.39 13.69

CMTL
Real-same 5.53 6.39 2.04 2.50 5.11 6.29 4.80 6.06 4.23 5.06
Real-cross 13.92 14.6 21.0 21.84 8.51 9.39 10.36 11.92 9.61 12.39
Synthetic 22.96 23.47 8.4 9.65 9.43 11.09 9.39 10.57 8.74 11.19

DAN
Real-same 5.43 6.42 5.18 6.39 4.92 6.15 28.68 30.37 4.63 5.92
Real-cross 16.76 17.32 22.82 24.01 8.88 10.21 14.49 16.56 15.68 16.68
Synthetic 17.51 18.49 10.31 12.21 4.05 5.37 19.37 22.32 10.55 12.56

SFCN
Real-same 4.05 5.02 2.91 3.64 6.32 7.57 8.1 9.81 4.35 5.68
Real-cross 31.21 32.4 5.42 7.55 10.88 12.4 238.5 238.5 33.8 34.3
Synthetic 17.76 18.57 6.34 7.34 15.56 16.85 23.22 24.82 10.19 12.46

CSRN
Real-same 6.57 7.73 6.2 7.01 5.54 6.83 7.09 7.9 2.9 3.76
Real-cross 10.61 11.1 26.58 27.63 8.58 10.08 8.92 10.17 15.45 16.55
Synthetic 19.9 20.18 3.45 4.8 13.35 15.42 21.33 23.78 20.01 20.55

CAN
Real-same 2.59 3.21 4.73 6.16 6.33 7.5 6.07 7.67 6.82 7.84
Real-cross 3.6 4.56 27.04 28.16 5.04 5.87 6.2 7.46 10.3 11.67
Synthetic 16.77 17.26 7.35 8.0 12.78 14.4 16.99 19.19 30.95 31.36

SCAR
Real-same 3.99 4.75 4.19 5.24 3.38 4.07 5.09 6.32 8.39 10.32
Real-cross512.93513.47326.24 327.2 813.47815.52829.88811.68825.65 826.1
Synthetic 23.54 24.0 7.83 8.88 8.35 9.59 7.77 10.53 15.18 16.61

DSSI
Real-same 5.44 7.09 21.75 23.2 18.0 20.44 14.64 16.51 11.46 12.46
Real-cross 8.44 9.16 20.41 21.06 7.91 9.46 8.91 9.9 11.73 13.55
Synthetic 28.91 29.5 14.86 16.91 19.18 21.81 21.29 23.58 29.48 30.02

BL+
Real-same 2.18 2.74 2.5 3.57 3.75 5.12 5.8 6.57 4.72 5.61
Real-cross 6.07 7.05 16.63 17.08 4.21 5.34 7.05 8.9 10.07 11.85
Synthetic 15.5 15.87 7.85 8.59 8.01 10.1 12.23 13.71 18.74 19.42
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Table 4.6 reported the results obtained by using the proposed approach. For an easy

comparison, the best cross-scene and the “ideal” (same-scene) results on training sets

made up of real images are reported in table 4.6. For most of crowd counting methods,

the use of synthetic images improved performances, especially when the UCSD data set

was used as the target scene. For early regression-based approaches, the use of synthetic

images as a training set lead in many cases to better or comparable performances with

respect to the corresponding best cross-scene results. These results are highlighted in

bold in table 4.6. Moreover, for RF and SVR these performances were even better

than in the same-scene setting. Only in few cases the performance of synthetic images

provided worse results than the best cross-scene ones: this is the case of LR, RF and

SVR models when Mall was used as the target scene.

Also for CNN-based approaches synthetic images generally provided better or com-

parable performances with the cross-scene ones. In few cases these results were even

better than the “ideal” performance, such as for DAN on PETSview1, and CSRN and

DSSI on UCSD. The use of synthetic images significantly improved the performance

of SCAR model, that however exhibited very poor performances using real training

data, as mentioned above (see tables 4.1 and 4.5). The largest gap between synthetic

images and best cross-scene performance can be observed for MCNN, DAN, CSRN,

CAN, DSSI and BL+ for some data sets. For instance, MCNN reduced the MAE of

the best cross-scene case by six times, whereas CSRN achieved a reduction of seven

times.

The influence of the synthetic images on CNN-based methods was further inves-

tigated, since these methods present an intermediate phase in which the density map

is estimated. Interestingly, this analysis showed that the use of synthetic images im-

proves the quality of the estimated density map. In particular, pedestrians are located

in target images with higher precision with respect to the case when real images of

a different scene are used for training. Figure 4.3 shows an example of density maps

produced by the MCNN model on two frames of PETSview1 and PETSview2, when

the training set was made up of synthetic images (top), real images from PETSview3

(middle) and real images from the multi-scene ShanghaiTech data set (bottom). The

improvement of the density map is evident also in data sets that did not exhibit im-

provements in crowd counting accuracy; for instance, this is the case of MCNN on
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PETSview1 and PETSview2: despite synthetic training images were not beneficial for

its crowd counting accuracy, they lead to a more precise density map.

Figure 4.3: Density maps produced on two frames of PETSview1 (left) and PETSview2

(right) by the MCNN model trained on: synthetic images (top), the single-scene

PETSview3 data set (middle), and the multi-scene ShanghaiTech PartB data set (bottom).

The ground truth (red) and estimated (green) density maps are superimposed on the orig-

inal frames. The yellow regions are the ones where the two maps coincide, corresponding

to prefect localisation of pedestrians. The highest localisation accuracy is achieved when

synthetic training images are used (top).
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4.4 Ablation study

In this section, the influence of parameters N (number of synthetic training images)

and nmax (maximum number of pedestrians in synthetic images) on the accuracy of

crowd counting models are evaluated. To this aim, different subsets of synthetic images

with different values of N and nmax were randomly selected. Since re-training all the

considered models in each image subset was too time-consuming, a representative set

of methods has been selected with the following criteria: one early regression-based

method, one CNN-based method trained from scratch, one CNN-based method trained

using image patches, one CNN-based method trained using whole images, one CNN-

based method which uses a fixed kernel and one CNN-based method which uses an

adaptive kernel. The methods that fulfilled the above criteria are RF, MCNN, DAN

and BL+.

In fig. 4.4 the MAE values on five target scene (Mall, UCSD, PETSview1, PETSview2

and PETSview3) are reported for the selected methods as a function of the size N of

the training set. In most of cases, the increase of N did not provide a decreasing MAE.

On the contrary, for RF the MAE slightly increased on the target scene PETSview2.

Interestingly, this means that it might not be necessary to use a large synthetic data set

of the target scene; as a consequence, the training phase can require a limited amount

of time.

In fig. 4.5, the MAE values are reported as a function of the maximum number of

pedestrians in training images, nmax. In this case the considered range of crowd size

was from 20 to 100 with a step of 20, and the total number of training images was set

to 1,000 (the same value considered in previous experiments). The generated synthetic

data set was divided into a training and a validation set: 200 images were used for

validation, whereas the remaining ones were used for training. In these experiments,

the behaviour of RF was significantly different from the other selected CNN-based

models. In particular, it attained a minimum MAE when nmax was closest to the

maximum number of pedestrians present in the corresponding target scene. The MAE

of CNN-based models (in particular, MCNN and BL+) exhibited a slightly decreasing

behaviour as the number of pedestrians increased, except for DAN. These results show

that the early regression-based methods are more sensitive than CNN-based ones to

the maximum number of pedestrians nmax.
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Figure 4.4: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes

using synthetic training data, as a function of training set size.

4.5 Discussion

In this chapter the use of synthetic images to train scene-specific crowd counting models

was proposed for challenging cross-scene application scenarios where it is not possible

to collect and annotate real images of the target scene. The proposed approach requires

minimal effort to the end users.

Although the proposed approach is easier than other approaches based on syn-

thetic images proposed for other computer vision tasks [79], as well as for crowd count-

ing [135], it exhibits some limitations. Although the generation of synthetic data sets

required about 15 minutes (on a single machine with the following configuration: In-

tel(R) Core(TM) i9-8950HK @ 2.90GHz CPU with 32 GB RAM and NVIDIA GTX1050
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Figure 4.5: MAE values achieved by RF, MCNN, DAN and BL+ on the five target

scenes using synthetic training data, as a function of the maximum number of pedestrians

in training images.

Ti 4GB GPU), the processing time required for training some of the considered CNN

models using 1,000 training images took a few days, which can be excessive for some

application scenarios. In this case, CNN models relatively fast to train should be used.

Another issue is the computation of the perspective map on a non-flat scenes (e.g.,

a concert in a stadium where some people are on the ground and other in the terraces).

In this case, more than three bounding boxes should be selected by the end users on

an image of the target scene.

Another issue is that the proposed approach focuses on fixed camera views, and

may be ineffective for pan-tilt-zoom camera, known as PTZ cameras that allow the

operator to change the camera view. To address this issue, different crowd counting
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models could be trained on different target scenes selected by the operator as the most

useful ones, for a given PTZ camera.

As for person re-identification task (see sect. 3.3) a prototype of crowd counting

and density estimation system was also developed and tested on a real and challenging

scenario during practical demonstrations of the LETSCROWD project. As for person

re-identification prototype, the practical demonstrations allowed collecting feedback of

potential end users about the system’s performance and usability, as well their expec-

tations about this kind of tool.

One of their expectations is related to the accuracy under different environmental

conditions, e.g., illumination, crowd size, etc. It is worth reminding that this kind of

tool provides an estimation of the number of people and the accuracy depends on the

application scenario. For instance, consider a venue of maximum predefined capacity.

When the number of people approaches the maximum capacity, even slight variations

are relevant, and therefore it is important to detect them. In contrast, when the number

of people is significantly lower than the maximum capacity, it is possible to tolerate a

lower accuracy. It is well known that crowd counting and density estimation accuracy

can be affected by environmental conditions, i.e., during the day the accuracy might

be higher than during the night with artificial illumination, or under different weather

conditions (rain, fog, etc.). Therefore, it would be useful that the end users are aware

of the expected accuracy under different environmental conditions.

Another issue is related to the kind of density map produced by existing methods.

Usually it is represented as a heat map where colours from blue to red indicate low to

high density. This is easy to interpret in principle. However, density maps produced

by existing methods indicate the number of people per pixel, whereas end users are

interested in the number of people per unit area on the ground plane. Due to the

typical image perspective of the surveillance cameras, the number of people per pixel is

not proportional to the number of people per unit area with a constant proportionality

factor over the whole image. For instance, by considering an image where the crowd

density is constant in terms of the number of people per unit area in the whole region

of interest, it is clear that the number of people per pixel will be lower in image regions

nearest to the camera than in farther regions. By supposing that the perspective

map is known, as in the proposed method of this thesis, a possible solution to fulfil the

expectations of the end users, can be to include a post-processing phase of the estimated
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density map to correct it; as an alternative solution, the perspective information could

be embedded into a specific CNN architecture that capable of producing a density map

with the above mentioned requirement.

In general, as mentioned in sec. 3.3 about the person re-identification task, end

users’ training is necessary in order to enable them to correctly interpret the results

produced by tool.
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Chapter 5

Conclusions

This thesis focused on two computer vision tasks that are relevant to intelligent video

surveillance system in real-world applications, namely person re-identification and crowd

counting. They can provide useful functionalities to support human operators, who of-

ten simultaneously monitor or analyse several videos acquired by a video surveillance

system. In particular, in this thesis, a challenging cross-scene scenario was considered

when collecting a suitable amount of representative images (even unlabelled) of the tar-

get scene is infeasible or too demanding for the end users. Supervised state-of-the-art

methods exhibit a significant performance decrease in a cross-scene scenario. For both

the above mentioned computer vision tasks, a human centred approach was proposed.

With regard to person re-identification, the HITL approach is considered since it can

be an interesting alternative to approaches like UDA to adapt a person re-identification

system to the target scene. In particular, in this thesis person re-identification was

considered as an image retrieval problem, and for this reason I focused on CBIR-RF

techniques which have been disregarded so far in literature. A specific contribution of

my thesis is a feedback protocol different from the ones used in other HITL person re-

identification methods, which takes into account the characteristics of CBIR-RF tech-

niques and of the considered computer vision tasks. The proposed feedback protocol,

named multi-feedback, consists of asking the end user to select all true matches in the

top ranked list, if any (instead of a single true match or strong negative match), whereas

the other top ranked images are automatically considered as non-relevant. Experimen-

tal results showed that CBIR-RF algorithms with the proposed feedback protocol are

able to improve re-identification performance in cross-scene scenarios (sect. 3.2.6). The
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main limit of the experimental analysis is the lack of comparison with existing HITL

methods for person re-identification, since their source code was not made available

by the authors and their complexity did not allow to re-implement them. Some issues

of the proposed approach were discussed in sect. 3.3, i.e., the number of feedback to

be provided by the end user, and the fact that the considered RF algorithms are not

incremental. The number of feedback required by the proposed approach may appear

too demanding for the end user. Nevertheless, in a real application scenario the gallery

can be mach larger than in benchmark data sets, and therefore finding several true

matches in the top ranked images is unlikely. Moreover, the true matches provided

in a feedback round should not be selected again in the next round. This means that

the required user effort is not significantly larger than in the existing HITL methods

under the proposed multi-feedback protocol. Although the use of non-incremental RF

algorithms might limit the adaptation of the source model to the target scene, the

considered HITL solution is fast in re-ranking the gallery.

With regard to crowd counting, the first contribution of this thesis was an extensive

evaluation of the performance gap between same- and cross-scene performance of several

state-of-the-art methods (early regression-based and CNN-based), which is still missing

in the literature. The second contribution is a possible solution to mitigate this gap,

by using synthetic images of the target scene to build a scene-specific training set for

supervised models, requiring minimal human effort compatible with the considered

application scenario (sect. 4.2). In particular, the information required to the end

user is a single background image of the target scene, the ROI in terms of binary

map, and the selection of a few pedestrian bounding boxes in images of the target

scene that allows the perspective map to be automatically computed. This information

can be easily provided during camera set-up. An additional information that can be

provided by the user is the expected range of crowd size. The construction of the

synthetic training set consists of superimposing to the background image pedestrian

images placed in random locations of the ROI, scaled accordingly to the perspective

map. Experimental results showed that in most cases the proposed solution, when

implemented on the considered crowd counting methods, allow them to achieve better

or comparable cross-scene (sect. 4.3), and in few cases performances were even better

than under the “ideal” same-scene setting. An interesting result is related to the

estimation of density map produced by CNN-based methods as an intermediate step:
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the use of synthetic training images turned out to improve the quality of the density

map, i.e., pedestrians are located in the target images with a higher precision with

respect to the use of real training images of a different scene. Such improvement was

also observed in cases where synthetic images did not provide improvements in crowd

counting accuracy. The proposed approach has a lower complexity than approaches

based on synthetic images proposed for other computer vision tasks; at the same time

it has some limitations (sect. 4.5). One limitation is related to the computation of

the perspective map in particular scenarios, e.g. a non-flat scene. Such scenes require

the selection of several bounding boxed to compute the perspective map. Another

limitation is related to the fact that a fixed camera view is considered in this thesis,

which does not take into account PTZ camera. A possible solution could be to train

different crowd counting models on different target scenes selected by the end user as

the most interesting ones on a given PTZ camera.
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