30 research outputs found

    Design and Implementation of a Micro-Inverter for Photovoltaic Applications

    Get PDF
    The objective of this work is to design and build a novel topology of a micro-inverter to directly convert DC power from a photovoltaic module to AC power. In the proposed micro-inverter, a structure with two power stages, which are DC/DC and then DC/AC converters, is used. A novel MPPT algorithm is implemented and evaluated in the DC/DC converter to optimize the solar panel energy production. The new method operates with an efficiency of 97.9%, which is a 1% improvement on the standard method, and a response time of In this research, the following approach is taken. A literature review was conducted, to identify potential converter topologies. A topology for both converters was selected by comparison of performance through simulations. Maximum Power Point Tracking algorithms were also investigated, to select an appropriate control scheme. A design for two converters was then performed, leading to a prototype for experimental verificatio

    NiMH battery forensics: Instrumentation, modelling and prognostics for identifying failure

    Get PDF
    Battery forensics is a growing research field that is becoming increasingly important with the introduction of hybrid-electric and electric vehicles. The need to correctly diagnose battery condition and predict signs of early failure is well recognised. Many presently used techniques are only applicable to laboratory situations where sensitive measurement is required or where complicated mathematical approaches are needed to assess battery condition. Advanced techniques are explored, such as extended Kalman filtering, to identify the challenges associated with analysis of multi-cell battery modules. Energy-recycling hardware is developed that is capable of efficiently cycling energy to and from cells connected in a series configuration. Switching a supercapacitor-bank-based energy store between series and parallel configurations, coupled with a bidirectional switch-mode power-supply, ensures that maximum energy is retained during the analysis cycle. Extended Kalman filtering (EKF) applied to three different battery models was used to quantify the internal component values of the battery equivalent circuits. The bulk-surface model was determined to be the most appropriate for the Toyota Prius battery modules as the EKF predicted component values converge to stable values, and the recovered voltage trace has a low error. However, the computational complexity when considering 12 series-connected NiMH cells, with their individual component variation with state-of-charge and state-of-health, make the EKF approach unviable. The data harvested during the energy recycling is used to calculate a new effective capacitance measure which relates directly to battery state-of-health. Not only is there a direct relationship between effective capacitance and state-of-health, but the (Q,V) coordinate of maximum effective capacitance on the charge-voltage plane, captured during battery discharge, is able to distinguish clearly between ordinary ageing and catastrophic cell failures

    Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    Full text link

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions

    Development of miniature personal thermoelectric generator

    Get PDF
    This paper outlines research toward the degree of Masters in Engineering (M.Eng) in the Department of Mechanical Engineering at Dublin City University. The thesis focuses on experimental and analytical investigations on the dynamics of thermocouples and thermopiles reaction to low temperature (less than 400°C or waste heat) for the feasibility and purpose of generating electricity. Thermocouples generate unique voltages at relative set temperatures. It is with this voltage that the development applications of conductive heat flow and radiation in waste heat electro generation for miniature personal thermoelectric generation is considered. The process involves a thermal heat source (the body) extracting the necessary power between the temperature differences into electrical power. Both passive and active properties of this thermal generator are investigated by measuring the mechanical and electrical properties of the couples and piles and the electro motive force produced during this electrogeneration process. The thesis work consists of the design, construction, processing and analyzing to understand the process and characterization of the device for application

    Reliability and Ecological Aspects of Photovoltaic Modules

    Get PDF
    Photovoltaic (PV) solar energy is expected to be the world's largest source of electricity in the future. To enhance the long-term reliability of PV modules, a thorough understanding of failure mechanisms is of vital importance. In addition, it is important to address the potential downsides to this technology. These include the hazardous chemicals needed for manufacturing solar cells, especially for thin-film technologies, and the large number of PV modules disposed of at the end of their lifecycles. This book discusses the reliability and environmental aspects of PV modules

    Reliability and Ecological Aspects of Photovoltaic Modules

    Get PDF
    Photovoltaic (PV) solar energy is expected to be the world's largest source of electricity in the future. To enhance the long-term reliability of PV modules, a thorough understanding of failure mechanisms is of vital importance. In addition, it is important to address the potential downsides to this technology. These include the hazardous chemicals needed for manufacturing solar cells, especially for thin-film technologies, and the large number of PV modules disposed of at the end of their lifecycles. This book discusses the reliability and environmental aspects of PV modules

    Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    Full text link

    Dependable design for low-cost ultra-low-power processors

    Get PDF
    Emerging applications in the Internet of Things (IoT) domain, such as wearables, implantables, smart tags, and wireless sensor networks put severe power, cost, reliability, and security constraints on hardware system design. This dissertation focuses on the architecture and design of dependable ultra-low power computing systems. Specifically, it proposes architecture and design techniques that exploit the unique application and usage characteristics of future computing systems to deliver low power, while meeting the reliability and security constraints of these systems. First, this dissertation considers the challenge of achieving both low power and high reliability in SRAM memories. It proposes both an architectural technique to reduce the overheads of error correction and a technique that uses the nature of error correcting codes to allow lower voltage operation without sacrificing reliability. Next, this dissertation considers low power and low cost. By leveraging the fact that many IoT systems are embedded in nature and will run the same application for their entire lifetime, fine-grained usage characteristics of the hardware-software system can be determined at design time. This dissertation presents a novel hardware-software co-analysis based on symbolic simulation that can determine the possible states of the processor throughout any execution of a specific application. This enables power-gating where more gates are turned off for longer, bespoke processors customized to specific applications, and stricter determination of peak power bounds. Finally, this dissertation considers achieving secure IoT systems at low cost and power overhead. By leveraging the hardware-software co-analysis, this dissertation shows that gate-level information flow security guarantees can be provided without hardware overheads

    Model-Based Usability Analysis of Safety-Critical Systems: A Formal Methods Framework

    Get PDF
    Complex, safety-critical systems are designed with a broad range of automated and configurable components, and usability problems often emerge for the end user during setup, operation, and troubleshooting procedures. Usability evaluations should consider the entire human-device interface including displays, controls, hardware configurations, and user documentation/procedures. To support the analyst, human factors researchers have developed a set of methods and measures for evaluating human-system interface usability, while formal methods researchers have developed a set of model-based technologies that enable mathematical verification of desired system behaviors. At the intersection of these disciplines, an evolving set of model-based frameworks enable highly automated verification of usability early in the design cycle. Models can be abstracted to enable broad coverage of possible problems, while measures can be formally verified to "prove" that the system is usable. Currently, frameworks cover a subset of the target system and user behaviors that must be modeled to ensure usability: procedures, visual displays, user controls, automation, and possible interactions among them. Similarly, verification methodologies focus on a subset of potential usability problems with respect to modeled interactions. This work provides an integrated formal methods framework enabling the holistic modeling and verification of safety-critical system usability. Building toward the framework, a set of five, novel approaches extend the capabilities of extant frameworks in different ways. Each approach is demonstrated in a medical device case study to show how the methods can be employed to identify potential usability problems in existing systems. A formal approach to documentation navigation models an end user navigating through a printed or electronic document and verifies page reachability. A formal approach to procedures in documentation models an end user executing steps as written and aids in identifying problems involving what device components are identified in task descriptions, what system configurations are addressed, and what temporal orderings of procedural steps could be improved. A formal approach to hardware configurability models end-user motor capabilities, relationships among the user and device components in the spatial environment, and opportunities for the user to physically manipulate components. An encoding tool facilitates the modeling process, while a verification methodology aids in ensuring that configurable hardware supports correct end- user actions and prevents incorrect ones. A formal approach to interface understandability models what information is provided to the end user through visual, audible, and haptic sensory channels, including explanations provided in accompanying documentation. An encoding tools facilitates the development of models and specifications, while the verification methodology aids in ensuring that what is displayed on the device is consistent; and, if needed, an explanation of what is displayed is provided in documentation. A formal approach to controlled actuators leverages an existing modeling technique and data collected from other engineering activities to model actuator dynamics mapping to referent data. An encoding tool facilitates model development, and a verification methodology aids in validating the model with respect to source data. Finally, new methodologies are combined within the integrated framework. A model architecture supports the analyst in representing a broad range of interactions among constituent framework models, and a set of ten specifications is developed to enable holistic usability verification. An implementation of the framework is demonstrated within a case study based on a medical device under development. This application shows how the framework could be utilized early in the design of a safety-critical system, without the need for a fully implemented device or a team of human evaluators.Ph.D., Biomedical Science -- Drexel University, 201
    corecore