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Abstract
Model-Based Usability Analysis of Safety-Critical Systems: A Formal Methods Framework

Andrew J. Abbate
Amy L. Throckmorton, Ph.D. and Ellen J. Bass, Ph.D.

Complex, safety-critical systems are designed with a broad range of automated and configurable

components, and usability problems often emerge for the end user during setup, operation, and

troubleshooting procedures. Usability evaluations should consider the entire human-device inter-

face including displays, controls, hardware configurations, and user documentation/procedures. To

support the analyst, human factors researchers have developed a set of methods and measures for

evaluating human-system interface usability, while formal methods researchers have developed a set

of model-based technologies that enable mathematical verification of desired system behaviors. At

the intersection of these disciplines, an evolving set of model-based frameworks enable highly auto-

mated verification of usability early in the design cycle. Models can be abstracted to enable broad

coverage of possible problems, while measures can be formally verified to “prove” that the system is

usable. Currently, frameworks cover a subset of the target system and user behaviors that must be

modeled to ensure usability: procedures, visual displays, user controls, automation, and possible in-

teractions among them. Similarly, verification methodologies focus on a subset of potential usability

problems with respect to modeled interactions.

This work provides an integrated formal methods framework enabling the holistic modeling and

verification of safety-critical system usability. Building toward the framework, a set of five, novel

approaches extend the capabilities of extant frameworks in different ways. Each approach is demon-

strated in a medical device case study to show how the methods can be employed to identify potential

usability problems in existing systems. A formal approach to documentation navigation models an

end user navigating through a printed or electronic document and verifies page reachability. A for-

mal approach to procedures in documentation models an end user executing steps as written and

aids in identifying problems involving what device components are identified in task descriptions,
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what system configurations are addressed, and what temporal orderings of procedural steps could

be improved. A formal approach to hardware configurability models end-user motor capabilities,

relationships among the user and device components in the spatial environment, and opportunities

for the user to physically manipulate components. An encoding tool facilitates the modeling process,

while a verification methodology aids in ensuring that configurable hardware supports correct end-

user actions and prevents incorrect ones. A formal approach to interface understandability models

what information is provided to the end user through visual, audible, and haptic sensory channels,

including explanations provided in accompanying documentation. An encoding tools facilitates the

development of models and specifications, while the verification methodology aids in ensuring that

what is displayed on the device is consistent; and, if needed, an explanation of what is displayed

is provided in documentation. A formal approach to controlled actuators leverages an existing

modeling technique and data collected from other engineering activities to model actuator dynam-

ics mapping to referent data. An encoding tool facilitates model development, and a verification

methodology aids in validating the model with respect to source data.

Finally, new methodologies are combined within the integrated framework. A model architecture

supports the analyst in representing a broad range of interactions among constituent framework

models, and a set of ten specifications is developed to enable holistic usability verification. An

implementation of the framework is demonstrated within a case study based on a medical device

under development. This application shows how the framework could be utilized early in the design

of a safety-critical system, without the need for a fully implemented device or a team of human

evaluators.
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Chapter 1: Introduction

In safety-critical systems, failures are characterized by a potential “loss of life, significant property

damage, or damage to the environment” [16]. In human-interactive systems, usability is the ex-

tent to which an interface supports a specified end user in achieving goals effectively and efficiently

in a specified operational environment [17, 18]. When considering the potential contributions to

successes and to failures with safety critical systems, one should consider the human-system in-

teractions. Safety-critical, human-interactive systems can have complex internal algorithms and

controlled actuators, while end users could have varying procedural goals and activities, perceptions

and interpretations of the interface, and motor capabilities that shape behavior. Thus, all inter-

acting elements of the human-system interface must be usable. This includes displays and widgets,

including their visual, audible, and haptic properties; control systems, including internal algorithms

controlling the system’s actuators and displays; configurable hardware, such as cables and batteries;

and accompanying documentation, such as user manuals and checklists. A broad range of inter-

actions among them must be considered early in the design cycle, and methods and measures are

needed to help ensure usability and identify problems that could emerge for the end user.

To support usability of safety-critical systems, standards organizations and regulatory bodies

have provided measures that should be tested early in the design cycle [19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30], while human factors and human-computer interaction (HCI) researchers have

developed methods for characterizing, designing, and evaluating systems with respect to usability

measures [31, 32, 33, 34]. Five broadly categorized measures compiled from the international stan-

dardization and regulatory guidance literature are listed below. Text under each standard explains it

and provides definitions of italicized items. Examples of complementary design practices/principles

are provided, along with examples of their applications in designed systems.

1. The interface should be accurate [20, 30, 27, 23, 26, 25]
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Table 1.1: Examples of possible end user-interface, controlled actuator-interface, and inte-
grated user-actuator-interface interactions that could emerge in safety-critical systems. De-
signed elements include interface components and controlled actuators, all of which must be
usable in the operational environment. Interactions between documentation and controlled
actuators are not considered in this work (denoted by blank cell)

Interface
components

End user Controlled
actuators

Goal-driven
activities

Interpretation Motor
capabilities

Displays and
controls

Utilizing input
elements to complete
procedures

Interpreting
symbols, tones, and
textures

Physically
manipulating
switches, knobs, and
pushbuttons

Responding to
end-user inputs and
effecting displayed
outputs

Configurable
hardware

Configuring
components to
complete procedures

Interpreting size and
shape of cable
outputs and
connection inputs

Physically
manipulating cables
and connectors

Connecting to a
controller and a
power source with
cables

Accompanying
documentation

Locating procedures
and information
needed to complete
them

Interpreting content Physically
manipulating pages
of a printed
document

Possible
interactions
among above
components

Locating and
executing procedures
involving displays,
controls, and
configurable
hardware in
documentation

Interpreting
displays, controls,
configurable
hardware, and
content in
documentation

Physically
manipulating
displays, controls,
configurable
hardware, and pages
of a printed
document

Responding to
end-user inputs,
effecting displayed
outputs, and
connecting to a
controller and power
source with cables

Accurate refers to correctness of the interface, such as messages rendered on graphical displays

that are aligned with particular system states [23, 20], audible alarms that are aligned with particular

system failures [27, 35], matching input–output connections of configurable hardware [26, 30], and

device descriptions in accompanying documentation that match the functions of components [29, 19].

In support of accuracy, displays and control systems are designed to provide correct information

about the system’s operational state that evolves due to automation, human inputs, or external

stimuli [31]. Configurable hardware is designed for accuracy by making output ends of cables sized

and shaped to fit corresponding input sockets; additionally, their design is intended to support con-

figurability for an end user having particular motor capabilities [25] and an environment having

spatial constraints [30]. Documentation is designed for accuracy by providing unambiguous descrip-

tions and graphical renderings of system components, such as a labeled, 2-D sketch of a control

panel.
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2. The interface should be understandable [19, 24, 28, 29, 23, 18]

Understandable refers to behavioral characteristics and designed properties of an interface that

the end user can interpret with reduced cognitive effort [33]. An understandable interface provides

the end user with knowledge of what state the device is in, what actions to take, and what the

consequences of actions will be [31]. Control systems are designed for understandability such that

actions involving a component or widget will have consistent, expected behaviors with respect to

end user knowledge and operational states of the device [36]. Text, tables, and diagrams in docu-

mentation are designed for understandability by tailoring the level of technical description to the

intended audience and labeling diagrams clearly. Perceivable properties of the device such as graph-

ical display messages, audible alerts, and tactile pushbuttons are designed to leverage recognizable

symbols and metaphors; for example, a pushbutton that operates to stop the system could be red,

octagon shaped, and slightly concave to fit a fingertip, meaning “push to stop” for end users having

knowledge of stop signs and pushbuttons [37].

3. The interface should be error tolerant [30, 38, 27]

Error tolerant is a characteristic of an interface that handles erroneous human behaviors in ways

that prevent failures. Automated control systems are designed for error tolerance so failures do

not occur when end users make common errors, such as omitting procedural steps, repeating them,

or performing them out of order [39]. Systems that can respond to inputs from the end user are

designed with control logic enabling users to undo the effects of erroneous actions [31]. Configurable

hardware components are designed for error tolerance such that erroneous attempts to configure

components will not introduce hazardous situations; for example, cable output ends are sized and

shaped such that attempts to connect an output end to the wrong input sockets will be unsuccessful.

4. The interface should be time efficient [19, 22, 21, 29, 27, 20]

Time efficient is a characteristic of the interface that enables end users to achieve task-related

goals expediently. Control systems are designed for time efficiency by updating in real time with

the system’s operational state; for example, graphical or audible cues engage in a timely manner
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when the system’s operational state changes, supporting end uses in taking necessary actions quickly

[31]. Documentation is designed for time efficiency by incorporating tables of contents, labeled page

numbers, and cross-references that support end users in locating procedures and declarative knowl-

edge quickly. In time-critical procedures such as troubleshooting, multi-part steps are decomposed

into sets of sub-steps that can be performed quickly; and steps are ordered such that goals can

be achieved in a time-efficient way. In this research, time efficiency is defined with respect to the

number and temporal ordering of actions, but not the time it takes to complete an action.

5. The interface should be complete [23, 29, 27]

Complete is a characteristic of an interface that provides functionality and declarative knowledge

enabling end users to set up, operate, and troubleshoot the system effectively [33]. An interface

is designed for completeness by using perceivable properties of the device, such as visual symbols,

audible tones, and tactile surfaces, to communicate information about system functionality. If

symbols, sounds, and textures presented on the device are ambiguous, they must be explained in

the content of accompanying documentation. For example, engineering constraints often require

interface designers to use coded alerts, such as symbolic shapes and periodic beeps. While it is ideal

for coded alerts to be understandable without referencing documentation, potential ambiguities may

need to be explained for the interface to be complete.

Control systems are designed for completeness such that sequences of user inputs make progress

toward all task-related goals. Procedures in documentation are designed for completeness by ad-

dressing possible system configurations; for example, in systems having two possible power sources,

a complete procedure provides instructions that are applicable when either power source is in-use.

1.1 Model-Based Verification of Usability

In many engineering domains, model-based design methods are utilized to represent and evaluate

complex device prototypes early in the design cycle. Temporally evolving target system behaviors

can be modeled and executed in silico, and target systems can be analyzed with respect to desired

characteristics using highly automated software technologies [40]. One such set of technologies are
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formal methods, originally developed for the modeling, specification, and exhaustive verification of

computer systems [41].

At the intersection of human factors, HCI, and formal methods, researchers have developed

methods and measures for modeling and evaluating human-interactive systems formally [42]. Models

can be abstracted to enable broad coverage of possible problems, and specifications can be encoded

and verified to “prove” that the target system is usable. Extant methods and measures support the

analyst in specifying and verifying some aspects of accuracy, understandability, error tolerance, time

efficiency, or completeness (Fig. 1.1).

1. Specifications related to accuracy:

(a) Behavioral consistency [43, 44]: A specific action will always result in a specific state of the interface,
controlled system, or both

(b) Weak task connectedness [45]: Starting from any state, there is at least one way to get to a particular
goal state

(c) Strong task connectedness [45]: Starting from any state, the end user can always get to a specific
next-state using a particular action

2. Specifications related to understandability:

(a) Absence of mode confusion [46, 47, 48, 49, 50]: Emergent states of the target system will always
match end-user expectations

3. Specifications related to error tolerance:

(a) Reversibility [45, 43, 51]: The effects of an action can be undone in one action

(b) Recoverability [43, 52, 51]: The effects of an action can be undone in one or more actions

(c) Robustness [53, 54, 55]: The interface control logic (including automation [56]) is designed in a way
that helps prevent failures in response to erroneous human actions

4. Specifications related to time efficiency:

(a) Task efficiency [52, 54]: An end user can achieve a task-related goal in a specified number of steps
(or fewer)

(b) Deadlock freedom [45, 57]: The interface will always respond to at least one human input

(c) Feedback [43, 52, 58]: A specific action will always cause an observable change to the interface

5. Specifications related to completeness:

(a) Weak task completeness [45, 59]: Starting from an initial state, there is at least one way for the user
to complete a procedure

(b) Task liveness [57]: A human operator can always begin executing at least one task

(c) Strong task completeness [45, 43]: Starting from any state, the user can always complete a procedure

Figure 1.1: A subset of specifications that have proven useful within safety-critical system
analyses, organized as they relate to accuracy (1), understandability (2), error tolerance (3),
time efficiency (4), and completeness (5). Numbers and letters serve as a reference for the
integrated frameworks in which they have been utilized

Integrated modeling and verification frameworks support the analyst in “proving” these specifica-

tions using software-augmented tools and techniques [60, 46, 10, 59, 61, 47, 48]. Theorem proving is

a semi-automated technique that involves inductive, interactive generation of specification proofs; in
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model checking, specialized software searches a formal model exhaustively for specification violations.

Model checking is advantageous because the verification process is fully automated; however, the

apparatus must have sufficient computational capabilities for analyzing the model and specification

exhaustively [62]. Thus, researchers have focused on developing model checking-based methodologies

that are detailed enough to provide useful design insights without overwhelming a model checker

(discussed further in Chapter 2).

While extant frameworks vary in scope and level of detail, they generally provide tools and

techniques for the formal modeling, specification, and verification of:

• Designed components of the device, including:

– Displays and controls [59, 61, 47, 10, 46, 59, 48]

– Controlled actuators [46]

• End-user interaction with the device, which is shaped by:

– Goals and activities [47, 10, 61]

– Interpretation of the interface [61]

Some frameworks, such as IVY [59] and ADEPT [48], enable the analyst to model and verify

interactions among displays, controls, and human actions that execute independently of a particular

task-related goal or operational environment. IVY [59] provides a graphical development environ-

ment, including a plug-in [63] for uploading interface source code and deriving formal models using

point-and-click tools. Built-in usability specifications and model checking software enables the ana-

lyst to automatically verify properties of the interface regarding accuracy (Fig. 1.1, 1a), completeness

(Fig. 1.1, 5a, 5c), and error tolerance (Fig. 1.1, 3a, 3b).

The ADEPT framework [48] is a graphical prototyping environment for representing input/out-

put behaviors of displays, controls, and the system’s automation. The analyst can model commands

that are inputs to the interface executed by the end user, observations that are perceptual and

cognitive functions of the end user, and internal actions that are the system’s automated control
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algorithms [64]. An integrated verification methodology enables the analyst to evaluate understand-

ability of the interface via automated detection of mode confusion [65] (Fig. 1.1, 2a). While the

end user’s cognitive, perceptual, and motor actions are represented in the model, behaviors are not

structured in a goal-driven way.

Other frameworks, such as Shared Event-B [60], the cognitive framework in [61], and the human-

automation interaction framework in [46] integrate models of the interface and goal-driven user

behaviors. The shared Event-B framework [60] leverages the task modeling notation of Concur Task

Trees (CTT) [66] for representing end-user cognitive and motor task behavior. Manually encoded

formal models of interface displays and controls are composed with the user model to abstract

human-system interaction via the exchange of input/output variables. Human-system interaction

is abstracted via the exchange of input/output variables between interface and task models. The

framework incorporates a verification methodology enabling analyses of accuracy (Fig. 1.1, 1c, 1b)

via theorem proving [67].

In [61], researchers leverage the native syntax of Symbolic Analysis Laboratory (SAL) [68] to

integrate a user model representing tasks and abstracted cognitive functions with a device model

representing displays and controls of the interface. In the task model, a set of possible motor actions

are derived from the user’s current goal. In the cognitive function model, an end-user interpretation

is derived from the appearance of a visual display message. Updates to what is displayed operate

as cues triggering one human action from a set of actions that are possible based on the current

goal and interpretation. Specifications assert accuracy (Fig. 1.1, 1b) and completeness (Fig. 1.1, 5a)

properties that can be verified automatically using an integrated model checking technique.

In [46], researchers utilize the native syntax of SAL to model the end user, interface displays

and controls, and continuous actuator behaviors. The user model represents an internalized con-

ceptualization of the system’s internal algorithms that humans are theorized to construct during

interaction (called a mental model [36]). This model specifies what the end user believes is the

system’s current operational state, and it updates when the interface changes states. An interface

model represents displays and controls that respond to end-user inputs and automated events that
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are trigged by controlled actuator states. A plant model captures approximate actuator behaviors

by abstracting them from differential equations (discussed further in Chapter 3, Section 3.2.2). A

constraints model, specialized specifications, and a model checking technique ensure that actuator

states deemed realistic are considered within automated verification of understandability (Fig. 1.1,

2a).

OFAN [47] and EOFM [10] enable the analyst to integrate models representing conditions in

the operational environment within system models representing end-user interaction with displays

and controls. The OFAN framework [47] leverages the graphical notation of Statecharts [69] to

support the modeling of displays, controls, system automation, the operational environment, and

end-user tasks that are goal-driven. Each element within this system model is composed of one or

more hierarchical sub-models representing subsystems. Subsystem models interact by responding to

updates synchronously or asynchronously over time via the exchange of input/output variables. For

example, a model representing displays may respond to updates in a model representing automation

synchronously, abstracting the nearly instantaneous travel of electrical signals; while the same display

model may respond to updates in a user task model asynchronously, reflecting the relatively slower

actualization of human motor actions [70].

In [52], researchers extend the OFAN framework with specifications and model checking capa-

bilities to automatically verify accuracy (Fig. 1.1, 1), completeness (Fig. 1.1, 5), error tolerance

(Fig. 1.1, 3b), and time efficiency (Fig. 1.1, 4).

The Enhanced Operator Function Model (EOFM) [10] includes a custom, XML-based [71] gram-

mar for representing goal-driven end-user task behavior as hierarchical-heterarchical activity struc-

tures. Decomposition operators specify the temporal and cardinal ordering of activities, which can

be decomposed into lower level sub-activities or human actions (actions are at the lowest level and

they cannot be decomposed further). The translation tool described in [10] transforms XML-EOFM

representations to formal models, and an extension to the translation tool augments normative task

models with common human errors [72] such as skipping activities and performing them out of order

[56]. Task models can be visualized using the automated macro described in [73], and an integrated
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model checking methodology enables automated verification of error tolerance (Fig. 1.1, 3c), time

efficiency (Fig. 1.1, 4b), and completeness (Fig. 1.1, 5b) [57].

1.2 Knowledge Gaps

Extant formal methods-based frameworks at the intersection of human factors, HCI, and formal

methods have mainly focused on displays, widgets, and control logic as the set of human-system

components that shape normative end-user task behavior. Formal verification has proven useful

for evaluating some aspects of accuracy, understandability, time efficiency, error tolerance, and

completeness. However, few researchers have considered documentation; end-user interpretation

of audible, visual, and haptic displays; configurable hardware; and a broad range of interactions

among human-interactive system elements. New tools and techniques are needed to support highly

automated searches for usability problems in the holistic human-system interface.

While much work has been done in the formal verification of procedures, one set of tasks that

has not been addressed involves navigating to documentation pages containing necessary content.

Similar to a device’s display screens having different symbols and widgets, pages of a printed or

electronic document have declarative knowledge such as explanations of what is displayed and what

procedures are necessary. For example, if an alarm engages on the device, the end user may need to

navigate to a page containing the troubleshooting procedure. If what is displayed on the device is

ambiguous, the end user may need to navigate to a page containing declarative knowledge mapping

what is displayed to a particular meaning. Navigational tools in accompanying documentation, such

as cross-references and tables of contents, should support end users in quickly navigating within

and between sections of the document to locate such information. A model-based approach could

be developed to ensure documentation navigability and identify potential problems early in the

design cycle, similar to the way researchers have addressed navigability between screens of graphical

displays [45].

Another aspect of documentation usability involves the way procedures are written. For example:

• If the device components involved in a procedural step are not identified accurately, the end
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user may perform the task incorrectly

• If the instructions are not applicable to all possible device configurations, the end user may

not be able to complete them

• If procedural steps are not logically ordered, the end user may not execute the procedure in a

time-efficient way

Existing modeling methodologies have mostly considered normative end-user task behavior, where

the formal task model encoding process is often informed by an existing system’s documentation (see

for example [74]). Researchers have leveraged the formal task modeling process to aid in identifying

potential usability problems with a target system’s displays and control logic (see for example [75]);

however, such an approach has not been applied toward identifying potential usability problems

with written procedures.

End-user inputs to displays and widgets have been modeled and analyzed with respect to a

variety of usability-related specifications; however, existing methodologies are limited with respect

to configurable hardware. As mentioned, one area concerns interactions with documentation, such as

whether instructions address all possible system configurations. Another area concerns interactions

between configurable hardware, end-user motor capabilities, and constraints imposed by the spatial

environment. For example, the end user must be able to connect cable outputs to corresponding

inputs; and if opportunities emerge for the end user to configure hardware incorrectly, failures could

occur.

In support of understandability, usability standards identify the need for visual, audible, and

haptic properties of the device that are interpretable to the end user with reduced cognitive effort

[28, 24]. In support of completeness, accompanying documentation must explain the functions and

meanings of potentially ambiguous symbols, sounds, and textures [29, 19]. While the cognitive

interpretation framework in [61] incorporates a user model of visual display interpretation, audible

properties, haptic properties, and explanations in accompanying documentation are not considered.

Additionally, specifications in [61] assert accuracy and completeness with respect to task-related

goals; however, specifications of understandability are not provided.
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In regard to controlled actuators, one existing framework models actuator dynamics using ab-

stract representations of differential equations [46]. Similar techniques have been utilized successfully

in a variety of safety-critical, human-interactive system applications [76, 77, 78, 79, 49] (further de-

tail provided in Chapter 2); however, they require knowledge of differential equations, and formal

models are imprecise with respect to actual target system dynamics.

Finally, while each framework discussed in Section 1.1 can incorporate multiple models of the

user, interface, operational environment, and controlled actuators, a holistic methodology is needed

to ensure usability of the integrated system. For example:

• Alarms must engage on the device when actuators malfunction

• The meanings of alarms must be understandable to the end user

• Troubleshooting instructions must be located quickly in accompanying documentation

• Procedural steps must be accurately written, logically ordered, and applicable to all device

configurations

• The end user must be able to configure hardware correctly in the spatial environment

Thus, an integrated approach is needed to model the interactions among controlled actuators, the

target system’s control logic, device displays, accompanying documentation, configurable hardware,

and end-user capabilities. Additionally, specifications and verification methodologies are needed to

“prove” accuracy, understandability, error tolerance, time efficiency, and completeness with respect

to the holistic, human-integrated system.

1.3 Objectives

To address some of the knowledge gaps in this design space, five objectives of this research address

formal modeling, specification, and verification methodologies that are needed to support integrated

analyses. Work in these areas should provide useful analytic capabilities that extend existing frame-

works while building toward an integrated framework enabling usability analyses with respect to
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interacting models of the interface. It would be beneficial for such a framework to incorporate possi-

ble interactions among displays, controls, configurable hardware, documentation, the end user, and

actuators controlled by the interface. What is needed to address knowledge gaps regarding documen-

tation, configurable hardware, interface interpretation, and controlled actuators are identified and

discussed in Sections 1.3.1–1.3.5. The overarching objective of an integrated framework is discussed

in Section 1.3.6.

1.3.1 Navigability of Accompanying Documentation

As mentioned, one critical aspect of documentation involves navigability. Navigable documentation

is critical for supporting time efficiency of the interface by enabling end users to quickly locate

pages containing necessary content. One way designers support time efficiency is by incorporating

navigational tools, such as labeled page numbers, cross-references, tables of contents within printed

documents, or “help” sections within electronic documents. Examples of printed documents include

spiral bound user manuals and paper checklists that are provided with the device; examples of

electronic documentations include PDF user manuals or digital checklists that the end user can

download from a manufacturer’s website.

While it is possible to model navigation tasks using heavily detailed representations (e.g. keystroke-

level models [80]), encoding them can be labor intensive. Considering the importance of navigational

tools that support time efficiency, analysts could benefit from a formal methods-based approach that

could help provide navigability insights using simpler models. A modeling methodology should pro-

vide a way of representing the location of content in documentation and the end user’s navigation

tasks. A verification methodology should support the analyst in ensuring that navigational tools

enable the end user to locate content in a time-efficient way.

1.3.2 Usability of Procedures in Documentation

Safety-critical system documentation provides instructions that are necessary for setting up, oper-

ating, and troubleshooting the device in its possible configurations. Text and diagrams are often

utilized to identify what components are involved in the task, what the task execution conditions
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are (e.g., what device malfunction a procedure helps address), and the ordering of procedural steps.

Text often prescribes how steps should be executed, while a diagram on the page may be referenced

identify the names, appearances, and part-whole compositions of device components. An enumer-

ated list of steps often identifies the normative ordering of tasks, and nested sub-steps often provide

individual actions and different sets of tasks that are applicable to particular device configurations

[81]. Thus, another aspect of documentation usability involves text, tables, and diagrams that pro-

vide accurate, complete, and time-efficient instructional procedures. At a minimum, the procedure

should be:

• Be applicable to all system configurations

• Unambiguously describe what component(s) are involved in each task

• Provide logically-ordered steps

A formal methods-based approach could support the analyst in ensuring that such procedures

are usable early in the design cycle. A modeling methodology should be capable of representing

an end user executing a procedure as-written. It should provide a way of specifying when end-user

actions execute (based on the ordering of procedural steps), what end-user actions execute (based on

what components are identified in text/diagrams), and what end-user actions are possible (based on

configurations addressed in different sets of sub-steps). A verification methodology should support

the analyst in verifying accuracy, time efficiency, and completeness with respect to an instantiated

model.

1.3.3 End-User Capabilities to Configure Hardware in the Operational
Environment

As mentioned, one way hardware is designed for configurability is by ensuring that cable output end

and input sockets are appropriately sized and shaped [30, 26]. An accurate design supports the end

user in configuring hardware correctly, such as connecting a cable output end to the appropriate input

socket, while an error-tolerant design prevents the end user from actualizing erroneous connections.

The end user’s motor capabilities to move objects must also support hardware configurability. Where
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components and the end user are in the spatial environment may also affect abilities to configure

hardware correctly.

Considering the need for ensuring that configurable hardware is accurate and error tolerant,

extant approaches in formal methods could be extended to enable modeling and verification of such

characteristics early in the design cycle. A modeling methodology should enable the analyst to

represent the hardware components of a human-interactive system, what configurations are possible

in the spatial environment, and what actions the end user can execute when configuring the system.

A verification methodology should provide a way of ensuring that hardware components are designed

to ensure accuracy and error tolerance for a specified end user and environment.

1.3.4 End-User Interpretation of the Interface

In support of understandability, perceivable properties of interface components such as text on

a visual display, volume of an audible alert, and intensity of a haptic vibration are designed to

be interpretable with reduced cognitive effort [33]. When incorporating such properties within an

interface, designers may consider cultural context, such as a red octagon pushbutton emulating a

stop sign to mean “stop.” They may also consider the end user’s perceptual capabilities, such as

the ability to perceive and describe identifiable colors, sounds, textures, and vibrations. To support

understandability, designers may incorporate properties that operate synchronously through visual,

audible, and haptic channels; and what is signified must be consistent within and between properties

operating through all sensory channels. To support completeness, what these properties mean may

also be explained through the documentation channel, such as text within a user manual describing

the consequences of pushing a red octagon button.

Considering the need for an understandable and complete interface, analysts could benefit from

formal modeling and verification methodologies extending the capabilities of extant frameworks. A

modeling methodology should provide a way of representing what information could be provided to

the end user via perceivable properties of the device and explanations in accompanying documen-

tation. It should support the analyst in representing what device components have such properties;

which ones operate through visual, audible, and haptic, channels respectively; what they mean to
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the end user; and what changes to the properties and their meanings can occur as the system evolves.

A verification methodology should provide aid in ensuring that the interface is interpretable to the

end user in a way that supports understandability and completeness.

1.3.5 Continuous Actuator Dynamics

As mentioned, further study is needed in the formal modeling of actuators controlled by the interface.

The analyst may want to represent precise actuator dynamics, and she may prefer to encode such

a representation without the need for differential equations. Thus, a new modeling methodology

could be beneficial. Such a methodology should support the analyst in representing the behaviors of

actuators controlled by the interface, without the need for differential equations or approximation.

1.3.6 The Integrated Human-System Interface

The objectives discussed thus far have been building toward a formal methods-based framework for

ensuring safety-critical, human-interactive system usability early in the design cycle. Such a frame-

work should enable the analyst to model an interface, including documentation, displays, controls,

and configurable hardware; an end user, including task behavior, interpretation of the interface, and

abilities to configure hardware; an operational environment, including where components are in rela-

tion to each other and the end user; and actuators controlled by the interface. The framework should

provide a way of abstracting possible interactions among these elements, such as those identified in

Table 1.1. A verification methodology is needed to help ensure that the holistic human-system inter-

face is accurate, understandable, error tolerant, time efficient, and complete with respect to modeled

interactions.

1.4 Contributions

In support of the objectives identified in Section 1.3, the contributions of this research extend the

scope and analytic capabilities of model-based usability verification frameworks (Table 1.2).

Chapter 2 provides a broader conceptual background of human factors, formal methods, and the

intersection of these fields, including what tools and techniques are needed to formally model human-

interactive systems and verify usability specifications. To support the development of formal models,
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Table 1.2: Broad overview of the scope covered by extant modeling and verification methodolo-
gies (works referenced in cells), areas addressed in this research (chapters referenced in cells),
and areas that should be explored in future work. Interactions between documentation and
controlled actuators are not considered in this work

Interface
components

End user Controlled
actuators

Goal-driven
activities

Interpretation Motor
capabilities

Displays and
controls

[46, 10, 59, 61,
47, 48]

[61], extended in
Chapter 7

Future work [46], extended in
Chapter 8

Configurable
hardware

Future work Future work Chapter 6 Future work

Accompanying
documentation

Chapter 4 Chapter 5 Future work

Interactions
among all of
the above

Chapter 9 Chapter 9 Chapter 9 Chapter 9

analysts could benefit from formalisms, modeling techniques, and model development tools. To

support formal verification, analysts could benefit from specifications and model checking techniques.

Chapter 3 provides a description of the encoding techniques and apparatus employed in this research.

Chapters 4–8 introduce new methodologies that extend the capabilities of existing frameworks,

building toward Chapter 9: an integrated framework for modeling, specifying, and verifying the

holistic human-system interface. Chapter 10 provides a broader discussion of contributions and

future work, and model code listings are provided in appendices.

1.4.1 A Formal Approach to Documentation: Modeling, Specification,
and Verification of Navigability

The approach developed in Chapter 4 addresses the objective identified in Section 1.3.1. It encom-

passes a modeling methodology, a verification methodology, and a case study application.

A formalism and modeling technique is developed to represent pages of a printed or electronic

document as well as a constrained set of ways the end user could navigate through it: staying on

a current page that contains necessary content, navigating one-page forward if there is unfinished

content on the current-page, and navigating to a page that is cross-referenced on the current-page.
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To employ the methodology the analyst should consider the document’s navigational tools (e.g.

hyperlinks in a PDF) and the content on each page that could enable one or more possible next-

pages (e.g. multiple cross-references).

A set of three specifications regarding time efficiency of documentation navigability and a model

checking technique support the analyst in automatically verifying that the end user can navigate to

and from necessary pages utilizing the behaviors represented in an instantiated model.

These methodologies are applied in a case study based on a medical device PDF user manual

having procedures, information about the device, tables of context, and hyperlinking functions. Case

study results indicate that the approach shows promise for enabling verification of time efficiency

with respect to a constrained set of end-user behaviors and specifications. Contributions include

modeling and verification methodologies that extend the capabilities of extant formal methods-based

frameworks with respect to documentation navigability.

1.4.2 A Formal Approach to Documentation: Modeling, Specification,
and Verification of Procedure Usability

The approach developed in Chapter 5 addresses the objective identified in Section 1.3.2. It encom-

passes a modeling methodology, a verification methodology, and a case study application.

Leveraging an existing task analytic framework [10], a modeling technique is developed to rep-

resent sets of end-user actions that are possible based what device components are identified in the

content of procedural steps. The approach aims to support the analyst in identifying potential,

accuracy-related usability problems while attempting to encode the procedure formally, where accu-

racy problems could emerge from insufficient descriptions of components and parts provided in the

instructions.

A device modeling technique provides a way of encoding initial component configurations that

are possible when a procedure begins executing vis-a-vis configurations addressed in prescribed

instructions. By inspection, if all possible initial configurations are addressed in the procedure, such

as either mutually exclusive power source being in-use, the instructions can be considered complete.

Otherwise, there may be completeness problems.
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Finally, in support of ensuring time efficiency, two generalizable specifications and a model check-

ing technique enable the analyst to verify that procedural steps are logically ordered. Each specifi-

cation asserts a particular ordering of procedural steps that could be problematic, depending on the

procedure’s purpose (e.g. setup, troubleshooting). The verification technique leverages two versions

of a model representing:

1. The end user executing all procedural steps as-written and in the prescribed order

2. The end user executing one or more procedural steps as-written, but in any order

A specification that is proven in the first model indicates that the procedure has potential time-

efficiency problems, while specification violations in either model generate a trace through it re-

flecting a potentially time-efficient ordering of steps. The modeling, specification, and verification

methodologies are demonstrated in a case study based on a medical device troubleshooting proce-

dure.

Case study results indicate that:

• The task modeling methodology could be useful for identifying potential accuracy problems

involving what components are identified in task descriptions

• The device modeling methodology could be useful for identifying potential completeness prob-

lems regarding possible initial system configurations versus those addressed in the procedure

• The verification methodology could be useful for identifying potential time-efficiency problems

as well as revealing potentially improved orderings of procedural steps

Contributions include a novel application of an existing task analytic framework, extending the

capabilities of formal methods-based approach with respect to procedures in a system’s accompany-

ing documentation.

1.4.3 A Formal Approach to Hardware Configurability: Modeling, Spec-
ification, and Verification of Gibsonian Affordance

The approach developed in Chapter 6 addresses the objective identified in Section 1.3.3. It encom-

passes a modeling methodology, a verification methodology, a tool facilitating the analysis, a case
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study application, and a scalability evaluation.

Methodologies are developed to support the modeling, specification, and verification of oppor-

tunities for end-user motor actions that emerge in an operational environment (called affordances

[82]). To apply the methodology the analyst should consider the part-whole composition of hard-

ware components and the end user’s motor capabilities. This information is utilized in conjunction

with a modeling technique and encoding tool that facilitates the process of developing a formal

affordance model based on one of three affordance formalisms from ecological psychology [6, 4, 7]. A

complementary human-environment system (HES) modeling technique supports the analyst in rep-

resenting initial end-user motor capabilities, initial spatial relations among components and the user,

and spatial relations that emerge after the end user takes an available action (called “actualizing”

an affordance [6]).

The verification methodology includes four generalizable specifications and a model checking

technique. The analyst can verify hardware configurability with respect to an instantiated HES-

affordance model composition, two accuracy-related affordance specifications, and two error tolerance-

related affordance specifications.

The approach is applied in a case study based on a medical device adverse event involving

an incorrect input–output cable connection that occurred during pacemaker implantation surgery

[83]. One affordance specified in the model represents spatial relations and motor capabilities of the

surgeon enabling incorrect cable connectability, while a second affordance represents spatial relations

and motor capabilities enabling a correct one. One accuracy and one error-tolerance specification

are instantiated and verified using model checking. A scalability evaluation is also included.

Case study results indicate that the approach could be useful for ensuring accuracy and error

tolerance as well as identifying potential usability problems with respect to two cable connectability

affordances. Scalability results indicate that the approach shows promise for conducting symbolic

model checking in formal models representing up to 32 affordances (and 7.3 × 10134 states) on a

desktop workstation having 64 GB of RAM.

Contributions include the modeling methodology, verification methodology, and tool support
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extending the capabilities of extant formal methods-based frameworks with respect to hardware

configurability.

1.4.4 A Formal Approach to Interface Interpretation: Modeling, Specifi-
cation, and Verification of Signifiers

The approach developed in Chapter 7 addresses the objective identified in Section 1.3.4. It encom-

passes a taxonomy modeling methodology, a verification methodology, a tool facilitating analyses, a

case study application, and a scalability evaluation.

The modeling and verification methodologies in this chapter are based on the theory of signifiers:

clues providing insights into the function, purpose and meaning of the system, component or widget

[37]. Theories of perception from psychology and HCI are leveraged to identify a set of perceivable

interface properties that can operate as signifiers in different ways [6, 84, 85, 86]. To instantiate

a formal signifier model, the analyst should consider the end user’s perceptual capabilities and

contextual factors (e.g. culture, knowledge of the system) that could control what is signified by

perceivable properties of the device and explanations in accompanying documentation. Such a model

represents:

• Functions and meanings that could be signified on the device and explained within accompa-

nying documentation (e.g. “low battery” for the meaning of an indicator light)

• Device components (e.g. an indicator light)

• A constrained set of perceivable properties of device components that operate through visual

(e.g. color), audible (e.g. volume), or haptic (e.g. vibration) channels respectively

• What identities the end user could assign to perceivable properties (e.g. “red” for a color)

• What function or meaning is signified to the end user based on her description of the property

(e.g. “system stopped”)

• What is signified through explanations in the content of documentation (e.g. text explaining

what is meant by an indicator light that the end user describes as colored “red”)
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• What changes to end-user descriptions of perceivable properties and what is signified through

audible, visual, haptic, and documentation channels as the system evolves

An encoding tool facilitates model development. The verification methodology provides two general-

izable understandability-related specifications, one generalizable completeness-related specification,

and a model checking technique. Complementary device and user modeling techniques support the

analyst in representing changes to displayed perceivable properties that emerge due to end-user in-

puts and the system’s own algorithms. The approach is demonstrated in a case study based on a

medical device and its interface, including accompanying documentation. A scalability evaluation is

also included.

Case study results indicate that the approach shows promise for ensuring understandability

and completeness as well as identifying potential usability problems involving conflicting signified

information on the device and in accompanying documentation. Scalability results indicate that the

approach shows promise for modeling up to 64 signified functions or meanings for a device having

up to 128 modes and verification via symbolic checking on a desktop workstation having 64 GB of

RAM.

Contributions include the signifier taxonomy, modeling methodology, verification methodology,

and tool support extending the capabilities of extant formal methods-based frameworks with respect

to end-user interpretation of an interface.

1.4.5 A Formal Approach to Controlled Actuators: Modeling of Contin-
uous Device Dynamics Derived from Spreadsheet Data

The approach developed in Chapter 8 addresses the objective identified in Section 1.3.5. It en-

compasses a modeling methodology, a tool facilitating formal model development, a case study

application, and a scalability evaluation.

Leveraging a technique from formal methods (discussed further in Chapter 3, Section 3.2.2), the

methodology facilitates formal modeling of actuators controlled by the interface, where the model

generates outputs derived from data stored in one or more tabulated spreadsheets instead of differ-

ential equations. A formal device modeling technique supports the analyst in representing actuator
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dynamics as an input/output function. Alone, the function has an infinite range of continuous

input/output parameters. To address this, function parameters are constrained using additional

model infrastructure derived from data collected beforehand via other engineering activities, such as

computational fluid dynamics [87]. An automated tool generates this infrastructure, and an accom-

panying verification methodology ensure that inputs and outputs of the formal model match those

represented in spreadsheet data. The approach is demonstrated in a case study using data from a

medical device under development. A scalability evaluation is also included.

Case study results indicate that approach is capable of modeling actuators controlled by the

interface in a way that is correct with respect to spreadsheet data. Scalability results indicate that

the approach shows promise for representing actuator behaviors derived from a spreadsheet having

up to 65,536 cells. Contributions include a new way of modeling continuous device dynamics, without

the need for differential equations or approximation.

1.5 An Integrated Framework for Verifying Safety-Critical,
Human-Interactive System Usability

Chapter 9 addresses the objective identified in Section 1.3.6, the overarching aim of this research:

an integrated framework enabling the formal modeling, specification, and verification of safety-

critical, human-interactive systems. In support of this objective, Chapter 9 encompasses a modeling

methodology, a verification methodology, and a case study application.

In extant frameworks discussed in Section 1.1, the underlying theory is that a human-interactive

system is an integrated composition of normative end-user goals/activities and interface displays/-

controls. The theory underlying this framework treats the human-interactive system as an integrated

composition of:

• Documentation, including:

– Navigational tools

– Instructional procedures

– Device information
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• A device, including its:

– Displays and controls

– Configurable hardware

– Controlled actuators

• An end user, including three factors that shape behavior:

– Perceptual capabilities

– Motor capabilities

– Contextual factors such as cultural background and knowledge of the system

• A spatial environment containing documentation, the device, and the end user

To employ the framework (Fig. 1.2), the analyst considers how system elements could interact

and encodes a formal model representing such interactions. In one potential implementation, each

element of the framework is encoded using methodologies developed in earlier chapters. A modular

model architecture and augmented modeling techniques enable the analyst to abstract a broad range

of theorized interactions.

Figure 1.2: Graphical representation of the integrated framework. Elements of the target
system are color-coded to identify corresponding framework models
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The exchange of input/output variables between framework models reflects constraints on end-

user behaviors. Examples (discussed further in Chapter 9) include:

• An end user must navigate to a page listing procedural steps to execute motor actions in the

prescribed order

• An end-user motor action effects correct changes to configurable hardware only if the correct

affordance exists when the action is attempted

• When a controlled actuator malfunctions, the malfunction is only signified through the docu-

mentation channel if:

– Audible and visual alarms are engaged on the interface,

– the meanings of both alarms are explained in documentation, and

– the end user has navigated to the referent page

To enable verification, a set of specifications is developed to assert desired properties of the

interface with respect to usability measures involving theorized interactions (Table 1.3). A model

checking technique supports the analyst in verifying specifications.

The framework is demonstrated in a case study based on a prototype medical device under

development. Formal models represent a draft of printed documentation, an operational and trou-

bleshooting procedure therein, alarms and setting of the device, what is signified on the device and

through accompanying documentation, and controlled actuator behaviors. Models are composed

using modeling techniques developed to support the integrated architecture. Using this model, each

specification in Table 1.3 is verified using infinite-bounded model checking [68].

Case study results indicate that the integrated framework methodologies show promise for en-

suring usability and uncovering potential problems early in the design cycle of a safety-critical,

human-interactive system. Contributions include a integrated theory of human-system interaction,

a formal model architecture representing it, and a verification methodology encompassing a broad

range of theorized interactions with respect to intersecting usability measures.
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Table 1.3: Descriptions of temporal logic specifications that can be encoded in LTL for an
integrated framework model

Accuracy Understand- Error Time
ability tolerance efficiency

Understand-
ability

Signifiers are accurate,
consistent, and
(optionally) redundant
while a procedure is
executing and the
system is in a
particular state

Error
tolerance

An unsafe affordance
does not emerge while
a procedure is
executing and the
system is in a
particular state

An unsafe affordance
does not emerge and
signifiers are
consistent and
(optionally)
redundant

Time
efficiency

If a procedure is
executing and the
next-state of the device
is different from the
current-state, a desired
affordance emerges in
the next-state

If the next-state of
the system is
different from the
current-state,
signifiers are
accurate, consistent,
and (optionally)
redundant in the
next-state

If the next-state of
the system is
different from the
current-state, an
unsafe affordance
does not emerge in
the next-state

Completeness Signifiers are accurate
and complete while a
procedure is executing
and the device is in a
particular state

Signifiers are
consistent,
(optionally)
redundant, and
complete

An unsafe affordance
does not emerge and
signifiers are
complete

If the next-state of
the system is
different from the
current-state,
signifiers are
complete in the
next-state
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Chapter 2: Conceptual Background

Chapter 1 identified the many interacting components of a human-system interface, how their design

is informed in safety-critical systems, and what aspects of human-system interaction can be modeled

and verified using formal methods. Considering the interacting elements of a human-system interface

with respect to usability standards, this work focuses on extending extant methodologies, providing

analyses of the human-interactive system that build toward a holistic, integrated framework. Such

a framework should enable early evaluations of human-system interface usability that consider a

broad range of interactions among the end user, device, and operational environment. Human

factors, safety-critical systems, and formal methods are discussed next to provide background.

2.1 Human Factors and Safety-Critical Systems

To inform the design of usable safety-critical systems, researchers have developed methods to aid in

characterizing the user, device, and environmental elements that shape human-interactive system

behavior. Human elements include goals and activities, sensory and psycho-motor capabilities,

knowledge, and experience; device elements include displays, power sources, configurable hardware,

control systems having various automated behaviors, and documentation accompanying the device;

environmental elements include lighting, noise, and physical constraints (e.g. size of a room, other

objects/agents in the vicinity) [88, 89, 82, 90]. Task analysis concerns end user goals and activities

that are involved in setup, operation, and troubleshooting procedures [91]. For example, cognitive

task analysis includes task work that is supported by knowledge [92], including:

• Declarative knowledge regarding what objects and actions are involved in tasks,

• Procedural knowledge regarding how to complete tasks, and

• Strategic knowledge regarding the context in which tasks should be executed [93].

Outputs of these analyses are useful for informing the development of interface prototypes; early
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in the design cycle, they are useful for evaluating prototypes using a variety of model-based method-

ologies [40, 42].

2.1.1 Model-Based Design

To ensure that designed systems are accurate, understandable, error tolerant, time efficient, and

complete, the analyst must have methods and measures to identify potential problems, test potential

improvements, and produce conclusive results. Model-based design methodologies provide one such

set of methods and measures.

In safety-critical systems, the model-based design process enables the analyst to encode compu-

tational representations of temporally evolving human-interactive system behaviors, and specialized

software can search models for usability violations or can use the models to simulate emergent behav-

iors and predict performance characteristics [94, 95, 35, 20]. A broad range of modeling techniques

and evaluation methodologies enable such analyses.

Extant formal modeling techniques range in scope and level of detail with respect to goal-driven

task behavior and psycho-motor processes [42, 96, 97, 98, 49]. The majority involve encoding task

models that are structured, temporally evolving representations of normative human behaviors that

are goal-driven [99]. Cognitive and perceptual elements that are modular or task-integrated can

incorporate knowledge of the device, psycho-motor capabilities, and constraints imposed by the

operational environment [96, 56, 61].

Human-system interaction can be represented by encoding and composing models of the device

and end user in a modular way. Early in the design cycle, models of the device are often based on an

operational concept of the proposed system (see [100]) or existing systems that are similar (see [101]).

Parametric equations can be encoded to represent the behaviors of displays, controls, and continuous

actuators that evolve over time, and human-system interaction can be abstracted via the exchange

of input/output variables with a user model [102, 46, 70, 49]. Verification methodologies aid in

searching models for problems that could emerge for end users. In this design space, verification

methodologies are preferred, since we are interested in detecting, identifying, and correcting usability

problems early in the design cycle. Formal methods are one such set of methodologies.
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2.2 Formal Methods

Formal methods are a set of well-defined mathematical formalisms, techniques, and technologies

that enable model-based verification of desired target system properties (called specifications) [41].

A formalism is a set of symbolic variables whose semantics and mathematical relationships represent

behaviors of a particular class of target systems, such as digital computers. Modeling techniques are

processes for instantiating a formalism to represent the formal model of one particular system, such

as an airplane cockpit having automation and human-input controls [103].

Finite state machines (FSMs) are one such set of formalisms [104], and they have proven useful

in model-based design of safety-critical systems [42]. FSMs are made up of symbolic variables

representing target system behaviors as a finite set of states, transitions, and next-states [62]. Each

state is a unique set of valued variables representing one mutually exclusive configuration of the target

system (sometimes called a “mode” [105]), and each transition to a next-state represents forward

temporal progress in an abstract way. Transitions can have guards that are Boolean (true/false)

expressions that enable a next-state when valued true. Many possible transitions can be enabled

in a state, and only one can execute during verification. The number of states in a model is its

size (or “state space”), and each unique sequence of next-states through the model is called a path.

Generally, state space increases with breadth (i.e. number of paths through a model) and depth (i.e.

lengths of paths through a model) [106].

Specifications are propositional formulas that assert desired system behaviors using valued vari-

ables of an instantiated formal model and the syntax of a temporal logic [62]. The propositional

element of a temporal logic specification is made up of valued variables, Boolean operators, logical

connectives, and (optionally) variable quantifiers (Table 2.1).

The two temporal logics commonly utilized in formal methods, computational tree logic (CTL)

and linear temporal logic (LTL) [62]. Both incorporate the logical connectives and Boolean operators

of Table 2.1 as well as the temporal operators shown in Table 2.2. CTL is a branching-time logic

that can be used for models in a tree-like structure in which there are different paths in the future,

any one of which might be an actual path that is realized. In CTL, path quantifiers (last two rows
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Table 2.1: Boolean operators, logical connectives, and example propositions that can be incor-
porated within temporal logic specifications. φ and ψ are hypothetical formal model variables
that can be valued 0 or 1

Formula
element

Symbol Name Example Interpretation

Logical
connective

= Equals φ = 1 φ equals 1.

6= Not equal φ 6= 1 φ does not equal 1.

⇒ Implies φ = 1 ⇒ ψ = 0 φ equals 1 implies ψ equals 0.

Boolean
operator

∧ And φ = 1 ∧ ψ = 0 φ equals 1 and ψ equals 0.

∨ Or φ = 1 ∨ ψ = 0 φ equals 1 or ψ equals 0.

¬ Not ¬(φ = 0) φ does not equal 0.

Variable
quantifier

∀ For all ∀φ(ψ = 0) ψ equals 0 for all possible
values of φ.

∃ Exists ∃φ(ψ = 0) ψ equals 0 for at least one
value of φ.

of Table 2.2) can be placed in front of temporal operators (first two row of table 2.2) to specify

whether the proposition should hold along at least one path or along all paths in a formal model.

The CTL “E” quantifier is useful if the analyst wants to know if a state can be reached along one or

more paths through the model. Specifications that incorporate a “G” temporal operator are useful

if the analyst wants to ensure that an undesired state never occurs along paths through a model;

specifications that incorporate an “F” temporal operator for analyses that concern progress toward

a desired state; and specifications that incorporate an “X” temporal operator are useful for analyses

concerning immediate next-states that are desired [107].

In LTL, one specification invokes all paths, and path quantifiers are not part of its syntax.

In computer science, LTL specifications that only incorporate a “G” temporal operator are called

“safety specifications,” which are useful if the analyst wants to ensure that a safety-critical target

system model never enters an undesired state.

Model checking is a highly automated approach that uses specialized algorithms to search formal

models exhaustively for temporal logic specification violations. The analyst passes a formal model

and a temporal logic specification to model checking software, which searches the model exhaustively

for specification violations. If a violation exists, a verification report returns a trace through the
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Table 2.2: Propositions from Table 2.1 augmented with temporal operators and path quanti-
fiers that are needed in temporal logic specifications. LTL specifications have temporal opera-
tors. CTL specifications have path quantifiers and temporal operators

Formula
element

Symbol Name Example Interpretation

Temporal
operator

G Globally G(φ = 1) φ always equals 1.

X NeXt X(φ = 0) φ equal 0 in the next-state.

F Future F(ψ = 1) ψ eventually equals 1.

Path
quantifier

A All AG(φ = 1) φ always equals 1 along all paths
through the model.

E Exists EF(ψ = 0) ψ eventually equals 0 along at
least one path through the model.

model leading up to the problematic state (called a counterexample), which could elucidate a poten-

tial design problem. If no violations exist, no counterexample is returned, and the target system can

be considered safe with respect to the model and specification. Verification can fail if the apparatus

has insufficient computational capabilities with respect to the model and specification, illustrating

a case where the model must be abstracted to reduce the level of detail therein. Abstraction must

be performed carefully to ensure that counterexamples do not represent implausible or impossible

behaviors of the target system. If such a counterexample is returned, the model may need to be re-

fined or constrained in a way that affords computable verifications for the apparatus and meaningful

counterexamples for the analyst.

2.3 Formal Methods in Human-Interactive Systems

Researchers at the intersection of formal methods and human factors have developed an evolving

set of tools and techniques that enable “proving” usability of human-interactive systems early in

the design cycle [56, 46, 70, 108, 75]. The goal is for the modeling and verification methodologies to

integrate human factors techniques with the formalisms, formal modeling techniques, propositional

logic specifications, and verification technologies that are utilized in formal methods, while reducing

the need for a multidisciplinary team of experts.

With respect to model-based design, researchers have demonstrated that a formal methods-based
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approach can be useful in many ways. Reasoning about human-interactive system design during

the model encoding process can aid the analyst in identifying potential usability problems while

attempting to represent them formally (see [101] and [108] for examples). Using formal verification

via model checking, researchers have analyzed a variety of complex, safety-critical system case studies

and interpreted verification reports to identify usability problems (see [75] and [46] for examples).

One area involves models of interface displays and controls (with and without automation) and

normative human task behavior [42]. Formalisms, modeling techniques, and tool support aid the ana-

lyst in developing modular formal models of the human and device. Human interaction with displays

and controls is abstracted by composing modular formal models (discussed further in Section 2.4.2.4).

To support formal verification researchers have developed a taxonomy of generalizable, temporal logic

specifications, as well as verification techniques and tools [45, 109, 110, 111, 61, 108, 112].

The following sections provide a review of the state of the art, organized in terms of extant tools

and techniques (listed in outline form below). The scope of each tool or technique is discussed in

each section listed in parentheses, organized in terms of the human-interactive system elements that

can be modeled, specified, and analyzed.

• Formal modeling methods that support the analyst in representing the behaviors of displays,

control systems, continuous actuators, end users, and constraints imposed by the operational

environment; where methods encompass:

– Formalisms that are needed to identify the mathematical semantics and relationships that

represent human-interactive system elements (discussed in Section 2.4.1)

– Modeling techniques that are needed to develop formal models that are instantiated

formalisms (discussed in Section 2.4.2)

– Tools that facilitate the formal model development process (discussed in Section 2.4.3)

• Verification methods that support the analyst in identifying problems involving interactions

among device, user, and environmental elements; where methods encompass:

– Temporal logic specifications that are needed to represent usability-related properties of
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a particular target system (discussed in Section 2.5.1)

– Model checking techniques that are needed to conduct highly automated formal verifica-

tion (discussed in Section 2.5.2)

2.4 Modeling Methodologies

Researchers have approached formal modeling of human-interactive systems using different combi-

nations of formalisms, modeling techniques, and encoding tools. In any approach, an underlying

formalism is needed to define the semantics and mathematical relationships among a set of symbols

or keywords representing a class of target systems. Modeling techniques support the analyst in

instantiating a formalism to represent a particular system in a formal model that can be analyzed

via model checking. Encoding tools integrate formalisms and modeling techniques to reduce the

need for manually encoded model checking syntax (see [10]). Formalisms, modeling techniques,

and encoding tools are discussed in the following sections to aid in identifying what human-system

interaction behaviors can be modeled.

2.4.1 Formalisms

Researchers have developed a variety of FSM-based formalisms for characterizing the behaviors of

human-interactive devices, end users, aspects of the operational environment, and the interactions

among them that evolve over time [104, 69, 113, 114, 115, 116]. As discussed in Section 2.2, FSM-

based formalisms abstract evolving system behaviors as a finite set of states, transitions, and next-

states. Symbolic variables such as “S” meaning “the set of states that are mutually exclusive sets

of valued variables” and “⇒” meaning “the set of transitions mapping states to next-states” are

generalizable with respect to a class of target systems that could include one or more:

1. Devices having discrete digital control logic and configurable hardware

2. Devices having continuously dynamical actuators

3. Humans having cognitive, motor, and perceptual actions
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4. Operational environments having objects and humans embedded in environmental conditions

such as ambient noise and lighting

The first kind of formalisms are constrained to discrete representations of a device, without

representing the end user (where “discrete” refers to symbols representing countable sets of valued

variables, such as a list of display messages [61]). Leveraging differential calculus, hybrid formalisms

characterize continuous actuator dynamics by augmenting discrete device formalisms with one or

more symbols representing infinitely large sets of continuously valued variables [117, 118, 114, 119,

120]. These semantics enable the analyst to characterize systems having both continuous and discrete

behaviors, such as aircraft [49], ground transportation vehicles [79], and medical devices [121].

Discrete and hybrid formalisms can incorporate symbols representing user inputs; however, hu-

mans are often represented using task analytic formalisms [122, 123, 10, 58, 61]. Extant task analytic

formalisms vary in scope, however they commonly incorporate keywords or symbols for represent-

ing human states that can be activities, goals, and knowledge. Transition symbols are rule-based

functions mapping states to next-states that emerge in response to human actions that can be mo-

tor, cognitive, or perceptual [96, 124]. Many such formalisms combine discrete device elements to

characterize human-interactive systems that evolve due to human inputs to the device or automated

control logic [125, 61, 126].

Formalisms representing the operational environment utilize symbols to represent objects, hu-

mans, and the relationships among them, such spatial relations (discussed further in Chapter 6)

[8, 3, 2, 9, 115, 1, 7, 4, 6]. They often combine elements of task analytic and discrete device for-

malisms, where different symbols can represent the end user, device, and operational environment

altogether (see for example [115]). Transitions map human, device, and environmental states to

next-states that are triggered by human actions, control logic of the device, or stimuli from the

operational environment (see for example [70]).

Considering the many interacting elements of a human-system interface discussed earlier, discrete,

hybrid, and task analytic formalisms are all needed to analyze safety-critical, human-interactive sys-

tems. Task analytic formalisms are needed to model end users; discrete device formalism are needed
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to model a human-interactive system’s displays, control logic, and hardware configurations; environ-

mental formalisms are needed to model conditions in the operational operational environment; and

hybrid formalisms are needed to incorporate continuous actuator behaviors within system models.

2.4.2 Modeling Techniques

In support of formal methods-based analyses, the formalisms discussed in Section 2.4.1 aid in charac-

terizing the many elements that make up human-interactive systems; however they must be instan-

tiated to model one particular target system in this class. Researchers have developed an evolving

set of modeling techniques for this purpose. While extant techniques vary in methodology, they can

be broadly categorized with respect to what formalism elements can be instantiated:

• Discrete device control logic

• Continuous actuator dynamics

• Human task behavior

• Constraints imposed by the operational environment

• Human-system interaction via the exchange of input/output variables from models representing

one or more of the above elements

Discrete device modeling techniques provide ways of instantiating discrete device formalisms as

well as discrete states of hybrid formalisms to represent digital control logic of displays and control

systems [46, 70, 119]. Continuous device modeling techniques provide ways of instantiating the

continuous states of hybrid formalisms to represent actuator dynamics [121, 49]. Task modeling

techniques produce normative human behavioral models that, where behaviors are goal-driven and

action execution could depend on states of the device, knowledge, and conditions in the operational

environment [10, 127, 99, 96, 75].

Combining elements of these techniques, researchers have developed ways of abstracting human-

system interaction via the exchange of input/output variables of modular models (see for example
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[61]). Graphical modeling techniques provide visually instantiated FSMs, while typesetting tech-

niques leverage the native syntax of a model checking system [46]. General ways of employing them

are discussed in the following sections to aid in identifying what human-interactive system behaviors

can be modeled in the current paradigm.

2.4.2.1 Discrete Device Modeling Techniques

Formal methods researchers have developed formal modeling techniques that support the analyst

in instantiating discrete device formalisms using a graphical notation or the syntax of a particular

model checking system [69, 61]. In either approach, states are instantiated to capture the modes

of a particular device, while transitions are encoded to represent forward temporal progress in an

abstract way. For example, the graphical FSM in Fig. 2.1 is an instantiated discrete device formalism

representing the control logic of a household range. A burner light can be on or off, and a numerically

labeled, rotatable dial can be adjusted by the end user to a setting between 0 and 4. Initial states

are identified to abstract a starting point in time, while transitions to next-states capture how the

device responds to an event in the immediate future.

Figure 2.1: Graphical FSM representation of a household range. Variables are boldfaced
and italicized within square-edge rectangles. State values are italicized within rounded-edge
rectangles. Initial states are indicated by curved arrows having no label and a filled circle.
Guarded transitions are indicated by labeled arrows. Unguarded transitions are indicated by
unlabeled arrows. (a) The dial having an initial state of 0. It can remain zero or transition
to 1. Subsequent states can remain unchanged, transition up-one, or transition down-one. (b)
The burner light having an initial state of OFF. It remains OFF if the dial is set to 0, and it
transitions to ON if the dial is positive. When the indicator light is in the ON state, it remains
ON if the dial is positive, and it transitions to OFF if the dial is set to 0.

To enable formal verification analyses, typesetting techniques commonly employ the syntax of a

particular modeling checking system, such as Symbolic Analysis Laboratory (SAL) [68], which has

specialized character sequences for representing states, transitions, and next-states. For example, in

the SAL code fragment below representing the FSM in Fig. 2.1b, [] denotes the start of a guard

expression; --> denotes the end of a guard expression; and ’ denotes a next-state variable value,
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where next-state is denoted by an apostrophe (’). The variable named burnerLight transitions to

OFF when dial equals 0, and to ON when dial equals a value greater than 0.

[]dial = 0 -->

burnerLight’ = OFF;

[]dial > 0 -->

burnerLight’ = ON;

2.4.2.2 Continuous Device Modeling Techniques

Continuous device modeling techniques enable the analyst to instantiate continuous states of a hybrid

formalism, where evolving actuator dynamics are modeled by differential equations [128, 118, 119].

A differential equation represents continuously evolving changes to one or more dependent variables

(e.g. actuator speed, electrical current) with respect to one or more independent variables (e.g.

time, space). Because digital computing is limited to discrete combinations of 0s and 1s, formal

models of continuous system elements rely on approximating differential equation solutions using

discrete representations (see [129]). There are currently two broadly characterized ways of modeling

continuous system elements in this way:

1. Reachability analysis [128]

2. Relational abstraction [118]

Reachability analysis refers to a variety of approaches in mathematics [130], but in the context of

formal methods, it is a technique for approximating differential equation solutions as an abstracted,

finite set of possible solutions. They are generally computed by taking a current dependent variable

value, calculating a set of future values that are possible (or reachable) in one discrete step, and

enclosing them in an ellipsoidal or trapezoidal region of a two-dimensional plot [128]. Reachability

analysis has been applied in variety of safety-critical system applications, including aircraft [76, 77,

49], medical devices [78], and motor vehicles [79].

Relational abstraction is a technique that involves encoding the arithmetic relationships between

current and future ranges of differential equation solutions [118]. Based on a differential equation,

the analyst can encode a relational abstraction using propositional assertions; e.g., a positively
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sloped equation must have a future solution that is greater than the current one [46]. Propositions

are evaluated as Boolean (true/false) expressions, where a future solution is considered possible if

the proposition is valued false. Using a linear algebra-based variant of relational abstraction, the

analyst can represent systems of differential equations comparing current- and next-state values of

an eigenvector multiplied by a dependent variable vector [118]. Multiplying two vectors in this way

generates a number that can be incorporated within equality/inequality expressions similar to those

utilized in [46].

Like discrete device modeling techniques, the continuous elements of hybrid formalisms must be

encoded in a model checking syntax to enable formal verification analyses. An example is provided

in Chapter 3.

2.4.2.3 Task Modeling Techniques

A variety of formal task modeling techniques have been developed to support the analyst in repre-

senting normative human task behavior by instantiating a task analytic formalism [115, 10, 61, 127].

Normative human task behavior refers to an end user’s activities that are performed to achieve goals

effectively [131]. Activities and goals can be structured in a hierarchical way such that sub-activities

and atomic actions (which cannot be decomposed further) have a temporal and cardinal ordering

[10, 66, 132]. Many such techniques provide algorithmic rules for instantiating states, next-states,

transitions, and guard expressions that control when activities and actions execute [123, 122].

Task models can be encoded to represent goals and actions that are heterarchical using valued

variables and guarded transitions [61]. For example, in the SAL syntax encoded below, an end

user’s goal is to increase the setting of the household range modeled in Section 2.4.2.1. The guarded

transition specifies that when the variable goal is equal to increaseHeat, the user’s next-action is

to rotate the dial counterclockwise (denoted by action’ = rotateDialCounterClockwise).

[]goal = increaseHeat -->

action’ = rotateDialCounterClockwise;

Task models can also be encoded in a hierarchical-heterarchical way to represent high-level activ-

ities, sub-activities, and actions, typically employing the semantics of an accompanying formalism
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(discussed in further in Appendix B). For example, the Enhanced Operator Function Model (EOFM)

[10] provides a formalism and modeling technique for representing normative human task behavior as

a structure set of activities, actions, and execution conditions. Decomposition operators specify the

order in which activities/actions can execute (i.e., temporal ordering) as well what activities/actions

can execute in relation to each other (i.e., cardinal ordering). Variables representing the device,

operational environment, and human cognitive functions are encoded to specify when activities be-

gin, repeat, and complete executing. A graphical notation accompanies the technique to support

the analyst in developing visual representations of typeset task models [73] (discussed further in

Chapter 5).

2.4.2.4 Human-System Interaction Encoding Techniques

Utilizing modular models of the device and end user, researchers have developed ways of abstracting

human-system interaction withing system model compositions via the exchange of input/output

variables [42]. While researchers have approached this in many ways [10, 98, 70, 75, 133, 134], a

common technique involves composing one formal model of the device with one formal task model. A

device model often has output variables representing its operational states that update due to human

actions or automation. Outputs operate as inputs to a formal task model, whose outputs are human

action variables operating as inputs to the device. This technique enables the analyst to abstract

the effects of human actions on the device after a temporal delay, where task and device models

update asynchronously (i.e. the task model transitions first, followed by the device model, or vice

versa) [10]. For example, in the SAL syntax encoded below, the variable action from the task model

encoded in Section 2.4.2.3 operates as an input to the device model encoded in Section 2.4.2.1. The

guarded transition specifies that when the user’s current action is rotating the dial counterclockwise

and the dial’s setting is below 4 (its maximum), the dial’s next state is increased 1. The current

action operating to change a next-state of the device abstracts a temporal delay.

[]action = rotateDialCounterClockwise AND dial < 4 -->

dial’ = dial + 1;
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2.4.3 Tool Support for Developing Formal Models

Tool support facilitates the formal model encoding process in many ways. One set of tools that has

proven useful for instantiating formalisms in a model checking syntax leverages formal description

languages that are typeset or graphically encoded. Formal description languages usually provide a

formalism as a set of keywords and a modeling technique as a hierarchical-heterarchical structure that

is required for representing human task behavior or human-system interaction in a static way [132, 66,

73, 134, 135]. Encoding environments support the analyst in applying the technique correctly using

a variety of features such as syntax checking and autocomplete [59, 136, 137, 138, 139]. Visualization

macros have also been developed to convert typeset representations to sets of shapes and arrows

that are treelike structures or graphical FSMs [10, 140, 63]. Instantiated representations are not

amenable to formal verification; however, researchers have developed custom, automated translators

that can parse formal descriptions and automatically generate a representation that can be verified

using model checking [141, 138, 10, 142, 99, 143]. Further details on extant tool support are provided

in Appendix B.

2.5 Verification Methodologies

Researchers have approached formal verification of human-interactive system models using different

combinations of temporal logic specifications and software facilitating the analysis [59, 48, 144, 140,

46, 57]. As mentioned, a temporal logic specification is needed to encode desired characteristics

of the human, device, operational environment, or composable human-system interaction model.

Model checking techniques support the analyst in selecting an appropriate model checker for the

model and specification. Tool support aids in automatically generating specifications based on a

formal model and an underlying, usability-related standards. Specifications and model checking

techniques are discussed next to aid in identifying what analyses are currently enabled.

2.5.1 Specifications

To enable formal verification via model checking, the analyst needs to encode a specification using

variables encoded in a formal model and temporal logic syntax (Tables 2.1 and 2.2). To support



40

the analyst, researchers have developed an evolving taxonomy of generalizable specifications based

on usability-related design principles to assert desired characteristics of human-interactive system

elements. Considering usability-related standards for a safety-critical system interface, one way

to categorize extant specifications involves their scope with respect to understandability, accuracy,

time efficiency, error tolerance, and completeness. A subset of specifications that have proven useful

within safety-critical system analyses are listed and described in outline form below (as in Chapter 1).

To enable formal verification, these specifications are commonly encoded in the syntax of a

temporal logic such as CTL or LTL [62]. They can be encoded manually for a particular analysis

using generalizable patterns (as mentioned above) or automatically generated using custom tools

[57, 59]. To support formal verification of temporal logic specifications, researchers have developed

model checking techniques that are applicable to different analyses [46, 145, 59, 10, 48, 146].

2.5.2 Model Checking Techniques

In this work, a model checking technique primarily involves selecting a software tool that is appro-

priate for a particular analysis. Applicability generally depends on the verification apparatus, the

instantiated formalisms (i.e. discrete device, hybrid, or task analytic formalisms), and the specifi-

cation [68]; thus, researchers have focused on providing a model checking technique as part of an

integrated formal methods-based approach [46, 10, 48, 59, 147]. Two broadly categorized techniques

that have been employed successfully in safety-critical, human-interactive systems include symbolic

model checking [148] and bounded model checking [149].

Symbolic model checking techniques have proven useful for verifying LTL or CTL specifica-

tions in human-interactive system models based on discrete device and task analytic formalisms.

Specialized algorithms construct a symbolic representation of the state space [150], and the model

checker searches the state space exhaustively for specification violations [148]. Executing symbolic

model checking successfully requires the analyst’s computer to have sufficient memory for storing

the symbolic state space representation [151].

Bounded model checking techniques utilize a different set of algorithms [149] that do not in-

volve constructing a symbolic representation of the entire state space. They have proven useful for
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verifying LTL specifications in human-interactive system models based on hybrid formalisms and

aspects of task analytic formalisms, such as user knowledge of what operational state the device

is in [46, 145]. In comparison with symbolic model checking, bounded techniques show promise

for conducting systematic analyses involving a broad range of human-interactive system elements,

including actuators having continuously evolving states.
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Chapter 3: Methodologies and Apparatus

Modeling and verification methodologies are used to develop formalisms and formal models in the

remainder of this document. Different kinds of specifications and model checking tools are applied

toward different analyses. For reference, they are described in this chapter.

3.1 Formalisms

As discussed in Section 2.2, formalisms are needed in formal methods to define symbolic variables

having semantics and mathematical relationships for representing a particular class of target systems.

In computer science, FSM-based formalisms are usually represented as Kripke structures [62]:

M = (S ,S0,→,L) (3.1)

In (3.1), a formal model M is a four-symbol Kripke structure made up of states (“S”) including

initial states (“S0”), transitions to next-states (“→”), and labels (“L”). The formal model state

space is the sum of all states including initial states; transitions are input/output functions mapping

a state to a next-state; and labels define the set of valued variables in each state.

Kripke structure representations are defined in a deductive way, starting with high-level states

and transitions that are decomposed into lower level symbols having particular semantics [152]. Re-

searchers commonly decompose states and transitions using different symbols to define a formalism

that is intended for a particular class of target systems. For example, the hybrid FSM-based for-

malism in [120] is utilized to define systems having discrete and continuous states. The “S” symbol

is partitioned into a finite set of discrete state variables (“Q”) and a finite set of continuous state

variables (“X ”).

In human factors, the design process is usually inductive: researchers collect large amount of

unstructured data regarding end users and target systems, and the data are utilized to inform the

design of prototypes (or computational models) [40, 96]. Thus, in this work formalisms are developed
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in an inductive way using the Z specification language (Chapters 4 and 7).

The formal semantics of Z [153] enable FSM-based formalisms to be constructed using hierarchi-

cal compositions of schemas, starting with specification of all possible model values and ending with

a specification of model outputs. A schema is encoded using basic types, given types, and predicates.

Types specify the names and sets of possible values of model variables. Basic types are enclosed in

brackets, and their values are not specified within schemas. Given types may be numbers, sets of

words, sets of sets, functions, tuples, and types constructed from other types, including schemas.

Given types and predicates of a schema are specified and represented visually within a three-

sided box, separated by a line into upper and lower segments. The name of a schema appears within

the top-edge of a box. Given types are specified in the upper segment and predicates (if any) are

specified in the lower segment. Predicates constrain the possible values of one or more variables

using logical rules. For example, in the instantiated schema below named “example,” the variable

named “number” has a given type of positive integers (denoted by N). The predicate part (lower

half of the box) specifies that its value must be an integer less than 99.

example

number : N

number < 99

Next-state transitions of an FSM can be represented in Z by encoding a separate schema. Its

name should aid in identifying the existing schema whose state variables are transitioning, and its

declaration should append a delta (∆) symbol to the front of that schema’s name. Such a declaration

introduces all variables declared in the existing schema and a copy of their next-states, which are

denoted by adding an apostrophe to the end of their names. For example, the transition schema

below specifies transitions to “example.” Its name is “next state of example,” and its declaration is

∆example. The predicate specifies that all next-states of the variable named “number” (denoted by

number’ ) must be greater than 9.
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next state of example

∆example

number ′ > 9

Hierarchical schemas can be encoded by instantiating variables having schema types. This technique

is demonstrated in Chapter 7.

3.2 Model Checking System

In this work, discrete device, task analytic, and hybrid formalisms are instantiated using the syntax of

Symbolic Analysis Laboratory (SAL) [68, 154]. SAL’s framework includes an intermediate language

for describing transition systems and serves as the target for translators that extract the transition

system description. The SAL constructs utilized throughout this document are described in this

section.

3.2.1 SAL Contexts

SAL models are defined as named contexts having named types, functions, modules, and theorems.

A SAL context is encoded in the form,

named context: CONTEXT =

BEGIN

named type: TYPE = ...

named function(input 1: named type,..., input N: named type): ...

named module: MODULE =

BEGIN

LOCAL variable 1: named type

INPUT variable 2: named type

OUTPUT variable 3: named type

INITIALIZATION

variable 1 = ...

TRANSITION

variable 1’ = ...

DEFINITION

variable 3 = ...

END;

named theorem: THEOREM ...|- ...

END
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Types are defined globally within a context as enumerated lists, numbers, tuples, records, arrays,

or types constructed from other types. Enumerated types appear in all subsequent chapters. They

are encoded as named sets of comma-separated words or phrases in the form,

named type: TYPE = {value 0,..., value N};

One type constructed from types are records, which appear in Chapters 6 and 7. They are

encoded as named sets of identifier-type pairs in the form,

named type: TYPE = [#identifier 1: type,..., identifier N: type#];

Another type constructed from types are arrays, which appear in Chapter 6. They are encoded

as named sets of indexed types in the form,

named type: TYPE = array type of type;

Named functions could be encoded using types as inputs and outputs. Outputs could be values

having a discrete type, such as the Boolean values true or false. Outputs could alternatively have

a continuous type, such as a decimal-valued number. Like types, functions are declared globally

within a context, and they appear in Chapters 8 and 9.

3.2.1.1 The Module Construct

SAL modules describe transition systems in terms of variables and commands, and they appear in

all subsequent chapters. Variables can be local, input, and output, and each has a name and type.

Local variable values can be accessed and assigned from within a module; output variable values

can be accessed by any module and assigned within one; and input variables can be accessed by any

module, but values cannot be assigned.

Commands are utilized for accessing and/or assigning variable values. The three kinds of

commands in SAL are called initializations, transitions, and definitions, and a set of commands

are encoded within modules under a specific heading. Initializations (encoded under the heading

INITIALIZATION) define one or more variable values in a formal model’s initial state; transitions

(encoded under the heading TRANSITION) define next-state values; and definitions (encoded under

the heading DEFINITION) define both. Initializations and transitions could be composed of a guard
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and a value assignment. The guard is a Boolean expression containing one or more input, output,

and local variables as well as SAL’s mathematical operators such as AND, OR, and NOT. For transitions,

value assignments determine next-states of local and output variables when the guard is satisfied.

Next-state values are denoted by an apostrophe character (e.g. value 1’). Guarded transition com-

mands appear in Chapters 4–8, and examples are shown below. Guarded initialization commands

assigning initial states instead of next-states appear in Chapter 8.

TRANSITION [

guard 1 -->

variable’ = value 1;

[]guard 2 -->

variable’ = value 2;

...

[]guardN -->

variable’ = value N;

];

Value assignments can be encoded for initializations, transitions and definitions in many ways,

such as using conditional expressions, equality expressions and selection statements, all of which

could be guarded or unguarded. Equality expressions for enumerated type variables (demonstrated

in the guarded transition commands above) appear in all subsequent chapters, and they are encoded

in the form,

variable = value;

Equality expressions for record type variables are similar to the encoding for enumerated type

variables. Instead of the variable name appearing alone on the left-hand side of an equals sign, the

variable and one identifier appears, separated by a period. This kind of equality assignment is shown

below, and it is utilized in Chapter 7.

variable.identifier 1 = value;

For array types, equality assignments can be encoded for individual elements of the array or

for all elements. Consider an array named variable 1 that has three Boolean-valued integers as

elements. The SAL syntax for assigning individual element values for such an array is shown below,

where the variable name and one index within brackets appears on the left-hand side of an equals
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sign and a Boolean value appears on the right.

variable 1[1] = true;

variable 1[2] = true;

variable 1[3] = true;

Instead of utilizing this syntax, an equivalent SAL representation is employed in Chapter 6 for

assigning values to all elements of an array. This syntax is shown below for variable 1.

FORALL(x: INTEGER): variable[x] = true;

Conditional expressions could be encoded for enumerated, record, and individual indexes of array

type variables. They work by assigning a particular value if some specified condition holds, where

one or more conditions and values could be specified within a single expression. They appear in

Chapters 5–7 and are encoded in the form,

variable = IF X = 1 THEN value 1 ELSIF ... THEN ... ELSE value N ENDIF;

Selection statements assign a named variable on the left-hand side of IN one randomly selected

value from a list or function on the right-hand side. Selection statements having lists are utilized in

Chapters 4 and 7, and they are encoded in the form,

variable IN {value 1, ..., value N};

Selection statements having functions are utilized in Chapter 8, and they are encoded in the form,

variable IN function(value 1,..., value N);

Modular model compositions representing interactions among device, user, and environmental

elements are encoded within the SAL theorem construct (discussed in Section 3.2.3.1).

3.2.2 Relational Abstraction of Differential Equations in SAL

As discussed in Section 2.4.2.2, continuous device behaviors can be represented by instantiating

a hybrid formalism. In this work, the continuous states of hybrid formal models are instantiated

using a relational abstraction technique that was originally developed to model differential equations

[119]. A differential equation defines continuous changes to an output variable as a function of one or

more input variables, and they are often utilized in engineering domains to model continuous system
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dynamics. For example, the equation for Newton’s law of cooling (3.2) describes an object’s change

in temperature over time (dQdt ) as a function of the object’s current temperature (Q), minus the

constant temperature of its surrounding environment (Qenv ), multiplied by some constant parameter

(k) that is always negative.

dQ

dt
= k(Q −Qenv ) (3.2)

The equation shown in (3.2) cannot be incorporated within model checking analyses as-is, since

it expresses a continuous output having infinitely many solutions; however the output could be

represented in a discrete way by replacing the continuous derivative dQ
dt with a discrete relational

abstraction. Relational abstraction is a technique for representing differential equations in terms

of discrete arithmetic expressions [144]. The word relational refers to the way output variables are

related to input variables that are increasing, decreasing, or constant; and the word abstraction

refers to how differential equations are represented: rather than encoding the equation in a way

that produces mathematically computable solutions (as in many engineering domains), the analyst

attempts to represent an approximate set of solutions considered possible and, ideally, as close as

possible to the actual solutions [144].

While there are several ways to employ a relational abstraction, the technique employed in this

work requires two kinds of SAL models [68]:

1. One representing the differential equations governing continuous system dynamics (called a

plant model)

2. Another representing constrained sets of desired plant outputs (called a constraints model)

One way to encode a plant model utilizes uninterpreted functions [46]. An uninterpreted function

is typically assigned a name as well as one or more input variables on which an output could depend.

Name and input variables do not affect an uninterpreted function’s output, but they should aid

in identifying what the output is and how it is controlled. For example, using SAL syntax, an

uninterpreted function representation of (3.2) could be,
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NewtonCoolingLaw(k: REAL, Q: REAL, Q env: REAL): [REAL -> BOOLEAN];

which reads, “Newton’s law of cooling states that an object’s change in temperature depends on a

constant k , the object’s current temperature Q , and the temperature of its surrounding environment

Qenv , all of which have real (i.e. continuous) number values.” The syntax [REAL -> BOOLEAN]

expresses that the function’s output is a real number, but it will be evaluated as a discrete, Boolean

(i.e. true or false) value instead, valued true if the output value is in the set of desired values

and false otherwise. The plant module employing this function could be encoded as shown below

(annotated using italic text).

plant: MODULE =

BEGIN

OUTPUT k, Q, Q env: REAL

INITIALIZATION

k = {x: REAL | x < 0}; k is a constant, negative number
TRANSITION

Q’ IN NewtonCoolingLaw(k, Q, Q env); The next-state temperature depends on k,
END; the current-temperature, and the temperature

of the environment

The constraints model defines sets of desired values. In SAL, a constraints model could be

encoded as a separate module having plant model variables as inputs, one or more Boolean variables

as outputs and a series of guarded initialization and/or transition commands adding incremental

details about one or more uninterpreted function from the plant model. Each guarded command

sets a Boolean variable to false if the uninterpreted function output falls outside a desired range. For

example, a SAL module named constraints could be encoded for the function NewtonCoolingLaw

according to the following three conditions:

1. Since the function being constrained is a differential equation concerning changes, an initial-

ization command should assert that all initial states could be considered realistic

2. If the object’s environment is warmer than the object, its next-state temperature Q ′ must be

higher than the current temperature Q ; i.e. the object must gain heat in the next-state

3. If the object’s environment is cooler than the object, its next-state temperature Q ′ must be

lower than the current temperature Q ; i.e. the object must lose heat in the next-state
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A Boolean variable named realistic could be valued true if the above conditions hold and false

otherwise. One initialization command corresponding to the first condition and two guarded tran-

sition commands corresponding to the second two conditions could control the value of realistic as

shown below in a SAL module named constraints.

constraints: MODULE =

BEGIN

INPUT k, Q, Q env: REAL

OUTPUT realistic: BOOLEAN

INITIALIZATION

realistic = true;

TRANSITION [

Q env > Q AND Q’ < Q -->

realistic’ = false;

[]Q env < Q AND Q’ > Q -->

realistic’ = false;

];

END;

To conduct model checking analyses that only consider conditions considered realistic, plant and

constraints modules could be composed synchronously within a system model using the SAL theorem

syntax described in Section 3.2.3.1.

3.2.3 Verification Methodologies

The SAL suite of model checking tools enables analyses suiting formal models and specifications

representing different target system elements, such as those incorporating discrete sets of device

settings or infinite actuator speeds. Additionally, particular tools are useful if counterexamples

could represent long sequences of states versus short ones, and different verification reports provide

useful information regarding model diagnostics such as model size and verification time. The tools

and techniques employed in this work are discussed in the following sections.

3.2.3.1 The SAL Theorem Construct

Theorems are SAL representations of temporal logic specifications. They are encoded using module

compositions and LTL or CTL syntax. Module compositions define how transitions execute within

a system model having one or more named modules using composition operators: [] denoting

asynchronous composition or || denoting synchronous composition.

Modules separated by the asynchronous composition operator transition one at a time during
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model checking analyses. For example, module1 [] module2 reads, “module-one transitions first,

followed by module-two, or vice-versa.” Such a composition is useful if all variables in one module

depend on the current-states in another module. In this case, states in one module are updated after

all commands in another module have finished executing. This composition is useful for composing

models of an end user and device, where user models have outputs representing actions that operate

as inputs to the device model [10]. Changes to the device manifest in the next-state, abstracting the

device’s reaction to a user input that emerges in the immediate future. The example specification

encoded below utilizes this composition. It reads, “it is always true that when the end user feeds an

input to the device, its output is equal to ‘new message’ in the next-state.”

specification: THEOREM user [] device |-

G(user input => X(device output = new message))

Models separated by the synchronous composition operator transition together during model

checking analyses. For example, module1 || module2 reads, “module-one and module-two transi-

tion at the same time.” Such a composition is useful if all variables in one module depend on one

or more next-states in another module. In this case, module transitions need to be kept in-sync to

ensure that commands utilize the correct next- and/or current-states.

A turnstile operator (|-) separates a module composition on the left-hand side from a temporal

logic specification on the right-hand side. The SAL syntax encoded below reads, “specification is a

theorem to be verified in a system model where module-one and module-two transition at the same

time, and it asserts that variable 1 always equals value 1.”

specification: THEOREM module1 || module2 |- G(variable 1 = value 1);

In models that utilize the relational abstraction techniques (Section 3.2.2), plant and constraints

models are composed synchronously such that the Boolean variable “realistic” and a proposition

asserting plant model values must be true at the same time. In the example specification encoded

below (based on plant and constraints models of Section 3.2.2), the synchronous composition and

implication operator ensure that model checking analyses only consider realistic conditions; i.e., “

realistic conditions imply that the object’s temperature is always below 80° C.”
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specification: THEOREM plant || constraints |- G(realistic => Q < 80);

3.2.3.2 Symbolic Model Checking

The symbolic model checker utilized in this work (SAL-SMC) [68] is useful for verifying LTL specifica-

tions in formal models having finite sets of discrete state variables (CTL specifications are addressed

in Section 3.2.3.3 and infinite sets of continuous variables are addressed in Section 3.2.3.5).

Verification is performed automatically by representing a formal model as a binary decision

diagram (BDD) [150], a tree-like structure capturing all possible states. Once constructed, the BDD

is stored in the computer’s random access memory (RAM), and SAL-SMC searches it exhaustively

for LTL specification violations using a specialized algorithm (see [155] for details). In addition

to returning proved or a counterexample, verification reports could include the number of states

in the model, time in seconds required for BDD construction, and time in seconds required for

verification. BDD construction typically increases with the number of states and transitions in

a model, and verification time typically increases with the number of variables and values in the

specification. Since the BDD must be stored in RAM, the computer on which the model is analyzed

determines whether symbolic model checking is possible. If the computer runs out of RAM before

BDD construction or verification completes, model checking fails.

SAL-SMC is particularly useful for verifying models and specifications with counterexample se-

quences having many steps (explained in Section 3.2.3.4). This capability is leveraged in Chapter 5,

where models and specifications could produce lengthy counterexamples. Since SAL-SMC verifi-

cation reports return the number of states in a model, it is also useful for conducting scalability

evaluations for models that are generated automatically using custom translation tools (see for ex-

ample [156]). Additionally, since SAL-SMC returns the number of steps in lengthy counterexamples,

it can be utilized to inform the bounded model checking technique (discussed in Section 3.2.3.5).

This capability is leveraged in Chapters 6, 7, and 9.



53

3.2.3.3 Witness Model Checking

The witness model checker utilized in this work (SAL-WMC) [68] utilizes the same BDD construction

mechanism as SAL-SMC. However, verification is conducted in a way that enables the analyst to

view witnesses: traces through the model leading up to a state in which the specification is proven

true. Additionally, SAL-WMC enables verification of CTL specifications. These capabilities are

leveraged within model checking analyses in Chapter 4.

3.2.3.4 Bounded Model Checking

Like SAL-SMC, the bounded model checker utilized in this work (SAL-BMC) [68] can be employed to

verify LTL specifications in formal models having a finite set of discrete state variables. However, it

does not require BDDs; instead, model construction and verification are performed simultaneously

using a different kind of algorithm (see [149] for details). Upon invoking SAL-BMC, the formal

model’s initial state, next ten states, and an LTL specification are converted to a set of conjunctive

clauses, e.g. (a ∨ b) ∧ (¬a ∨ b) ∧ ¬p, where a and b are Boolean variables representing states

in the formal model and p is the specification. If every clause is true, including the negation of p,

the verification report provides a counterexample that has no more than ten steps. Otherwise, it

returns “no counterexamples.” If desired, the analyst can specify how many steps to consider in a

counterexample.

Advantages of bounded model checking over symbolic model checking are the absence of BDD

construction times and corresponding RAM requirements, typically enabling faster analyses of larger

models. These advantages are leveraged in Chapter 7, but they generally diminish vis-a-vis symbolic

model checking of the same model/specification when considering counterexamples with 60 or more

steps [149].

3.2.3.5 Infinite-Bounded Model Checking

The infinite bounded model checker utilized in this work (SAL-INF-BMC) [68] utilizes the same

verification algorithm as SAL-BMC; however, it also enables model checking analyses of models and

LTL specifications incorporating continuous variables and infinite states. This is accomplished using
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a decision problem representation from computer science called satisfiability modulo theories (see

[157] for more details). Leveraging this advantage, SAL-INF-BMC is invoked in Chapters 8 and 9.

As mentioned, SAL-SMC can be utilized to compute the length of counterexamples in models

having discrete state variables, while SAL-BMC and SAL-INF-BMC are, by default, limited to

counterexamples having ten steps or fewer. As discussed in Chapter 2, the integrated framework

architecture incorporates models having both continuous and discrete state variables, where one or

more task models may have counterexamples with more than ten steps. Thus, in Chapter 9, SAL-

SMC is utilized to compute the longest possible counterexample with respect to discrete framework

sub-models. This result is then leveraged to inform the invocation of SAL-INF-BMC such that an

equally lengthy counterexample can be produced.

3.2.4 Verification Apparatus

All model checking analyses in this work are performed on a 3.5 GHz Intel Xeon workstation with

64 GB RAM running the Ubuntu 16.04 LTS desktop.

3.3 Encoding Tools

Modeling techniques for instantiating task analytic formalisms described in Chapters 5–7 do not

require the analyst to be familiar with SAL. Instead, they leverage Extensible Markup Language

(XML) [71], an international standard for organizing data into a hierarchical-heterarchical node

structure.

Custom XML grammars are defined using REgular LAnguage for XML Next Generation (RE-

LAX NG) [158] or XML Schema Definition (XSD) [159], both of which are international standards for

describing and constraining the contents of XML documents. An XML document contains a single

root node and zero or more child nodes. Direct children of a node are called siblings. Each node may

contain text content, valued attributes, and zero or more child nodes. A generic graphical/textual

representation of these formal semantics is shown in Fig. 3.1.

One advantage of XML-based grammars is that they support analysts in representing systems

formally without the need for model checking syntax. However, XML-based representations are
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Figure 3.1: A generic XML document with corresponding graphical and textual representa-
tions. (a) The graphical representation of XML code utilized throughout this document. Nodes
are contained within square-edge rectangles. Attributes are contained within rounded-edge
rectangles. Text content is contained within parallelograms. Arrows point from parent to child
nodes. Sibling nodes are grouped within shapes. Bold text in parentheses is added to aid in
identifying XML line numbers in (b) that correspond to each graphically represented node. (b)
XML code represented graphically in (a)

not amenable to model checking analyses. A second advantage of XML addresses this: widely

utilized programming languages such as Java and JavaScript have built-in parsing capabilities for

reading the contents of an XML document and generating model checking syntax. Leveraging this

capability, formal methods researchers have developed a Java-based translation tool (described in

[10]) for generating SAL syntax from XML-based representations of human task behavior, which is

leveraged in Chapter 5. Inspired by this tool, two new, JavaScript-based translators are developed

for different applications in Chapters 6 and 7.
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Chapter 4: A Formal Approach to Documentation: Modeling,
Specification, and Verification of Navigability 1

Documentation is part of a safety-critical, human-interactive system interface, and it must be naviga-

ble to support time efficiency. Current standards and guidelines for the design of user documentation

highlight the need for navigation features that support end users in quickly finding procedures and

declarative knowledge required to complete them [29, 19, 161]. ISO/IEC 26514:2008 [29] states that

system documentation shall enable users to navigate:

• back to return to the section/page visited most recently,

• next to the next logical topic/page in the sequence of topics (if any)

• previous to the logical topic/page just prior to the one being viewed (if any)

• up to the table of contents, top-level menu, or index (if any)

These navigational characteristics are especially important for finding emergency or troubleshoot-

ing procedures that must be completed on the order of seconds to minutes. The US Food and Drug

Administration (FDA) states in its guidance document for writing medical device patient user man-

uals, “Format [the troubleshooting] section so the user can locate specific problems quickly” [19].

The US Federal Aviation Administration (FAA) has provided guidance including the suggestion that

emergency procedures either be written in a dedicated section of an aircraft flight manual or in a

quick reference handbook (QRH) to support quick, easy access [22].

To design documentation that meets these standards, designers generally use navigational tools

like labeled page numbers and cross-references. Pages are usually sequentially ordered with numeric

labels listed within the top or bottom portion of each page, supporting end users in navigating

forward, backward, within, and between sections of the document. Cross-referenced pages are often

listed within text, tables of contents, and an index having labeled sections and page numbers (Fig. 4.1

1An earlier version of the concepts in this chapter were published in [160]. Figs. 4.1–4.4 and 4.5 and Table 4.1
were published in [160].



57

and 4.2a). In the case of electronic documentation such as PDF user manuals, hyperlinks can

be clicked to navigate between pages within the body of the manual (Fig. 4.2b). For emergency

or troubleshooting procedures, designers may include a section in the table of contents for alarm

troubleshooting instructions with sub-sections for addressing specific alarms (Fig. 4.1).

Figure 4.1: A generic example depicting the structure and function of hyperlinking in the table
of contents. Clicking on the section number, 5, navigates the user to page-200. Additionally,
clicking on a page number navigates the user to that page

Figure 4.2: Generic examples depicting the structure and function of hyperlinking in the PDF
user manual. (a) Index: Clicking on a page number navigates the user to that page. (b) Main
body of the user manual: Clicking “Fig. 45” navigates the user to the page containing Fig. 45.
Clicking “Battery Holder on page 121” navigates the user to page 121

Utilizing labeled page numbers or section titles, end users sequentially turn or rapidly fan through

pages in printed documentation to locate necessary content [162]. In electronic documentation, they

could scroll through pages using a mouse wheel or utilize “page up” and “page down” keyboard keys

to navigate between pages [163]. They may read tables of contents, indexes, and cross-references

to learn the location of pertinent content and navigate there by turning multiple pages at once

[162]; and in electronic documentation, they could click on hyperlinks to navigate directly [164].

After navigating to a page, end users could remain there for an extended duration while reading, or

navigate to a different page if needed, with the intention of returning quickly to the original page.
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Currently, analysts have limited tools early in the design cycle for ensuring that navigational tools

support these behaviors, and navigable documentation remains elusive in safety-critical systems. For

example, in July, 2011 a commercial airline pilot submitted a report to the NASA Aviation Safety

Reporting System (ASRS) [161] regarding three potential navigation problems with the QRH (ACN

963587):

1. There was “no way to quickly access checklists” for addressing time-critical emergencies like

an engine fire or an auxiliary power unit fire. While there were tab inserts on the QRH, the

inserts were not labeled with section numbers or titles.

2. “The index says [the Smoke Removal Checklist] is on page 56 when it is not. 56 has the

Smoke, Fumes, Odor checklist, not the Smoke Removal checklist.” According to the ASRS

report, there is no way to reach the Smoke Removal checklist from its page assignment in the

index.

3. “There are certain checklists that inform you to continue to another checklist. It would be

helpful if it listed the page number that you have to turn to for the next checklist. With the

current system, if one checklist tells you to go to another checklist, the user has to go back to

the index to get the page number for the next checklist.”

These kinds of problems reflect navigability failures. To inform the design of documentation

having time-efficient navigation features, analysts could benefit from a methodology for modeling

and verifying navigability. Considering what is needed to support formal modeling and verification,

analysts could benefit from an approach providing a formalism, a modeling technique, temporal logic

specifications, and a model checking technique. One such approach is provided in this chapter. It

includes a formalism for representing documentation and how an end user could navigate through it.

A modeling technique is also provided to support the analyst in instantiating the formalism using

the syntax of a model checking system. To enable formal verification of documentation navigability,

temporal logic specifications and a model checking technique are leveraged from an existing method-

ology in formal methods [45]. The approach is applied in a case study based on a medical device
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PDF user manual, and discussions of case study results, methodological considerations, and future

work follow.

4.1 Requirements of a Formalism for Representing Documentation Nav-
igation

The formalisms discussed in Chapter 1 have symbols and semantics for representing end-user tasks,

digital control logic, and continuous actuators. To support the analyst in representing a printed or

electronic document this work asserts the need to develop a different formalism having symbols and

semantics for representing documentation navigation, including:

• Pages of a printed or electronic document

• An end user interacting with the document by viewing content on a page or navigating to a

different page

A minimal set of requirements are listed below. The first requirement concerns modeling the

document, while the next four concern end user behaviors.

1. A formalism should have semantics for representing sequentially ordered pages

As mentioned, documentation designers often incorporate labeled page numbers that are sequen-

tially ordered to support end users in navigating within and between sections. The formalism should

have semantics for representing this common characteristic of documentation.

2. A formalism should have semantics for representing an end user remaining on a page

Pages in documentation could contain instructional procedures, declarative knowledge, and other

content that is needed to support safe human-system interaction. End users could stay on a page

for as long as needed to review the information. The formalism should therefore have semantics for

representing the behavior of remaining on a page.

3. A formalism should have semantics for representing an end user turning to a next-page
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If there appears to be unfinished content on a page, such as an incomplete sentence or instructional

procedure, end users may remain on the current page or check the next page; thus, the formalism

should also have semantics for representing the user turning to a subsequent next-page.

4. A formalism should have semantics for representing an end user navigating to a next-page

using cross-references

In printed documentation, cross-references often include page numbers appearing toward the

top- or bottom-corners of other pages. End users could attempt to locate these pages quickly by

flipping through the document; thus, the formalism should have semantics for representing such a

behavior. Electronic documentation has hyperlinking functions introducing cross-references that are

not labeled page numbers, such as the Fig. 45 hyperlink in Fig. 4.2. The formalism should therefore

provide a way of representing an end user clicking on these hyperlinks.

5. A formalism should have semantics for representing sets of possible next-pages

Requirements 4.1–4.1 identified the need for semantics that represent an end user remaining

on the current page, turning to a next-page, utilizing cross-references, or in the case of electronic

documentation, clicking hyperlinks. As shown in Fig. 4.1, there could be multiple cross-references

on the same page. There could also be cross-references to content that is useful unfinished content

on the same page. The formalism should therefore have semantics for representing sets of next-pages

that are possible, one of which can be navigated to via a particular end user behavior.

4.2 Representing Documentation Navigation Formally

To support the analyst in representing documentation navigation formally, the formalism developed

in this work aims to satisfy requirements in Section 4.1. In support of Requirement 4.1, its formal

semantics capture sequentially order pages in printed or electronic documentation. In support of

Requirements 4.1–4.1, next-state transition semantics are provided to represent a set of possible

next-pages that can be reached via one of three end user behaviors:

1. Remaining on a page
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2. Navigating to a next-page by turning the current one

3. Navigating to a next-page utilizing a cross-reference or hyperlink

To support the analyst in instantiating the formalism, a modeling technique is provided using

the model checking syntax of SAL [68]. This modeling methodology is discussed next, including a

demonstration using a 4-page user manual.

4.2.1 Formalism

In this work, the formal semantics of a documentation navigation model are represented using two

Z [153] schemas (see Section 3.1 for details about Z notation):

1. documentation: specifies a set of integers representing numbered pages in a printed or electronic

document

2. navigation: specifies transitions and a set of next-pages, where one next-page is possible via

the end user remaining on a current page, turning the current page one forward, or navigating

to a cross-referenced page

These schemas specify a document in terms of three page types:

1. Pages having content

2. Pages having navigational tools

3. Pages having both

4.2.1.1 Documentation Schema

In this work, the documentation schema specifies pages in a printed or electronic document. It

includes a basic type [max], which is a positive integer representing the last page in the document.

The given type page represents the current page, which is an integer (denoted by the symbol Z). If

pages are numbered using labels that are not integers, such as the decimal representations utilized

in the aircraft QRH discussed earlier (e.g. “5.6”), these numbers should be abstracted as integers.
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The first predicate specifies that page must be less than or equal to max (i.e. the user cannot

navigate beyond the last page), while the second predicate specifies that page must be greater than

or equal to 0 (i.e. page numbers cannot be abstracted as negative integers).

documentation
page : Z

page ≤ max

page ≥ 0

4.2.1.2 Navigation Schema

In this work, the navigation schema specifies three kinds of next-page transitions representing the

three end user behaviors considered in Requirements 4.1–4.1. The declaration ∆documentation

specifies that this schema represents changes to the documentation schema; i.e., next-state transitions

of the variable page. The functions keepPage, turnPage, and crossRef represent the three respective

end user behaviors of remaining on the current page:

1. keepPage: In printed or electronic documentation, this behavior manifests as reviewing a page

having tables, diagrams, or multiple lines of text

2. turnPage: In printed documentation, this behavior could manifest as turning one page. In

electronic documentation, this behavior could manifest as scrolling to the next page, pushing

a “page down” keyboard key (if any), or clicking an icon in the electronic reader application

having a similar functionality (if any).

3. crossRef : In printed documentation, cross-references are page numbers or section titles that

are printed toward the top or bottom corners of pages. This behavior could manifest as the

end user fanning through the document to locate a page quickly. In electronic documentation,

cross-references can be hyperlinks that the end user can click to navigate to a page directly.

Cross-references that are not working hyperlinks are not represented, as navigating to them

via scrolling or repeated keystrokes is considered a set of multiple actions.
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navigation
∆documentation
keepPage : Z 7→ Z
turnPage : Z 7→ Z
crossRef : Z 7→ Z

keepPage(page) = {p : page ′ | p = page}

turnPage(page) = {p : page ′ | p = page + 1

∀ r : page • crossRef (r) = {p : page ′ | p = r}

∀ p, r : page •
page ′ ∈ keepPage(p) ∪ turnPage(p) ∪

⋃n
i=1 crossRefi(r)

All three functions are a one-to-one mapping between two integers (Z 7→ Z), meaning they take

one page number integer as an input and provide one page number integer as an output; however,

their semantics differ. The first predicate specifies the semantics of keepPage. It states that if

the user wishes to stay on the current page (keepPage(page)), then the next-page does not change

(p : page ′ | p = page, where ′ denotes “next”). The second predicate specifies the semantics of

turnPage, which states that the next-page is one-integer greater than the current-page (p : page ′ |

p = page + 1). The third predicate specifies the semantics of crossRef. It states that for all cross-

referenced pages on the current page (∀ r : page), one page can be navigated to (p : page ′ | p = r .

The fourth predicate specifies that for all pages and cross-referenced ones (∀ r : page), the next-page

(page ′) comes from a set of possible next-pages than could be navigated to via one of three behaviors

(∈ keepPage(p)∪ turnPage(p)∪
⋃n

i=1 crossRefi(r), where n is the number of cross-referenced pages).

4.2.2 Modeling Technique

To instantiate the formalism, the analyst should first calculate the number of pages in the document,

starting from 0. For example, if a document has ten pages of front matter labeled i–x in Roman

numerals, 20 pages of body material labeled 1–20, and five pages of back matter without labeled

page numbers, there are 35 pages in the model numbered 0–34. Using the semantics defined in

Section 4.2.1, this corresponds to assigning the basic type [max] a value of 34. Next, the analyst

should go through each page of the document and determine what end user behaviors are plausible

with respect to the functions defined in Section 4.2.1. This technique can be applied using the

model checking syntax of SAL [68] (see Chapter 3, Section 3.2 for explanation of SAL syntax). It is
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demonstrated below for a 4-page example document having:

• A table of contents on page-0 with cross-references to pages-2 and 3

• A procedure that begins on page-2 and continues on page-3

• A cross-reference on page-3 back to the table of contents

Italic text is added to aid in identifying what SAL syntax corresponds to schema elements of Sec-

tion 4.2.1. Boldface text is added to explain the semantics of guarded transitions and selection

statements.

documentation: CONTEXT =

BEGIN

keepPage(page: INTEGER): INTEGER = page; “keepPage” of navigation schema
turnPage(page: INTEGER): INTEGER = page + 1; “turnPage” of navigation schema
crossRef(ref : INTEGER): INTEGER = ref; “crossRef ” of navigation schema

navigation: MODULE =

BEGIN

OUTPUT page: {x: INTEGER | x >= 0 AND x <= 3} “page” of documentation schema,
where the basic type “[max]” is 3

TRANSITION [ fourth predicate of navigation schema, beginning “∀ p : page; r : page •”

page = 0 --> From the table of contents (page-0),
page’ IN {crossRef(2), crossRef(3)}; the user can navigate to page-2 or 3.

[]page = 2 --> From page-2, the user can stay
page’ IN {keepPage(page), turnPage(page)}; or turn to the next page

[]page = 3 --> From page-3, the user can stay
page’ IN {keepPage(page), crossRef(0)}; or navigate to page-0

END;

END

4.2.3 Specifications

The ASRS report discussed earlier highlights potential page reachability failures in the aircraft

QRH. In support of interface completeness, reachability specifications have been developed in formal

methods for identifying navigability-related problems that could emerge for end users of displays and

controls:

1. Weak task connectedness [45]: Starting from any state, there is at least one way for the user

to complete a procedure
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2. Weak task completeness [45]: Starting from an initial state, the user can eventually complete

a procedure

3. Reversibility [45, 51]: The effects of an action can be undone in one action

In the context of documentation navigation, this work leverages them to provide a set of page

reachability specifications that assert time-efficiency of navigational tools:

1. Page connectedness: From any page, the user can eventually reach a goal page.

2. Navigation completeness: From any page, the user can always reach a goal page.

3. Cross-reference reversibility: After navigating away from an initial page, there is at least one

way for the user to return back to that page in one step.

To support model checking analyses, this work encodes these specifications using computational tree

logic (CTL) as shown in Table 4.1.

Table 4.1: Computational tree logic (CTL) representation of page reachability specifications

Specification CTL Interpretation

Weak page connectedness EF(page = goal) From any page, the user can
eventually reach a goal page.

Weak navigation
completeness

EF(page = initial ∧
EFpage = goal)

From an initial page, the user can
eventually reach a goal page.

Cross-reference reversibility EF(page = initial ∧
EX(¬(page = initial)) ∧
EX(EX(initial)))

After navigating away from an
initial page, there is at least one
way for the user to return back to
that page in one step.

Utilizing these specifications, Fig. 4.3 shows examples of navigability successes and failures. The

bottom row shows a hypothetical version of an aircraft QRH that has navigability problems with

respect to time-efficiency. The upper row demonstrates a potential improved design that supports

navigability.

4.2.4 Modeling Checking Technique

Specifications are verified utilizing the SAL witness model checker (SAL-WMC) [68], which enables

verification of CTL specifications. If violations are detected, a SAL-WMC generates a counterexam-



66

Figure 4.3: CTL specifications and path trees representing paths through different possible
designs of an aircraft QRH

ple showing a trace through the model leading up to the violation. Otherwise, SAL-WMC returns

a witness as a trace through the model leading up to a state satisfying the specification.

4.3 Case Study: A Medical Device PDF User Manual

A case study inspired by a medical device PDF user manual was developed to demonstrate the

approach. The case study manual has 305 pages, 263 of which contain material that is relevant to

setup, operation, maintenance, or troubleshooting of the device. Navigational tools include a main

table of contents, several sub-tables of contents on the first page of every section, an index, and

hyperlinking functions.

The case study device has a controller that can be connected to either an AC power supply (i.e.

a wall outlet) or a portable battery. The portable battery can be secured in a holster connected to

a canvas belt that is worn around the end user’s waist. If the controller is connected to a portable

battery, one of two alarms can sound: one indicating that the battery is completely discharged or

one indicating that the battery’s charge level is low. If the discharged battery alarm sounds, the end



67

user must navigate to page-66, which contains an instructional procedure for switching the power

supply from a portable battery to AC power. If the low battery alarm sounds, the end user must

navigate to page-202 and follow the instructional procedure for replacing it. In such a situation the

end user needs to know how to remove a portable battery from its wearable holster. This requires

him to navigate from page-202 to page-121, which contains a different procedure for removing the

battery from the holster, and then back to page-202 to complete the battery replacement procedure.

When the controller is connected to either AC power or a portable battery, an alarm sounds to

alert the user that a power supply is disconnected. In such a situation, the end user must navigate to

page-210, which contains an instructional procedure for reconnecting a disconnected power supply.

For the purpose of analyzing navigability, cross-referenced pages that can be reached in one step

by clicking hyperlinks are considered in the model. Pages containing procedures enable the end user

to remain on the current-page. Pages containing unfinished sentences or additional procedural steps

that continue onto the next-page enable the end user to navigate one-page forward.

4.3.1 The Formal Model

To represent navigation through the case study manual, the documentation navigation formalism

was instantiated in SAL. To discover hyperlinked pages that should be included in the model, a

search for hyperlinked pages, tables and figures was conducted by searching the PDF for words

“page,” “table” and “figure.” Hyperlink locations were verified using the AutoBookmark plugin tool

from EverMap LLC, which generated a report of all navigational links within the PDF document

(Fig. 4.4).

This yielded 152 lists of reachable pages, 30 of which are relevant to the case study. Page-0 was

modeled as the table of contents. All 152 pages with one or more reachable-next-pages (13 in total)

were each assigned a respective transition statement in SAL:

1. Page-0 (the main table of contents) containing hyperlinks to pages 11, 66, 101, 178, 200, 202,

206, 214, and 225

2. Page-11 containing a sub-table of hyperlinks to pages 22 and 140
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Figure 4.4: A fragment of the link report generated by the EverMap LLC AutoBookmark
plugin tool [11]

3. Page-66 containing a procedure and hyperlinks to pages 93 and 99

4. Page-70 containing a sub-table of contents having hyperlinks to pages 22, 88, and 263

5. Page-75 containing a procedure that continues onto page-76

6. Page-101 containing a sub-table of contents having hyperlinks to pages 93 and 99

7. Page-200 containing a diagram and a hyperlink to page-210

8. Page-202 containing a procedure that continues onto page 203 and a hyperlink to page-121

9. Page-203 containing a labeled diagram and hyperlink to page-121

10. Page-206 containing a procedure that continues onto page-207

11. Page-207 containing remaining procedural steps continued from page-206, an unfinished sen-

tence that continues onto page-208, and a hyperlink to page-210

12. Page-210 containing a procedure and hyperlinks to pages 121 and 214
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13. Page-225 containing a sub-table of contents having hyperlinks to pages 75 and 140

After all transition statements were encoded in SAL, the model was assigned an initial state of page

= 0. The final model is 43 lines of SAL code (Appendix D.1).

4.3.2 Specifications

User manual navigation scenarios addressed the CTL reachability specifications as described in Table

4.1. They are encoded to assert navigability in three scenarios:

1. The discharged battery alarm sounds, requiring the end user to navigate to page-66 and follow

the instructions for switching the power supply from a discharged portable battery to AC

power

2. An alarm indicating a disconnected power supply sounds, requiring the end user to navigate

to page-210 and follow instructions for reconnecting a disconnected power supply cable

3. The low battery alarm sounds, requiring the end user to navigate to page-202. From page-

202, the end user must navigate to page-121 for further instructions on removing the portable

battery from its wearable holster; then, the user must navigate back to page-202 from page-121

to complete the battery replacement procedure

4.3.2.1 Weak Page Connectedness

Consider the first scenario identified in Section 4.3.2: the discharged battery alarm engages and the

user needs to follow the procedure for switching from a discharged portable battery to AC power.

In such a situation, page-66 containing the necessary instructions should be navigated to quickly.

To assert that the end user can locate this page, the specification for weak page connectedness in

(4.1) reads, “the end user can eventually reach page-66.”

EF(page = 66)) (4.1)
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4.3.2.2 Weak Navigation Completeness

Consider the second scenario identified in Section 4.3.2: the cable connecting a power supply to the

controller becomes disconnected. In such a situation, page-210 containing instructions for reconnect-

ing the disconnected cable should be navigated to quickly. For the purpose of demonstrating a case

of weak navigation completeness, these instructions should be accessible from the table of contents.

Thus, the specification for weak navigation completeness in (4.2) reads, “starting from the table of

contents, the end user can eventually reach page-210.”

EF(page = 0 ∧ EF(page = 210)) (4.2)

4.3.2.3 Cross-Reference Reversibility

Consider the third scenario identified in Section 4.3.2: the low battery alarm engages. In such a

situation, the end user must navigate to page-202 containing instructions for addressing the low

battery alarm, and further instructions are needed for the end user to remove the portable battery

from its wearable holster (listed on page-121). Using the hyperlink in the manual, she can navigate

away from page-202 to page-121 with the intention of returning to page-202 once the supplemental

procedure on page-121 is complete. This scenario can only lead to a successful outcome if page-121

contains a navigational access point back to page-202. To assert that this should be possible, the

specification for cross-reference reversibility was encoded as shown in (4.3). It reads, “there exists a

path starting from page-202 where if the user navigates away from page-202, then she can find her

way back to page-202 in one step.”

EF(page = 202 ∧ EX¬(page = 202)) ∧ EX(EX(page = 202)) (4.3)
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4.4 Verification

Reachability specifications were verified using the SAL witness model checker (SAL-WMC) [165].

Results are reported in Table 4.2. As mentioned, when the specification is proven valid, the model

checker provides a witness as a path through the user manual that satisfies the specification. Re-

ported witnesses were validated by physically enacting them using the original PDF user manual.

For violated specifications, SAL-WMC generated a list of reachable-next-pages as starting points for

counterexample paths. Any counterexamples generated for invalid specifications were validated by

inspecting the original PDF user manual.

Table 4.2: Case study model checking results

Specification name Result Execution time (s)

Weak page connectedness invalid 0.06

Weak navigation
completeness

valid 0.02

Cross-reference reversibility invalid 1.20

Verification of weak page connectedness addressed getting to a goal page from any initial page.

For verifying the specification, the initial state page = 0 was removed so the model could assume

any of the 263 pages. This was necessary to ensure that the model did not begin its search on

a specific page. Passing the model and specification (4.1) to SAL-WMC returned invalid. This

analysis showed that there is no way of getting to page-66 using hyperlinks (represented graphically

in Fig. 4.5a).

Verification of weak navigation completeness addressed getting to a goal page from the table of

contents. For this specification, the initial state of page = 0 was reinstated to ensure that the end

user starts from the main table of contents. Passing the model and specification (4.2) to SAL-WMC

returned valid. This result “proves” that starting from the table of contents, there is a way for the

user to get to page-210 that lists troubleshooting instructions for reconnecting a disconnected power

supply cable. Fig. 4.5b shows one successful path to page-210 from the table of contents.

Verification of cross-reference reversibility addressed navigating away from an initial page, and
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then returning back to it in one step. Passing the model and specification (4.3) to SAL-WMC

returned invalid. This result “proves” that once a user navigates away from page-202 there is no

way to return to page-202 in one step. Fig. 4.5c shows that there is no path back from page-121.

This result represents a reachability failure identified in the model.

4.5 Discussion

This chapter presented a novel application of formal methods to uncover potential time-efficiency

problems with respect to documentation navigability. The work presents minimal requirements for a

documentation navigation formalism that captures how people have been observed to interact with

a printed or electronic document. The formalism developed to meet these requirements provides a

generalizable way of specifying sets of next-pages reachable from a current page. The work described

a modeling technique for instantiating the formalism in the model checking syntax of SAL, and CTL

Figure 4.5: Tree representations of the witnesses provided in verification reports generated by
SAL-WMC: (a) invalid result for weak page connectedness. (b) Valid result for weak navigation
completeness. (c) Invalid result for cross-reference reversibility
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page reachability specifications were developed to enable formal verification of documentation nav-

igability. Using witness model checking, the verification technique provides a way of identifying

potential time-efficiency problems via counterexample, while witnesses could provide evidence that

navigational tools enable time-efficient page reachability. The case study results indicate that naviga-

tion problems involving hyperlinks in electronic documentation can can be uncovered using CTL. By

supporting formal methods-based analyses of documentation navigation, these contributions extend

the capabilities of extant tools and techniques.

4.5.1 Methodological Considerations

The documentation navigation formalism abstracts the pages of a printed or electronic document

and document navigability as three functions representing a subset of possible end-user behaviors:

1. Staying on a current-page when there is useful content therein

2. Turning one-page forward when there is unfinished content on the current-page, such as an

incomplete sentence or procedure

3. Navigating directly to a page that is cross-referenced on the current-page

Case study results indicate that modeling these three behaviors could be sufficient for uncovering

potential time-efficiency problems with respect to a document’s navigational tools. However, users

may always look at the next-page or previous page, regardless of what is on the current page.

While one could add formalism infrastructure representing these behaviors, such a model would

not necessarily provide insight to the analyst with regard to time-efficiency concerns: the modeled

user could navigate page-by-page through the entire document, and specifications of weak page

connectedness and weak navigation completeness would never be violated. The behaviors modeled in

this work therefore appear sufficient with respect to the current set of page reachability specifications;

however, modeling a broader set of end-user behaviors could necessitate additional specifications.

4.5.2 Future Work

Areas of future work include improvements to the modeling and verification methodologies. In regard

to the modeling methodology, the formalism currently needs to be instantiated manually. In other
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human-interactive system applications, researchers have developed encoding tools that automate the

model development process, such as the custom grammar and translator in [10]. A similar tool could

be developed to automate the process of instantiating the documentation navigation formalism; and

for electronic documents, it could be useful for the tool to exclude broken hyperlinks from translated

models using an automated plugin such as AutoBookmark [11].

In regard to the formalism, a broader range of end-user behaviors should be explored, such as

scrolling through multiple pages of an electronic document to reach content that is located several

pages from the current-page. It could also be useful to add infrastructure that accounts for the

number of end-user actions that are needed to reach a goal page. Such an improvement could enable

the analyst to encode specifications asserting that a goal page is reachable within a desired number

of steps (e.g., EF(page = goal ∧ actions ≤ 5), meaning, “the end user can eventually reach a goal

page in five actions or fewer”). Infrastructure for specifying semantic content of each page could

also be useful. Such an improvement would enable the analyst to assert content reachability within

navigability specifications, e.g., EF(page = troubleshooting), meaning, “the end user can eventually

reach the page containing troubleshooting instructions.” One way of incorporating semantics in this

way is explored in Chapter 9.

In regard to the verification methodology, encoding CTL specifications is challenging. A tech-

nique for generating them automatically has been developed for use in human-automation interaction

[57]. In future extensions to this work, reachability specifications could be automatically generated

with respect to users always being able to find the instructions, always being able to go back to

where one was, and being able to get to information in a specified number of steps (or page transi-

tions). SAL-WMC verification reports are generated in text format, and interpreting them can be

challenging. Visual representations like the path trees illustrated in 4.5 must be generated manually,

and future work should explore an automatic verification report visualization tool, similar to the

one described in [73].
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Chapter 5: A Formal Approach to Documentation: Modeling,
Specification, and Verification of Procedures1

Chapter 4 highlighted the importance of navigational tools within user documentation that support

end users in quickly locating pages. Navigable documentation is critical to time efficiency of the

interface; however, it is also critical that procedures are usable. ISO/IEC 26514:2008 [29] states that

documentation procedures should be easy for inexperienced end users to understand. In support

of accuracy, text should sufficiently describe what components are involved in procedural steps. In

support of completeness, it states that instructions should be applicable to all system configurations

that are relevant and possible. The U.S. FDA guidance for medical device documentation reiterates

these recommendations; additionally, it states that time-critical procedures such as troubleshooting

should have logically ordered steps, and that the content should explain how to complete steps with

a reduced need for technical knowledge [19].

Currently, analysts have limited tools for ensuring that procedures in documentation are written

in an accurate, complete, and time-efficient way, and problems often emerge for end users. For

example, during the first six months of 2016 there were 635 medical device adverse event reports

in a U.S. national databased all describing the same use-related problem for a home-use dialysis

machine:

• During setup, patients were routinely connecting themselves to the device and initiating ther-

apy without properly preparing (or “priming”) a fluid-filled connection tube, causing an alarm

to engage

• When attempting to troubleshooting the alarm, users were routinely disconnecting and recon-

necting themselves from the device without properly sterilizing the outputs ends of connection

tubes, sometimes causing injury [83]

To address these kinds of problems, a new approach is needed early in the design cycle to

1An earlier version of the concepts in this chapter were published in [143]
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support analysts in ensuring procedures are usable. A modeling methodology should enable analysts

to represent what actions an end user could execute based on the content in documentation. A

verification methodology should enable analysts to identify potential problems and improvements.

One such approach is developed in this chapter.

Leveraging an extant formal task modeling framework [10], which provides a formalism and an

encoding tool, a new task modeling technique enables the analyst to represent one or more end-user

behaviors that are possible based on what components and parts are identified. This technique

intends to support the analyst in identifying accuracy-related usability problems while attempting

to represent the procedure formally (discussed further in Section 5.1). The result could be leveraged

to inform improvements to the procedure with respect to accuracy.

A device modeling technique provides a way of representing and identifying:

• Initial component configurations that are possible when a procedure begins executing

• Initial component configurations that are addressed by actions prescribed in the procedure

• A potential completeness-related usability problem that could arise if a subset of initial con-

figurations are addressed

The result could be leveraged to inform improvements to the procedure with respect to completeness.

A verification methodology includes LTL specifications and a model checking technique. Speci-

fications assert undesired temporal orderings of procedural steps, and the model checking technique

involves verifying specifications with respect to two models of the procedure:

1. One representing the end user executing all procedural steps in order

2. One representing the end user executing one or more procedural steps in any order

If the model checker returned proved in the first model, there could be a time-efficiency problem,

and the specification can be checked again in the second model. A counterexample returned in

the second model could reflect an improved temporal ordering of procedural steps with respect to

the specification, and this result could be leveraged to improve the procedure with respect to time

efficiency.
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A case study based on a medical device troubleshooting procedure is used to demonstrate the

approach, and two versions of the procedure are compared using model checking. The first version

considers a model representing the procedure exactly as it is written, including the prescribed or-

dering of procedural steps. The second version considers an alternative task ordering that enables

steps to be executed in any order. Discussions of case study results, methodological considerations,

and directions of future work follow.

5.1 Modeling Methodology: Representing Procedures in Documentation
Formally

The approach for modeling and verifying documentation procedures has two steps:

1. An augmented formal task modeling technique for representing procedures in documentation

2. An augmented discrete device modeling technique for representing initial and functional con-

figurations of configurable hardware

The Enhanced Operator Function Model (EOFM) framework [10], which provides a formal de-

scription language, modeling technique, and tool facilitating the development of human-system in-

teraction models, facilitates the first step. The EOFM language’s XML syntax has been defined

using the RELAX NG [158] standard, which specifies the keywords and structure utilized to in-

stantiate a formal task model as an input/output system [10]. Inputs may come from the device,

the task environment, as well as the end user’s goals. For example, in a medical context, the goal

could include the specific prescription [166] or the preferred operating range of a medical device

[56]. Output variables are human actions. Using a hierarchical and heterarchical structure, activity

descriptions specify how human actions may be generated based on input and local variables (rep-

resenting perceptual or cognitive processing). All variables are defined in terms of constants, user

defined types, and basic types.

Multiple activities can be defined in the same instantiated EOFM-XML model. Activities have

associated strategic knowledge defined by preconditions, repeat conditions, and completion condi-

tions (Boolean expressions written in terms of input, output, and local variables as well as constants)



78

that specify what must be true before an activity can execute, when it can execute again, and what

is true when it has completed execution respectively. Activities are decomposed into lower-level sub-

activities and, finally, actions. Decomposition operators specify how many sub-activities or actions

can execute and what is the temporal relationship among them (Table 5.1). Actions are either

an assignment to an output variable (indicating an action has been performed) or a local variable

(representing a perceptual or cognitive action).

Table 5.1: Decomposition Operators [10]

Operator
Semantics

Modality

name Sequential Parallel

and All sub-activities or actions must execute and seq and par

or One or more sub-activities or actions must execute or seq or par

optor Zero or more sub-activities or actions must execute optor seq optor par

xor Exactly one sub-activity or action must execute xor —

ord All sub-activities or actions must execute in order of
appearance

ord —

sync All sub-activities or actions must execute at the same
time

— sync

The structure of an instantiated EOFM-XML model can be visually represented as a treelike

graph structure using the graphical notation or custom visualizer described in [73] (generic example

depicted in Fig. 5.1). Activities not at the lowest level begin with a for activity and are surrounded

by rectangles with rounded edges. The lowest level activities in the tree begin with h for human

action and are represented inside rectangles with right-angle edges. Preconditions (conditions for

when an activity can initiate) are denoted by yellow triangles pointing downward. Completion

conditions (conditions for when an activity has been completed) are denoted by pink triangles

pointing upward. Input variables, which begin with a lowercase i, can be used in preconditions and

completion conditions to govern activity and action execution.

The custom translator generates a task model encoded using the EOFM-XML language directly

into the model checking syntax of SAL based on the task analytic formalism described in [10]. This

translation process introduces additional model infrastructure [167] required to ensure that human
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Figure 5.1: Graphical depiction of a generic EOFM-XML activity. “Decomposition operator”
can be replaced with any of the keywords shown in Table 5.1. “Precondition” and “Completion
condition” can be replaced with valued input variables representing states of the device or
operational environment

operator actions can be properly recognized by a device model. The analyst can manually encode

device model infrastructure in a way that abstracts human-device interaction via the exchange of

input/output variables (discussed in Section 5.1.2).

5.1.1 Task Modeling Technique

Formal task modeling techniques usually produce a normative representation of human behavior re-

flecting correct performance of goal-driven tasks [96]. To support the analyst in identifying potential

accuracy problems, the technique developed in this work centers on end user behaviors that are pos-

sible based on how components involved in tasks are described. Specifically, the technique provides

a way of encoding procedural steps in which content can be interpreted by the end user in a way

that informs different combinations of possible behaviors. For example, consider a hypothetical sys-

tem having a controller, portable batteries, a battery cable having two connectable/disconnectable

output ends, and the following user manual procedure for replacing a low battery:

If the audible low battery alarm engages:

1. Press any button to silence the alarm

2. Disconnect the battery

3. Retrieve a fully charged replacement battery

4. Connect it to the battery cable
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For such a system and procedure, the end user could interpret these task descriptions in many

ways. If there are many buttons on the controller, any one of them could be pushed; and because

the battery cable has two outputs ends, either one (or both) could be disconnected in any order.

Leveraging the decomposition operators of EOFM-XML (Table 5.1), the analyst could encode and

model many possible behaviors having different effects if a specific component or part is not identified

in a task description. In light of the need for safety-critical system procedures to have accurate task

descriptions, the purpose of this technique is to aid the analyst in identifying potential accuracy

problems while attempting to represent them formally. It proceeds as described in outline form

below. Fig. 5.2 serves as a visual aid:

Figure 5.2: Generalizable, graphical representation of the task modeling technique for repre-
senting a procedure in accompanying documentation. Annotations in italic text are not part of
EOFM-XML’s formal semantics. Letters a–f are added for reference in the outlined description
of this technique

1. Encode a top-level EOFM-XML activity with precondition(s) defining when the procedure

should begin executing; for example, if text on the page indicates that the procedure is for

troubleshooting a particular alarm engaged on the device, the top-level precondition should

specify what alarm is engaged (Fig. 5.2a)
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2. Decompose the top-level activity using the ord decomposition operator, specifying that pro-

cedural steps must be performed in order (Fig. 5.2a), and encode all heterarchical steps as

sub-activities (up to step-n, corresponding to aSubactivity n in Fig. 5.2d)

3. Starting with the first procedural step (and repeating until all steps have been encoded),

determine if it involves a component having multiple parts. If so:

(a) Determine whether the part(s) on which the user should act as well as the temporal

ordering of actions are identified explicitly in the content describing it. For example, the

text “disconnect the battery cable” could refer to one or both parts being acted upon

(i.e., disconnected) in any order; the text “disconnect both ends of the battery cable”

refers to both parts being acted upon in any order; and the text “disconnect the output

end connected to the battery first, followed by the other end” refers to both parts being

acted upon in a specific order. In the first case (neither specific parts nor a temporal

ordering of actions are identified):

i. Decompose the sub-activity representing this step into one or more sub-activities

involving each individual part that could be acted upon utilizing the or seq decom-

position operator (as in Fig. 5.2b). Such a decomposition represents the end user

acting on one or more parts in any order. The analyst should also include task exe-

cution conditions to identify when the activity begins executing, repeats executing,

and is complete (encoded generally as “Preconditions (if any),” “Repeat conditions

(if any),” and “Completion conditions (if any)” in Fig. 5.2)

ii. Encode sub-activities representing the end user acting on parts 1. . . n, including

preconditions and completion conditions that are necessary (Fig. 5.2c). If there are

sub-steps (or sub-sub-steps), each sub-activity should be decomposed accordingly

into sub-activities using the same technique. There is no limit to the number of

times a sub-activity can be decomposed. Otherwise, each sub-activity should be

decomposed into a corresponding human action (encoded generally as hActOnPart 1

. . . hActOnPart n in Fig. 5.2c)
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In the second case (multiple parts identified, but without a temporal ordering of actions),

employ the method described in 3a utilizing the and seq decomposition operator in place

of or seq. Such a decomposition represents the end user acting on all parts 1–n in any

order (not shown in Fig. 5.2). In the third case (one or more specific parts identified,

including a temporal ordering of actions:

i. Decompose the sub-activity representing this step into one sub-activity using the ord

decomposition operator. If there are sub-steps, each sub-activity should be decom-

posed further into sub-activities by repeating part-3 of this method. Such a decom-

position represents the end user acting on parts 1–n in order (n = 1 in Fig. 5.2c).

Otherwise, this sub-activity should be decomposed into a corresponding action repre-

senting the end user acting on the identified component (encoded generally as “hAc-

tOnComponent identified” in Fig. 5.2f). The analyst should include task execution

conditions to identify when activities and actions begins executing, repeat executing,

and are complete

After encoding the procedure, the analyst should then instantiate the EOFM input and local vari-

ables encoded in activity execution conditions as well as human action variables. Input and human

action variables will be utilized to inform the device modeling process (discussed in Section 5.1.2).

To investigate the effects of performing main steps out of order, the analyst can encode a duplicate

model that employs the or seq decomposition operator for the top-level activity representing the

entire procedure (Fig. 5.2a). Such a technique requires temporal logic specifications that assert a

desired ordering of main procedural steps (Fig. 5.2b–d), enabling model checking analyses that can

provide positive counterexamples showing an improved ordering. A comparison between two such

models is demonstrated in Section 5.3.3.

5.1.2 Device Modeling Technique

Using the technique described in [10], a device model is encoded manually in SAL [68]. Utilizing

information about the target system, the initial states for configurable hardware and control systems

are identified and encoded within SAL initializations. Variable names are encoded using EOFM
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formalism syntax for input variables having the prefix i. After encoding initializations, guarded

transitions are encoded to control what state(s) the device should assume based on end-user inputs

(i.e., human actions) and the device’s own algorithms.

In this work, the device modeling technique is augmented to aid the analyst in identifying and

quantifying potential completeness problems with respect to procedures in documentation. It pro-

ceeds as follows:

1. Based on the target system and precondition(s) encoded in a top-level EOFM-XML activity

(e.g. an alarm is engaged), identify the initial system configurations that are possible for this

precondition to be satisfied. For example, if one of two different power sources could be in-use

when an alarm engages (specified as a top-level activity precondition), either configuration is a

possible initial state in the device model. The analyst should encode device model infrastruc-

ture enabling either possibility. One way to accomplish this is demonstrated in Section 5.3.5

2. Based on human action variables encoded in the instantiated EOFM-XML representation, the

analyst should encode guarded transitions in the formal device model coordinating next-states

of the device that emerge when each human action executes

3. Next, the analyst should:

(a) Quantify the initial configurations that are possible when a procedure begins executing

(e.g., if there are two exclusive power sources, two interchangeable cables connecting to

either source, and one controller receiving the other end of a cable, there could be as

many as four configurations involving one of each component)

(b) Identify procedural steps addressing an initial configuration and quantify the actions

prescribed therein (e.g. step-1 of a procedure instructing the end user to disconnect

a particular power source from a particular cable, corresponding to one human action

encoded in an instantiated EOFM task model)

(c) Determine what initial configurations are addressed in prescribed actions



84

(d) Identify the number of addressed configurations and the number of possible initial con-

figurations (e.g., one of four for a system having four possible initial configurations and

instructions addressing one of them). This number serves to quantify completeness of the

procedure with respect to the task modeling technique (Section 5.1.1)

5.1.3 System Model Composition

In this work, human-system interaction is abstracted via the exchange of input/output variables

in a modular, asynchronous composition of human and device models. The automated translator

described in [10] generates model infrastructure ensuring that outputs of the formal task model are

recognized in the device model (and vice-versa). Automatically generated syntax representing the

system model composition is modified to aid in identifying that the model represents an end user

executing a procedure in documentation. It is encoded using the SAL syntax shown below, where

the system model is named documentationProcedure, the formal task model is named endUser, the

device model is named device, and “[]” specifies that the modules are asynchronously composed:

documentationProcedure: MODULE = endUser [] device;

5.2 Verification Methodology

As mentioned, procedures in documentation accompanying safety-critical systems should be:

1. Accurate

2. Complete

3. Time efficient

The modeling techniques discussed thus far intend to support the analyst in identifying potential

problems with respect to accuracy and completeness. In support of time efficiency, this work lever-

ages linear temporal logic (LTL) specifications and model checking [168].

In formal methods, LTL specifications are commonly encoded to assert desired characteristics of

a target system. A symbolic model checker [62] can be invoked to search the model exhaustively

for specification violations; and if not violations are detected, the model can be considered safe. In
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this work, LTL specifications are encoded to assert undesired characteristics of a procedure with

respect to time-efficient ordering of main steps (those encoded as sub-activities in Fig. 5.2b–d).

If a model checker detects a violation, a trace through the model returned in a counterexample

defines an ordering of steps considered safe with respect to time-efficiency. Otherwise, if the model

checker returns proves, no violations of the undesired characteristic exist in the model, reflecting a

time-efficiency failure. Two such generalizable specifications are provided in this section:

1. One that is intended for time-efficiency analyses of setup, operations, maintenance, and trou-

bleshooting procedures

2. One that is intended for time-efficiency analyses of troubleshooting procedures

Utilizing the task modeling technique described in Section 5.1.1, these specifications can be verified

with respect to two models:

1. One representing the end user performing all procedural steps in order as prescribed in accom-

panying documentation (utilizing the ord decomposition operator)

2. One representing the end user performing one or more procedural steps in any order (utilizing

the or seq decomposition operator)

For model checking analyses that return proved in the first model, the analysis can be repeated

in the second model. If allowing the end user to perform steps out of order can result in an improved

ordering of main steps, a counterexample will show a trace through the model reflecting a potential

time-efficiency improvement.

In any procedure, it could be necessary for a particular preparatory step to be completed suc-

cessfully such that a later action can be successful. Consider the dialysis machine adverse events

described earlier in this chapter: patients were routinely connecting themselves to the machine before

properly priming the fluid-filled connection tube [83]. This reflects a potential time-efficiency failure

that could emerge if procedural steps are not logically ordered, potentially causing an end user to con-

nect oneself before the tube is properly primed. Successful completion of the preparatory tub-priming
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step is necessary to support successful completion of the connection step. The specification in (5.1)

exemplifies this case more generally in LTL. It reads, “it is always true (G) that when the end user ex-

ecutes a preparatory action (hPreparatoryAction), this implies (⇒) that the completion conditions of

an action for which hPreparatoryAction is preparing are satisfied (CompletionConditionshLaterAction).

This specification could also be encoded to represent completion conditions of many later actions

on the right-hand side of ⇒, depending on the instantiated model (discussed later in this section).

G(hPreparatoryAction ⇒ CompletionConditionshLaterAction) (5.1)

Such a specification is called Preparatory action time inefficiency. For a model representing the end

user executing procedural steps as prescribed in the system’s documentation (i.e., an ord model),

the model checker returning proved would indicate that the steps could be ordered incorrectly. In

this case, the analyst should verify the specification again with respect to the or seq model, and a

counterexample may show a trace through the model representing a potentially improved ordering

of steps.

In regard to troubleshooting procedures, one potentially undesired ordering of steps involves

actions that cannot correct the problem executing before ones that can. One way to represent such a

problem using LTL is by identifying a corrective action, a non-corrective action, and the completion

conditions that result from performing a non-corrective action. Leveraging the formal semantics

of EOFM, one such specification is encoded generally in (5.2). It reads, “when a corrective action

executes (hCorrectiveAction), this implies (⇒) that completion conditions of a non-corrective actions

are satisfied (CompletionConditionshNonCorrectiveAction). The specification could also be encoded

to represent completion conditions of many non-corrective actions on the right-hand side of ⇒,

depending on the instantiated model (discussed later in this section).

G(hCorrectiveAction ⇒ CompletionConditionshNonCorrectiveAction) (5.2)

Such a specification is called Corrective action time inefficiency. A counterexample to the speci-
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fication indicates that troubleshooting steps could be ordered incorrectly. Otherwise, if the model

checker returns proved, the analyst should attempt verifying the specification with respect to the

or seq model. If a counterexample is returned, it could be interpreted as an improved ordering of

troubleshooting steps.

As mentioned, these specifications can be encoded to represent completion conditions for many

actions. Using the model checking syntax of SAL, this can be accomplished for Preparatory action

time inefficiency as shown below (explained in the next paragraph]):

PreparatoryActionTimeInefficiency: THEOREM documentationProcedure |-

LET CompletionConditions hLaterActions: BOOLEAN =

iInputVariable 1 = value 1 AND ... AND iInputVariable n = value m IN

G(hPreparatoryAction => CompletionConditions hLaterActions);

The generic variable hPreparatoryAction represents a preparatory action that the analyst has

identified in the instantiated model. The statement beginning with LET enables the analyst to

represent the completion conditions for one or more actions that should execute after the preparatory

one. EOFM input variables and value assignments are encoded generally as iInputVariable 1 =

value 1 ... iInputVariable n = value m to represent to identify the completion conditions. The

conjunction among them (AND) specifies that CompletionConditions hLaterActions is true if all

completion conditions are satisfied. If applicable, the analyst could also encode disjunctions among

these input variable assignments (demonstrated in Section 5.4.3).

For Corrective action time inefficiency, the analyst can encode completion conditions for multiple

non-corrective actions using similar SAL syntax:

CorrectiveActionTimeInefficiency: THEOREM documentationProcedure |-

LET CompletionConditions hNonCorrectiveActions: BOOLEAN =

iInputVariable 1 = value 1 AND ... AND iInputVariable n = value m IN

G(hPreparatoryAction => CompletionConditions hNonCorrectiveActions);

Here, the generic variable hCorrectiveAction represents a corrective action that the analyst has

identified in the instantiated model, where the procedure should be time-critical (e.g. medical

device troubleshooting). Generic EOFM input variables and value assignments (iInputVariable 1

= value 1 ... iInputVariable n = value m) represent completion conditions for multiple non-

corrective actions. As before, the Boolean variable representing completion conditions is true if all
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of them are satisfied.

5.3 Case Study: Left Ventricular Assist Device Alarm Troubleshooting

To evaluate applicability of the modeling and verification methodologies, a case study is derived from

a left ventricular assist device (LVAD) and a set of troubleshooting instructions from its patient doc-

umentation. The analysis entails developing a formal task model of the instructional procedure, a

formal device model abstracting human-system interaction, and time-efficiency specifications. The

task modeling process is utilized to identify potential accuracy problems with the way tasks involving

part–whole components are described, particularly tasks that involve connecting and disconnecting

cables. The device modeling process is utilized to aid in identifying potential completeness problems

involving initial system configurations that are possible when the alarm engages. To determine what

constitutes a time-efficient ordering of steps, actions that may potentially resolve the LVAD alarm

(corrective actions) are distinguished from actions that cannot potentially resolve the alarm (non-

corrective actions). A safe temporal ordering of troubleshooting steps (encoded as EOFM-XML

activities) is defined by instantiating the safety specifications described in Section 5.2. These spec-

ifications are verified using the SAL symbolic model checker (SAL-SMC) [68], and model checking

results are utilized to identify:

• Potential time-efficiency problems with respect to all main procedural steps performed in order

• Potential time-efficiency improvements with respect to one or more main procedural steps

performed in any order

5.3.1 The Device

The LVAD is a mechanical circulatory assist device that is designed to work in conjunction with the

native heart. It supplies continuous blood flow support through a single, axial impeller surgically

implanted at the apex of the left ventricle. Heart failure patients are typically implanted with an

LVAD in order to maintain cardiovascular function until a transplant becomes available or until they

have fully recovered from a surgery or cardiac event.
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Many of these devices are designed for portability such that external controllers and batteries

may be carried using harnesses, holsters and/or straps. Patients must also carry select replacement

components at all times in the case of a mechanical malfunction or power supply issues. The device

used in this case study may include as many as nine cables, three controllers, three lithium-ion

batteries, and two lead reserve batteries.

The case study involves the pump stopped alarm procedure. A steady, high pitched audible alarm

sounding from a small speaker on the controller alerts the patient that the pump has stopped while

the controller’s alarm light indicating that the pump has stopped is illuminated. While these alarms

are engaged, all external cables, connectors and the battery-in-use may appear to be functioning

normally.

The procedure involves the system components in Fig. 5.3. The pump cable (Fig. 5.3f,g) attached

to the implanted pump has a two-part connector (Fig. 5.3f) and an output end connecting to the

controller. The controller (Fig. 5.3a–c) has two input ports for connecting to the pump (Fig. 5.3a)

and a battery respectively (Fig. 5.3c). A 1/2 cell AA battery is stored within a case on the controller

(Fig. 5.3b) to power the alarms while a battery is disconnected. A twist-off cap on the case can be

loosened to silence an audible alarm and turn off a visual alarm.

Connections between the pump and a controller can be configured in one of two ways:

1. The pump cable can be connected to the abdominal cable while the abdominal cable is con-

nected to a controller

2. The pump cable can be connected directly to a controller, without using an abdominal cable

A connection between the controller and a battery can be configured in one of four ways:

1. One output end of a lithium-ion battery cable is connected to a lithium-ion battery while the

other output end is connected to a controller

2. One output end of a lithium-ion battery cable is connected to one input socket of a Y-cable,

while the Y-cable output end is connected to a controller

3. The lead battery cable output end is connected to a controller
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Figure 5.3: Rendering of system components involved in the troubleshooting procedure are
listed as “Component Name (Quantity involved in the draft manual procedure and the formal
task model)”

4. The lead battery cable output end is connected to one input socket of a Y-cable, while the

Y-cable output end is connected to a controller

For the pump to function, one of each pump-to-controller and battery-to-controller connection must

be established and the connected battery must have a charge. For an alarm to engage, the in-use

controller must have its 1/2 cell AA alarm battery cap tightened.

5.3.2 The Draft Manual

The pump stopped troubleshooting procedure in the manual is organized as six ordered steps. The

draft instruction manual does not include figures with the component ends labeled as in Fig. 5.3,

but they are added to the procedure with caption labels. To aid in understanding the tasks required

to complete steps, two of six main steps are listed as multiple, lettered sub-steps (added sub-step

letters in italics for 5a, 5b, 6a and 6b):
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Figure 5.4: Outline form of case study troubleshooting procedure

1. If the pump is stopped:

(a) Disconnect the abdominal cable (Fig. 5.3g) from the pump cable (Fig. 5.3g)
and set aside all attached components. Disconnect the lithium-ion battery ca-
ble (Fig. 5.3d) and also partially unscrew the 1/2 cell AA battery cap (Fig. 5.3b)
on the controller to silence the alarm.

(b) Plug the pump cable directly into a replacement controller (Fig. 5.3a) (eliminating
the abdominal cable). Make sure to tighten the 1/2 cell AA battery cap on the
replacement controller to activate the alarm. (Fig. 5.3b)

(c) Connect the controller output of a replacement lithium-ion battery cable
(Fig. 5.3e) to the battery cable input of the replacement controller (Fig. 5.3c).
Then connect the other end (Fig. 5.3d) to the battery cable input (Fig. 5.3p) of
a fully charged lithium-ion battery.

2. If the pump is still stopped, call your emergency number immediately.

3. Red tag (Fig. 5.3r) all the components of the system that you set aside in step 1a.

4. Make sure that all cables have been changed and then check to see if the connector
permanently attached to the heart (Fig. 5.3f) is broken. If it is broken and has come
apart, put it back together where it is broken. If the heart does not restart, take the
connector apart again, rotate the parts 90 degrees, and put it back together again.
Repeat three times. The heart may restart.

5. If the heart has still not started, it is possible that you accidentally removed a discharged
battery and then plugged the same battery back in by mistake.

(a) Try changing the batteries again. It is possible that you accidentally removed a
discharged lithium-ion battery and then plugged the one back in by mistake.

(b) If no lights illuminate on either battery while pressing the black button (Fig. 5.3o),
disconnect the lithium-ion battery cable from the controller and connect your lead
reserve battery .

6. If you have completed all above steps and have carefully replaced all cables and com-
ponents without successfully restarting the pump:

(a) Disconnect the power to the heart pump by unplugging whichever battery cable
is connected to the replacement controller. There could be a problem with the
pump cable that can be repaired without surgery. If you leave the lithium-ion or
reserve battery connected, the controller will supply power to the pump, which
could be harmful. Disconnecting the battery reduces the chance of a blood clot
forming inside the pump by allowing the rotor to spin freely as blood flows across
it.

(b) Partially unscrew the AA battery cap (Fig. 5.3b) to silence the alarm.

5.3.3 Formal Task Model

The six main steps of the troubleshooting procedure are depicted as ten sub-activities of a top-level

activity aRespondToPumpStoppedAlarm, representing the entire procedure (Fig. 5.5). Individual
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steps and sub-steps are depicted in Figs. 5.6–5.14. The top-level activity in Fig. 5.5 has execution

conditions specifying that the procedure begins executing when the pump stopped alarm is engaged

and completes execution when the alarm disengages (modeling of the alarm status discussed later).

Step-1 has three sub-steps (1a–c) that were modeled as main steps because text under the main

heading of step-1 (“If the pump is stopped:”) does not prescribe an action. Sub-steps of steps 5

and 6 were modeled as main steps for the same reason: because text beside the numbers 5 and 6

in the procedure do not prescribe actions, but sub-steps do, step-5 was modeled as 5a and 5b and

step-6 as 6a and 6b. Therefore, the formal task model has ten high-level activities that represent

the six main steps: 1a, 1b, 1c, 2, 3, 4, 5a, 5b, 6a, and 6b.

Figure 5.5: Visualization of the six main steps of the troubleshooting procedure encoded as
ten EOFM sub-activities. The top-level activity aRespondToPumpStoppedAlarm represents the
entire procedure, while the ten sub-activities represent end-user activities prescribed within the
six main steps. A top-level activity precondition specifies that the procedure begins executing
when the pump stopped alarm engages. A completion condition specifies that the procedure
completes execution when the alarm disengages. The ord decomposition operator specifies that
all ten sub-activities must execute in order

Step 1a, aStep1aDiscOldComponents appears in Fig. 5.6. It is decomposed by ord into four

sub-activities representing sub-tasks prescribed in the text:

1. The first sub-activity (aDiscPumpCableFromAbCable) represents the first sub-task in the text

instructing the end user to disconnect the old abdominal cable from the pump cable. The

precondition specifies that the activity begins executing if the pump cable is connected to

the old abdominal cable (iPumpCableToOldAbCable = Connected). The completion condition

specifies that the activity has completed executing when the pump cable is disconnected from

the abdominal cable (iPumpCableToOldAbCable = Disconnected). Because the task identifies

what end of the abdominal cable should be disconnected (the one connected to the pump

cable), it is decomposed by ord into one human action (hDiscPumpCableFromAbCable), which
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represents the end user disconnecting the pump cable from the old abdominal cable

2. The second sub-activity (aSetAsideOldComponents) represents the second sub-task in the text

instructing the end user to set aside old components. The precondition specifies that the

activity begins executing if the old components are at-hand (iOldComponents = AtHand).

The completion condition specifies that the activity has completed executing when the old

components have been set aside (iOldComponents = SetAside). No individual components

are identified in the task description, and the end user could execute this step in many ways.

However, this case study is focused on cable connections, and different ways of setting aside

old components are not modeled. This activity is decomposed by ord into one human action

(hSetAsideOldComponents) representing the end user setting aside all old components

3. The third sub-activity (aDiscOldBattery) represents the third sub-task in the text instructing

the end user to disconnect the lithium ion battery cable. Because there could be two mutually

exclusive ways in which the lithium-ion battery cable is initially configured, this activity is

decomposed by xor into two sub-activities. One sub-activity represents end-user behaviors

that are possible if the Y-cable is in-use, while the other represents different behaviors that are

possible if the lithium-ion battery cable is connected directly to the controller (i.e., the Y-cable

is not in-use). For each sub-activity (either aDiscOldBattCableFromOldYCable or aDiscOld-

BattCableFromOldController), preconditions specify what sub-activity begins executing based

on what connections are established: The precondition for aDiscOldBattCableFromOldYCa-

bleInput specifies that this sub-activity begins executing if the lithium-ion battery cable is

connected to the Y-cable (iOldLiBattCableToOldYCableInput = Connected); the precondition

for aDiscOldBattCableFromOldController specifies that this sub-activity begins executing if

the old lithium-ion battery cable is connected directly to the old controller (iOldLiBattCable-

ToOldController = Connected). Each activity is decomposed further into two sub-activities

enabling end-user behaviors that are possible in either case. Because the text does not iden-

tify what output end of the lithium-ion battery cable should be disconnected (“disconnect the

lithium-ion battery cable”), both sub-activities are decomposed by or seq in order to represent
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end-user behaviors that are possible under different preconditions:

Figure 5.6: Visualization of the formal task model representing step 1a

(a) Sub-activities for aDiscOldBattCableFromOldYCable (Fig. 5.6a) represent the end user

disconnecting the output end of the lithium-ion battery cable that is connected to the

lithium-ion battery (aDiscOldLiBattCableFromOldLiBatt), the Y-cable (aDiscOldLiBattCa-

bleFromYCable), or both:

i. The precondition for aDiscOldLiBattCableFromOldLiBatt specifies that this sub-

activity begins executing if the old lithium-ion battery cable is connected to the old

lithium-ion battery (iOldLiBattCableToOldLiBatt = Connected). The completion

condition specifies that the activity has completed executing when the old lithium-

ion battery cable is disconnected from the old lithium-ion battery (iOldLiBattCable-

ToOldLiBatt = Disconnected). The activity is decomposed by ord into one human

action representing the end user disconnecting the output end connected to the old

lithium-ion battery(hDiscOldLiBattCableFromOldLiBatt)

ii. The completion condition for aDiscOldLiBattCableFromYCable specifies that the ac-
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tivity has completed executing when the old lithoum-ion battery cable is disconnected

from the Y-cable (iOldLiBattCableToYCableInput = Disconnected). The activity is

decomposed by ord into one human action representing the end user disconnecting

the old lithium-ion battery from the old Y-cable input (hDiscOldLiBattCableFromY-

Cable)

(b) Sub-activities for aDiscOldLiBattCableFromOldController (Fig. 5.6b) represent the end

user disconnecting the old lithium-ion battery cable output end connected to the lithium-

ion battery (aDiscOldLiBattCableFromOldLiBatt), the old controller (aDiscOldLiBattCa-

bleFromOldController), or both. Sub-activities are encoded in the same way as aDiscOld-

BattCableFromYCable, but with sub-activity names, execution conditions, and human

actions corresponding to only the old lithium-ion battery cable

4. The fourth sub-activity (aSilenceAlarmOnOldController) represents the last sub-task in the

text instructing the end user to silence the alarm by loosening the 1/2 cell alarm battery

cap on the old controller. The precondition specifies that the activity begins executing if the

old controller’s alarm battery cap is tightened (iOldControllerAlarmBatteryCap = Tightened).

The completion condition specifies that it is has completed executing when the old controller’s

alarm battery cap is loosened (iOldControllerAlarmBatteryCap = Loosened). Because the text

identifies the part of the old controller on which the end user should act (the alarm battery

cap), it is decomposed by ord into one human action representing the end user loosening it

(hLoosenOldControllerABCap, where “AB” stands for “alarm battery”)

Step 1b, aStep1bConNewController appears in Fig. 5.7. It is decomposed by ord into two sub-

activities sub-task prescribed in the text:

1. The first sub-activity (aConPumpCableToNewController) represents the first sub-task in the

text instructing the end user to connect the pump cable to a new, replacement controller. The

precondition specifies that the activity begins executing if the pump cable is disconnected from

the old abdominal cable (iPumpCableToOldAbCable = Disconnected). The completion condi-

tion specifies that the activity has completed executing when the pump cable is connected to
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the new controller (iPumpCableToNewController = Connected). Because the pump cable only

has one output end, the activity is decomposed by ord into one human action representing the

end user connecting the pump cable to the new controller (hConPumpCableToNewController)

2. The second sub-activity (aActivateAlarmOnNewController) represents the second sub-task in

the text instructing the end user to activate the alarm by tightening the 1/2 cell alarm battery

cap on the new controller. The precondition specifies that the activity begins executing if the

new controller’s alarm battery cap is loosened (iNewControllerAlarmBatteryCap = Loosened).

The completion condition specifies that it has completed executing when the new controller’s

alarm battery cap is tightened (iNewControllerAlarmBatteryCap = Tightened). Because the

text identifies the part of the new controller on which the end user should act (the alarm

battery cap), the activity is decomposed by ord into one human action representing the end

user tightening it (hTightenNewControllerABCap, where “AB” stands for “alarm battery”)

Figure 5.7: Visualization of the formal task model representing step 1b

Step 1c (aStep1cConFullyChargedLiBatt) appears in Fig. 5.8. It is decomposed by ord into two

sub-activities representing each sub-task prescribed in the text:

1. The first sub-activity (aConNewLiBattCableToNewController) represents the first sub-task

in the text instructing the end user to connect a new lithium-ion battery cable to the new

controller. The precondition specifies that the activity begins executing if the new lithium-

ion battery cable is disconnected from the new controller (iNewLiBattCableToNewController
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= Disconnected). The completion condition specifies that the activity has completed executing

when the new lithium-ion battery cable is connected to the new controller (iNewLiBattCableToNewController

= Connected). Because the text identifies what output end should be connected to the con-

troller, the activity is decomposed by ord into one human action representing the end user

making the connection (hConNewLiBattCableToNewController)

2. The second sub-activity (aConFullyChargedLiBattToNewLiBattCable) represents the second

sub-task in the text instructing the end user to connect a fully charged lithium-ion battery to

the new lithium-ion battery cable. No execution conditions are needed, since they will be spec-

ified within its sub-activities (described next). While the task description indicates that only

a fully charged battery should be connected, it does not instruct the user to check the charge

level first by depressing the black button on either battery (Fig. 5.3o). Therefore, encoding

the step as-written requires this sub-activity to be decomposed using the xor decomposition

operator to specify that the end user could connect either lithium-ion battery (old or new),

presuming one or the other is fully charged:

Figure 5.8: Visualization of the formal task model representing step 1c

(a) The first sub-activity (aConNewLiBattCableToNewLiBatt, Fig. 5.8a) represents the end

user connecting the new lithium-ion battery cable to a new lithium-ion battery that

could be fully charged. The precondition specifies that the activity begins executing if
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the new lithium-ion battery cable is disconnected from the new lithium-ion battery (iN-

ewLiBattCableToNewLiBatt = Disconnected). The completion condition specifies that

the activity has completed executing when the new two have been connected (iNewLi-

BattCableToNewLiBatt = Connected). Because the text identifies what output end of

the cable should be connected to the battery, the activity is decomposed by ord into one

human action representing the end user making the connection (hConNewLiBattCable-

ToNewLiBatt)

(b) The second sub-activity (aConNewLiBattCableToOldLiBatt, Fig. 5.8b) represents the end

user connecting the new lithium-ion battery cable to the old, previously disconnected

lithium-ion battery. The precondition specifies that this sub-activity begins executing if

both the old and new lithium-on battery cables are disconnected from old lithium-ion

battery (iNewLiBattCableToOldLiBatt = Disconnected AND iOldLiBattCableToOldLiBatt

= Disconnected). The completion condition specifies that the activity has completed ex-

ecuting when the two have been connected (iNewLiBattCableToOldLiBatt = Connected).

Because the text identifies what output end of the cable should be connected to the bat-

tery, the activity is decomposed by ord into one human action representing the end user

making the connection (hConNewLiBattToOldLiBatt) representing the end user making

the connection

Step 2 (aStep2CallEmergencyNumber) appears in Fig. 5.9a. It is decomposed by ord into one

human action (hCallEmergencyNumber) representing the end user calling an emergency contact

number. Step 3 (aStep3RedTagOldParts) appears in Fig. 5.9b. No individual components are iden-

tified in the task description, and the end user could execute this step in many ways. However,

this case study is focused on accuracy with respect to cable connections, so different ways of tag-

ging old components are not modeled. This activity is decomposed by ord into one human action

(hRedTagOldComponents) representing the end user attaching a red tag to all old components.

Step 4 (aStep4FixBrokenConnector) appears in Fig. 5.10. The precondition specifies that the

activity begins executing if the connector permanently attached to the heart is broken (iPerma-
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Figure 5.9: Visualization of the formal task model representing steps 2 and 3

nentlyAttachedConnector = Broken). Because the text identifies the part on which the end user

should act (the broken connector), the activity is decomposed by ord into two sub-activities repre-

senting each of two sub-tasks prescribed in the text:

1. The first sub-activity (aReassembleBrokenConnector) represents the first sub-task identified

in the text instructing the end user to reassembled the broken connector. The completion

condition specifies that the activity has completed executing when the connector is assembled

(iPermanentlyAttachedConnector = Assembled). Because the text identifies the part on which

the user should act (“[the section] where it has come apart”), the activity is decomposed by

ord into one human action representing the end user reassembling the connector (hReassem-

bleBrokenConnector, i.e., reattaching the two connector parts)

2. The second sub-activity (aTryRotatingParts) represents the second sub-task identified in the

text instructing the end user to try rotating the connector parts three times. The precondition

specifies that the action begins executing if the parts have not been rotated (iRotationCounter

= 0). The repeat condition specifies that the activity repeats executing if the parts have been

rotated fewer than three times (iRotationCounter < 3). The completion condition specifies

that the activity has completed executing when the parts have been rotated three times and the

connector has been reassembled (iRotationCounter = 0 AND iPermanentlyAttachedConnector

= Assembled). Because the text identifies what parts should be acted upon (both connector



100

parts), the activity is decomposed by ord into three human actions. The first action (hDisas-

sembleConnector) represents the end user disassembling the connector (i.e., disconnecting the

two parts); the second action second action (hRotateConnectorParts) represents the end user

rotating both connector parts 90°; and the third action represents the end user reassembling

the connector (hReassembleBrokenConnector)

Figure 5.10: Visualization of the formal task model representing step 4

Step 5a (aStep5aChangeLiBatts) appears in Fig. 5.11. It is decomposed by xor into two sub-

activities representing end user behaviors that could execute under different preconditions identified

in the text (“Try changing batteries. It is possible that you accidentally removed a discharged

lithium-ion battery and then plugged the one back in by mistake”):

1. The first sub-activity (aSwitchFromOldToNew) represents an end-user behavior that is pos-

sible if the new lithium-ion battery was accidentally connected to the old one earlier in the

procedure. The precondition specifies that the activity begins executing if the new lithium-

ion battery cable is connected to the old lithium-ion battery (iNewLiBattCableToOldLiBatt

= Connected). The completion condition specifies that the activity has completed executing

when the new lithium-ion battery cable has been connected to the new lithium-ion battery

(iNewLiBattCableToNewLiBatt = Connected). The sub-activity is decomposed by ord into

two human actions representing the end user disconnecting the new lithium-ion battery cable
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from the old lithium-ion battery (hDiscNewLiBattCableFromOldLiBatt), and then connecting

it to the new lithium-ion battery (hConNewLiBattCableToNewLiBatt)

2. The second sub-activity (aSwitchFromNewToOld) is encoded in the same way as aSwitchFro-

mOldToNew, but with execution conditions and human actions modified to represent switching

from the new lithium-ion battery to the old one

Figure 5.11: Visualization of the formal task model representing step 5a

Step 5b (aStep5bCheckLiBattsAndSwitchToLeadBatt) appears in Fig. 5.12. It is decomposed by

ord into two sub-activities representing each sub-task prescribed in the text:

1. The first sub-activity (aCheckLiBatteryLevels) represents the first sub-task identified in the

text instructing the end user to check the charge levels on both lithium-ion batteries. Because

text identifies both parts involved in the task (the black buttons on both lithium-ion batteries),

but no temporal ordering of actions, the activity is decomposed by and seq into two human

actions representing the end user checking the charge levels on both lithium-ion batteries

(hDepressBlackButtonOnNewLiBatt and hDepressBlackButtonOnOldLiBatt) in any order

2. The second sub-activity (aSwitchToLeadOrKeepLiBatt) represents the second sub-task iden-

tified in the text instructing the end user to either keep a lithium-ion battery connected if it

is charged or replacing it with the lead reserve battery. The precondition specifies that the

activity begins executing if both the old and new lithium-ion batteries are discharged (iN-

ewLiBatteryLights = 0 AND iOldLiBatteryLights = 0 ). The completion condition specifies that
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the activity has completed executing when the lead battery is connected to the new controller

(iLeadBattToNewController = Connected). Because the cable output ends that should be dis-

connected/connected are identified in text, the activity is decomposed by ord into two human

actions representing the end user disconnecting the lithium-ion battery cable from the new

controller (hDiscNewLiBattCableFromNewController), followed by connecting the lead reserve

battery to the new controller (hConLeadBattToNewController)

Figure 5.12: Visualization of the formal task model representing step 5b

Step 6a (aStep6aBreakCircuit) appears in Fig. 5.13. It is decomposed by xor into two sub-

activities representing end user behaviors that could execute under different preconditions identified

in the text (“[disconnect] whichever battery cable is connected to the controller”):

1. The first sub-activity (aDiscLeadBatt) represents an end-user behavior that is possible if the

lead battery is connected to the new controllere. The precondition specifies that the activity

begins executing if the lead battery is connected to the new controller (iLeadBattToNewCon-

troller = Connected). The completion condition specifies that the activity has completed

executing when the lead battery is disconnected (iLeadBattToNewController = Disconnected).

The sub-activity is decomposed by ord into one human actions representing the end user

disconnecting the lead battery from the new controller (hDiscLeadBattFromNewController)

2. The second sub-activity (aDiscLiBatt) is encoded in the same way for the new lithium-ion

battery cable

Step 6b (aStep6bSilenceNewController) appears in Fig. 5.14. The precondition specifies that the
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Figure 5.13: Visualization of the formal task model representing step 6a

activity begins executing if the new controller’s alarm battery cap is tightened (iNewController-

AlarmBatteryCap = Tightened). The completion condition specifies that it is has completed execut-

ing when the battery cap is loosened (iNewControllerAlarmBatteryCap = Loosened). Because the

text identifies the part on which the end user should act (the battery cap), it is decomposed by ord

into one human action representing the end user loosening it (hLoosenOldControllerABCap, where

“AB” stands for “alarm battery”)

Figure 5.14: Visualization of the formal task model representing step 6b

5.3.4 Translating from XML to SAL

Two versions of the 284-line EOFM-XML representations (Appendix E.1) were translated into SAL

using the translator described in [10]. Both models were 754 lines of SAL code.
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5.3.5 Formal Device Model

A human-device-interaction (HDI) model was assembled manually using SAL [68]. This HDI model

is a formal representation of initial device component states that are possible when the pump stopped

alarm engages, including cable connections, alarms engaged on the controller in-use, alarm battery

caps on controllers, red-tagged old components, lights illuminated on batteries, the connector per-

manently attached to the heart, the number of 90° rotations performed on the connector, and the

position of old components relative to the patient. The LVAD components shown in Fig. 5.3 and the

input variables encoded in the formal task model were used to identify one such set of configurations

considered functional; i.e., the controller, pump, cables, and one power source are connected in a

way that supports normal pump operation.

One set of initializations concerns connections that are possible between the controller and pump,

which may or may not involve the abdominal cable. These configurations and the corresponding

SAL syntax for encoding them are listed below.

1. The pump cable output end may be connected to or disconnected from the input socket of the

abdominal cable:

iPumpCableToOldAbCable IN {Connected, Disconnected};

2. If the pump cable output end is connected to the abdominal cable input port, then it is

disconnected from the old controller input port:

iPumpCableToOldController =

IF iPumpCableToOldAbCable = Connected

THEN Disconnected

ELSE Connected

ENDIF;

3. If the pump cable output end is connected to the old controller input socket, then the abdominal

cable is disconnected from the old controller:

iAbCableToOldController =

IF iPumpCableToOldController = Connected

THEN Disconnected

ELSE Connected

ENDIF;

A second set of initializations concerns connections that are possible between the controller and a
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power supply, which may or may not involve the Y-cable. These configurations and the corresponding

SAL syntax for encoding them are listed below.

1. The Y-cable output end may be connected to or disconnected from the input socket of the old

controller:

iYCableToOldController IN {Connected, Disconnected};

2. If the Y-cable output end is connected to the old controller, then the old lithium-ion battery

cable is disconnected from the old controller. Otherwise, the old lithium-ion battery cable may

be connected or disconnected from the old controller:

iOldLiBattCableToOldController IN

IF iYCableToOldController = Connected

THEN {Disconnected}
ELSE {Connected, Disconnected}
ENDIF;

3. If a Y-cable or lithium-ion battery cable output end is connected to the old controller in-

put socket, then the lead battery cable output end is disconnected from the old controller.

Otherwise, the lead battery cable output end is connected to the old controller:

iLeadBattToOldController =

IF iYCableToOldController = Connected

THEN Disconnected

ELSIF iOldLiBattCableToOldController = Connected

THEN Disconnected

ELSE Connected

ENDIF;

4. If the Y-cable output end is connected to the old controller input socket, then the old lithium-

ion battery cable is either connected to or disconnected from the Y-cable. Otherwise, it is

disconnected:

iOldLiBattCableToOldController IN

IF iYCableToOldController = Connected

THEN {Connected, Disconnected}
ELSE {Disconnected}
ENDIF;

5. If an old lithium-ion battery cable output end is disconnected from the Y-cable input socket

and the Y-cable output end is connected to the old controller input socket, then the lead

battery cable is connected to the Y-cable. Otherwise, it is disconnected:
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iLeadBattToYCable =

IF (iOldLiBattCableToYCable = Disconnected AND

iYCableToOldController = Connected

THEN Connected

ELSE Disconnected

ENDIF;

6. If an old lithium-ion battery cable output end is connected to the old controller input socket

or

(a) The Y-cable output end is connected to the old controller input socket and

(b) The lead battery cable output is disconnected from the Y-cable input socket

then the old lithium-ion battery’s other output end is connected to the old lithium-ion battery

input socket. Otherwise, it is disconnected:

iOldLiBattCableToOldLiBatt =

IF iOldLiBattCableToOldController = Connected OR

(iYCableToOldController = Connected AND

iLeadBattToYCable = Disconnected)

THEN Connected

ELSE Disconnected

ENDIF;

Remaining initializations concern variables that do not represent input–output cable connections

that were established when the alarm engaged:

• The alarm, which is initialized as PumpStopped :

iAlarm = PumpStopped;

• The placement of old components relative to the user, which are at hand when the alarm

engages:

iOldComponents = AtHand;

• The connector permanently attached to the heart, which may be broken or assembled when

the alarm engages:

iPermanentlyAttachedConnector IN {Broken, Assembled};

• The number of times broken connector parts have been rotated 90°, which is 0 when the alarm

engages:
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iRotationCounter = 0;

• “Do not use” red tag attached to old components, which are all not attached when the alarm

engages:

iOldComponentTags = notRedTagged;

• The number of charge indicator lights on lithium-ion batteries when the alarm engages, which

are both 0. The lead battery light is 0 if it is disconnected from the old controller; otherwise,

if it is connected, it could have one light indicating that is has a charge or no light indicating

that it is discharged.

iOldLiBatteryLights = 0 ;

iNewLiBatteryLights = 0;

iLeadBatteryLight IN

IF iLeadBattToOldController = Connected

THEN {0, 1}
ELSE {0}
ENDIF;

• Alarm battery caps on the controllers, which are tightened and loosened respectively for the

old and new controllers when the alarm engages:

iNewControllerAlarmBatteryCap = Loosened;

iOldControllerAlarmBatteryCap = Tightened;

• Cable connections involving new, replacement components, which are all disconnected when

the alarm engages:

iNewLiBattCableToNewLiBatt = Disconnected;

iNewLiBattCableToNewController = Disconnected;

iLeadBattToNewController = Disconnected;

iPumpCableToNewController = Disconnected;

Guarded transitions were encoded for all human action variables represented within the instan-

tiated EOFM-XML representation of the troubleshooting procedure. These transition statements

are depicted graphically in Figures 5.15 and 5.16. Transition statements were encoded individually

for each component; however, Fig. 5.15a represents all 14 state transitions for cable connections and

disconnections, which are all encoded in a similar way. Fig. 5.15b and Fig. 5.15c represent state

transitions for the alarm battery cap on the old and new controllers respectively. Fig 5.16 represents

state transitions for all other EOFM input variables. Because the case study is concerned with

modeling all steps of the troubleshooting procedure, the alarm state does not transition.
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Figure 5.15: Visual representations of device state transitions encoded in the HDI model.
Text written directly above and below arrows define the conditions that must evaluate to true
for the respective state transition to execute. (a) Cable connections and disconnections. (b)
State of the alarm battery cap on the old controller. (c) State of the alarm battery cap on the
new controller

The input variables iOldLiBatteryLights (Fig. 5.16e) and iNewLiBatteryLights (Fig. 5.16f) rep-

resent lithium-ion battery charge levels. As described in Fig. 5.3, the lights on either lithium-ion

battery may only illuminate while the black button (Fig. 5.3o) is depressed. However, the transitions

encoded in the formal device model represent a permanent change-of-state for iOldLiBatteryLights

and iNewLiBatteryLights that take effect after execution of hDepressBlackButtonOnNewLiBattery

and hDepressBlackButtonOnOldLiBattery respectively. The lead reserve battery does not have this

button, and the light indicating that it has a charge can transition permanently to 0 (indicating

that it is discharged) or 1 (indicating that it is not discharged) after it is connected to a controller

(Fig. 5.15g).

A final guarded transition was encoded at the end of the device model to remove deadlock states,

or states in which no transition guards are satisfied:

[]ELSE -->

Ready’ = IF (Ready AND Submitted)

THEN FALSE

ELSE Ready

ENDIF;

The final human-device interaction model was 258 lines of SAL code (Appendix E.2). As men-

tioned, human-device interaction is abstracted via the asynchronous composition of task and HDI

models: transitions in the task model occur first, and if any human action executes, its effects on
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Figure 5.16: Visual representations of device state transitions encoded in the HDI model. Text
written directly below arrows states the conditions that must evaluate to true for the respective
state transition to execute. Variable names are listed in bold italic text within each gray,
rounded-edge rectangle. (a) Position of all old, removed components relative to the patient.
(b) Attaching red tags (Fig.5.3r) to old, removed components. (c) Status of the connector
permanently attached to the heart (Fig. 5.3f). (d) 90° rotations performed on the connector
permanently attached to the heart (Fig. 5.3f). (e, f, g) Lights illuminated on the old lithium-ion
battery (Fig. 5.3q), new lithium-ion battery (Fig. 5.3q), and lead reserve battery respectively.
Each of these variable values can transition to any one of the numbers within white, rounded
edge squares

the device are observed in the next-state. The case study model composition is encoded in SAL as

shown in Section 5.1.3.

5.3.6 Verification

Two LTL specifications were encoded to assert time-efficiency properties of the procedure. One

Corrective action time inefficiency specification asserts that the patient will label the old components

with red tags before fixing the connector permanently attached to the heart. This situation is not

time efficient because attaching a red tag to old components cannot potentially restart the pump

(i.e., it is a non-corrective action). Fixing the connector permanently attached to the heart, however,
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is a potentially corrective action. The specification is encoded in SAL as shown below, where

hReassembleBrokenConnector is the corrective action and iOldComponentTags = redTagged is

the completion condition of the non-corrective action. The specification reads, “it is always true

that when the end user reassembles the broken connector permanently attached to the heart, the

old components have been red tagged.”

G(hReassembleBrokenConnector => iOldComponentTags = redTagged);

One Preparatory action time inefficiency specification asserts that patient will connect either

an old or new lithium-ion battery to the new lithium-ion battery cable before checking the new

lithium-ion battery level. This situation is not time efficient because checking a battery’s charge

level before connecting it constitutes a preparatory action; failing to do so could result in the end

user connecting a discharged battery, which cannot restart the pump. The specification is encoded

in SAL as shown below. The LET statement specifies the completion conditions of multiple actions

that should execute after the preparatory actions. They include:

• The new lithium-ion battery cable is connected to the new controller

(iNewLiBattCableToNewController = Connected), which is a completion condition

for an activity having the action hConNewLiBattCableToNewController, and:

– The new lithium-ion battery cable is connected to the new lithium-ion battery

(iNewLiBattCableToNewLiBatt = Connected), which is a completion condition for an

activity having the action hConNewLiBattCableToNewLiBatt, or

– The new lithium-ion battery cable is connected to the old lithium-ion battery

(iNewLiBattCableToOldLiBatt = Connected), which is a completion condition for an

activity having the action hConNewLiBattCableToOldLiBatt

The specification reads, “it is always true that when the end user checks the charge level of the

new lithium-ion batter, the completion conditions of actions that should execute later are satisfied

(i.e., one of the batteries is powering the new controller).”
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PreparatoryActionTimeInefficiency: THEOREM documentationProcedure |-

LET CompletetionCondition hLaterActions: BOOLEAN =

iNewLiBattCableToNewController = Connected AND

(iNewLiBattCableToNewLiBatt = Connected OR

iNewLiBattCableToOldLiBatt = Connected) IN

G(hPreparatoryAction => CompletetionConditio hLaterActions);

The model checking analyses were conducted twice: once for the ord task model; i.e., the activities

must execute in the order they are written, and once for the or seq task model. All verifications

were done using SAL-SMC [68]. Verification reports for counterexamples were visualized using the

graphical notation described in [73].

5.4 Results

All three steps of the methodology produced results:

1. Encoding the written procedure in EOFM-XML revealed a potential accuracy problem (dis-

cussed in Section 5.4.1)

2. Encoding the formal device model manually in SAL revealed a potential completeness problem

(discussed in Section 5.4.2)

3. Verifying Preparatory action time inefficiency and Corrective action time inefficiency specifi-

cations revealed two potential time-efficiency problems (discussed in Section 5.4.3)

5.4.1 Encoding of Written Procedure in EOFM-XML

While applying the task modeling technique (Section 5.1.1), a potential accuracy problem was un-

covered in the written troubleshooting procedure: the instructions for step-1a state, “disconnect the

lithium-ion battery cable”; however, the output end that should be disconnected is not identified.

Representing this step formally required decomposing the sub-activity for step-1a using the or seq

operator. The resulting decomposition reflects three possible end-user actions that could execute in

any order:

1. Disconnecting the lithium-ion battery cable from the battery

2. Disconnecting the lithium-ion battery cable from the controller
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3. Disconnecting the lithium-ion battery from both the battery and the controller

Consequences of this potential accuracy problem became apparent while encoding preconditions

for step-1c, which instructs the end user to connect a fully charged lithium-ion battery to the new

battery cable: if the old lithium-ion battery is fully charged, the end user could connect it to the new

lithium-ion battery cable; alternatively, if the new lithium-ion battery is fully charged, the end user

could connect this one instead. Exactly one battery can be connected in this step (specified using

the xor decomposition operator), and either one could be connected if there are five charge indicator

lights illuminated on either battery (indicating that it is fully charged, specified within activity

preconditions). However, the task description did not specify that the end user should check a

battery’s charge level before connecting it. Additionally, if a malfunction of the old lithium-ion

battery originally caused the pump stopped alarm to engage, reconnecting this battery in step-1c

cannot restart the pump, regardless of its charge level. Thus, by disconnecting the lithium-ion

battery cable from the battery cable in step-1a, it becomes possible for the end user to connect a

discharged or malfunctioning battery to the new lithium-ion battery cable in step-1c. This reflects

an accuracy problem encoded in the model (and potentially emergent for an end user of the LVAD).

5.4.2 Encoding The Device Model

While applying the device modeling technique (Section 5.1.2), it was observed that all initial cable,

battery, and controller configurations were not addressed in the written instructions, reflecting a po-

tential completeness problem. As mentioned in Section 5.3.1, one of two initial pump-to-controller

and one of four initial battery-to-controller connections make up possible eight functional configura-

tions of the case study device, and the pump stopped alarm could engage when one such configuration

is established. All eight were encoded within initializations of the formal device model. One aspect

of completeness for this procedure requires that cable-disconnection actions in steps 1a and 1b (dis-

connecting old components) address all initial configurations. Three such actions were prescribed in

these steps and then encoded within guarded transitions of the formal device model:

1. hDiscPumpCableFromAbCable
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2. hDiscOldLiBattCableFromOldController

3. hDiscOldLiBattCableFromYCable

However, these actions were insufficient for addressing all eight configurations, reflecting a potential

completeness problem (Table 5.2).

Table 5.2: Results of encoding the formal device model

Initial configuration
(as list of components)

Applicable actions encoded
in the formal device model

Configuration
fully addressed

• Pump cable
• Abdominal cable
• Controller
• Y-cable
• Lithium-ion battery cable
• Lithium-ion battery

hDiscPumpCableFromAbCable

hDiscOldLiBattCableFromOldController

hDiscOldLiBattCableFromYCable

X

• Pump cable
• Abdominal cable
• Controller
• Lithium-ion battery cable
• Lithium-ion battery

hDiscPumpCableFromAbCable

hDiscOldLiBattCableFromOldController
X

• Pump cable
• Abdominal cable
• Controller
• Y-cable
• Lead battery

hDiscPumpCableFromAbCable 7

• Pump cable
• Abdominal cable
• Controller
• Lead battery

hDiscPumpCableFromAbCable 7

• Pump cable
• Controller
• Y-cable
• Lithium-ion battery cable
• Lithium-ion battery

hDiscOldLiBattCableFromOldController

hDiscOldLiBattCableFromYCable

7

• Pump cable
• Controller
• Lithium-ion battery cable
• Lithium-ion battery

hDiscOldLiBattCableFromOldController 7

• Pump cable
• Controller
• Y-cable
• Lead battery

7

• Pump cable
• Controller
• Lead battery

7

This result indicates that two of eight initial configurations are addressed in the procedure.
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5.4.3 Formal Verification of Time-Efficiency Specifications

Formal verification results are presented in Table 5.3. The model checker returned “proved” for

both specifications in the ord model, indicating that time-efficiency problems could emerge for the

end user when the six main procedural steps (encoded as ten heterarchical EOFM activities) are

executed in order. Counterexamples were returned for both specifications in the or seq model,

reflecting potentially improved orderings or procedural steps with respect to one preparatory action

and one corrective action.

Table 5.3: Case study model checking results

Specification
name

Task model

ord or seq

Result States visited Time (s) Result States visited Time (s)

Preparatory
action time
inefficiency

proved 26,760 5.54 counter-
example

1,680 3.69

Corrective
action time
inefficiency

proved 26,760 5.58 counter-
example

1,680 3.62

The or seq model counterexample to Preparatory action time inefficiency is shown in Fig. 5.17.

A two-step trace shows the end user depressing the black button on the new lithium-ion battery to

check its charge level before connecting either lithium-ion battery to the new lithium-ion battery

cable. Such a task ordering could be improved with respect to time-efficiency: checking the new

lithium ion battery’s charge level before connecting it could potentially prevent the end user from

connecting a discharged battery.

The or seq model counterexample to Corrective action time inefficiency is shown Fig. 5.18. A

two-step trace shows the end user reassembling the broken connector that is permanently attached

to the heart (i.e., executing a corrective action) before attaching a red tag to the old controller (i.e.,

completion conditions of a non-corrective action are not satisfied). Such a task ordering could be

improved with respect to time efficiency, since attempting to fix the broken connector can potentially

resolve the alarm, while attaching red tags to previously disconnected components cannot.
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Figure 5.17: Visualization of the two-step counterexample to Preparatory action time ineffi-
ciency in the or seq model. Green, rounded-edge rectangles are activities that are executing.
The green, square-edge rectangle indicates that hReassembleBrokenConnector is valued true in
the state violating the specification

5.5 Discussion

This chapter has presented a novel application of formal methods for representing and evaluating

written procedures accompanying a human-interactive system. In support of documentation proce-

dure accuracy, the task modeling technique intends to support the analyst in identifying potential

accuracy problems while attempting to represent an end user executing procedural steps as-written.

Leveraging the formal semantics of EOFM [10], the method provides a way of modeling different

combinations of end-user actions that are derived from what components/parts are identified in

the user manual. In support of completeness, the device modeling technique aids in comparing ini-

tial system configurations that are possible when a procedure begins executing with configurations

addressed by actions in the procedure. Initial configurations and actions addressing them are quan-

tified to identify potential completeness problems. The ratio of addressed-to-initial configurations

is expressed as a fraction to aid in quantifying one kind of documentation procedure completeness
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Figure 5.18: Visualization of the two-step counterexample to Preparatory action time ineffi-
ciency in the or seq model. Green, rounded-edge rectangles are activities that are executing.
The green, square-edge rectangle indicates that hReassembleBrokenConnector is valued true in
the state violating the specification

problem. In support of time efficiency, a verification methodology provides LTL specifications for

asserting undesired temporal orderings of main procedural steps with respect to:

• Completion conditions that are satisfied for one or more actions that should come after a

necessary preparatory action (with general application to safety-critical system procedures)

• Completion conditions that are satisfied for one or more non-corrective actions that should

come after a corrective action (with particular application to troubleshooting procedures)

Specifications can be encoded and verified using symbolic model checking, and results for two

models can be compared:

1. One model representing the end user executing all main procedural steps in order

2. One model representing the end user executing one or more main procedural steps in any order

The approach was applied in a case study based on a medical device troubleshooting proce-

dure. The task modeling technique helped identify a potential accuracy problem in a procedural
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step, which while the device modeling technique revealed that the procedure does not prescribe

cable disconnection actions addressing all initial configurations. One set of model checking analyses

“proved” that the procedure could have time-efficiency problems involving incorrect orderings of one

preparatory and one corrective action. A second set of model checking analyses aided in identifying

potentially improved orderings of procedural steps with respect to the specifications. These results

indicate that each step of the approach could be useful for improving accuracy, completeness, and

time efficiency respectively:

1. Encoding the formal task model was useful for identifying a potential accuracy problem

2. Encoding the formal device model was useful for identifying a potential completeness problem

3. Formally verifying LTL specifications and comparing results in two models was useful for

identifying potential time-efficiency problems as well as potential improvements

5.5.1 Methodological Considerations of the Modeling Approach

Leveraging the EOFM-XML language and translation tool [10] yielded a new modeling technique for

representing an end user executing a procedure as it is written in a target system’s accompanying

documentation. While this work appears to be the first to leverage formal task modeling in this

way, other researchers have represented user documentation programmatically [169], [170]. Human-

computer interaction (HCI) researchers have also leveraged formal methods for user documentation

generation [171], [172] and documentation evaluation by formal specification [173], [174]. Other

methods [175], [176] have demonstrated that a careful reading of the device’s documentation as part

of a formal device usability evaluation or interface design may reveal errors in the documentation.

Reading user documentation with the intention of using it to develop a formal representation of

the device has similar value to formally encoding written task descriptions in the documentation.

Either method may expose potential usability problems while paying particularly close attention

to formal device descriptions (or lack thereof) within the procedure. However, in this work both

methods together (representing the procedure and device formally) proved complementary. In regard

to accuracy:
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• Device descriptions in the user manual helped to identify the part-whole composition of device

components

• Device descriptions in the procedure helped to identify potential end-user actions that could

execute based on what part-whole components are identified

In regard to completeness:

• Device descriptions in the user manual helped identify to initial cable, controller, and battery

configurations that are possible when the pump stopped alarm engages

• The set of human action variables encoded in the task model helped identify guarded transitions

in the formal device model

• Comparing the number of possible initial configurations (8) with those addressed in steps 1a

and 1b of the procedure aided in:

– Identifying a potential completeness problem (not all initial configurations are addressed

in the procedure)

– Quantifying the potential completeness problem (2 of eight initial configurations ad-

dressed in steps 1a and 1b)

Together, the task and device modeling techniques could be complementary with respect to accuracy

and completeness.

5.5.2 Methodological Considerations of the Verification Approach

Specifications comprise a major feature of this analysis, and there are several advantages to encoding

them using LTL. In formal methods, a safety specification describes a feature of code in which some

undesirable state is never reached [177]. In the documentation domain, LTL allows us to express

these descriptions as instances of undesired conditions so potential improvements could be identified

in counterexamples. However, there are several considerable challenges to using LTL effectively:

One is that these propositions can be difficult to develop and contextualize. This problem has been
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a topic in formal methods for nearly two decades [107], [178] and it has been addressed in the context

of formally verifying human-automation interaction [179].

Another problem with developing safety specifications is vacuous truth, which results in a speci-

fication being spuriously proven by a model checker. Vacuous truth occurs when an analyst encodes

a safety specification using the implication operator (⇒), but the Boolean function on the left-hand

side of the operator never evaluates to true in the system model. This was avoided in the current

work by developing relatively simple specifications, but they can be avoided in more complex spec-

ification by developing lemmas that verify the existence of state(s) defined on the left-hand side of

the implication operator.

In this research, specifications were based on practical definitions of corrective actions, non-

corrective actions, preparatory actions, action completion conditions, and time-efficient temporal

relationships among them. However, while this definition of time efficiency can be verified using

symbolic model checking, the method did not prove that this definition is indeed medically valid.

5.5.3 Future Work

Formal task and device models developed in this research need to be encoded manually. Some

formal methods-based frameworks such as IVY [59] and ADEPT [48] have graphical development

environments for representing human-interaction device; while task modeling tools such as Little-

JIL [132] and ConcurTaskTrees [66] have similar environments for representing human task behavior.

Future work should explore ways of integrating these graphical tools to facilitate the formal modeling

of:

• An end user executing a procedure as-written

• Initial hardware configurations

• Configurations that are addressed by end-user actions prescribed in the procedure

Currently, model checking software such as SAL-SMC can only handle a limited number of

variables and transitions. If the analyst encodes an EOFM task model with too much detail or

with too many states, then the model checker will not successfully produce a verification report
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and it will instead indicate that it has run out of memory. To leverage a model checking tool

like SAL-SMC, analysts must encode a formal task model that accurately represents a written

procedure at a complexity level commensurate with the computational capability of symbolic model

checking. Computational complexity may also limit the scalability of the modeling technique to

EOFMs that accurately represent longer written procedures or an entire document. Methods exist

for the decreasing the state space of symbolic, finite state model (see for example [180]), and they

can be applied to formally verify safety properties of written procedures with more states and

state transitions (and perhaps entire documentation). Other tools included with the SAL package

such as bounded model checking (BMC) and witness model checking (WMC) can also be used to

evaluate formal task analytic models of documentation procedures. Future work should investigate

the scalability of this method as well as compare different model checking technologies for evaluating

documentation.

In regard to time-efficiency specifications, future work should incorporate a method for ensuring

their validity with respect to the target system. One possible avenue for achieving this goal is

leveraging specifications from unsafe conditions identified during failure mode and effects analysis

(FMEA) [181] or other risk analysis methods commonly used during early stages of safety-critical

system design.
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Chapter 6: A Formal Approach to Hardware Configurability: Modeling,
Specification, and Verification of Gibsonian Affordance

As shown in Chapter 5, it is critical that instructional procedures are written in a way that supports

end users in completing them correctly. However, even if procedures are well written, there is no

guarantee that an end user will follow them in every situation or execute every task exactly as pre-

scribed. Additionally, there are times when certain physical manipulations of interface components

should be avoided. One way interface designers address this is by designing configurable hardware

components with characteristics that enable safe opportunities for action (called affordances) at the

appropriate times, while disabling unsafe ones at all times.

The psychologist J.J. Gibson defined affordance as “what an environment offers the animal, what

it provides or furnishes, either for good or ill,” [82] where an environment is a three-dimensional

space and all entities therein, including the animal. Since this work applies affordance toward HFE,

the term human is used in place of animal.

Gibson’s definition identifies the existence of an human-environment system (HES), where affor-

dances are directly perceivable properties of the HES that “point both ways” [82] (i.e. to human

and environment) so that human and environment are complements with respect to affordance, and

neither can be considered separately. One example of affordance is door openability for a door with

a turning knob, which could be determined by considering the position of a door with respect to a

human, the size and position of the door knob, and two human motor capabilities: applying enough

force to turn the knob and pulling it hard enough to open the door. These motor capabilities must

exist regardless of where the human operator is standing, and the affordance of door openability

emerges when the spatial positions of the door and human operator allow it (i.e. when relations

among entities in the environment and human motor capabilities co-occur).

An interpretation of affordance has been used to inform design in human-computer interaction

(HCI) because it is useful for reasoning about the cognitive and perceptual functions involved in
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human behavior. Gibson’s definition of affordance has thus been modified in HCI (sometimes called

“perceived affordances” or “signifiers,” discussed further in Chapter 7) by incorporating human

cognition [182]. Gibson, however, asserts that affordances are directly perceivable in a way that

relaxes assumptions about how human cognitive functions influence their existence [82]. Gibsonian

affordance is therefore fully resolved by physical characteristics of the human and environment

without involving any cognitive processing. This is an important consideration that distinguishes

perceived affordance in HCI from Gibsonian affordance in ecological psychology: from the cognitive,

HCI perspective, an affordance exists conceptually to the human operator; from the ecological

perspective, an affordance exists physically in the human operator’s environment, regardless of what

is believed.

In safety critical systems, specific physical manipulations may be necessary to configure the

system, prevent hazardous situations, or recover from them, rendering Gibsonian affordance an

important concept in this design space. For example, the fuselage door in a passenger aircraft

cannot be opened when the aircraft exceeds a certain altitude if the pressure differential is too great

for a human to pull the door inward. This is an important safety feature of the fuselage door, and

the Gibsonian definition is sufficient for characterizing it.

In human-interactive systems having configurable hardware (e.g. cables with input/output con-

nections), the designer must consider what affordances should emerge and when such that the system

can be configured safely in the operational environment. In support of ensuring that the designed

system is usable, analysts could benefit from a formal modeling and verification methodology. As

discussed in Chapter 2, to support the development of formal models the analyst needs a formalism

and a modeling technique; and to support formal verification analyses, the analyst could benefit

from temporal logic specifications and a model checking technique.

Researchers in ecological psychology have developed a variety of formalisms for representing

Gibsonian affordance [1, 2, 9, 3, 4, 6, 7]; however, there are limited approaches supporting the analyst

in instantiating a formalism and verifying usability-related specifications involving affordance. One

such approach is provided in this chapter. A review of extant affordance formalisms in Section 6.1
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aids in identifying minimal requirements of a modeling technique and encoding tool for instantiating

them. A tool and technique developed to meet these requirements are presented in Section 6.3. A

verification methodology developed to enable model checking analyses of accuracy and error tolerance

with respect to formal models is described in Section 6.3.14. The approach is demonstrated in a

case study based on a medical device adverse event, and a scalability evaluation is conducted in

Section 6.5. Discussions of the case study, the scalability evaluation, methodological considerations,

and directions of future work follow.

6.1 Affordance Formalisms

Formalisms have been developed to represent Gibsonian affordance within HES using different com-

binations of variables, functions, and interpretations of the original theory. This subsection provides

a verbal description of existing formalisms and the mathematical descriptions as-presented for each.

Papers were selected from a Google Scholar search for the keywords “affordance,” “formalism,” and

“Gibson.” The search returned 973 results. From these results, nine papers were selected using the

following criteria:

• Published in a referred journal or conference proceedings

• Provides a symbolic, mathematical formalism for Gibsonian affordance

• Provides an original formalism (i.e., papers validating or applying an existing formalism were

excluded)

• Is intended for application in human-environment systems (i.e., robotics papers were excluded)

6.1.1 Shaw and Turvey [1]

This formalism (called a coalitional model) extends Gibson’s definition by introducing the term

“effectivity” to represent a human operator’s capabilities. Here, an effectivity is a dispositional

property of a human, which means that under the right conditions, an effectivity is always actualized

(i.e., an action is always taken). An affordance is a dispositional property of the environment, which

means that under the right conditions, an affordance is always actualized, or an object in the
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environment is always acted upon. Shaw and Turvey represent affordance and effectivity as one-

to-one, complementary properties of the environment and human respectively. If an affordance and

effectivity occur at the same time, the human operator must act.

The model provides a relational structure of the HES as a hierarchical set of sets (6.1) [1] expressed

using four “grains” of analysis: basis (6.1a), relation (6.1b), order (6.1c), and value (6.1d). Here,

X is a set of variables that describe the environment and Z is a set of variables that describe the

human operator. Each grain is the Cartesian product of the previous grain, except V, which is the

Cartesian product of O and a set {+,−}. The formalism provides no formal interpretation of V,

but its value specifies which action a human must take.

HES =



B = (X ,Z )

R = B × B

O = R × R

V = O × {+,−}

(6.1a)

(6.1b)

(6.1c)

(6.1d)

To inform the development of a new formalism (discussed next), A.J. Wells has explained each

element of the coalitional model intuitively [2]:

B: The basis grain describes the set of variables over which the model is defined

R: The relation grain describes the ecological relations that are possible given the basis

variables

O: The order grain provides descriptors for the affordance structure of the environment

and for the effectivity structure of an animal

V: The value grain specifies which affordances are noticed or which effectivities are

activated on a given occasion

6.1.2 Wells [2]

Wells integrates Gibson’s theory of affordance with Turing’s theory of computation to develop a

formalism that captures the temporal ordering of human actions within a Turing machine represen-



125

tation [183] (6.2). Here, symbolic variables represent a single human operator, actions that can be

executed, and affordances/effectivities using two respective tuples. The first tuple (6.2a) defines an

affordance (A) at the intersection of two variables that represent properties of the human operator

(q) and the environment (a). The second tuple (6.2b) defines an effectivity at the intersection of

three variables that represent a human behavior (b), the next-state of the human operator (p), and

a description of the human behavior (k). The temporal ordering of human operator states is defined

over the set of transitions between each instance of b and p.

A = (q , a)

E = (b, p, k)

(6.2a)

(6.2b)

6.1.3 Turvey [3]

In (6.3), aspects of the coalitional model [1] are leveraged within a new, input/output function-

based formalism. Here, affordances are dispositional properties of the environment and effectivities

are dispositional properties of the human operator. A dispositional effectivity is also describable

as a human action that always executes successfully, where “successfully” does not refer to what

the human desires (which depends partly on cognition), but rather the post-action conditions that

manifest immediately the human actualizes a juxtaposed affordance and effectivity [3]. Mathemat-

ically, X represents the environment with p affordances; Z represents the human operator with q

effectivities; and W represents the human-environment system with pq properties. The property

r is the co-occurrence of p and q in Wpq . The juxtaposition function j provides values of r . The

juxtaposition function may also provide zero or more possible human actions that can execute within

Wpq , where if multiple actions are available, exactly one must execute.
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p is an affordance of X and q an effectivity of Z iff:

Wpq = j (Xp ,Zq) possesses r (6.3a)

Wpq = j (Xp ,Zq) possesses neither p nor q (6.3b)

Neither Z nor X possesses r (6.3c)

6.1.4 Stoffregen [4]

Stoffregen modifies Turvey’s formalism in three ways: he redefines affordance as an emergent prop-

erty of the animal-environment system h, rather than as a dispositional property of the environment,

which precludes the need for an action to execute when it becomes available; he removes the juxta-

position function and replaces it with a tuple (6.4a), which prevents the formalism from producing a

case in which multiple affordances are actualized simultaneously; he formalizes human behavior with

a psychological choice function that is separate from the formalism, which selects a single action

based on the human operator’s intention (not discussed in this work). In (6.4), the affordance h is

a property of the HES defined by the relation between p and q [4].

h is an affordance of Wpq iff:

Wpq = (Xp ,Zq) possesses h (6.4a)

Neither Z nor X possesses h (6.4b)

6.1.5 Thiruvengada and Rothrock [5]

In this formalism, researchers combine the mathematical notations used by Turvey [3] and Wells

[2]. The accompanying modeling technique in [184] uses Colored Petri nets [185] to model multiple

human operators, concurrent affordances, possible human actions, discrete time and space, and

goal-oriented action selection. The Discrete Event System Specification (DEVS) [186] formalism is
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applied to simulate changes to model variables within the HES. In (6.5), possible human actions (PA)

exist when an affordance (P) and an effectivity (Q) also exist (6.5a), and they are juxtaposed in the

HES (Wpq) (6.5b) at the same time and spatial location (6.5c). Properties of the HES are provided

by sensory functions that represent three respective ways in which humans sense their environment.

The three types of properties are specified as ϕi in ϕ, where i can be v for visual properties, a

for auditory properties or h for haptic properties. In (6.5d), ϕi provides a set of possible actions

(6.5d). Thus, theories of affordance from HCI and ecological psychology are integrated in a way that

incorporates perceptual, motor, and cognitive functions. In (6.5e), ϕi provides a set of effectivities.

In (6.5f), ϕ provides a set of affordances. A single action in PA is then executed in the model based

on an analyst-defined sequence of actions that proceeds toward a goal for the human operator.

∃PA ↔ ∃P and ∃Q iff: (6.5a)

j (Xp ,Zq) = Wpq , and (6.5b)

X and Z exist at the same time and space, where (6.5c)

fϕ : ∪i{ϕi : Wpq} → PA, (6.5d)

fϕ : ∪i{ϕi : Xp} → P , and (6.5e)

fϕ : ∪i{ϕi : Zq} → Q , (6.5f)

6.1.6 Greeno [6]

Instead of leveraging discrete mathematics (as in the formalisms discussed thus far), Greeno’s for-

malism draws on situation theory [187], where a situation is the collection of visual objects, their

properties, and their relations to one another in a particular time and place [187]. The term ability

is used in place of effectivity to define motor capability features of a human operator. To formalize

affordance, he uses a logical proposition (6.6) and a verbal description (in lieu of a mathematical

description) to state the HES conditions enabling it. Here, affordances are situation-dependent pre-

conditions for a human operator to execute some action in a way that achieves “good effects” (6.6)
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[6]. Semantically, what makes an effect “good” is not explained in [6]; and while the temporal rela-

tionship between “action by agent” and “good effects” is assumed to described a temporally ordered

relationship between “action” and “effects,” such a relationship is not defined mathematically by

the logical implication operator in (6.6).

〈〈action by agent〉〉 ⇒ 〈〈good effects in situation〉〉 (6.6)

6.1.7 Chemero [7]

Combining the syntax of discrete math with the semantics of situation theory, an affordance in

Chemero’s formalism is the feature of a situation that emerges from the relation between a human

operator and the environment, where the environment includes the physical object(s) to be acted

upon. This formalism draws on the same definition of “situation” as Greeno [187, 6] and specifies

affordance as a logical expression (6.7). Chemero states that a feature describes a situation in the

environment and ability is a capability of the human operator. An ability is distinct from Turvey’s [3]

dispositional effectivity because a human ability can fail while a dispositional effectivity cannot [7].

Affords-φ (feature, ability) (6.7)

6.1.8 Lenarčič and Winter [8]

In [8], researchers integrate situation theory [187] and object-oriented programming within a hier-

archical formalism representing affordances, environments, and human operators (6.8). Each affor-

dance (φ) is an object of the form shown in (6.8a), where s is a situation, ψ is a human action, and

i is an individual (e.g. a human operator). The expression in (6.8b) specifies that an action must

come from a set of possible actions ACT (not defined mathematically in [8]), and the expression

in (6.8c) specifies that the situation must be provable in the environment (e), which comes from a

set of environments Env. A human operator is composed of a name (x ), an ability (a), and a niche
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(n). A niche is defined as a set of abilities that the human operator has based on her skills and

experiences. For example, if the human operator is a manned aircraft pilot, one ability in her niche

could be “land plane.” The researchers define semantics for specifying situations that can be proven

to exist in a environment based on physical characteristics of human operators and objects therein.

Further details can be found in [8].

φ = 〈〈Φ, s, i〉〉, where (6.8a)

Φ ∈ ACT, (6.8b)

s ` e ∈ Env, and (6.8c)

i = 〈〈x , a,n〉〉 (6.8d)

6.1.9 Warren [9]

Warren’s formalism diverges from those discussed thus far by leveraging numerically valued variables

instead of discrete mathematical symbols to define affordance. This enables the analyst to measure

affordances and effectivities using empirical studies. A ratio of variables describing properties of the

environment (E ) and properties of the human operator (A), where an effectivity (6.9b) is the inverse

of an affordance (6.9a). In (6.9), π is a system of equations in which each element πi in π is used to

define a different ratio of a property of the environment and a property of the human operator [9].

For example, a π system that describes a human operator’s ability to grasp a door handle may

include an equation π1 = Wd/Wh , where Wd is the width of the door handle and Wh is the width

of the human operator’s hand in centimeters. This formalism is unique in that it is the only one of

the nine discussed in this section that specify measurements of the human and environment directly.

πaffordance = E/A

πeffectivity = A/E

(6.9a)

(6.9b)
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6.2 Representing Affordances Formally

In the spirit of formal methods, each of the discussed affordance formalisms could be instantiated

to support formal modeling and verification of human-interactive systems (specifically, configurable

hardware components and end-user opportunities to manipulate them). However, extant formalisms

employ discrepant theories, terminologies, and mathematical representations. Additionally, it is

unclear if any of them can be instantiated and verified in a way that is both theoretically and

mathematically correct. Despite these challenges, analysts could benefit from a modeling technique

that is sufficient for instantiating one or more extant formalisms. An encoding tool could also reduce

the need for combined expertise in ecological psychology and formal methods. The requirements

listed in this section begin to capture what is needed of such a technique and accompanying tool.

6.2.1 Requirements of a Modeling Technique

Considering the HES properties that shape affordance, five elements must be considered in a model-

ing technique for instantiating an extant formalism: physical objects in the operational environment,

human operators in the operational environment, spatial relations among objects and human opera-

tors, motor capabilities of human operators to physically manipulate objects, and temporal evolution

of the HES. Minimal requirements for such a technique are listed below.

1. The modeling technique should enable the analyst to represent physical objects

All of the discussed formalisms include a means of representing an HES, which may include one or

more physical objects. The technique should therefore support the analyst in representing at least

one physical object. In software and systems engineering, analysts use hierarchical-heterarchical

modeling languages to represent physical objects [188]. These techniques allow analysts to specify

types of system elements and the part-whole relationships among them. For example, analysts

can use a hierarchical-heterarchical structure to specify types of vehicles as cars and motorcycles.

They can then specify sub-components that exclusively belong to cars, such as doors, and sub-

components that exclusively belong to doors, such as knobs. A similar method can be applied for

specifying physical entities within HES to help analysts identify and model the specific parts involved
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in affordances.

2. The modeling technique should enable the analyst to represent human operators

All of the discussed formalisms have symbols and semantics for representing human operators

as part of an HES. Therefore, the modeling technique should support the analyst in representing a

human operator.

3. The modeling technique should enable the analyst to represent environmental conditions that

effect emergent affordances

The discussed formalisms provide various symbols and semantics for representing conditions

in the environment that effect emergent affordances, such as the spatial relationship between two

objects. It is therefore necessary for a modeling technique to provide a way of representing such

conditions.

4. The modeling technique should provide a way of representing temporal evolution of conditions

in the HES

All of the discussed formalisms are based on Gibson’s definition, which defines affordances as

emergent in a temporally evolving HES. Human motor capabilities are considered static, while spatial

relations evolve. The modeling technique should therefore provide a way for the analyst to represent

how spatial relations in the HES evolve over time.

5. The modeling technique should enable the analyst to represent motor-action capabilities of the

human operator

All of the discussed formalisms include verbal and/or mathematical representation of human

motor-action capabilities. These semantics employ Gibson’s definition to characterize one affordance

and one complementary effectivity or many abilities that could be “actualized” via one motor action.

Thus, to support the analyst in instantiating an extant formalism, the modeling technique should

provide a way of representing human motor-action capabilities that are needed to actualize an

affordance by executing one or more motor actions.
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6.2.2 Requirements of an Encoding Tool

To facilitate the process of verifying affordance-related characteristics of the interface, it could be

beneficial to develop an encoding tool that supports the analyst. Such a tool should include a

formal description language and an accompanying translator for generating model checking syntax.

A translator should be capable of parsing instantiated formal descriptions and generating model

checking syntax. A formal description language should facilitate the application of a modeling

technique. Initial requirements for such a language are listed below.

1. The language should enforce good encoding practices that are utilized in engineering domains

One commonality among extant formalisms is that they are grounded in psychological theories,

not engineering practices. Because one purpose of this work is to enable the practical application of

affordance in HFE, the language should enforce a hierarchical-heterarchical structure that is common

in engineering [189].

2. The language should provide a constrained set of keywords utilized in an extant affordance

formalism

All of the discussed formalisms define affordance and human capabilities using common and dis-

crepant keywords, terms and ideas. For example, in [3] the term “effectivity” is used to describe

human capabilities that never fail, while in [4] the term “ability” is used to describe human ca-

pabilities that sometimes fail. Either term is used exclusively within mathematically similar yet

theoretically conflicting formalisms. To support the analyst in applying a modeling technique to

instantiate an extant formalism, the language should incorporate a set of terms that are consistent

(i.e. either “ability” or “effectivity” should be utilized in the same instantiated description).

3. The language should provide keywords for representing spatial relations among human opera-

tors and objects in the environment

As discussed in Section 6.2.1, the modeling technique should support the analyst in representing

spatial relations in three dimensions. To facilitate the process of applying such a technique, the

language should provide corresponding keywords that can be unambiguously defined.
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In natural languages, the spatial position of an object may be described in reference to another

object [190]; for example, “The driver is inside the car.” In Geographic Information Systems (GIS),

formal techniques developed to verbally describe spatial relationships among objects in two dimen-

sions follow the same convention [191, 192, 193, 194, 195]. In [195] and [196], two types of spatial

relationships are identified: topological and directional. These descriptions can be leveraged within

the language.

A topological relationship describes the connectedness of one object in reference to another [197].

This approach is based on a mathematical formalism that uses four criteria of spatial relationships

for two-dimensional objects: (1) an intersection at the boundaries of two shapes, (2) common interior

parts of two shapes, (3) the boundary of one shape as part of the another shape’s interior, and (4)

the interior of one shape as part of another shape’s boundary [198]. Using these criteria, there

are eight exclusive (i.e. only one can exist at any time) topological relations between two entities

in two-dimensional space: disjoint, touch, equal, inside, contains, covered by, covers, and overlap.

Further details on the mathematical and semantical differences between these relations can be found

in [12].

To support the analyst in modeling topological relations, it could be beneficial to abstract possible

keywords from these eight relations. Utilizing a natural language description, “covers” and “covered

by” can be reduced to one relation; i.e., “A covers B” and “B is covered by A” have the same

meaning. “Contains” and “inside” can be reduced to one relation in the same way; i.e., “A is inside

B” and “B contains A” have the same meaning. “Contains” and “covers” can be reduced to one or

the other, as one object that covers another also contains it. “Equal” is characterized by one object

covering another object of the same size. Because the majority of extant affordance formalisms do

not have semantics for specifying the size of objects (with [9] as the exception), “equal” can be

abstracted as a kind of “covers.” This leaves four relations, all of which can be utilized within the

language (Fig. 6.1a–e).

A directional relationship describes the directional placement of one object in reference to an-

other [196]. In [196], two-dimensional directional relationships are described using cardinal compass
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Figure 6.1: (a-d) Conceptual representations of two-dimensional topological relationships
inspired by the formal language described in [12]: (a) 1 is disjoint to 2, (b) 1 touches 2, (c) 1
covers 2. (d) 1 overlaps 2. (e) A graphical representation of the topological-spatial relations: 2
is to the back of 1, 3 is to the right of 1, and 4 is to the bottom of 1, inspired by the techniques
described in [13] and [14].

directions north, south, east and west. In [199], two-dimensional directional relationships can be

described from the perspective of a human observer using terms such as left-of and right-of. Meth-

ods developed in civil engineering extend GIS techniques by incorporating directional keywords that

support describing objects in three dimensions [200]. In [200], compass directions are used to de-

scribe directional relations, where north and south are defined on the x-axis and east and west are

defined on y axis. Additional keywords for describing an object positioned above or below a reference

object are defined on the z-axis. In virtual reality, a different formal language has been developed to

support semantic modeling of virtual environments in three dimensions [13]. This language allows

spatial relations to be described relative to a reference object from the perspective of a human op-

erator rather than as compass directions. It employs phrases such as to the front of and to the left

of. This directional relation terminology (Fig. 6.1e) could be useful within an affordance modeling

technique.

4. The language should provide keywords for representing human operator motor capabilities

As discussed in Section 6.2.1, the modeling technique should support the analyst in representing

human motor capabilities. In engineering domains standard terminology is utilized for describing
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movement of objects in three dimensions. One such standard is the six degrees of freedom of a rigid

body in three-dimensional space (6DoF) [201]. There are two general types of motions that can

be described using 6DoF, positional changes and rotational changes. Positional changes reflect a

change in the placement of an object in 3-D space, typically using the object’s center (or origin) as a

reference point. Rotational changes reflect a change in the orientation of an object around its center

(or origin). Specific motions are defined along three axes (x, y and z ). Leveraging this standard,

the language could provide keywords for specifying motions along each axis. For positional changes

along the x -axis, the terms translate left and translate right may be used to describe leftward and

rightward movement respectively. For positional changes along the y axis, the terms position back

and position forth may be used. For positional changes along the z axis, the terms position up and

position down may be used. For rotational changes along the x -axis, the terms yaw right and yaw

left may be used. For rotational changes along the y-axis, the terms roll right and roll left may be

used. For rotational changes along the z -axis, the terms pitch back and pitch forth may be used.

Figure 6.2: A visual representation of positional and rotational movements based on the
six degrees of freedom of a rigid body in three dimensional space. Rotational movements are
indicated by the arcing arrows. Positional movements are indicated by the straight arrows.

6. The language should support parsing capabilities

As discussed earlier in this section, a translator could facilitate the development of formal models

that are amenable to formal verification. It is therefore necessary that the language enables parsing

capabilities, similar to the languages developed by other researchers for task analytic applications

(e.g. EOFM-XML [10]).
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6.3 The CAVEMEN Approach

The approach discussed in this section intends to support requirements listed in Section 6.2. A

modeling methodology includes an XML-based [71] language for instantiating one of three extant

affordance formalisms. An automated translation tool parses instantiated XML representations

and generates formal affordance models in the syntax of SAL [68]. Utilizing an instantiated SAL

model, an accompanying modeling technique supports the analyst in specifying initial end-user

motor capabilities and evolving spatial relations among entities in the environment. Together, these

elements constitute the Capability, Affordance, and eVolving rElations ModEliNg (CAVEMEN)

approach. It includes:

1. An XML-based grammar and affordance modeling technique for specifying objects and affor-

dances in a human-environment system

2. An automated translation tool that converts an CAVEMEN-XML representation to a formal

model in the syntax of SAL

3. An HES modeling technique for specifying end-user motor capabilities and evolving HES con-

figurations

4. A verification methodology, including LTL specifications and a model checking technique for

verifying error-tolerance and accuracy of configurable hardware

Leveraging the general theory of Gibsonian affordance [82], the CAVEMEN approach enables

the analyst to specify an affordance that emerges when any HES configuration satisfies a set of

properties concurrently. As in many of the discussed formalisms, when an affordance emerges it

can be actualized in one human action, such as turning a steering wheel [202] or catching a ball [9].

Concurrency reflects the characteristic of affordance as “pointing both ways,” where characteristics

of the human operator (i.e. motor capabilities) and characteristics of the environment (i.e. spatial

relations) are inseparable with respect to temporally emergent properties of affordance. These

properties are represented in two ways:
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1. Evolving spatial relations among environmental entities, including objects and human opera-

tors, which are defined based on the initial and future HES configurations that are possible

2. Static motor capabilities required of a human operator to move objects, which are defined by

how a human operator may need to manipulate an object for an affordance to emerge in any

possible HES configuration

The formal semantics of CAVEMEN-XML, which are are specified using the XSD standard

[159], are described in the remainder of this section. The modeling technique for instantiating a

CAVEMEN-XML model is also defined.

Figure 6.3: Visual representation of the CAVEMEN-XML grammar. In a–n, rectangles are
nodes, rounded-edge rectangles are attributes, and arrows point to child nodes. Sibling nodes
are horizontally adjacent. Required nodes and attributes are outlined in dotted red lines. For
sibling nodes, a blue dashed outline indicates that at least one of either is required. Groupings
of nodes within shapes correspond to the subsections describing them in Section 6.3.
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6.3.1 The Root Node

The root node of a CAVEMEN-XML specification is named hes (Fig. 6.3a), which stands for human-

environment system. It contains variables that represent physical objects and affordances. Variables

representing these elements are specified within modelobject, subobject, atomicobject, and affordance

child nodes.

6.3.2 Model Objects, Subobjects, and Atomic Objects

Each modelobject node (Fig. 6.3b) represents a physical object in the system that has one or more

parts making up its whole composition. Each modelobject may be decomposed into zero or more

subobject (Fig. 6.3c) child nodes, which represent its parts. A part can be anything physically

inseparable from the whole component such as a specific interior/exterior surface and a permanently

attached segment or widget. For each subobject node, the analyst can choose to decompose it into

another subobject or into an atomicobject node (Fig. 6.3d), which cannot be decomposed further. An

atomicobject node can be declared on its own to represent an object with no part-whole composition.

All three of these nodes must be assigned a unique, descriptive name attribute, which should help

to identify it.

The door example mentioned at the outset of this chapter can be specified in CAVEMEN-XML

as shown below. One modelobject node is encoded to specify the door (mDoor); one subobject node

specifies that the knob (sKnob) is a permanently attached part of the door; and one atomicobject

node specifies that the lock (aoLock) is a permanently attached part of the knob.

<modelobject name="mDoor">

<subobject name="sKnob">

<atomicobject name="aoLock"/>

</subobject >

</modelobject >

6.3.3 Affordance

Each affordance node (Fig. 6.3e) represents an affordance to be specified according to one of three

extant formalisms. The node must be assigned a unique, descriptive name attribute, which should

identify the affordance being specified, and a formalism attribute, which identifies the terminology
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and theory that the specification will employ. The formalism attribute can be valued stoffregen,

greeno or chemero. If the analyst specifies multiple affordance nodes, each node should have the

same formalism attribute value to ensure that the same underlying theory and formalism are uti-

lized consistently throughout the model. Different techniques for instantiating each formalism are

described in Section 6.3.7. For any instantiated formalism, each affordance node can have one or

more humanoperator nodes.

6.3.4 Human Operator

Each humanoperator node (Fig. 6.3) represents a human having capabilities to perceive and ma-

nipulate objects in a HES. Each human operator must be assigned a name attribute. The name

attribute is necessary for specifying spatial relations among human operators and physical objects

using relation nodes, which will be described next. Each humanoperator node contains one or more

relation, component, subcomponent and atomcomponent child nodes.

6.3.5 Relation

Each relation node (Fig. 6.3g) is used to specify one spatial relationship between a model entity

with respect to an associated entity from the human operator’s initial perspective (what is meant

by “initial perspective” is discussed later in this section). Each relation node must be assigned a

topology attribute having one value from Table 6.1. The attribute value identifies the topological

relationship among two objects that is needed for an affordance to emerge. An optional direction

attribute represents one surface of an associate (discussed next), and it can be assigned a value from

Table 6.2. Omitting a direction attribute is equivalent to specifying all six directions.

An associate attribute represents a model entity with respect to which other attributes of a

relation node are defined; e.g., the component is covering the top of its associate, where the top is

a two-dimensional surface. Once defined, the identities of associate entity surfaces do not change;

i.e., the front-facing surface is always referenced as such (see for example Fig. 6.6a), even if the

human operator’s perspective could change. This is what is meant by the human operator’s “initial

perspective.”
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These semantics help ensure that evolving spatial relations can be modeled unambiguously. For

example, the front of a car is always the front, no matter how the human operator views it. The

left and right sides (surfaces in CAVEMEN-XML) could then be defined invariantly with respect to

the car’s front-facing surface, even if the human operator changes her position with respect to the

car such that the left- and right-side surfaces are reserved. If the entity has identical surfaces along

all axes of symmetry, such as a sphere or cube with no exterior markings, the analyst could use

direction attributes interchangeably, since no directions are distinct and there would be no semantic

difference to a human operator.

Each relation node may be assigned an optional condition=“not” attribute, which specifies that

the relation must not exist. All child subcomponent and atomcomponent nodes inherit relation nodes

from higher level component and subcomponent nodes, except if they are referenced within associate

attribute values. For example, consider a component node having one relation child node and one

subcomponent child node. If the relation node references the subcomponent node’s name within its

associate attribute, the subcomponent does not inherit it, since such inheritance would constitute a

self-relation (i.e. the subcomponent ’s associate is itself). If the analyst encodes self-relations they

are ignored by the XML-to-SAL translation tool (discussed later).

Table 6.1: Topology attribute values. All topological relations are mutually exclusive

Value Semantics

disjoint to There is empty space between one or more surfaces of an entity and
one or more surfaces its associate

touching One or more surfaces of an entity touch one or more surfaces of its
associate (without overlapping or covering)

covering One or more surfaces of an entity completely cover one or more
surfaces of its associate. If it is not completely covering, but there is
contact, then the relation must be either touching or overlapping.

overlapping One or more surfaces of an entity overlap one or more surfaces of
its associate. If there is contact, but the surfaces are not overlapping,
then the relation must be either touching or covering.
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Table 6.2: Direction attribute values

Value Semantics

right of Surface right of associate’s origin

left of Surface left of associate’s origin

front of Surface front of associate’s origin

back of Surface behind associate’s origin

top of Surface above associate’s origin

bottom of Surface below associate’s origin

6.3.6 Component, Subcomponent, and Atom Component

Component (Fig. 6.3a), subcomponent (Fig. 6.3b) and atomcomponent nodes (Fig. 6.3c) are used

to specify spatial relationships among physical objects with respect to each other from the human

operator’s perspective (discussed further in Section 6.3.5). Each must be assigned a name attribute

that references a modelobject, subobject, and atomicobject respectively. Each component, subcompo-

nent and atomcomponent node must also contain one or more relation nodes and/or exactly one

ability node (discussed below).

6.3.7 Ability

The ability node is utilized to specify motor capabilities of the human operator according to the

formalisms developed by Stoffregen [4], Chemero [7], and Greeno [6]. Ability is chosen over effectivity

because the underlying theories employing ability do not require one-to-one complementarity of

affordances and motor capabilities. This is advantageous for affordance specification because real

HES affordances could involve multiple, concurrent abilities; as in the “door openability” example,

where a human operator must be able to turn the knob (one ability) and pull the door open (a

second ability).

Each ability node (Fig. 6.3k) represents a human capability to move a component, subcomponent

or atomcomponent in three-dimensional space of the operational environment. As in all three affor-

dance formalisms that leverage this keyword, each ability node specifies a motor capability that is

required of the human operator, independently of other objects, agents, and conditions in the HES
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(i.e. independently of all relation nodes and other ability nodes). This convention is based on an

overarching assumption of Gibsonian affordance: human motor capabilities are a characteristic of the

human operator alone, and while they are inseparable from affordance, they persist independently

of the environment [82].

As discussed in Section 6.1, one way researchers have characterized human capabilities formally

with respect to affordance is by defining static parameters such as leg length and palm width [9]. In

CAVEMEN-XML, these characteristics are defined indirectly with respect to a single object that the

analyst has defined within a component, subcomponent and atomcomponent (referencing an object,

subobject, or atomicobject node respectively). For example, consider an affordance node named

“DoorOpenable, a direct child component node named “Door,” and a grandchild (i.e. a child of

Door) named “Knob.” One way to specify an ability child node of “Knob” involves reasoning about

how large the human operator’s hand needs to be and how much force is required to rotate the knob

in either direction, where either direction could be necessary for the door to be openable. Regardless

of where the door is in relation to the human operator, whether it is locked, and how many other

objects/agents could be in the way, the motor capability of rotating the knob must persist in any

situation for the affordance to emerge. Thus, the ability node is utilized to identify these needs, and

it should be assigned a name attribute accordingly, such as “TurnKnob.”

The exact movements in three-dimensional space defining a motor capability can be specified

using the child nodes translatable, positionable and orientable (discussed next).

6.3.8 Translatable, Positionable and Orientable

These nodes (Fig. 6.3l–n) represent the six degrees of freedom of a rigid body in three-dimensional

space (Fig. 6.2 and 6.3). Every attribute in each of these nodes (if specified) must be assigned a

Boolean value, which represents whether or not the human operator might need to perform the

movement. Omitting one or more nodes and/or attributes is equivalent to specifying that true and

false are both applicable. This syntax is utilized to specify the underlying composition defining a

necessary human motor capability with respect to:

• The origin (i.e. the center) of the object that must be moved, independently of its parent
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object (explained further below)

• The motor capability being defined (i.e. the name attribute of the direct parent ability node)

For example, consider the affordance of “DoorOpenable” and the ability of “TurnKnob” mentioned

in Section 6.3.7. Again, without considering where the human operator and door are in relation to

each other, whether the door is locked, or whether it is functioning correctly, the ability of rotating

the knob clockwise or counterclockwise could be needed to ensure that the door is openable in any

potential scenario. An alternative way of reasoning about this involves considering all imaginable

HES configurations, including all possible spatial relationships among the knob and human operator.

While there are many situations in which the door is openable without turning the knob, such as

if its bolt is missing, there are also many in which the knob must be turned. In accordance with

Gibson’s definition, all of them must be considered.

Utilizing the formal semantics of CAVEMEN-XML (based on the 6DoF standard), movements

for the motor capability of “TurnKnob” can be specified within an orientable node (Fig. 6.3l) as

shown below.

<ability name="TurnKnob">

<orientable roll -right="true" roll -left="true"/>

</ability >

The valued attributes roll-right=“true” and roll-left=“true” correspond to the clockwise and

counterclockwise movements mentioned earlier. Other nodes and attributes are not specified, as it

is irrelevant if the human operator can position, translate, or orient the knob in any other way.

6.3.9 Translation to SAL

A custom, JavaScript-based translator supports model checking analyses of CAVEMEN-XML repre-

sentations. It parses nodes of an instantiated CAVEMEN-XML representation to generate a formal

model in the syntax of SAL [68], incorporating all entities and affordances in the HES. A translated

formal model is a SAL context (Chapter 3, Section 3.2) named cavemen by default, and it has enu-

merated types, record types, and array types representing all spatial relations and human operator

motor capabilities specified in the instantiated CAVEMEN-XML representation. Affordances are
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represented within a module named affordance and the HES is represented within a module named

HES. A general representation of an automatically generated SAL context is shown below. Model

infrastructure to be discussed throughout the section is marked with text in parentheses referencing

the subsection in which it is discussed. The asynchronous composition of affordance and HES mod-

ules ensures that changes to spatial relations among HES entities update in the next-state when an

affordance is actualized (explained in Section 6.3.13).

cavemen: CONTEXT =

BEGIN

(Automatically generated types, Section 6.3.9.1)

affordance: MODULE =

BEGIN

(Affordance module variables, Section 6.3.9.2)

DEFINITION

(Affordance module definitions, Section 6.3.11)

END;

HES: MODULE =

BEGIN

(HES module variables, Section 6.3.10)

END;

affordances: MODULE = affordance [] HES;

END

6.3.9.1 Automatically Generated Types

Spatial relation and motor capability values are enumerated types generated from topology and

direction attributes as well as ability child node attributes. Spatial relation enumerated types could

include all values from Tables 6.1 and 6.2 (as shown below). Motor capability enumerated types are

generated for all movements represented in Fig. 6.2.

topological: TYPE = {disjoint to, touching, covering, overlapping};
directional: TYPE = {right of, left of, front of, back of, top of, bottom of};

orient : TYPE = {pitch back, pitch forth, yaw right, yaw left, roll right,

roll left};
position : TYPE = {up, down, back, forth};
translate: TYPE = {left, right};

Spatial relation enumerated types topological and directional are incorporated within an

array type of six Boolean-valued directions each having a topological relation. Motor capability
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enumerated types orient, position, and translate are incorporated within a record type having

three arrays of Boolean-valued movements.

relations: TYPE = ARRAY directional OF topological;

abilities: TYPE = [#orientable : array orient of boolean,

positionable: array position of boolean,

translatable: array translate of boolean#];

An additional set of record types is generated to represent perceivable spatial relations among

environmental entities, including objects and human operators (represented within CAVEMEN-

XML relation nodes). The translator generates one record type for each entity (humanoperator,

component, subcomponent, or atomcomponent) having one or more relation child nodes. The name

of each record type is the entity’s name attribute with rels added at the end. Each associate

attribute (i.e. an associated entity) is represented as an identifier having the record type relations.

A general encoding is shown below for a CAVEMEN-XML representation having n entities, all of

which are considered atomcomponent nodes. Each has m relation child nodes, all of which have

associate attributes referencing other atomcomponent nodes.

aoEntity 1 rels: TYPE = [#aoAssociate 1: relations,..., aoAssociate m:

relations#];

...

aoEntity n rels: TYPE = [#aoAssociate 1: relations,..., aoAssociate m:

relations#];

6.3.9.2 Affordance Module Variables

The translator generates a representation of all HES affordances with a module named affordances.

The module has input variables representing spatial relations among HES entities, each with a corre-

sponding record type. Each input variable is the name attribute of an HES entity. A general encoding

of input variables is shown below, where each variable’s type is leveraged from general record types

aoEntity 1 rels, . . . , aoEntity n rels described in the previous section (Section 6.3.9.1).

INPUT aoEntity 1: aoEntity 1 rels

...

INPUT aoEntity n: aoEntity n rels

Input variables are also generated to represent human operator capabilities, each having the

record type abilities. The translator parses humanoperator, component, subcomponent, atom-
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component, and ability nodes and generates one input variable for each human capability to move

another entity. Each record type is named using the humanoperator node’s name attribute, followed

by an underscore, followed by the name attribute of a component, subcomponent, or atomcomponent

node. The general SAL syntax shown below represents one humanoperator node named “pHuman”

having n atomcomponent child nodes, each with one ability child node.

INPUT pHuman aoEntity 1: abilities

...

INPUT pHuman aoEntity n: abilities

6.3.10 HES Module Variables

The affordance module inputs specifying spatial relations and human capabilities are outputs of

an automatically generated HES module representing the human-environment system. The contents

of this automatically generated module are always the input and output variables encoded generally

below representing affordances and HES entities respectively. The type of each affordance input

variable depends on the instantiated formalism (discussed in Section 6.3.12).

INPUT affordance 1 ... affordance n: ...

OUTPUT entity 1: entity 1 rels

...

OUTPUT entity n: entity n rels

OUTPUT pHuman aoEntity 1: abilities

...

OUTPUT pHuman aoEntity n: abilities

Utilizing output variables, the analyst can manually add infrastructure specifying an initial HES

configuration as well as next-state configurations that evolve over time. Such infrastructure should

represent initial human capabilities, initial spatial relations, and transitions to spatial relations

that evolve based on what affordances exist, where affordance input variables are leveraged within

guarded transitions. Techniques for encoding these initializations and transitions are discussed in

Section 6.3.12.

6.3.11 Affordance Module Definitions

The module’s remaining syntax depends on the extant affordance formalism and underlying theory

represented in CAVEMEN-XML (specified in the affordance node formalism attribute). An example
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affordance node (Fig. 6.4a) illustrates the automatically generated model infrastructure correspond-

ing to each possible formalism attribute value: stoffregen (Fig. 6.4b), greeno (Fig. 6.4c), or chemero

(Fig. 6.4d).

The CAVEMEN-XML affordance node represented in Fig. 6.4a specifies an HES including a hu-

man operator (pHuman), a book (aoBook), and a table (aoTable). One affordance is specified as the

human operator’s opportunity to place the book on the table’s top surface (BookPlaceableOnTable).

In this example, the book is placed on the table if the top-side surface of the table is completely

covering one or more surfaces of the book (i.e., the book cannot be hanging off the edge of the table).

The relation node specifies that the book is not already placed on the table, and the ability node

specifies that the human operator must be capable of moving the book left, right, up, down, back,

and forth as well as rotating the book left or right.

When the formalism attribute is “stoffregen” (Fig. 6.4b), the translator generates model infras-

tructure corresponding to Stoffregen’s formalism (6.4) [4]. This includes one Boolean local type

variable corresponding to properties of the environment:

• Xp in Stoffregen’s formalism (6.4)

• X , followed by the affordance node’s name attribute in SAL (Fig. 6.4b, blue, dashed-line

rectangle)

Its value is true if spatial relations in the HES satisfy those represented within CAVEMEN-XML

affordance nodes (Fig. 6.4b, blue text). The translator also generates one Boolean type local variable

corresponding to properties of the human operator:

• Zq in Stoffregen’s formalism (6.4)

• Z , followed by the ability node’s name attribute in SAL (Fig. 6.4b, green rectangle)

Its value is true if human capabilities in the HES satisfy those represented within translatable,

positionable, and orientable nodes (Fig. 6.4b, green text). The output is a pair of Boolean type

variables corresponding to the affordance:

• Wpq = (Xp ,Zq) possesses h in Stoffregen’s formalism (6.4)
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Figure 6.4: A graphical representation of an example CAVEMEN-XML affordance node and
translated SAL model infrastructure for three extant affordance formalisms. (a) An example
CAVEMEN-XML affordance node. Arrows inside the box point from parent nodes to child
nodes. Arrows outside the specify different formalism attribute values and point to correspond-
ing SAL model infrastructure. Nodes are colored to identify corresponding SAL code: in b–d,
variable declarations are enclosed in color-coded rectangles and value assignments are written
in color-coded text. (b) SAL model infrastructure generated for the formalism attribute value
stoffregen. (c) SAL model infrastructure generated for the formalism attribute value greeno.
(d) SAL model infrastructure generated for the formalism attribute value chemero

• The affordance node’s name attribute followed by [BOOLEAN, BOOLEAN] in SAL (Fig. 6.4b,

black, dashed-line rectangle)

Its value is (true, true) if the pair of Boolean variable values representing environment properties and

human capabilities are true (Fig. 6.4b, red text). Other possible values could be (true, false), (false,

true), or (false, false), depending on the respective values of local Boolean variables representing

environment properties and human capabilities respectively.
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When the formalism attribute is “greeno” (Fig. 6.4c), the translator generates model infrastruc-

ture corresponding to Greeno’s formalism (6.6) [6]. This includes one Boolean type output variable

(Fig. 6.4c, black, dashed-line rectangle) representing the preconditions under which 〈〈action by agent

⇒ good effects in situation〉〉 (6.6) is satisfied. Its value (Fig. 6.4c, red text) is true if all conditions

specified within relation nodes (Fig. 6.4c, blue text) as well as translatable, positionable, and ori-

entable nodes (Fig. 6.4c, green text) are satisfied.

When the formalism attribute is “chemero” (Fig. 6.4d), the translator generates model infras-

tructure corresponding to Chemero’s formalism (6.7) [7]. This includes a function affords that takes

two Boolean-values inputs and returns a Boolean-valued output if both inputs are true. The func-

tion corresponds to Affords-φ(feature, ability) in Chemero’s formalism (6.7). One input is a Boolean

local type variable corresponding to a feature of the environment:

• feature in Chemero’s formalism (6.7)

• feature , followed by the affordance node’s name attribute in SAL (Fig. 6.4d, blue dashed-line

rectangle)

Its value is true if spatial relations in the HES satisfy those represented within CAVEMEN-XML

affordance nodes (Fig. 6.4d, blue text). The translator also generates one Boolean type local variable

corresponding to human operator abilities:

• ability in Chemero’s formalism (6.7)

• ability , followed by the ability node’s name attribute in SAL (Fig. 6.4d, green rectangle)

Its value is true if human capabilities in the HES satisfy those represented within translatable,

positionable, and orientable nodes (Fig. 6.4d, green text). A Boolean output variable is generated

to capture the output of affords, and its name is the affordance node’s name attribute (Fig. 6.4d,

black, dashed-line rectangle).

6.3.12 HES Modeling Technique

As mentioned, the analyst can add model infrastructure to the automatically generated HES module

in order to specify static capabilities of the human operator(s) and evolving spatial relations among
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HES entities. Initial spatial relations that are possible can be encoded using a technique similar

to the one described in Chapter 5: the analyst could reason about what initial spatial relations

are possible in a particular situation and encode them accordingly. This technique is useful for

considering a constrained set of initial configurations (demonstrated in Section 6.4.4). Otherwise,

the analyst can enable random initializations that are assigned during a model checking analysis.

This technique is useful for considering a wide range of configurations within a single analysis,

however it could include state variable assignments representing impossible configurations (such as

small object surfaces covering larger ones).

Transitions should be encoded to specify what next-states of spatial relations are possible when

each affordance exists and is actualized (discussed in greater detail below). This can be accom-

plished in many ways, depending on model complexity, architecture, and what affordance formal-

ism is instantiated. A general encoding is shown below for a CAVEMEN-SAL model having m

affordances instantiated using either Greeno’s or Chemero’s formalism (Fig. 6.4b, c), where affor-

dance 1 . . . affordance n are Boolean variables (encoding for Stoffregen’s formalism shown in Ap-

pendix C.1).

TRANSITION [

affordance 1 -->

entity 1’ = ...

...

entity n’ = ...

affordance m -->

entity 1’ = ...

...

entity n’ = ...

...

[]ELSE -->

];

This code specifies that if an affordance exists, one or more spatial relations can change in the

next-state. A final “ELSE” guard command ensures that there are no deadlock states (i.e. states in

which the model cannot transition).

Semantically, these transitions represent changes to spatial relations effected immediately after

an affordance is actualized, which is an indirect way of encoding the effects of a human action

without representing such actions explicitly (as done in Chapter 5). Such a technique adopts the
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convention employed in all three extant formalisms specifiable in CAVEMEN-XML: a human opera-

tor actualizing an affordance effects changes in the human-environment system. What relations can

change when an affordance is actualized depends on the model, and there are many ways to encode

these changes. One such technique is demonstrated in Section 6.4.4.

Initial human capabilities are assigned using the SAL initialization construct, as they are static

according to Gibson’s definition, unless the human operator loses a motor capability at some point

in the HES evolution [8]. Such a scenario is not considered on this work. For each output variable

having the abilities record type, the analyst should consider how a human operator can manipulate

an object independently of all other objects. If it is a whole object (i.e. it was generated from a

modelobject node having prefix m or a standalone atomicobject node having prefix ao), the analyst

should specify movements that are possible for the human operator when it is only the human

and object in the operational environment. Otherwise, the analyst should consider movements

that are possible when the object, its permanently attached child object(s), and the human are in

the operational environment. There are many ways such initializations can be encoded, and one

technique is demonstrated in Section 6.4.4. Further examples are provided in Appendix C.2.

6.3.13 Module Composition

The translator automatically generates a system model named affordances by asynchronously com-

posing the automatically generated affordance and HES modules. The asynchronous composition

abstracts human-system interaction by reflecting updates to spatial relations in the HES that emerge

in response to a human action. The SAL syntax specifying this module composition is generated as

shown below:

affordances: MODULE = affordance [] HES;

6.3.14 Specifications

As mentioned, accuracy and error tolerance are important characteristics of safety-critical system

hardware. With respect to the CAVEMEN modeling methodology, four kinds of LTL specifications

were developed to assert these characteristics.
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In regard to accuracy, configurable hardware must be designed to enable the correct affordances

at the appropriate times. Therefore the analyst may need to verify that the temporal relationships

among one or more affordances are correct. For example, if a cable output end is connectable to

an input source, it may be necessary for a different output end to be connectable to a different

input source in the future, where the first connectability affordance transitioning from available to

unavailable ensures that the other connectability affordance remains available.

In this work, the LTL specification asserting such a situation is called Positive affordance ac-

curacy, as it represents a positive (i.e. desired) temporal relationship between two safe affordances

(i.e. two affordances that are both necessary to configure the system correctly). To encode such a

specification, the CAVEMEN model must represent at least two affordances that should emerge at

different times. The example specification in (6.10) reads, “it is always true (G) that when a safe

affordance exists (safeAffordancei) and (∧) does not exist in the future (F(¬safeAffordancei), i.e.

some change occurred disabling it) this implies (⇒) that, in the future (F), a different safe affordance

(safeAffordancej ) emerges.”

G(safeAffordancei ∧ F(¬safeAffordancei) ⇒ F(safeAffordancej )) (6.10)

A different version of this specification can be encoded to assert the absence of a negative (i.e.,

undesired) temporal relationship between two affordances (i.e., actualizing one affordance ensures

that an undesired affordance does not emerge in the future). For example, if a cable output end is

disconnectable from a discharged battery, the end user should not be able to connect the cable to the

same discharged battery in the future. In this work, such a specification is called Negative affordance

accuracy, as it specifies a desired temporal relationship between a safe and unsafe affordance. The

example specification in (6.11) reads, “it is always true (G) that when a safe affordance currently

exists (safeAffordance) and (∧) does not exist in the future (F(¬safeAffordance)), this implies (⇒)

that, in the future (F), an unsafe affordance does not emerge (¬unafeAffordance).”
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G(safeAffordance ∧ F(¬safeAffordance) ⇒ F(¬unsafeAffordance)) (6.11)

In regard to error tolerance, the analyst may need to verify that an unsafe affordance never

emerges when the HES is in a particular configuration. Consider the aircraft fuselage door example

discussed earlier in this chapter: a critical safety feature of the door is that it is not openable when

the aircraft exceeds a certain altitude. In this work, such a specification is called Weak affordance

error tolerance. The example specification in (6.12) reads, “it is never true (G¬) that when the HES

model is in a particular configuration (variable = valuei), this implies (⇒) that an unsafe affordance

does not emerge (¬unsafeAffordance).”

G¬(variable = valuei ⇒ ¬unsafeAffordance) (6.12)

Finally, the analyst may need to verify that a particular affordance never emerges in any HES

configuration. For example, configurable hardware may need to be designed such that a cable output

end is never connectable to the incorrect input socket. In this work, such a specification is called

Strong affordance error-tolerance. The example specification in (6.13) reads, “it is always true (G)

that an unsafe affordance never emerges (¬unsafeAffordance).”

G(¬unsafeAffordance) (6.13)

6.3.15 Model Checking Technique

Specifications can be encoded manually in SAL using the theorem construct [68] (see Chapter 3, Sec-

tion 3.2.3.1 for more information on the SAL theorem construct). They can be verified using either

symbolic model checking (SAL-SMC) or bounded model checking (SAL-BMC) [68] (see Chapter 3,

Section 3.2.3 for more information about these tools).
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6.4 Case Study

To demonstrate the application of the CAVEMEN approach, a medical device adverse event involving

the emergence of an unsafe affordance was selected from the U.S. FDA Manufacturer and User

Facility Device Experience (MAUDE) database [203]. The MAUDE database contains searchable

records of medical device adverse events reported by hospitals, outpatient centers and other user

facilities. Reports include information such as an event description and a manufacturer narrative.

The report was selected from a search for adverse events occurring in 2015 involving a “connection

issue” and a patient injury. The search returned 195 results, and the 29th report was selected using

a random number generator.

The selected case study involves a surgically implanted cardiac resynchronization therapy pace-

maker (CRT-P) intended for use in heart failure patients (MAUDE report number 2124215-2015-13749):

the manufacturer received a report indicating that a patient’s CRT-P device was not providing op-

timal therapy. Testing and evaluation revealed that all three of the device’s leads were connected to

the wrong input ports on the pulse generator: the RA lead was connected to the LV port, the RV

lead was connected to the RA port, and the LV lead was connected to the RV port. The patient

underwent an additional surgery to correct the connections.

HES entities, an initial HES configuration, two safe affordances, and an unsafe affordance were

identified using the MAUDE event description, manufacturer narrative, and information from the

CRT-P device manufacturer’s website. Safe affordances are specified as correct lead-to-port con-

nectability for the LV and RV leads and ports, while the unsafe affordance is specified as LV lead

connectability to the RV port. A CAVEMEN-XML specification of the HES and three affordances

were encoded using Greeno’s formalism [6] to specify the preconditions under which the affordances

emerge. The instantiated CAVEMEN-XML representation was translated to SAL using the tool de-

scribed in Section 6.3.9, and a separate model of the HES was encoded using the technique described

in Section 6.3.12. A set of possible initial conditions were encoded by adding infrastructure to the

automatically generated HES module. One set of initial conditions specifies motor capabilities of the

surgeon enabling her to move all components of the CRT-P device along all six degrees of freedom.
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Figure 6.5: (a–h) Graphical rendering of case study device components. Red rectangles
indicate proximal tip and input port surfaces that must touch to establish a connection. (a)
Pulse generator. (b) LV input port. (c) LV set screw. (d) RA input port. (e) RA set screw (f)
RV input port. (e) RV set screw. (h) Lead segments. Arrows indicate continuation of middle
segments and implanted positions of distal tips. Proximal tip segments begin at the top edges
of white rectangles containing letters i–k. (i) LV lead proximal tip. (j) RA lead proximal tip.
(k) RV lead proximal tip. (m) Lines 1–12 of instantiated CAVEMEN-XML model.

The second set of initial conditions specifies possible spatial relations among objects in the HES

with respect to each other and the surgeon. Two guarded transitions specify spatial relations that

emerge in the next-state following actualization of each affordance.

LTL affordance specification introduced in Section 6.3.14 were encoded and verified using sym-

bolic model checking, and results are presented in Section 6.4.6.

6.4.1 System Description

A CRT-P device monitors heart functionality and delivers corrective electrical impulses to the pa-

tient’s heart when potentially life-threatening cardiac abnormalities are detected. The system in-

cludes a programmed pulse generator having an internal battery and three leads. The tip of each

lead (Fig. 6.5i–k) is 3.2 mm in diameter, fitting 3.48 mm diameter ports on the pulse generator [26].

The pulse generator (Fig. 6.5a) is 4.45 cm wide, 6.1 cm high, 0.75 cm deep and weighs 34 g. Its

upper segment has three input ports of the same size and shape, circular with a 3.48 mm diameter

(Fig. 6.5b, 6.5d, 6.5f). Each input port has a set screw for securing leads (Fig. 6.5c, 6.5e, 6.5g).

Set screws cannot be removed from the pulse generator, but they must be loosened for leads to be

inserted.
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Leads (Fig. 6.5h) have distal and proximal ends with elongated, flexible middle segments. They

are all of the same type having the same dimensions. During implantation a surgeon connects distal

tips to three chambers of the patient’s heart. Chambers include the left ventricle (LV), which pumps

oxygenated blood throughout the patient’s body, the right atrium (RA), which receives low-oxygen

blood from the patient’s body, and the right ventricle (RV), which receives low-oxygen blood from

the RA and pumps it to the patient’s lungs.

Distal tips of each lead are implanted at heart chambers indicated by arrows in Fig. 6.5h. Prox-

imal tips (Fig. 6.5i–k) can be connected to the pulse generator via input ports. Based on the

physician’s technical manual [204], a lead is connected if complete electrical contact is made, i.e.

the front surface of a proximal tip (Fig. 6.5h, areas enclosed within red rectangle) is covering the

back surface of a port (Fig. 6.5a, areas enclosed within red rectangle). The appropriate lead–port

connections are embossed on the lower segment of the pulse generator in Fig. 6.5a (vertical column

of three circles labeled LV, RA, RV from top to bottom).

6.4.2 Event Description

One unsafe affordance that could be implicated in this case study is LV lead connectability to the RV

port, which enabled an erroneous connection during implantation surgery: one action by the surgeon

led to an unsafe connection established established in the next-state. Using Greeno’s formalism, the

action and its effects can be encoded as shown in (6.14).

〈〈action by surgeon〉〉 ⇒ 〈〈LV lead connected to RV port〉〉 (6.14)

Two safe actions and their effects, the LV and RV leads being connected to the correct ports, can

be encoded in similar ways:

〈〈action by surgeon〉〉 ⇒ 〈〈LV lead connected to LV port〉〉 (6.15)

〈〈action by surgeon〉〉 ⇒ 〈〈RV lead connected to RV port〉〉 (6.16)
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Figure 6.6: Graphical rendering of HES entities in a configuration satisfying relation nodes and
attributes. Labeled axes in (a) show the surgeon’s visual perspective with respect to surfaces
of the pulse generator, all three ports, and all three set screws. Labeled axes in (b) show
the surgeon’s visual perspective with respect to all surfaces of the LV lead proximal tip. RA
and RV leads are perceived in the same way. (a) Surgeon (not shown) disjoint to front of RV
port. (b) Surgeon (not shown) disjoint to top, bottom and front of LV lead proximal tip. (c)
LV lead proximal tip not covering back of RV port. (d) RV set screw touching right of pulse
generator, and RA set screw disjoint to right of pulse generator for visual comparison. (e) RA
lead proximal tip disjoint to front of RV port. (f) RV lead proximal tip disjoint to front of
RV port. (g) RA lead proximal tip and RV lead proximal tip both disjoint to front of LV lead
proximal tip (tabletop surface not modeled). (h) Lines 13–51 of CAVEMEN-XML model.

Greeno’s formalism incorporates a verbal description of the preconditions enabling an affor-

dance [6]. For this case study, they can be described as shown in outline form below:

1. The surgeon can move the pulse generator
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2. The surgeon can move:

(a) The LV lead proximal tip in support of (6.14) and (6.15)

(b) The RV lead proximal tip in support of (6.16)

3. No HES entity is blocking the connection to:

(a) The RV port in support of (6.14) and (6.16)

(b) The LV port in support of (6.15)

4. The set screw is loosened for:

(a) The RV port in support of (6.14 and (6.16)

(b) The LV port in support of (6.15)

These preconditions are encoded formally in the next section using CAVEMEN-XML.

6.4.3 CAVEMEN-XML Model

In the specification description provided in text of this section, all node names, attribute names,

and attribute values are italicized. The CAVEMEN-XML specification is shown in two graphical

representations. Device components (Fig. 6.5a–h,) are specified in Fig. 6.5m. Preconditions of the

unsafe affordance (6.14) are specified in Fig. 6.6h. The safe affordance preconditions (6.15) are not

shown in Fig. 6.6). It was encoded by modifying the code in Fig. 6.6h by replacing each instance

of “aoRVPort” with “aoLVPort” and “aoRVSetScrew” with “aoLVSetScrew” (discussed further in

Section 6.4.3.2). The full model was 81 lines of XML code (Appendix F.1).

The root node hes is specified on line-1 of Fig. 6.5n. The pulse generator (Fig. 6.5a) is specified

on lines 2–9 using a modelobject node with the name attribute valued mPulseGenerator. Ports

(Fig. 6.5b, 6.5d, 6.5f) are specified on lines 3–5 using atomicobject nodes with name attributes

aoLVPort, aoRAPort, and aoRVPort respectively. Set screws (Fig. 6.5c, 6.5e, 6.5g) are specified

on lines 6–8 with name attributes aoLVSetScrew, aoRASetScrew, and aoRVSetScrew respectively.

All three lead proximal tips are specified within atomicobject nodes (Fig. 6.5i–k). The LV lead

proximal tip (Fig. 6.5i) is specified on line-10 with the name attribute valued aoLVLeadProximalTip.
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The RA lead proximal tip (Fig. 6.5j) and RV lead proximal tip (Fig. 6.5k) are specified on lines 11

and 12 respectively using the same syntax.

6.4.3.1 LVLeadConnectableToRVPort

The affordance of LV lead connectability to the RV port is specified on lines 13–54 of Fig. 6.6h.

It is assigned the name attribute LVLeadConnectableToRVPort. The formalism attribute greeno

indicates that the specification will employ the terminology and theory of Greeno’s formalism [6].

While there are many HES configurations satisfying relation nodes specified in the remainder of

this section, to aid the reader, one such configuration from Fig. 6.6a–g is referenced beside several

relation node descriptions as (Fig. 6.6h, line number(s); Fig. 6.6 letter(s)).

The surgeon is specified using a humanoperator node with the name attribute pSurgeon (Fig. 6.6h,

line-14). As mentioned, the surgeon cannot be blocking the connection. One way to specify this is

using relation nodes to assert that there must be empty space between all surfaces of the surgeon (i.e.

waist, palms, fingers) and the front-side surface of the RV port (Fig. 6.6h, lines 15–16; Fig. 6.6a).

Similarly, the surgeon cannot be blocking the connection by interfering with any surfaces of the LV

lead proximal tip. This is specified on line-17 of Fig. 6.6b.

The pulse generator is specified using a component node with the name attribute mPulseGen-

erator (Fig. 6.6h, line-18). The surgeon must be capable of moving the pulse generator in a way

that supports connectability of the LV lead proximal tip. This is specified on using an ability node

with the name attribute MovePulseGenerator (Fig. 6.6h, line-19). As discussed in Section 6.3.7,

this motor capability is defined with respect the pulse generator’s origin, without considering where

the surgeon and objects in the HES are in relation to each other at any one moment (alternatively,

considering all imaginable spatial relations in any situation). For example, the pulse generator and

lead tips could be facing different directions, positioned at different heights, or be in some other

configuration that requires the surgeon to execute complex maneuvers of both components simulta-

neously. All movements of the pulse generator along x, y, and z axes could therefore be necessary

for the affordance LVLeadConnectableToRVPort to emerge. This is specified on lines 20–25 us-

ing orientable, positionable, translatable nodes with all attributes valued true. Spatial relations of
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the pulse generator are not specified because none are considered within the verbal description of

preconditions identified earlier.

The LV lead proximal tip is specified using an atomcomponent node with the name attribute

aoLVLeadProximalTip (Fig. 6.6h, line-28). As mentioned, the affordance requires that the LV lead

proximal tip is not already connected to any input port of the pulse generator (i.e., it is not covering

the back-side surface of any port). This is specified on lines 29–34 of Fig. 6.6h. Additionally,

the surgeon must be capable of moving the LV lead proximal tip in a way that supports insertion

to the RV port in any situation. This is specified using an ability node with the name attribute

MoveLVLeadProximalTip (Fig. 6.6h, line-35). As mentioned in theMovePulseGenerator ability node

description, the surgeon may need to move both the pulse generator and the LV lead proximal tip

along the x, y, and z axes simultaneously to actualize the affordance LVLeadConnectableToRVPort.

However, since the lead can be connected to a pulse generator input port without rotating it, there

are no situations in which the movements roll left or roll right are clearly necessary. This is specified

on lines 36–40 using orientable, positionable, translatable nodes with all attributes valued true, except

for roll left or roll right, which are omitted (i.e., they could be either true or false for the affordance

to emerge).

The set screw for securing leads connected to the RV port is specified using an atomcomponent

node with the name attribute aoRVSetScrew (Fig. 6.6h, line-43). As described in the system’s

physician technical manual [204], the set screw must be loosened for the LV lead proximal tip to

be connectable. While this could be specified in many ways using CAVEMEN-XML relation nodes,

images in the physician’s technical manual suggest that the screw is tightened when no surfaces

are touching the side of the pulse generator (in this case, the right side, as shown in Fig. 6.6a).

Otherwise, if one or more surfaces are touching the right-side surface of the pulse generator, it is

loosened (Fig. 6.6h, lines 44–45; Fig. 6.6d).

As mentioned, for the LV lead to be connectable to the RV port, no other lead proximal tips can

be blocking the connection. These conditions are specified on lines 47–52 of Fig. 6.6h. On line-47, the

RA lead is specified using an atomcomponent node with the name attribute aoRALeadProximalTip.
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The relation node on line-48 specifies that it must be disjoint to all surface of the RV port. The

same syntax is utilized for the RV lead proximal tip on lines 50–52.

6.4.3.2 LVLeadConnectableToLVPort

Because lead proximal tips and pulse generator input ports are all the same size and shape, the

affordance of LV lead connectability to the LV port was specified using a modified version of the

CAVEMEN-XML nodes and semantics described Section 6.4.3.1. This was accomplished in four

steps:

1. Duplicating lines 13–54 of Fig. 6.6h

2. Replacing instances of “RVPort” on lines 13, 16, 48, and 51 with “LVPort”

3. On line-16, replacing the associate attribute valued “aoRVPort” with “aoLVPort”

4. On line-43, renaming the atomcomponent “aoRVSetScrew” to “aoLVSetScrew”

6.4.3.3 RVLeadConnectableToRVPort

As in Section 6.4.3.2, the affordance of RV lead connectability to the RV port was specified using a

modified version of the CAVEMEN-XML nodes and semantics described Section 6.4.3.1. This was

accomplished in two steps:

1. Duplicating lines 13–54 of Fig. 6.6h

2. Replacing instances of “LVLeadProximalTip” on lines 13, 17, 28, 35, and 50 with “RVLead-

ProximalTip”

The final specifying all three affordances model was 138 lines of CAVEMEN-XML code.

6.4.4 SAL Representation

For the 138-line CAVEMEN-XML representation, the translator generated 115 lines of SAL

code. In the affordance module, Boolean output variables named LVLeadConnectableToRVPort,

LVLeadConnectableToLVPort, and RVLeadConnectableToRVPort are generated and valued using
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equality assignments. Each variable is true if all respective spatial relation and human capability

conditions are satisfied.

Utilizing the automatically generated HES module, infrastructure was added to specify initial

motor capabilities of the surgeon and next-state spatial relations among HES entities. Assuming

that the surgeon is able-bodied, abilities were initialized to allow pulse generator, LV lead proximal

tip, and RV lead proximal tip movements along all six degrees of freedom (Appendix F.2, lines

84–89).

Initial spatial relations were encoded manually as a constrained set of possibilities, the majority

of which were captured by removing configurations that are impossible:

• Components cannot be two places at once; e.g., if the LV lead proximal tip is covering the

back surface of an input port, then it must be disjoint to all other components

• Components cannot be covering larger ones; e.g., the LV lead proximal tip cannot be covering

the surgeon

• Due to 3.48 mm lead port diameters, the surgeon can only touch, cover, or overlap their front

surfaces. She must be disjoint to all others

• Due to their size, lead proximal tips cannot contact opposite surfaces of an input port simul-

taneously; e.g., if the RA lead proximal tip is touching the right-side surface of the LV input

port, is must be disjoint to the left-side surface

The SAL syntax specifying these initializations is shown in Appendix F.2, lines 84–141.

Next-state spatial relations were specified to represent changes emergent in the immediate next-

state after one of three affordances are actualized. For these relations to emerge, guarded transitions

specify that the corresponding affordance must be available. These guarded and next-state spatial

relations are encoded in SAL as shown below (annotated in italic text).



163

TRANSITION [

LVLeadConnectableToRVPort --> If the affordance is actualized,
FORALL(d: directional): for all surfaces, the LV lead proximal tip is

aoLVLeadProximalTip’.aoRVPort[d] = covering; covering the RV port,
aoLVLeadProximalTip’.aoLVPort[d] = disjoint; disjoint to the LV port, and
aoLVLeadProximalTip’.aoRAPort[d] = disjoint; disjoint to the RA port

LVLeadConnectableToLVPort --> If the affordance is actualized,
FORALL(d: directional): for all surfaces, the LV lead proximal tip is

aoLVLeadProximalTip’.aoLVPort[d] = covering; covering the LV port,
aoLVLeadProximalTip’.aoRVPort[d] = disjoint; disjoint to the RV port, and
aoLVLeadProximalTip’.aoRAPort[d] = disjoint; disjoint to the RA port

RVLeadConnectableToRVPort --> If the affordance is actualized,
FORALL(d: directional): for all surfaces, the RV lead proximal tip is

aoRVLeadProximalTip’.aoRVPort[d] = covering; covering the RV port,
aoRVLeadProximalTip’.aoLVPort[d] = disjoint; disjoint to the LV port, and
aoLVLeadProximalTip’.aoRAPort[d] = disjoint; disjoint to the RA port

[]ELSE --> Otherwise, nothing changes
];

Including these transitions, the final model was 206 lines of SAL code (Appendix F.2).

6.4.5 Specifications

One of each affordance-related usability specification was encoded to verify that configurable hard-

ware is accurate and error tolerant:

1. Positive affordance accuracy : LV lead connectability to the LV port ensures that RV lead con-

nectability to the RV port emerges in the future

This specification is needed to ensure that configurable hardware supports the surgeon in connecting

the LV and RV leads to the correct input ports; more specifically, the first safe affordance of LV

lead connectability to the LV port becoming unavailable in the future ensures that the second safe

affordance of RV lead connectability to the RV does become available. This specification is encoded

in SAL as shown below. It reads, “it is always true that if LV lead connectability to the LV port

exists currently and does not exist in the future, RV lead connectability to the RV port emerges in

the future.”

PositiveAffordanceAccuracy: THEOREM affordances |-

G(LVLeadConnectableToLVPort AND F(NOT LVLeadConnectableToLVPort) =>

F(RVLeadConnectableToRVPort));

2. Negative affordance accuracy : LV lead connectability to the LV port ensures that LV lead con-

nectability to the RV port does not emerge in the future
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This specification is needed to ensure that configurable hardware supports the surgeon in connecting

the LV and RV leads to the correct input ports; more specifically, if the safe affordance of LV lead

connectability to the LV port becomes unavailable in the future, then the unsafe affordance of LV

lead connectability to the RV port should not emerge in the future. This specification is encoded in

SAL as shown below. It reads, “it is always true that if LV lead connectability to the LV port exists

currently and does not exist in the future, LV lead connectability to the RV port does not emerge

in the future.”

PositiveAffordanceAccuracy: THEOREM affordances |-

G(LVLeadConnectableToLVPort AND F(NOT LVLeadConnectableToLVPort) =>

F(NOT LVLeadConnectableToRVPort));

3. Weak affordance error tolerance: LV lead connectability to the RV port never emerges when the

system is in a particular configuration

This specification is needed to ensure that configurable hardware prevents the surgeon from

connecting the LV lead to the RV port when the system is in a particular configuration. In this case

study, one such configuration could be the one in which the RV lead has been configured correctly

(i.e., it is connected to the RV port). This specification is encoded in SAL as shown below. It reads,

“it is always true that when the RV lead is connected to the RV port, this implies that the LV lead

is not connectable to the RV port.”

WeakAffordanceErrorTolerance: THEOREM affordances |-

G(aoRVLeadProximalTip.aoRVPort[back of] = covering =>

NOT LVLeadConnectableToRVPort);

4. Strong affordance error tolerance: LV lead connectability to the RV port never emerges

This specification is needed to ensure that configurable hardware always prevents the surgeon from

connecting the LV lead to the RV port. The SAL syntax encoded below, reads, “it is never true

that LV lead is connectable to the RV port.”

WeakAffordanceErrorTolerance: THEOREM affordances |-

G(NOT LVLeadConnectableToRVPort);
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6.4.6 Verification

Specifications were verified using SAL’s symbolic model checker (SAL-SMC) [68]. Results, number

of states visited, and execution times are shown in Table 6.3.

Table 6.3: Case study model checking results

Specification name Result States visited Verification
time (s)

Negative affordance accuracy proved 4.9345040397182× 1022 3.92

Positive affordance accuracy counterexample 4.9345040397182× 1022 3.98

Weak affordance error tolerance proved 4.9345040397182× 1022 4.32

Strong affordance error tolerance counterexample 4.9345040397182× 1022 4.20

The verification report of proved for Negative affordance accuracy indicates that configurable

hardware supports a safe situation: if LV lead connectability to the LV port (i.e., a desired affordance)

is available in the initial state and becomes unavailable in the future, then LV lead connectability

to the RV port (i.e., an unsafe affordance) will become unavailable in the future. A 3-step sequence

showing one way of satisfying this specification could be:

1. LV lead to LV port and RV lead to RV port connectability affordances were available in the

first-state (Fig. 6.7a)

2. RV lead to RV port connectability was actualized in the second-state (Fig. 6.7b)

3. LV lead to RV port connectability was unavailable in the third-state (Fig. 6.7c)

The counterexample to Positive affordance accuracy shows a 3-step trace through the model

leading up to an unsafe situation (depicted in Fig. 6.8):

1. LV lead to LV port and RV lead to RV port connectability affordances were available in the

first-state (Fig. 6.8a)

2. LV lead to RV port connectability was actualized in the second-state (Fig. 6.8b)

3. RV lead to RV port connectability was unavailable in the third-state (Fig. 6.8c)



166

Figure 6.7: Rendering of the three-step trace leading up to a safe state in which the surgeon
connects to RV lead to the RV port. (a) LV lead connectable to the LV port and the RV lead
connectable to RV port. (b) RV lead connectability to the RV port is in the process of being
actualized. (c) RV lead connected to the RV port

Figure 6.8: Rendering of the three-step trace leading up to an unsafe state in which the
surgeon erroneously connects to LV lead to the RV port. (a) LV lead connectable to the LV
port and RV lead connectable to the RV port. (b) LV lead connectability to the RV port is in
the process of being actualized. (c) LV lead connected to RV port

Such a sequence reflects the surgeon erroneously connecting the LV lead to the RV port.

The verification report of proved forWeak affordance error tolerance indicates that configurable

hardware supports a safe situation: when the RV lead is connected to the RV port, the LV lead is

not connectable to the RV port. One configuration satisfying this safe state is depicted in Fig. 6.8c.

The counterexample to Strong affordance error tolerance shows a 0-step trace (i.e., the initial

state) in which the unsafe affordance of LV lead connectability to the RV port is available. Two

configurations representing this unsafe state are depicted in Fig. 6.8a and Fig. 6.7a.

6.5 Scalability

To evaluate scalability of the CAVEMEN approach, benchmark experiments were conducted by

encoding a generic CAVEMEN-XML representation having one affordance node, one humanoper-
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ator, one relation (topology attribute value randomly assigned, direction attribute omitted), one

atomcomponent (corresponding to one atomicobject) and one ability node having all three child

nodes with randomly assigned attribute values. The affordance node was duplicated and all name

attributes were modified to make them unique. A condition=“not” attribute was assigned to the

duplicated relation node, and the CAVEMEN-XML representations were translated to SAL using

the JavaScript-based tool. This creates a formal model having two unique affordances. The auto-

matically generated HES module was modified by adding guarded transitions for each affordance

enabling randomly-assigned spatial relations to emerge in the next-state. This SAL syntax was

encoded as shown below for one transition in the HES module (annotations added in italic text).

TRANSITION [

affordance 1 --> If the affordance is available,
p1’ IN {x: p1 rels | next-state spatial relations of p1 are randomly assigned such that
EXISTS(x: directional, y: topological): p1.ao1[x] = y}; any of them could exist

6 increasingly larger formal models were generated by repeatedly duplicating CAVEMEN-XML

translating them to SAL. SAL-SMC [68] was utilized to verify an LTL specification that is always

true, forcing the model checker to enumerate all reachable states. This specification (6.17) is triv-

ially always true due to repeated pairs of affordance nodes with opposing relation nodes (1 always

incorporates condition=“not” attribute).

G¬(affordance1 ∧ affordance2 ∧ . . . ∧ affordancen−1 ∧ affordancen) (6.17)

The number of states visited and verification times for each model are reported in Table 6.4.

Doubling the number of unique affordances in each model increased state space by S 2, where S is

the number of states in the previous model. Verification times generally increased with model size,

but decreased when the number of unique affordances was doubled from two to four and 32 to 64.

Verification times remained below two seconds for all analyses.
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Table 6.4: Results of scalability evaluation

Number of unique States visited Verification time (s)
affordances

2 1.6777216× 107 0.28

4 2.81474976710660× 1014 0.26

8 7.9228162514264× 1028 0.40

16 6.2771017353867× 1057 1.07

32 3.9402006196395× 10115 1.67

64 1.5525180923007× 10231 1.42

6.6 Discussion

This chapter presented the CAVEMEN approach for applying Gibsonian affordance within model

checking analyses of hardware configurability. The XML-based grammar and modeling technique

provides a method for instantiating three extant formalisms from ecological psychology and spec-

ifying affordances that emerge for an end user. The formal semantics of CAVEMEN-XML enable

the analyst to specify configurable hardware components, their part-whole compositions, spatial

relations among entities within an environment, and, using the 6DoF standard [201], physical capa-

bilities of the end user to move configurable hardware components. A JavaScript-based translation

tool parses instantiated CAVEMEN-XML representations and generates formal models of HES enti-

ties and affordances in the syntax of SAL [68]. An accompanying HES modeling techniques provides

a way of specifying end-user motor capabilities, possible initial spatial relations among entities in the

environment, and next-state spatial relations that emerge after an affordance is actualized. A verifi-

cation methodology provides two accuracy-related specifications and two error tolerance-related LTL

specifications that support automated verification of hardware configurability via symbolic model

checking.

To demonstrate an application of CAVEMEN-XML and the translation tool, Greeno’s formalism

was employed to specify three HES affordances based on a medical device adverse event:

1. One correct affordance enabling the surgeon to successfully connect the LV lead to the LV port



169

2. One correct affordance enabling the surgeon to successfully connect the RV lead to the RV

port

3. One incorrect affordance enabling the surgeon to successfully connect the LV lead to the RV

port

The translation tool was utilized to automatically to generate a formal model of these affordances

and the hardware components involved. Manually encoded infrastructure specified static motor

capabilities of a normally-abled surgeon, possible initial HES configurations, and next-states of

spatial relations that emerge in the HES after each affordance is actualized. One of each hardware

configurable specification was instantiated and verified using symbolic model checking. Case study

results indicate that the CAVEMEN approach could be useful for ensuring as well as identifying

potential problems with respect to accuracy and error tolerance of configurable hardware.

A second set of analyses was conducted to evaluate scalability of the approach using symbolic

model checking on a 3.5 GHz workstation having 64 GB RAM. For this verification apparatus, scal-

ability results indicate that the approach shows promise for enabling formal verification of hardware

configurability in CAVEMEN-SAL models having up to 64 unique affordances and approximately

1.55× 10231 states on the target workstation.

6.6.1 Methodological Considerations

The CAVEMEN approach is the first attempt of a formal modeling and verification methodology that

applies Gibsonian affordance formalisms within model-based analyses of hardware configurability.

The formal grammar of CAVEMEN-XML therefore employs the same terminology as a subset of

existing formalisms; however, it does not support the analyst in instantiating all formalisms discussed

in Section 6.1. For example, since the term effectivity is not incorporated within CAVEMEN-

XML, an affordance cannot be specified using the same terminology utilized in [1, 9, 3, 115, 2]

and [8]. Additionally, since an affordance node could contain many ability nodes, modifications

enabling the analyst to instantiate all of the discussed formalism would require replacing ability with

effectivity and constraining the grammar such that one effectivity child node can be encoded within
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one affordance node. While these modifications could be incorporated within a different version of

CAVEMEN-XML, it is unclear if new semantics would add practical value to the approach with

respect to accuracy and error tolerance of configurable hardware.

6.6.2 Future Work

In regard to specifying affordance as directly perceivable properties, CAVEMEN-XML does not have

semantics for specifying how affordances are perceived (i.e., through visual, audible or haptic sensory

channels). Because ability nodes are constrained to motor capabilities, the language is constrained

to kinesthetic perception of force required to move an object, regardless of what sensory function is

utilized to perceive spatial relations among entities in the HES. Other researchers have represented

different sensory channels explicitly within a Gibsonian affordance formalism [202], and it could

beneficial to incorporate similar semantics in a future version of CAVEMEN-XML.

In regard to modelobject, subobject, and atomicobject nodes, the heterarchical-hierarchical en-

coding enabled by CAVEMEN-XML enables the analyst to specify part-whole relationships among

objects within a human-environment system. However, CAVEMEN-XML does not have semantics

for specifying dimensions (i.e. sizes) of these objects. Additionally, while the analyst can specify

where entities are in relation to each other, there is no way of specifying dimensions of the envi-

ronment or other conditions that could affect affordances, such as other human operators, lighting,

humidity, and heat. Specification of object size and other environmental conditions could be useful

for enabling more refined analyses; and while this level of detail could overwhelm a symbolic model

checker, scalability results indicate that it could be feasible to incorporate more detail in models

having up to 32 unique affordances on a workstation having 64 BG RAM. This should be explored

in future work.

In regard to the verification methodology, two accuracy-related and two error tolerance-related

specifications were developed in this work. Currently, it is possible for a negative affordance accuracy

model checking result of proved to be interpreted as a false negative; i.e., in the case study, a cor-

rect interpretation of the verification report is that configurable hardware supports a safe situation

(shown in Fig. 6.7). However, one possible sequence of states that could satisfy the specification



171

involves erroneously connecting the LV lead to the RV port; in this case, actualizing LVLeadCon-

nectableToRVPort trivially causes it to become unavailable in the future. This constitutes an unsafe

situation, and the analyst may misinterpret the verification report of proved as “proof” that such

an unsafe situation is not possible. Thus, to support the analyst, it could be beneficial to refine the

specification in future work so a result of proved can be interpreted as “proof” that configurable

hardware not only supports a safe situation, but guarantees it.

Another area of future work concerns the applicability of additional specifications, such as time-

efficiency of affordances that should emerge in a specified number of steps (e.g., if an affordance is

actualized, a different affordance should emerge in the next state). One such specification is explored

in Chapter 9.

Manually encoding initialization and transition infrastructure of the HES module constitutes a

significant part of the CAVEMEN approach. Accomplishing this currently requires knowledge of

SAL and, potentially, much cognitive effort for the analyst. The analyst must also be able to encode

an affordance model in XML, encode specifications in LTL, and visualize model checking results

as a 3-D rendering of hardware components. Future work should explore ways of facilitating these

processes within a graphical development environment.
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Chapter 7: A Formal Approach to Interface Interpretation: Modeling,
Specification, and Verification of Signifiers1

The human-system interface, which includes procedures, displays, controls, configurable hardware,

and information discoverable within accompanying documentation, needs to be understandable. To

support understandability, designers often incorporate signifiers within the interface that are clues

providing insights into the function, purpose and meaning of the system, component or widget [37].

In safety-critical systems, signifiers are needed to inform the end user about the current state of the

system, what inputs are possible, what actions to take, as well as what the consequences of an action

will be. Designers may consider cultural context, such as a red octagon pushbutton emulating a stop

sign to signify “stop.” They may also leverage legacy systems, such as digital phones that emulate

the sound of a rotary phone’s bell to signify “incoming call.” Signifiers can operate through a visual

channel, such shapes and colors; an audible channel, such as tones and volumes; and a haptic channel,

such as textures and vibrations. To support completeness, signifiers can also operate through the

documentation channel, such as text and diagrams within user manuals describing what shapes,

tones, and vibrations mean.

For a visual, audible, or haptic property of an interactive system to operate as a signifier, an

end user must be able to perceive it, identify it, and relate its identity to system information [206].

Consider a battery-powered system having an indicator light that could be green, yellow or colorless

to signify charge levels of “full,” “low,” and “none” respectively. For a charge level of “low” to

be signified, the device must have a light and control logic for illuminating the light yellow at the

appropriate times, and the end user must be capable of perceiving color and identifying “yellow.”

If characteristics of the system and end user interact correctly, the signified meaning of “low” is

considered an output of the human-system interface.

If an interface component has multiple perceivable properties, such as the different colors and

blinking patterns of an indicator light, what is signified by one property could depend on another.

1An earlier version of Section 7.2.4 was published in [205]
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In this work, the property on which another depends is considered linked. For example, a battery

indicator light could have three identifiable colors: red, yellow, and green. A red light could have

two identifiable patterns: solid to signify that the battery is nearly discharged and blinking to signify

that it has malfunctioned. A pattern identified as “blinking” may depend on the color identified as

“red” to signify a particular function or meaning, such as “battery malfunction” when the indicator

light is blinking red; thus, what is signified by the indicator light’s pattern is linked to its color.

In this work, signifiers could operate in a time-variant or time-invariant way. Time-variant

signifiers are patterns having identities and signified information that depend explicitly on time [85],

such as the temporal pattern of an audible alert emitted by a household smoke detector. A pattern

identified as “chirp” emitted every few minutes could signify “low battery,” while a continuous

pattern identified as “wail” could signify “smoke detected.” Either signified meaning could emerge

after the pattern becomes identifiable to an end user [84]. Time-invariant signifiers have identities

that do not depend explicitly on time, such as colors of an indicator light (e.g. “yellow,” “red”) and

volume levels of an audible alert (e.g. “loud,” “quiet”).

Visual signifiers such as shapes, symbols, and labels may have different meanings depending on an

end user’s perspective, such as an arrow-shaped pushbutton that could be perceived as pointing up or

down. Such a signifier is visual, time-invariant, and orientation-dependent. A visual signifier could

operate in an orientation-dependent way if it has one or more asymmetrical halves/hemispheres [86]

enabling an end user to identify its orientation. Consider a compass having an arrow shaped needle

(asymmetrical along its horizontal axis). For an end user having sufficient vision capabilities and

knowledge of compass functionality, the arrow operates in an orientation-dependent way to signify

what direction the end user is facing, such as “facing east” when the end user identifies the arrow’s

orientation as “left.”

Signifiers may operate as interface outputs through one or more channels to support different

systems and end users. Depending on system and end-user capabilities, one signifier channel may

be sufficient to convey the function, purpose or meaning of an interface component. Consider an

interface having a digital display with numbers signifying the system’s speed and an octagon light
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that illuminates red to signify that the speed is zero. Only the visual channel could be necessary to

signify speed, but all visual properties must operate consistently. For example, if the octagon light

illuminates red while the digital display reads “0,” the signifiers are consistent.

An interface may present the same system information redundantly using multiple signifiers

operating through different channels concurrently. Consider a crosswalk in a busy city intersection.

When it is safe to walk, there will often be a sign with the illuminated symbol of a person walking.

There may also be a speaker box that periodically emits the words, “walk now.” For the safety

of end user groups with different hearing/vision capabilities and similar language capabilities, the

audible and visual signifiers must be redundant; i.e., they must both signify “walk now” at the same

time.

It may not be possible for designers to present all information about device functionality com-

pletely through visual, audible, and haptic signifiers. Such systems may require an additional signifier

channel: printed or electronic documentation describing information that visual, audible, and haptic

properties do not explicitly signify. Consider jumper cables for starting a vehicle with a discharged

battery. A vehicle’s user manual may have instructions indicating that the negative terminal of

the source vehicle’s battery should be connected to ground at the recipient vehicle; however, visual

and kinesthetic properties of electrical/mechanical components involved in this task may not signify

what is meant by “ground” or what parts of a vehicle function as ground. Signifiers can be called

complete if the functions and meanings regarding the ground connection are discoverable within the

user manual.

Signifiers are critical in the design of human-interactive systems, and problems can arise when

they do not support usability. For example, in June 2015 a patient went into cardiac arrest during

surgery, and a surgical team member reacted by pushing a red button labeled “stop” on the X-ray

imaging system control panel. This action unexpectedly shut down the life support system, and the

patient expired [207]. Visual signifiers on the button may have been insufficient for understanding

its function, and technical documentation on the manufacturer’s website does not explain what is

meant by the red color and “stop” label [208]. This reflects a potential problem regarding signi-
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fier completeness. In the Three Mile Island nuclear accident, human operators understood what

was signified by individual indicator lights on the coolant system control panel; however, multiple,

concurrently illuminated lights had conflicting meanings, which delayed the necessary interventions

[209]. This reflects a potential problem regarding consistency of the interface. In domains that could

require a human operator’s persistent visual attention, such as ground transportation, aviation, and

surgery, researchers have identified a need for signifiers that provide alerts and feedback redundantly

through audible, visual, and haptic channels [210]. However problems emerge when multi-channel

signifiers have conflicting meanings (i.e. they are not redundant) [211].

It would be useful to ensure early in the design cycle that signifiers are usable. While formal

methods-based frameworks have proven useful for analyzing procedures, affordances, displays, con-

trols, and actuators, they are currently limited with respect to signifiers. In this chapter, a new

approach is developed to address this need. Minimal requirements of a formal signifier modeling

methodology are listed in Section 7.1. A formalism, modeling technique, and encoding tool intending

to meet these requirements are described in Section 7.2. Temporal logic specifications are developed

in Section 7.2.3 to assert consistency, redundancy, and completeness of signifiers with respect to

an instantiated formal signifier model. These specifications can be verified using either symbolic

or bounded model checking. The approach is demonstrated in a medical device case study in Sec-

tion 7.3, and scalability is evaluated in Section 7.4. Discussions of case study results, scalability

evaluation results, methodological considerations, and future work follow.

7.1 Representing Signifiers Formally

In the spirit of formal methods, a signifier formalism is needed to support the development of

models that are mathematically amenable to verification; and in support of applicability to human

factors engineering problems, it would be beneficial for the formalism to leverage extant theories of

human-system interaction. Section 7.1.1 lists the set of minimal requirements for such a formalism.

As in other formal methods-based frameworks, such as EOFM [10], an encoding tool could

facilitate the model development process by providing structure, keywords, and a translation tool

that generates the target syntax of a model checking system from an intermediate representation.
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Section 7.1.2 lists the set of minimal requirements for such an encoding tool.

7.1.1 Requirements of a Signifier Formalism

1. The formalism should be capable of representing human-system interface components in their

possible modes and configurations

In this research, the human-system interface includes displays, controls, configurable hardware, and

accompanying documentation. Signifiers could be incorporated within all of these components, and

what is signified could depend on their modes and configurations, such as:

• What is rendered on displays when the device is in a particular mode

• What cables are connected when the device is in a particular configuration

• What is explained in documentation with respect to each mode or configuration

Thus, the formalism should have semantics for representing interface components, including a way

of identifying what component, mode, and configuration is being specified.

2. The formalism should be capable of representing what functions and meanings are signified by

the human-system interface

As mentioned, signifiers are critical for informing end users about the function or meaning of a

system, component, or widget [37]. Examples of functions include what a component does or what

the consequences of acting on it will be, while examples of meanings include what state the device is

in or what action(s) should be taken. The formalism should therefore enable the analyst to specify

what functions and meanings can be signified.

3. The formalism should be capable of representing perceivable properties of human-system interface

components

Components of a human-system interface, such as displays and widgets, could have one or more

perceivable properties that operate as signifiers, such as text labels, audible alerts, and haptic

vibrations. Researchers in HCI have identified that perceivable interface properties operating as
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signifiers commonly belong to a particular component [212]; and part of what makes a property

operate as a signifier is its composition within a higher-level element, such as text that is rendered

within a dialog box, rather than within a different container on a visual display [213]. The formalism

should therefore have semantics for representing what is signified by perceivable properties that

belong to a component.

4. The formalism should be capable of representing what is signified to a representative end user by

one or more perceivable properties

As mentioned, for a property to operate as a signifier, the end user must be able to perceive it,

identify it, and relate its identity to a function or meaning [206]. Additionally, if multiple properties

need to operate in parallel, such as the example of a blinking red light, the color and the visual

pattern must be perceived, identified, and related to a signified function or meaning. Thus, the

formalism should provide a way of abstracting these relationships. In formal methods, relationships

between formalism elements are commonly represented as input/output functions. To enable such

a representation, the signifier formalism requires two additional capabilities:

4.1 The formalism should be capable of representing sets of function inputs

A mathematically correct function needs to have a well-defined domain (i.e., a set of input

values). With respect to the theorized characteristics of signifiers, function inputs should be

one or more perceivable property identities assigned by the end user. Thus, because different

perceivable properties could have different identity domains (e.g. “red” for a color input and

“blinking” for a visual pattern input), the formalism should provide a way of representing

distinct sets of property identities

4.2 The formalism should be capable of representing sets of function outputs

A mathematically correct function needs to have a well-defined (i.e., a set of outputs values).

With respect to the theorized characteristics of signifiers in this research, function outputs

should be one signified function or meaning. Because different perceivable properties of dif-

ferent interface components could signify different functions or meanings (e.g. “low” for the
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charge level indicator light of a battery and “check charge level” for a pushbutton on the bat-

tery), the formalism should provide a way of representing distinct sets of signified functions

and meanings

5. The formalism should be capable of representing signifiers that operate through different channels

In support of verifying signifier redundancy and completeness, the formalism needs to provide a

way of representing what is signified to the end user concurrently through multiple channels. Thus,

it should have semantics for representing distinct sets of signifiers that are grouped by channel,

such as colors and symbols within a set of visual-channel signifiers; volumes and pitches within

a set of audible-channel signifiers; textures and vibrations within a set of haptic-channel signi-

fiers; and documented explanations of what is signified by properties on the device within a set of

documentation-channel signifiers.

7.1.2 Requirements of an Encoding Tool

In formal methods, encoding tools facilitate the process of instantiating a formalism, such as custom

languages and translators for generating model checking syntax from intermediate representations

[10]. Considering the signifier formalism requirements listed in Section 7.1.1, this section lists mini-

mal requirements for a tool facilitating its instantiation.

1. The language should enforce a hierarchical structure for representing interface components and

their perceivable properties

In support of Requirements 1 and 3 of the signifier formalism, the language should be hierarchical.

This necessitates infrastructure for representing interface components and their lower-level perceiv-

able properties.

2. The language should provide infrastructure for representing sets of perceivable property identities

In support of Requirement 4.1 of the signifier formalism, the language should support the analyst

in defining sets of perceivable property identities that encompass distinct input/output function
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domains. To reduce the need for knowledge of formal methods, such infrastructure should provide

a way of grouping these sets using natural language, such as using by assigning a name to identities

corresponding to the property being identified (e.g. “depicted” for a visual symbol).

3. The language should provide infrastructure for representing sets of signified functions and mean-

ings

In support of Requirement 4.2 of the signifier formalism, the language should support the analyst

in defining sets of signified functions or meanings that encompass distinct input/output function

codomains. To reduce the need for knowledge of formal methods, such infrastructure should provide

a way of grouping these sets using natural language, such as by assigning names that aid in identifying

categories of similar functions or meanings.

4. The language should provide keywords for representing a constrained set of perceivable properties

that operate as signifiers

To support the analyst in instantiating the signifier formalism, it could be beneficial to provide a

set of keywords representing a minimal set of perceivable properties operating as signifiers. Useful

keywords could have names or prefixes that aid identifying the property; what channel it operates

through; and whether it is time-variant, time-invariant, or orientation-dependent.

5. The language should support parsing capabilities

A translator could help facilitate the development of formal signifier models that are amenable to

formal verification. It is therefore necessary that the language enables parsing capabilities, similar

to the languages developed for other applications (e.g. EOFM-XML [10]). Parsing capabilities could

also be useful for enabling automated generation of LTL specifications with respect to an instantiated

model, similar to the tool described in [57].

7.2 The BIGSIS Approach

The BIGSIS approach has three elements:
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1. A formalism for modeling signifiers, including a technique for instantiating it

2. An encoding tool, including a formal description language and translator

3. A verification methodology, including a set of LTL signifier specifications and a model checking

technique

The BIGSIS formalism enables representations of signifiers and documentation as a formal model.

Its semantics allow specification of what perceivable properties on a device signify functions and

meanings, as well as what is signified by these properties based on explanations in the system’s

accompanying documentation. A modeling technique involves identifying sets of signified func-

tions/meanings, properties operating as signifiers, components having perceivable properties, and

documentation explaining what is signified. The analyst can assign initial end-user descriptions of

perceivable properties, and for all subsequent states, next-state description assignments. An aux-

iliary modeling technique (not part of the BIGSIS formalism) provides a way of representing the

system’s control logic and/or human-system interaction controlling next-states of end-user descrip-

tions. Formalism outputs represent one function or meaning for each category of functions/meanings

signified through each channel (visual, audible, haptic, and/or documentation). For each category of

signified function or meaning, one output value is randomly selected from a subset of model variables

representing perceivable properties operating through each channel. This representation is useful for

supporting model checking analyses that are nondeterministic, an approach that has proven useful

in other formal methods-based analyses of human-interactive systems [61].

BIGSIS-XML is a custom, XML-based language for instantiating a formal signifier model, with-

out the need for mathematical notation. Its custom grammar provides support for instantiating the

BIGSIS formalism for a constrained set of visual, audible, and haptic properties operating as signi-

fiers, as well as a system’s accompanying documentation explaining what is signified. The language

has infrastructure for representing categories of signified functions/meanings, what is signified by

each property of each interface component, and what is signified by a property that depends on a

different one (i.e., linked properties). The JavaScript-based translation tool parses an instantiated
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BIGSIS-XML representation and generates a formal model adhering to the BIGSIS formalism.

For an instantiated BIGSIS-XML representation, the translator also generates a set of LTL signi-

fier usability specifications that are verifiable using the SAL model checking system [68]. Three kinds

of specifications are defined: consistency of single-channel signifiers, redundancy of multi-channel

signifiers, and completeness of signifiers operating through a system’s accompanying documenta-

tion. For each specification, a subset of specifications aids in conducting analyses with respect to a

constrained set of signifier channels, a constrained set of device states, or a particular category of

signified functions/meanings.

7.2.1 Representing Signifiers Formally: The BIGSIS Formalism and
Modeling Technique

The BIGSIS formalism has semantics for specifying a formal signifier model based on an inter-

active system’s electronic/mechanical components, documentation describing the system, end-user

descriptions of visual, audible, and haptic properties (considered perceivable properties), and how

descriptions relate to signified functions and meanings.

An interface component can be a display, cable, widget, or other electrical/mechanical element.

Documentation can be a user manual, packaging label, or other form of printed or electronic doc-

umentation describing the system. Some examples of perceivable properties that can be specified

using the BIGSIS formalism include:

• Time-invariant visual colors or labels

• Time-invariant, orientation-dependent shapes or symbols

• Time-invariant audible pitches or volumes

• Time-invariant haptic vibrations

• Time-variant audible, visual, or haptic patterns

An end-user description is a word or phrase that an end user would use to describe or identify a

perceivable property, such as “red” to describe the color of indicator light. In determining end-

user descriptions, the analyst should consider all visual, audible, and haptic properties presented by



182

electrical/mechanical interface components in their possible modes or configurations, such as when

alarms are engaged, as well as an end user’s relevant cognitive and perceptual capabilities. Similar

descriptive words and phrases are grouped into named sets, such as red, yellow, and green in a set

named “colors.” Representing end-user descriptions in this way is useful for supporting the analyst

in reasoning formally about end user characteristics independently of a system or device.

In determining functions and meanings that could be signified, the analyst should consider all

interface components in their possible modes, all printed or electronic documentation accompanying

the system, and the end user’s characteristics such as cultural background and prior knowledge

regarding system functionality. Functions and meanings are represented as words or phrases and

separated into categories. A function word describes what the component does, how it can be acted

upon by an end user, or what the consequence of an action will. A meaning word describes a

state of the system such as current control mode. A category of function or meaning is a named,

comma-separated list of words or phrases (e.g. “discharged,” ”low battery,” and “charged” in a

category of signified meanings named “charge levels”). Representing what is signified by category is

useful for supporting model checking analyses of signifier consistency, redundancy, and completeness

(discussed in Section 7.2.3).

To represent how functions and meanings are signified the analyst should consider all interface

components having perceivable properties with end-user descriptions and any printed or electronic

documentation accompanying the system. An interface component can be a display, cable, widget,

or other electrical/mechanical element. The analyst should assign each component a name that

helps to identify it. For example, if there is an alarm on a device controller that engages when the

device is operating outside a threshold speed, the analyst could name it “speed alarm.”

For each component, each visual, audible, and/or haptic property could signify one function or

meaning, such as the red color of a “speed alarm” indicator light signifying “stopped.” What is

signified could also depend on another perceivable property, such as the blinking pattern of a red

light. If accompanying documentation describes an interface component’s perceivable properties,

such as user manual text describing what an audible tone means, the analyst could specify this
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information as operating through the documentation channel. The documentation channel represents

functions and meanings signified by visual, audible, and haptic properties as described in text, lists,

diagrams, and other printed or electronic materials accompanying the system.

Every visual, audible, and haptic property must be assigned an end-user description. Each

end-user description defines how a perceivable property operates as a signifier, which could be in a

time-variant or time-invariant way. Consider the example component named “speed alarm” having

an indicator light that is illuminated red when the alarm is engaged. Considering the end user’s

perceptual capabilities such as ability to perceive and identify colors, the analyst could specify that

one possible end-user description of color is “red.” Considering the end user’s characteristics such as

culture and past experiences with other systems, the analyst could specify that the color description

“red” relates to a signified speed of “stopped.” The approach of assigning end-user descriptions and

relating them to signified information is employed for two reasons:

1. It promotes formal reasoning about the user independently of the device or component, which

could be useful for informing design considerations

2. It enables the analyst to model what changes occur as the device and the end user’s perception

of it evolve

In the example of a component named “speed alarm,” “stopped” is signified when the end-user

description of color is “red,” corresponding to a particular mode: the alarm is engaged. Other

end-user descriptions of color could also exist, such as “no color” when the alarm is not engaged,

corresponding to a different mode and possibly relating to another speed signified elsewhere on the

device, which the analyst could also specify.

A property having at least one end-user description operates as a signifier if a particular descrip-

tion relates to exactly one signified function or meaning from a particular category. Considering the

speed alarm example, if other speeds are signified by the indicator light when its end-user description

of color is “red” (i.e. there is a one-to-many relationship between description and signified mean-

ing), it does not adhere to the formalism and it should not be specified. This convention is useful

for discovering violations of signifier consistency (discussed in Section 7.2.3) during the formalism
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instantiation process.

If a component has multiple properties of the same kind signifying the same category of function

or meaning the analyst must specify them as properties of two separate components. This convention

is useful for encoding specifications that utilize natural language to explicitly differentiate similar

components and perceivable properties. For example, an application icon on a desktop PC screen

could have two labels, one that is always present and one that appears when the user’s cursor hovers

over it. Both labels could signify what the application does. Instead of specifying the icon’s labels

as “label1” and “label2,” the BIGSIS formalism requires the analyst to specify each as a “label”

property of differently named components, such as “icon” and “icon hovered over,” which is more

descriptive than numbered labels.

Utilizing these semantics, the BIGSIS formalism specifies a formal model representing interface

signifiers as a set of states, transitions, next-states, and outputs. The formal syntax of the BIGSIS

formalism are described in the remainder of this section.

7.2.2 BIGSIS Formalism Semantics

The BIGSIS formalism represents a formal signifier model as a hierarchical composition of five

Z [153] schemas (see Section 3.1 for information about the Z specification language):

1. values: specifies all signified functions and meanings, categories of common functions/mean-

ings, and how an end user could describe properties of electrical/mechanical interface compo-

nents

2. properties signify : specifies visual, audible, and haptic interface properties having descriptions

as well as functions/meanings that could be signified explicitly on the device and through

information discoverable within accompanying documentation

3. signifiers: specifies variables representing interface components and accompanying documenta-

tion as well as initial descriptions and signified functions/meanings to all interface components

and accompanying documentation

4. next state signifiers: specifies all subsequent next-state values of signifiers schema elements,
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including optional model infrastructure representing the system’s control logic and/or human-

system interaction controlling next-state descriptions

5. outputs: specifies signifier channels and randomly selects one signified function or meaning

output for each set of visual, audible, haptic, and documented functions or meanings

Variables of the values schema have basic types, and each subsequent schema has variables that

are schema types. Variables of a schema type access variables from its type using a period. For

example, if S1 : {w0,w1,w2} is declared in the schema values and P1 : values is declared in a

subsequent schema properties signify , P1.S1 may appear within the properties signify schema, and

its value must be either w0, w1, or w2.

Variables declared in a predicate are local to that predicate, and the same names can be reused

in other predicates to represent distinct elements. For example, if one predicate in a schema contains

a value d0, e.g. ∃ 1d0 : D1, a different predicate in the same schema can also contain a variable d0,

e.g. ∃ 1d0 : D2, and the two instances of d0 are distinct.

Within each schema, subscripts represent n distinct variables having the same elements in its

type, such as P1,...,n : values1,...,n representing n properties (each a variable) having corresponding

schema types. The value of n is not specified, and its value could be different in each subscript

(i.e., P1,...,n and S1,...,n does not mean that there are the same number of Ps and S s). Subscripts

referencing individual elements, such as i in Pi and j in Pj , indicate that Pi and Pj are distinct.

7.2.2.1 Values Schema

The values schema specifies all possible values in the model: end-user descriptions of perceivable

properties as well as signified functions and meanings. Declaring all end-user descriptions and all

signified functions and meanings in the first schema, as well as separating them into named lists,

supports hierarchical modeling that is common in software engineering.

To identify end-user descriptions, the analyst should consider all visual, audible, and haptic

properties of interface components, as well as the end user’s relevant cognitive/perceptual capabilities

and other characteristics that could shape interpretation such as cultural context and age. End-user
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description words are listed within a set ([descriptions]). If there are multiple kinds of descriptions

(e.g. colors, labels), common words go in a corresponding subset (Di : descriptions) containing a

set of words (d1, . . . , dn).To identify signified functions and meanings, the analyst should consider

device components, perceivable properties, and documentation describing the system.

All words are listed within a set ([signified ]). Words that represent similar functions and meanings

can be grouped into categories (Si : signified) containing a set of words (w1, . . . wn), each of which is

named to identify what is common. The values schema also specifies one or more words describing

perceivable properties of the interface.

values
S1,...,n : signified
D1,...,n : descriptions⋂n

i=1 Si = ∅⋂n
i=1 Di = ∅

∀ category : Si • ∃ 1w0 ∈ category

∀ descriptions : Di • ∃ 1d0 ∈ descriptions

The first two predicates specify that there can be no common elements among categories of

signified function or meaning and no common elements among sets of descriptions respectively. The

third predicate specifies that for all categories (∀ category : Si), there should be one unique word

in each one representing nothing signified (∃ 1w0 ∈ category , e.g. alarmNotSignified in a category

named Alarms). Similarly the fourth predicate specifies that for all sets of end-user description

words (∀ descriptions : Di), there should be one unique word in each set representing the absence of

a description (∃ 1d0 ∈ descriptions, noColor in a set of descriptions named Colors).

7.2.2.2 Properties signify Schema

The properties signify schema specifies perceivable properties operating as signifiers of function

and meaning audibly, visually, haptically, and through accompanying documentation. Perceivable

properties (P1, . . . ,Pn) have the schema type values. Each property includes one set of end-user

descriptions (Di) having a set of descriptive words (d0, . . . , dn), and one or more categories of

signified function or meaning (S1,...,n), each having a set of function or meaning words (w0, . . . , wn).
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The declaration “P1 : values \ D2, ...,n” specifies that the perceivable property declared as P1 has

one set of descriptions, D1, and all other sets of descriptions are not included in its type. This

is the case for all perceivable properties, up to Pn , which excludes all sets of end-user description

words except for Dn−1 (denoted by Pn : values \ D1, ...,n−1). Each Pi represents all instances of

a perceivable property within the interface. For example, if there are many colors presented on

a device and/or described within accompanying documentation, one Pi represents all colors and

functions/meanings they could signify.

properties signify
P1 : values \ D2, ...,n

. . .
Pn : values \ D1, ...,n−1⋂n

i=1 Pj .Si = ∅

The predicate specifies that there are no common function or meaning words (w0, . . . , wn) among

the sets Pi .S1 through Pi .Sn ; i.e., for all perceivable property variables, each can contain, at most,

one of each function or meaning category.

7.2.2.3 Signifiers Schema

The signifiers schema specifies interface components (C1,...,n) and accompanying documentation

(Doc1,...,n) describing components. The types of each component (Ci) and accompanying documen-

tation (Doci) are instances of the properties signify schema (properties signify1, ...,n).

The set of functions relation1, ...,n : D1 →→ S1 represents each relationship an end user could

associate between one word from a set of description words in a particular group (Di) and one

word from a particular category of function or meaning (Si). For each component, there is a set of

relation functions for each of its perceivable properties and the categories of function or meaning

those properties signify. For example, if an interface has n components, m perceivable properties,

and o categories of function or meaning, then there can be as many as p relation functions, where

p = n ×m × o. A different set of functions (explanation1, ...,n : Di →→ Si) represents accompanying

documentation explaining what is signified. Similarly, if an interface has n components, m perceiv-
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able properties, and o categories of function or meaning, all of which are explained in accompanying

documentation, then there can be as many as p explanation functions, where p = n ×m × o.

The analyst may need to encode this many unique relation and explanation functions for three

reasons:

1. As specified in the values schema, every description type (D1, . . . , Dn) has a different set of

elements (d0, . . . , dn), which operates as the domain of a relation or explanation function. In

formal methods, a function’s domain must be well defined for it to be mathematically correct.

Thus, a different relation (or explanation) function is needed for each description type (Di)

2. Similarly, every category of function or meaning (S1, . . . , Sn) has a different set of elements

(w0, . . . , wn), which operates as the codomain of a relation or explanation function; thus, a

different function is needed for each category type (Si)

3. Two different components (or two different sets of documented explanations) could have the

same property and the same end-user description, but a different signified function or mean-

ing. While they could have the same domain and codomain, their output values could be

unique, which makes the functions mathematically distinct. For example, a traffic light (i.e.,

an interface component) could be colored green to signify “safe to go straight” (encoded as

safeToGoStraight). It could also have a separate, arrow-shaped light that is colored green at

the same time to signify “safe to turn left” (encoded as safeToTurnLeft). These are two differ-

ent components having the same property and, potentially, the same end-user description of

“green” at the same time. Thus, two unique relation functions are needed to specify different

output values (safeToGoStraight and safeToTurnLeft) for the same input value (green)
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signifiers
C1,...,n : properties signify1, ...,n
Doc1,...,n : properties signify1, ...,n
relation1, ...,n : Di →→ Si
explanation1, ...,n : Di →→ Si

∀ ci : Ci • ci .Pi .Di = di

∀ ci : Ci ; cj : Cj •
if relationci .Pi .Di

(ci .Pi .Di) 6= w0

then ci .Pi .Si = r(ci .Pi .Di)∨
ci .Pj .Si = ci .Pj .Si ∨
ci .Pj .Si = cj .Pi∨j .Si

else ci .Pi .Si = w0

∀ ci : Ci ; doci : Doci ; docj : Docj •
if explanationci .Pi .Di

(ci .Pi .Di) 6= w0

then doci .Pi .Si = explanationci .Pi .Di
(Ci .Pi .Di)∨

doci .Pi .Si = doci .Pj .Si ∨
doci .Pi .Si = docj .Pi∨j .Si

else doci .Pj .Si = w0

The first predicate (starting with ∀ ci : Ci •) specifies that for all components having a set of

perceivable properties, each property’s description (ci .Pi .Di) is assigned a descriptive word (di).

This includes the possibility of di = d0 (i.e., the word corresponding to no description, such as

noColor). The second predicate (starting with ∀ ci : Ci ; cj : Cj : C ) specifies what is signified

by interface component properties without accompanying documentation. A conditional expression

states:

1. If the relation function output for the component and its property (relationci .Pi .Di (ci .Pi .Di))

is not equal ( 6=) to the word representing nothing signified (w0), then what is signified can be

one of three things:

(a) a function or meaning word from the category Si , produced by the relation function

(realtionci .Pi .Di
(ci .Pi .Di)),

(b) a linked perceivable property, which must be a different perceivable property if it comes

from the same component (ci .Pj .Si), or

(c) any linked perceivable property from a different component (cj .Pi∨j .Si).

Otherwise, nothing is signified (else ci .Pi .Si = w0). The “else” case includes descriptions having
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one-to-many relationships, such as a red color of an indicator light simultaneously signifying device

states of “stopped” and “malfunction.”

The third predicate (starting with ∀ ci : Ci ; doci : Doci ; docj : Docj ) specifies what is sig-

nified by properties of interface components as they are explained within accompanying docu-

mentation. It is equivalent to the third predicate, replacing each instance of ci that comes after

“explanationci .Pi .Di
(ci .Pi .Di)” with “doci .” What is signified through the documentation channel is

determined by perceivable property descriptions of interface components; thus, variables representing

documented descriptions (doci .Pi .Di) are not utilized in the formalism.

As a visual aid, one relation and one explanation function are shown in Fig. 7.1 for a hypothetical

smoke detector interface. The smoke detector has three audible alarms, one of which can engage when

the battery is low, smoke is detected, or carbon monoxide is detected. For each alarm, a different

audible pattern (encoded as aPattern) is emitted. For a hypothetical end user, four audible pattern

descriptions (chirp, wail, longBeep, and noPattern) signify the meaning of the alarm through audible

(Fig. 7.1a) and documentation (Fig. 7.1b) channels. In Fig. 7.1a, the relation function specifies

that when the end user describes the audible pattern as “chirp” (SmokeDetector.aPattern.Pattern

= chirp), the signified meaning is lowBattery (corresponding to relationci .Pi .Di (ci .Pi .Di) = wi)

when ci .Pi .Di = di). Similarly, the signified meaning for SmokeDetector.aPattern.Pattern = wail

is smokeDetected (corresponding to relationci .Pi .Di
(ci .Pi .Di) = wj ) when ci .Pi .Di = dj ). However,

when the end user describes the audible pattern as either longBeep (discussed in the next paragraph)

or noPattern, the meaning of the alarm is not signified through the audible channel (respectively

corresponding to relationci .Pi .Di
(ci .Pi .Di) = w0) when ci .Pi .Di = dk and relationci .Pi .Di

(ci .Pi .Di) =

w0) when ci .Pi .Di = d0).

In Fig. 7.1b, the explanation function for accompanying documentation provides the same sig-

nified meanings for end-user descriptions of chirp and wail. However, in this example, text within

accompanying documentation explains that a periodic, 1-second beep (for which the end-user de-

scription is longBeep) indicates that carbon monoxide is detected. Thus, the explanation function

of the smoke detector’s audible pattern determines a signified meaning of carbonMonoxideDetected
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Figure 7.1: Visual representations of one relation function and one explanation function for a
hypothetical smoke detector interface (a) and its accompanying documentation (b). Underlined
text above each oval identifies signifiers schema variables instantiated for the smoke detector.
Italic words within rectangles are a set of end-user description words from a set of audible
pattern descriptions (corresponding to F1Di)). Italic words within ovals are a set of meaning
words from a category of signified alarm meanings (corresponding to F1Si)). Arrows pointing
from one description word to one meaning word represent the input/output behavior of each
function (a) The relation function for the smoke detector’s audible pattern. (b) The explanation
function for accompanying documentation explaining what is signified by the smoke detector’s
audible pattern

for an end-user description of longBeep (corresponding to explanationci .Pi .Di
(ci .Pi .Di) = wk ) when

ci .Pi .Di = dk ).

7.2.2.4 Next state signifiers Schema

The next state signifiers schema coordinates changes to values assigned in the signifiers schema. Its

declaration is ∆signifiers, which introduces the current set of states in signifiers and another set of

next-states (signifiers ′). The formalism enables random next-states of end-user descriptions in all

subsequent states.

next state signifiers
∆signifiers
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Optionally, the analyst could encode predicates in the next state signifiers schema and/or

schemas considered separate from the BIGSIS formalism representing the system’s control logic

and human-system interaction in a way that controls next-states of end-user descriptions. One way

to do this is by encoding a device schema (not part of the formalism) having outputs that are inputs

to the next state signifiers schema. For example, consider the following device schema representing

a household smoke detector:

device
Smoke : N
Alarm : {On,Off }

Smoke ≥ 5 ⇒ Alarm = On

Smoke < 5 ⇒ Alarm = Off

The next state signifiers schema of a corresponding BIGSIS formalism instantiation could utilize

Alarm as an input in a way that controls end-user descriptions of the alarm:

next state signifiers
∆signifiers
Alarm : {On,Off }

Alarm ′ = On ⇒ Detector ′.Volume.Level = Loud

Alarm ′ = Off ⇒ Detector ′.Volume.Level = noLevel

In this example, the first predicate reads, “a next-state of Alarm = On implies (⇒) that the

next-state end-user description of the alarm’s volume level (Detector ′.Volume.Level) is Loud.” The

second predicate reads, “a next-state of Alarm = Off implies that the next-state end-user description

of the alarm’s volume level is noLevel.” This technique is demonstrated in Section 7.3, represented

graphically in Fig. 7.6.

7.2.2.5 Outputs Schema

The outputs schema specifies functions and meanings signified by the interface for each category and

each channel. Its types are outputs (denoted by !), corresponding to categories signified through up

to four channels: visual, audible, haptic, and documentation (signified !1,...,n). The value of each

output must come from a corresponding category of signified function or meaning, S1,...,n .
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outputs
signified !1,...,n : S1,...,n

∀ visually signifiedi : signifiedi ! •
visually signifiedi = wi ∧ wi ∈ C .vis.Si ∨
C .vis.Si = ∅ ⇒ visually signifiedi = w0 ∧ w0 ∈ Si

∀ audibly signified !i : signifiedi ! •
audibly signifiedi = wi ∧ wi ∈ C .aud .Si ∨
C .aud .Si = ∅ ⇒ audibly signifiedi = w0 ∧ w0 ∈ Si

∀ haptically signifiedi : signifiedi ! •
haptically signifiedi = wi ∧ wi ∈ C .hap.Si ∨
C .hap.Si = ∅ ⇒ haptically signified !i = w0 ∧ w0 ∈ Si

∀ documentedi : signified !i ; •
documentedi = wi ∧ wi ∈ Doc.P .Si ∨
Doc.P .Si = ∅ ⇒ documentedi = w0 ∧ w0 ∈ Si

The first three predicates represent what is signified through visual, audible, and haptic channels.

If there are m channels and n categories, there are m × n output variables. Properties operating

through each respective channel are grouped into three basic types ([vis], [aud ], [hap]). The set of

all electrical/mechanical components (
⋃n

i=1 Ci) are represented as C , accompanying documentation

(
⋃n

i=1 Di) as Doc, and properties (
⋃n

i=1 Pi) as P .

The first predicate states that each output variable representing a visually signified function

or meaning (visually signifiedi) is assigned a value (wi) selected randomly from the set of visual

properties (wi ∈ C .vis.Si). Otherwise, if there are no components having visual properties signifying

the specified category (C .vis.Si = ∅), this implies (⇒) that nothing is signified (visually signifiedi =

w0 ∧ w0 ∈ Si). The second and third predicates specify the same conditions for audible and haptic

channels respectively.

The fourth predicate represents what is signified through the documentation channel. It is

equivalent to the first three predicates, except a function or meaning word (wi) could come from the

set of all perceivable properties for which documentation describes what is signified (wi ∈ Doc.P .Si).

If there is no such documentation (Doc.P .Si = ∅), this implies (⇒) that nothing is signified through

the documentation channel (documentedi = w0 ∧ w0 ∈ Si).

Random selection for output values enables all possible ways a function or meaning could be

signified through a particular channel; i.e., it is possible for an end user to utilize information
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provided by any signifier at any time, and the probability of one signifier taking precedence over

another is not modeled.

7.2.3 Specifications

To support formal verification of BIGSIS formalism models, three LTL specifications were developed.

As discussed in Chapter 1, a critical aspect of interface understandability is that signifiers operating

through the same channel do not have conflicting meanings. This characteristic is asserted in

a signifier consistency specification (discussed in Section 7.2.3.1). Another critical characteristic

for understandability is that signifiers operating through multiple channels concurrently do not

have conflicting meanings. This is asserted in a signifier redundancy specification (discussed in

Section 7.2.3.2). Finally, if signifiers presented on the device are insufficient for supporting end

user understanding, such as a numeric error code or beeping audible alarm, the meanings of such

signifiers must be explained in accompanying documentation. This characteristic is asserted in a

signifier completeness specification (discussed in Section 7.2.3.3).

7.2.3.1 Signifier Consistency

Signifiers present on electrical/mechanical interface components are consistent if they operate

through the same channel (audible, visual, haptic, or documentation) and always signify the same

function or meaning. In a formal signifier model representing one or more electrical/mechanical

interface components, one or more channels, and one or more categories of signified function or

meaning, signifier consistency is specified for all components, one channel (visual, audible, haptic,

or documented), and one or more categories. If a channel does not have two or more perceivable

properties, it cannot have a signifier consistency specification. Because there are four specifiable

channels in BIGSIS-XML, there can be no more than four signifier consistency specifications for any

instantiated formal signifier model: visual consistency, audible consistency, haptic sconsistency, and

documentation consistency.

In (7.1), vis, represent sets of all perceivable properties operating through the visual channel;

C1 . . . Cn represent all interface components having visual-channel signifiers; and S1 . . . Sm repre-
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sent all categories of signified function or meaning. The specification reads, “all signifiers operating

through the visual channel always signify the same function or meaning from the same category.”

Signifier consistency specifications for audible and haptic channels ar encoded in the same way, re-

placing the set of visual-channel properties with audible- and haptic-channel properties respectively.

G



C1.vis.S1 = C2.vis.S1 ∧ . . . ∧ Cn−1.vis.S1 = Cn .vis.S1 ∧

C1.vis.S2 = C2.vis.S2 ∧ . . . ∧ Cn−1.vis.S2 = Cn .vis.S2 ∧

. . .

C1.vis.Sm = C2.vis.Sm ∧ . . . ∧ Cn−1.vis.Sm = Cn .vis.Sm


(7.1)

The documentation signifier consistency specification is encoded as shown in (7.2). Here,

Doc1 . . . Docn represent all interface components having documented explanations of what is sig-

nified; P represents the set of all perceivable properties; and S1 . . . Sm represent all categories of

signified function or meaning. The specification reads, “all signifiers operating through the docu-

mentation channel always signify the same function or meaning from the same category.”

G



Doc1.P .S1 = Doc2.P .S1 ∧ . . . ∧ Docn−1.P .S1 = Docn .P .S1 ∧

Doc1.P .S2 = Doc2.P .S2 ∧ . . . ∧ Docn−1.P .S2 = Docn .P .S2 ∧

. . .

Doc1.P .Sm = Doc2.P .Sm ∧ . . . ∧ Docn−1.P .Sm = Docn .P .Sm


(7.2)

7.2.3.2 Signifier Redundancy

Signifiers are redundant if they operate through different channels and always signify the same

function or meaning. In a formal signifier model representing one or more categories of signified

function or meaning and a set of signifier channel outputs for each category, signifier redundancy is

specified for two or more channels and one category. If only one channel is represented, there can

be no signifier redundancy specifications.



196

Incorporating all channels through which a category of function or meaning could be signified

(up to four: visual, audible, haptic, and documentation) constitutes a total signifier redundancy

specification. In a formal signifier model representing two or more channels and n categories of

function or meaning, the maximum number of total signifier redundancy specifications is n. The

example in (7.3) reads, “Audible, visual, haptic, and documentation channels always signify the

same function or meaning.”

G


visually signifiedi = audibly signifiedi ∧

audibly signifiedi = haptically signifiedi ∧

haptically signifiedi = documentedi

 (7.3)

If a formal signifier model represents two channels, all signifier redundancy specifications are

total. However if three or four channels are represented the analyst could incorporate them within

partial signifier redundancy specifications. In a formal signifier model representing three channels

and n categories of function or meaning, there can be a maximum of 3n two-channel redundancy

specifications. One such specification could be visual and audible signifier redundancy (7.4), which

reads, “Visual and audible channels always signify the same function or meaning.”

G(visually signifiedi = audibly signifiedi) (7.4)

In a formal signifier model representing all four channels and n categories of function or mean-

ing, there can be a maximum of 6n two-channel partial specifications and 4n three-channel partial

specifications (10n altogether). One such three-channel specification (7.5) could incorporate visual,

audible, and haptic channels for a particular category of signified function or meaning. This speci-

fication reads, “Visual, audible, and haptic channels always signify the same function or meaning.”
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G

visually signifiedi = audibly signifiedi ∧

audibly signifiedi = haptically signifiedi

 (7.5)

7.2.3.3 Signifier Completeness

Signifiers are complete if a function or meaning from a particular category is signified by perceivable

properties of the device; or, if not, it is discoverable through accompanying documentation. In a

formal signifier model representing one or more categories of signified function or meaning, one or

more perceivable channels (audible, visual, and/or haptic), and a documentation channel, signifier

completeness is specified for one category, up to three perceivable channels, and the documentation

channel. If a particular category is not signified through the documentation channel, there cannot

be a signifier completeness specification for that category; and for a formal signifier model having n

categories. the maximum number of completeness specifications is n. The example in (7.6) reads, “It

is never true that a function or meaning is not signified audibly, visually, or through accompanying

documentation.”

G¬
(
visually signifiedi = w0 ∧ audibly signifiedi = w0 ∧ documentedi = w0

)
(7.6)

7.2.3.4 Constrained Specifications

If the analyst encodes separate model infrastructure representing human-system interaction or the

system’s control logic (such as the device schema demonstrated in Section 7.2.2.4), a specifica-

tion could utilize device model variables to constrain model checking analyses in a way that only

considered device states of interest. For example, the signifier redundancy specification in (7.7) in-

corporates a variable Alarm from a device schema representing the system’s control logic for alarms.

This constrains model checking analyses to states in which an alarm is engaged; i.e., “when an alarm

is engaged, the audibly and visually signified meanings of the alarm are always the same.”
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G

(
Alarm = On ⇒ visually signifiedi = audibly signifiedi

)
(7.7)

7.2.4 BIGSIS-XML

Formal models and LTL specifications instantiated in Z are not amenable to model checking anal-

yses, which are critical to the BIGSIS approach. Utilizing an XML-based approach similar to those

described in Chapters 5 and 6, BIGSIS-XML enables such analyses. Its formal semantics are lever-

aged from the Z -based BIGSIS formalism (Section 7.2.2), and its contents are specified using the

XSD standard [159].

The BIGSIS-XML grammar is represented graphically in Fig. 7.2. The root node is named big-

sis. Its direct children are named signified-functions, signified-meanings, signifier-properties, and

property-documentation. Direct children of signifier-properties and property-documentation are per-

ceivable properties operating as signifiers.

7.2.4.1 Signified Functions and Meanings

The signified-functions and signified-meanings nodes (Fig. 7.2b) represent categories of information

signified by interface components. The encoding process is similar to that of categories from the

BIGSIS formalism values schema (S1,...n). What is signified in each category could come from

displays, controls, alarms, cables and any other components or widgets that have visually, audibly,

or haptically perceivable properties as well as documentation describing what is signified. The

analyst should first identify all functions and meanings that the interface (including documentation)

can signify, and then represent each specific function or meaning as a word or phrase. As in the

BIGSIS formalism, a function word describes what the component does, how it can be acted upon

by an end user, or what the consequence of an action will be. A meaning word describes a state

of the system such as a battery’s charge level or the current alarm mode. Words or phrases that

represent similar functions and meanings can be grouped into categories. The analyst can assign the

name attribute a value that helps to identify what the similar words and phrases have in common.
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Figure 7.2: Visual representation of the BIGSIS-XML grammar. Square-edge rectangles
are nodes. Smaller, round-edge rectangles are attributes. Parallelograms are text content.
Arrows point from parent to child nodes. Boldface headings aid in identifying groups of similar
perceivable properties and are not part of the grammar (a) The root node bigsis. (b–d) Direct
children of bigsis. (e) Direct children of signifier-properties and property-documentation. The
formal semantics of nodes f–g are leveraged from the BIGSIS formalism. (f) Visual signifiers.
(g) Orientation-dependent visual signifiers. (h) Audible signifiers. (i) Haptic signifiers

Words are encoded as the text content of each node, separated by commas.

7.2.4.2 Signifier Properties

The signifier-properties (Fig. 7.2c) node allows the analyst to represent a mechanical and/or elec-

tronic interface component having one or more visually, audibly, and/or haptically perceivable prop-

erties. As in the BIGSIS formalism, an interface component can be a display, cable, widget, or other

electrical/mechanical element. Each signifier-properties node must be assigned an of attribute,

which should help to identify the component or section (e.g. display screen foreground) using a
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unique, descriptive name (i.e. of attribute values cannot be repeated). Direct child nodes are one

or more perceivable properties operating as signifiers (Fig. 7.2e).

7.2.4.3 Property Documentation

The property-documentation node (Fig. 7.2d) allows the analyst to represent all information about

the device or system’s components, modes or configurations provided within any form of printed or

electronic documentation. As in the BIGSIS formalism, documentation may include user manuals,

handbooks, manufacturers’ websites, or other text-based sources.

The property-documentation node is encoded using the same syntax as the signifier-properties

node. The of attribute for each property-documentation node must reference a component specified

within an existing signifier-properties node. For example, if the analyst has encoded a signifier-

properties node having the of attribute “speed alarm,” a property-documentation node specifying

documentation of the speed alarm must also be encoded using the same of attribute value. As

in signifier-properties nodes, direct children are one or more perceivable properties operating as

signifiers (Fig. 7.2e).

7.2.4.4 Properties Operating as Signifiers

For each signifier-properties and property-documentation node, the analyst can encode one or more

child nodes representing a constrained set of perceivable properties operating as signifiers (Fig. 7.2e),

referred to as perceivable property nodes. Throughout this section, the graphical representation

in Fig. 7.3 aids in describing a constrained set of visual, audible, and haptic properties that are

specifiable in the current implementation of BIGSIS-XML.

The analyst can specify visual properties of shape, symbol, label, and pattern. Visual patterns

such as the blinking of an indicator light are considered time-variant, and they should be specified

using prefix v for “visual, time-variant.” All other properties are considered time-invariant and

should be specified without a subscript, with the exception of orientation-dependent linked properties

(discussed later). A perceivable property should be specified as a visual signifier if:

1. it is a perceivable property of shape, symbol, color, label, or pattern (Fig. 7.3a),
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2. it has at least one definable, one-to-one relationship between its description and a signified

function, meaning, or linked perceivable property.

If the first constraint does not hold, the property should not be specified. If the second constraint

does not hold, the signifier may be poorly designed. This second constraint applies to all perceivable

properties discussed throughout this chapter. If what is signified by the shape, symbol, or label

depends on orientation from the end user’s perspective, the analyst could link its signified function

or meaning to an orientation-dependent perceivable property.

Figure 7.3: Graphical representation of signifier properties considered in the BIGSIS for-
malism. Boldface headings describe what is common among properties operating as signifiers.
Signifier names are italicized within rectangles. Signifiers have one description (italicized within
rounded, dashed edge rectangle) and one or more categories of signified function or meaning
(italicized within rounded, solid edge rectangle) Prefix o stands for orientation-dependent. For
time-variant properties of pattern operating through different channels, prefix v stands for vi-
sual, a for audible and h for haptic. (a) Visual signifiers. (b) Orientation dependent visual
signifiers. (c) Audible signifiers. (d) Haptic signifiers

Shapes, symbols, and labels that have one or more asymmetrical axes could operate as signifiers in

an orientation-dependent way, and their signified functions/meanings could be linked to orientation-

dependent signifiers. A perceivable property should be specified as an orientation-dependent signifier
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Table 7.1: Constrained set of BIGSIS-XML perceivable property nodes (corresponding to
Pi of the BIGSIS formalism). Exemplars of descriptions (corresponding to Di of the BIGSIS
formalism) and descriptive words, terms, or phrases (corresponding to d0, . . . , dn of the BIGSIS
formalism) are shown in the second and third columns

Perceivable property
node (Pi)

Description (Di) end-user description words (d0, . . . , dn)

Shape Shaped noShape, triangle, octagon, square

Symbol Depicted noSymbol, arrow, checkMark, hourGlass

Label Labeled noLabel, stop, go, one, two

Color Colored noColor, red, yellow, green

vPattern Pattern noPattern, fastBlinking, slowBlinking

oShape Oriented noOrientation, up, down

oSymbol Oriented noOrientation, right, left

oLabel Oriented noOrientation, toward, away

Pitch Frequency noPitch, low, high

Volume Level noVolume, quiet, loud

aPattern Pattern noPattern, chirp, wail

Vibration Intensity noIntensity, low, moderate, high

Texture Feel noTexture, smooth, concave, notched

hPattern Pattern noPattern, rapid, slow, continuous

using prefix o for “orientation-dependent” (Fig. 7.3b) if:

1. the analyst has already specified a shape, symbol, or label that could be linked to an

orientation-dependent signifier,

2. the shape, symbol, or label has one or more definable orientations in two and/or three-

dimensional space, and

3. it has at least one identifiable one-to-one relationship between a description of its orientation

and a signified function, meaning, or linked perceivable property.

If the first constraint does not hold the analyst should specify a corresponding perceivable property

without prefix “o” (Shape, Symbol, Label). If the second constraint does not hold the signifier may

not operate in an orientation-dependent way.

The analyst can specify audible properties of pitch, volume, and pattern and haptic properties
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of texture, vibration, and pattern. Audible patterns should be specified using prefix a for “audible,

time-variant” and haptic patterns should be specified using prefix h for “haptic, time-variant.” A

perceivable property should be specified as an audible or haptic signifier if:

1. it is an audible property of pitch, volume, or pattern (Fig. 7.3c) or a haptic property of texture,

vibration or pattern (Fig. 7.3d) and

2. it has at least one definable, one-to-one relationship between its description and a signified

function, meaning, or linked perceivable property.

If the first constraint does not hold the property should not be specified.

For each node of Fig. 7.2e, the signifies attribute specifies what category of function or meaning

the perceivable property signifies. Its value must be the name attribute of a signified-functions or

signified-meanings node.

All perceivable property child nodes of property-documentation must have the same name and

signifies attribute as a corresponding signifier-properties child node; i.e. the analyst cannot specify

documentation of a perceivable property that does not operate as a signifier.

For each perceivable property node, the when- attribute (Fig. 7.2e, directly below signifies at-

tributes) specifies an end-user description, e.g. when-colored=“red” for a Color node. Text content

specifies what is signified, i.e. the one-to-one relationship between an end-user description and a

signified function, meaning, or linked perceivable property having the same signifies attribute.

The formal semantics of linked perceivable properties are the same in BIGSIS-XML and the

BIGSIS formalism, and they are encoded using a properties-signify or property-documentation

of attribute, a signifier property node, and a signifies attribute. Examples could be

Battery.Symbol.ChargeLevel and PushButton.oShape.SpeedAdjustment. If the parent node is

signifier-properties, a linked perceivable property always references a signifier-properties child node.

Likewise, if the parent node is property-documentation, a linked perceivable property references a

property-documentation child node.

As in the BIGSIS formalism, while encoding these nodes the analyst should consider the end

user’s perceptual and cognitive capabilities such as ability to perceive and identify colors as well
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as end user characteristics such as culture and past experiences. This approach promotes formal

reasoning about the user independently of the device or component, which could be useful for

informing design considerations. Similarly, each node’s when- attribute must relate to exactly one

signified function or meaning from the same category or exactly one linked property, and a one-

to-many relationship between an end-user description and a signified function, meaning, or linked

property is not specifiable. The BIGSIS-XML grammar enforces this by restricting whitespace and

commas within perceivable property node text content. These restrictions are useful for two reasons:

1. They could support the analyst in uncovering violations of signifier consistency during the

encoding process. If a perceivable property could signify multiple functions or meanings, then

it does not always signify the same thing as other perceivable properties.

2. Forcing the analyst to encode one-to-one relationships supports BIGSIS-XML representations

that adhere to BIGSIS formalism semantics, specifically the relation and explained functions-

defined in the signifiers schema (Section 7.2.2.3). This enables translation of BIGSIS-XML

representations to model checking syntax, discussed next.

7.2.5 Formal Model Translation

The custom, JavaScript-based tool incorporated within the BIGSIS approach parses instantiated

BIGSIS-XML representations and generates formal models and signifier specifications in the model

checking syntax of SAL [68].

Translated BIGSIS-SAL models are constructed from enumerated, record types, a single module,

and one or more theorems, depending on what LTL specifications are relevant (automatically gener-

ated by the translator). The module has local and output variables, initializations, transitions, and

definitions. The following sections reference a visual representation (Fig. 7.4a) of a BIGSIS-XML

instantiation. Node names, attributes, and text content of Fig. 7.4 were not derived from an inter-

face; rather, they generic and serve to demonstrate how the translator parses BIGSIS-XML nodes

and generates SAL syntax corresponding to formalism schemas.
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7.2.5.1 SAL Representation of values Schema

To represent declarations of the values schema, the translator generates enumerated types for each

signified-functions and signified-meanings node of a given BIGSIS-XML instantiation. Each type

corresponds to a signified function/meaning category Si : F1signifiedi of the values schema. One such

type is represented in Fig. 7.4c (S1). The set of values within each type is the node’s text content

and an additional, automatically generated word representing nothing signified (S1NotSignified in

Fig. 7.4c, corresponding to a w0).

Enumerated types are also generated to represent lists of end-user descriptions corresponding to

Di : F1descriptionsi . The translator parses all perceivable property nodes that are direct children of

signifier-properties (e.g. Color, oSymbol) and places their when- attribute values within enumerated

types. One enumerated type is generated for each set of when- attributes having the same name. For

example, if there are multiple when-colored attributes appearing in the BIGSIS-XML instantiation,

their values are placed within an enumerated type named COLORS. The translator ensures there is

a descriptive word within each type representing an absence of description (e.g. noColor, corre-

sponding to d0). Since when-depicted, when-colored, when-pattern, and when-level attributes appear

in Fig. 7.4, enumerated types of SYMBOLS, COLORS, PATTERNS, and LEVELS, and are represented in

Fig. 7.4a.

7.2.5.2 SAL Representation of properties signify Schema

To represent declarations of the properties signify schema, the translator parses perceivable property

nodes and generates one record type for each set of perceivable properties having the same name

(Fig. 7.4d), corresponding to P1 : values \ D2, ...,n . . .Pn : values \ D1, ...,n−1. For a given BIGSIS-

XML instantiation the translator generated up to 14 record types (i.e. n ≤ 14), each corresponding to

one of the 14 perceivable properties specifiable in the BIGSIS-XML grammar. Four such perceivable

properties appear in Fig. 7.4a: Symbol, Color, aPattern and Volume. Therefore there are four

record types represented in Fig. 7.4d: Symbols signify, Colors signify, aPatterns signify and

Volumes signify.

Identifier-type pairs for each record type are generated by parsing signifies and when- attribute
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values of perceivable property nodes. For all perceivable property nodes having the same name,

the first identifier-type pair is generated from when- attribute values defines the property’s set of

end-user descriptions. Subsequent identifier-type pairs represent signified categories of function or

meaning. Since all signifies attributes in perceivable property nodes of Fig. 7.4a are valued “S1”

(referencing the signified-meanings node), one category identifier-type pair is represented in all four

record types of Fig. 7.4d (S1: S1 values).

7.2.5.3 SAL Representation of signifiers Schema

To represent declarations of the signifiers schema, all signifier-properties nodes and property-

documentation nodes are translated to record types corresponding to C1,...,n : properties signify1,...,n

and Doc1,...,n : properties signify1,...,n respectively. A type for each node is constructed using its

child perceivable property nodes. For all perceivable property nodes having the same name, ex-

actly one corresponding identifier-type pair is added to each record type. For example, in Fig. 7.4a,

signifier-properties has four sets of child nodes having the same name: Symbol, Color, aPattern and

Volume. The translator produces a record type signifiers of C1 at the top of Fig. 7.4e. This type

corresponds to C1 : properties signify1 of the signifiers schema. The accompanying documentation

specified directly below it (documentation of C1) corresponds to Doc1 : properties signify1. No SAL

syntax is generated to represent the function declarations because one-to-one relationships between

end-user descriptions and signified functions, meanings, or linked properties are already represented

within perceivable property nodes: a node’s when- attribute value and text content corresponds to

Di →→ Si .

The predicate part of the signifiers schema is represented within the SAL module in Fig. 7.4e.

The translator generates local variables for each signifier-properties and property-documentation

node, each corresponding to ci and doci respectively within the predicate parts beginning ∀ ci : Ci ,

∀ ci : Ci ; cj : Cj , and ∀ ci : Ci ; doci : Doci ; docj : Docj .

The translator does not generate SAL syntax representing the first predicate of the signifiers

schema, which states that all perceivable properties are assigned an end-user description. A SAL

model checker assigns end-user descriptions randomly at the outset of a model checking analysis,
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Figure 7.4: Visual representation of SAL code generated from a generic BIGSIS-XML instan-
tiation. Arrows and bold-italic labels indicate which BIGSIS-XML nodes are parsed by the
translator to represent SAL code. (a) Graphical representation of instantiated BIGSIS-XML.
(b) Formal signifier model SAL code generated by the translator. (c–g) Portions of the trans-
lated SAL formal model corresponding to BIGSIS formalism schemas. (h) Four of the eight
automatically generated LTL signifier specifications. Not shown: audible signifier consistency,
documentation signifier consistency, visual and documentation partial signifier redundancy, au-
dible and documentation partial signifier redundancy

but the analyst could optionally encode them manually.

SAL syntax representing the second and third predicates is generated under the INITIALIZATION

heading in Fig. 7.4e. To represent the second predicate the translator parses all signifier-properties

nodes and generates SAL conditional expressions. For each signifier-properties node, all perceivable
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property child nodes having the same name and signifies attribute correspond to an instance of

the predicate beginning ∀ ci : Ci ; cj : Cj • and ending else ci .Pi .Si = w0. In the signifiers

schema, one if · · · then · · · else . . . expression is utilized to specify what is signified for all end-

user descriptions (di). When these descriptions are instantiated in BIGSIS-XML, the corresponding

SAL syntax satisfies the second signifiers schema predicate via a IF ...THEN ...ELSIF ...THEN

...ELSE conditional expression, where:

• The IF ...THEN ... part corresponds to the first perceivable property child of a signifier-

properties node, and

• One ELSIF ...THEN ... part is generated for each perceivable property sibling node having

the same node name (e.g. Symbol) and signifies attribute (e.g. S1 )

Four such expressions are shown in Fig. 7.4e. Expressions representing the third predicate are

generated in the same way for property-documentation nodes, and two are shown in Fig. 7.4e.

7.2.5.4 SAL Representation of next state signifiers Schema

The translator generates a set of SAL conditional expressions to represent the next state signifiers

schema under the TRANSITION heading of Fig. 7.4f. Each next-state transition is a copy of the

corresponding initialization statement with the addition of a “′” symbol. Since they are the same,

ELSIF segments of conditional transition expressions are replaced with ... in Fig. 7.4f to conserve

space.

The translator does not generate SAL syntax representing transitions to end-user descriptions.

The analyst can encode these transitions manually using SAL syntax corresponding to BIGSIS for-

malism semantics. Alternatively, the analyst could encode model infrastructure considered separate

from the BIGSIS formalism representing the system’s control logic and/or human-system interaction.

This technique is demonstrated in Section 7.3.

7.2.5.5 SAL Representation of outputs Schema

To represent the outputs schema, the translator parses perceivable property nodes and groups them

into sets by channel (corresponding to the basic types [vis], [aud ], [hap], and [doc]). The translator
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generates SAL syntax for each set of perceivable property nodes in the same way, each of which

represents one of four respective predicates. The translation protocol is described below with respect

to the visual channel.

If the set of perceivable property nodes corresponding to the basic type [vis] is empty (i.e. there

are no nodes representing visually perceivable properties), SAL syntax representing the first pred-

icate is not generated. Otherwise, one SAL output variable (corresponding to visually signifiedi :

signifiedi !) is generated for each category of function or meaning referenced within visually per-

ceivable property node signifies attributes, and the output variable’s name aids in identifying

the channel and category (Fig. 7.4g, above DEFINITION heading). SAL selection statements

(Fig. 7.4g, below DEFINITION heading) are generated to represent the predicate part beginning

∀ visually signifiedi . Each SAL output variable listed on the left-hand side of IN corresponds to one

visually signifiedi variable of the outputs schema. All visually perceivable properties signifying the

specified category of function or meaning (corresponding to C .Vis.Si) are listed on the right-hand

side. If there are no visually perceivable property nodes for the specified category of function or

meaning in the BIGSIS-XML representation, SAL syntax is generated representing the predicate

part C .vis.Si = ∅ ⇒ visually signifiedi = w0 ∧ w0 ∈ Si . Such a case is not represented in Fig. 7.4e.

7.2.5.6 System Model Composition

The automatically generated system model employs the synchronous composition of device and

signifier models (above END in Fig. 7.4). Such a composition ensures that end-user descriptions

update correctly when the device changes states.

7.2.5.7 Automatic Generation of Signifier Specifications

Leveraging the semantics of LTL signifier specifications introduced in Section 7.2.3, the BIGSIS-

XML-to-SAL translator also generates SAL theorems representing signifier consistency, redundancy,

and completeness. Four such theorems are shown in Fig. 7.4h, automatically generated from the

BIGSIS-XML instantiation represented in Fig. 7.4a.

As discussed in Section 7.2.3, a BIGSIS formalism representation having n categories of signified

functions or meanings could have a maximum of four signifier consistency specifications (one for each
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channel), n total signifier redundancy specification, 10n partial signifier redundancy specifications,

and n signifier completeness specifications. These maximums are the same for SAL theorems gener-

ated by the translator. Specification generation rules are listed in outline form below with respect

to BIGSIS-XML perceivable property nodes (Fig. 7.2e).

1. Signifier consistency:

(a) Visual: two or more Shape, Symbol, Label, Color, vPattern, oShape, oSymbol, oLabel nodes

have the same signifies attribute value and are direct children of signifier-properties. One

specification is generated.

(b) Audible: two or more Pitch, Volume, aPattern nodes have the same signifies attribute

value and are direct children of signifier-properties. One specification is generated.

(c) Haptic: two or more Texture, Vibration, or hPattern nodes have the same signifies at-

tribute value and are direct children of signifier-properties. One specification is generated.

(d) Documentation: two or more perceivable property nodes (i.e. any of those shown in

Fig. 7.2e) have the same signifies attribute value and are direct children of property-

documentation. One specification is generated.

2. Signifier redundancy:

(a) Total: one or more visually perceivable property nodes (Fig. 7.2f), audibly perceivable

property nodes (Fig. 7.2h), and/or haptically perceivable property nodes (Fig. 7.2i) have

the same signifies attribute value. One specification is generated for each category of

signified function or meaning.

(b) Partial:

i. Three-channel: All four channels are represented. One or more visually perceivable

property nodes (Fig. 7.2f), audibly perceivable property nodes (Fig. 7.2h), and hap-

tically perceivable property nodes (Fig. 7.2i) have the same signifies attribute value

and are direct children of signifier-properties and property-documentation. One spec-
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ification is generated for each category of function or meaning signified through all

three channels.

i. Two-channel: At least three channels are represented. One or more visually perceiv-

able property nodes (Fig. 7.2f), audibly perceivable property nodes (Fig. 7.2h), and

haptically perceivable property nodes (Fig. 7.2i) have the same signifies attribute

value and are direct children of signifier-properties or property-documentation. One

specification is generated for each category of function or meaning signified through

two channels.

3. Signifier completeness:

(a) One or more visually perceivable property nodes (Fig. 7.2f), audibly perceivable prop-

erty nodes (Fig. 7.2h), and haptically perceivable property nodes (Fig. 7.2i) have the

same signifies attribute value and are direct children of property-documentation. One

specification is generated for each category of function or meaning signified through the

documentation channel.

7.2.6 Model Checking Technique

Specifications can be verified in SAL using either symbolic model checking (SAL-SMC) or bounded

model checking (SAL-BMC) [68] (see Chapter 3, Section 3.2.3 for more information about these

tools).

7.3 Case Study

The case study system is based on the left ventricular assist device (LVAD) described in Chap-

ter 5. It includes a portable, battery-powered controller and printed documentation having labeled

diagrams, tables, and instructional procedures. Using BIGSIS-XML, a subset of the controller’s

electrical/mechanical components, visual and audible properties presented on the device, and tables

and diagrams within the patient handbook are represented. The end user is assumed to be an

English-speaking adult having capabilities of perceiving visual and audible properties presented by
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the controller, changing the device’s settings, and understanding information within accompanying

documentation.

To represent the system’s control logic and human-system interaction, a device model considered

separate from elements of the BIGSIS approach is encoded. The device model represents control logic

controlling visual/audible properties and human-system interactions operating as inputs to guarded

transitions representing next-states of end-user descriptions (corresponding to the Deltasignifiers

schema). The system’s interface is described in Section 7.3.1. The components, visual/audible

properties, and documentation considered in the formal signifier model are described and encoded

in the language of BIGSIS-XML in Section 7.3.2.

Figure 7.5: (a) Labeled diagram of the case study system’s battery-powered controller ap-
pearing within accompanying documentation. Letters b–d and dashed red boxes are added to
identify the three components considered in the case study. (b) Power indicator lights (num-
bered 3–12) and high power alarm (numbered 13). (c) Pump stopped alarm. (d) Speed setting
knob. (e) Graphical rendering of the controller. The speed setting is four and the power indica-
tor lights 8–9 are illuminated green. (f) High power alarm engaged: the number 13 illuminates
amber and a loud, continuous alarm sounds. (g) Pump stopped alarm engaged: the octagon
shaped light illuminates red and a loud, continuous alarm sounds

7.3.1 System Description

The system’s controller has control logic for operating an implanted blood pump at one of five

rotational speeds (numbered 1–5 from lowest to highest), and an end user could change the speed

by rotating a speed setting knob on the side of the controller. The controller supplies as much

power as necessary to the pump for maintaining a speed setting. The controller has control logic for

illuminating any two adjacent power supply indicator lights numbered 3–12 (e.g. 8–9 in Fig. 7.5e)
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and engaging one of four audible/visual alarms when a malfunction is detected. Two alarms are

considered: the number 13 illuminates amber and a loud, continuous alarm sounds when the high

power alarm is engaged (Fig. 7.5f); the octagon light illuminates red and a loud, continuous alarm

sounds when the pump is rotating below a minimum threshold speed (Fig. 7.5g). Either audible

alarm is emitted at the same pitch and volume.

The accompanying documentation describes what is signified by visual/audible properties of the

components in Fig. 7.5. Text indicates that the high power alarm is the segment of power indicator

lights labeled 13; and if the controller is supplying 13 or more watts to the pump, a loud, continuous

alarm sounds while the number 13 illuminates amber. Text indicates that the pump stopped alarm

light illuminates red and a loud, continuous alarm sounds if the pump is operating below 5,000

RPM. The underspeed alarm (Fig. 7.5a, top-left) engages when the pump is operating below its

programmed speed and above 5,000 RRM, but it is not considered in the case study.

Table 7.2: Control knob settings, programmed speeds, and approximate power supplied by
the controller discoverable within accompanying documentation

Setting Programmed speed (RPM) Power (watts)

1 8,000 3–4

2 9,000 4–5

3 10,000 5–6–7

4 11,000 7–8–9

5 12,000 8–9–10

A diagram (Fig. 7.5a) indicates that power indicator lights show power supplied to the pump

in watts. Two tables (combined in Table 7.2) relate the speed setting knob’s label to programmed

rotational speeds and typical wattages supplied by the controller for each speed setting.

7.3.2 BIGSIS Model

A formal signifier model of the case study system represents three interface components described in

the previous section (Section 7.3.1): the power indicator lights (including the high power alarm), the

pump stopped alarm, and the speed setting knob. The model represents visual properties of color

and label, audible properties of pattern and volume, text within accompanying documentation, and
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tables within accompanying documentation (Table 7.2).

35 words/phrases are encoded to represent what is signified by the power indicators, pump

stopped alarm, and speed setting knob; their colors, labels, audible patters, and volumes; and ac-

companying documentation describing what is signified. 12 of 35 words are encoded as text content

within a signified-meanings node named PumpSpeed, six of which define relative pump speeds signi-

fied by the visual/audible properties of the pump stopped alarm and visual properties of the speed

setting knob: Stopped, Low, Lowest, Medium, High, and Highest. The six other phrases define pump

speed in RPM signified by accompanying documentation describing all three components: Below-

FiveThousandRPM, AboveFiveThousandRPM, EightThousandRPM, NineThousandRPM, TenThou-

sandRPM, ElevenThousandRPM, and TwelveThousandRPM.

23 of 35 phrases are encoded as text content within a signified-meanings node named PowerSup-

plied, ten of which define power supplied in units signified by visual/audible properties of the power

indicators, including the high power alarm: ThreeToFourUnits, FourToFiveUnits, FiveToSixU-

nits, SixToSevenUnits, SevenToEightUnits, EightToNineUnits, NineToTenUnits, TenToElevenUnits,

ElevenToTwelveUnits, and ThirteenUnits. 13 of 23 phrases define power supplied in watts signified by

accompanying documentation describing power indicators, including the high power alarm, and the

speed setting knob: ThreeToFourWatts, FourToFiveWatts, FiveToSixWatts, SixToSevenWatts, Sev-

enToEightWatts, EightToNineWatts, NineToTenWatts, TenToElevenWatts, ElevenToTwelveWatts,

FiveToSevenWatts, SevenToNineWatts, EightToTenWatts, and ThirteenWattsOrGreater.

Signifier-properties, property-documentation, Color, Label, and aPattern nodes of the BIGSIS-

XML representation are described in outline form. The first outline describes what is signified

through visual and audible channel properties of interface components described in Section 7.3.1,

and the second outline describes what is signified through the documentation channel. To aid in

associating outlined descriptions of what is signified with model variable names in the BIGSIS-XML

representation, signifier-properties and property-documentation node of attributes are listed in italic

text within parentheses.

The first outline describing what is signified by colors, labels, audible patterns, and volumes
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presented on the device is shown below.

1. Power indicators (signifier-properties of=“PowerIndicators” )

(a) Color : amber signifies 13 power units supplied to the pump. Green signifies power units

supplied by the pump, depending on what label is colored.

(b) Label : any two adjacent numbers labeled 3–12 signify a range of power units supplied to

the pump; for example, 4 and 5 illuminated in Fig. 7.5e signifies 4–5 units. The label 13

signifies 13 power units supplied to the pump.

(c) aPattern: a continuous pattern signifies thirteen power units supplied to the pump.

(d) Volume: a loud volume signifies thirteen power units supplied to the pump.

2. Pump stopped alarm (signifier-properties of=“PumpStoppedAlarm” )

(a) Color : red signifies that the pump is stopped. When no color is present, signified pump

speed depends on the speed setting knob’s label.

(b) aPattern: a continuous pattern signifies that the pump is stopped.

(c) Volume: a loud volume signifies the pump is stopped.

3. Speed setting knob (signifier-properties of=“SpeedSettingKnob” )

(a) Label : a number 1–5 signifies relative pump speed, lowest–highest

The second outline describing what is signified through the documentation channel is shown below.

1. Documentation of power indicators (property-documentation of=“PowerIndicators” )

(a) Color : amber signifies that 13 or more watts are supplied to the pump. Green signifies

watts supplied by the pump, depending on what label is colored.

(b) Label : any two adjacent numbers 3–12 signify watts supplied to the pump. The label 13

signifies 13 or more watts supplied to the pump. Any two adjacent numbers 3–8 signify

pump speed (Table 7.2). Pump speed is not signified by the two adjacent numbers 8–9,

since they appear within two rows of Table 7.2, corresponding to multiple pump speeds.
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Two adjacent numbers 10–11 and 11–12 as well as the singular number 13 do not signify

pump speed, since they do not appear in Table 7.2.

(c) aPattern: a continuous pattern signifies 13 or more watts supplied to the pump.

(d) Volume: a loud volume signifies 13 or more watts supplied to the pump.

2. Documentation of pump stopped alarm (property-documentation of=“PumpStoppedAlarm” )

(a) Color : red signifies that the pump speed is below 5,000 RPM.

(b) aPattern: a continuous pattern signifies that the pump speed is below 5,000 RPM.

(c) Volume: a loud volume signifies that the pump speed is below 5,000 RPM.

3. Documentation of speed setting knob (property-documentation of=“SpeedSettingKnob” )

(a) Label : a number 1–5 signifies pump speed in RPM, 8,000–12,000 in 1,000 RPM incre-

ments, and power supplied to the pump in watts (Table 7.2).

The BIGSIS-XML representation is encoded in 79 lines (Appendix G.1) and translated to 121

lines of SAL code using the automated tool described in Section 7.2.5.

7.3.3 Device Model

A device model represents human-system interaction and the LVAD’s internal algorithms for the

two considered alarms. This model controls changes to settings, alarms, and next-states of end-

user descriptions (corresponding to the next state signifiers schema of the BIGSIS formalism). For

human-system interaction, the device model represents a patient interacting with the speed setting

knob to select a position labeled 1–5 or leave the position unchanged. For control logic, the device

model represents states in which the pump stopped alarm is engaged, the high power alarm is

engaged, or no alarm is engaged.

The initial Alarm value is PumpStopped and the initial Action value is None. For all subsequent

values the alarm could transition randomly between NoAlarm, PumpStopped, and HighPower and

the end user’s interaction with the speed setting knob could transition randomly between None,

IncreaseSpeed, and DecreaseSpeed.
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Figure 7.6: Graphical representation of the device model. Arrows connecting rounded-edge
rectangles represent transitions. Curved arrows with filled circle represent initial states. (a)
device model infrastructure representing the system’s alarms. The variable Alarm is an output
operating as an input to the signifiers module. (b) device model infrastructure representing
human-system interaction. The variable Action is an output operating as an input to the SAL
signifiers module. (c) Label of the power indicator lights. (d) Color of the power indicator
lights. (e) Color of the pump stopped alarm light. (f) Label of the speed setting knob

The device model was 33 lines of SAL code (Appendix G.2.2). Outputs of the device model

represented in Fig. 7.6a–b operate as inputs to the signifiers module, where guarded transitions

control next-states of end-user descriptions. With this additional model infrastructure, the final

BIGSIS-SAL model was 144 lines of SAL code (Appendix G.2.1).

7.3.4 Specifications

The translator generates 15 SAL theorems representing signifier specifications. For the purpose

of demonstrating an application of the BIGSIS verification methodology, six are considered within

model checking analyses. Visual consistency is specified to ensure that color of the pump stopped

alarm and label of the speed setting knob are internally consistency with respect to pump speed,
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while color and label of the power indicators are internally consistent with respect to power supplied.

Audible consistency is specified to ensure that the audible pattern and volume of the pump stopped

alarm are internally consistency with respect to pump speed, while audible pattern and volume of

the high power alarm (incorporated within power indicators) are internally consistent with respect

to power supplied. Two constrained, partial redundancy specifications are encoded to ensure that:

1. Visual and audible signifiers of power supplied have the same signified meaning when an alarm

is engaged

2. Visual and documentation signifiers of pump speed have the same signified meaning when an

alarm is engaged

States in which no alarms are engaged are not considered in the redundancy specifications because

it is known that nothing will be signified through the audible channel in these states. Finally, two

completeness specifications are encoded to ensure that:

1. A power supplied is always signified through at least one channel

2. A pump speed is always signified through at least one channel

The SAL syntax of each automatically generated specification is modified to compose signifier and

device models synchronously, enabling them to transition together within model checking analyses.

This composition ensures that outputs of the device model are in-sync with outputs of the signifier

model.

7.3.4.1 Signifier Consistency

Two signifier consistency specifications are considered: visual consistency and audible consistency.

The SAL syntax shown below for visual consistency reads, “colors and labels always signify the same

pump speed and power supplied.”

Visual Consistency:

G(PumpStoppedAlarm.Color.PumpSpeed = SpeedSettingKnob.Label.PumpSpeed AND

PowerIndicators.Color.PowerSupplied = PowerIndicators.Label.PowerSupplied);

The SAL syntax shown below for audible consistency reads, “audible patterns and volumes always

signify the same pump speed and power supplied.”
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Audible Consistency:

G(PumpStoppedAlarm.aPattern.PumpSpeed = PumpStoppedAlarm.Volume.PumpSpeed AND

PowerIndicators.aPattern.PowerSupplied = PowerIndicators.Volume.PowerSupplied);

7.3.4.2 Signifier Redundancy

Two, two-channel partial signifier redundancy specifications are considered, both of which are modi-

fied as constrained specifications. The constraint ensures that model checking analyses only consider

states in which an alarm is engaged. PowerSupplied visual audible redundancy reads, “When an

alarm is engaged, visual and documented power supplied are always the same.”

PowerSupplied Visual Audible Redundancy:

G(Alarm /= NoAlarm =>

Visually Signified PowerSupplied = Audibly Signified PowerSupplied);

PowerSupplied visual documented redundancy reads, “When no alarm is engaged, visually signified

and documented pump speeds are always the same.”

PumpSpeed Visual Documented Redundancy:

G(Alarm = NoAlarm =>

Visually Signified PumpSpeed = Documented PumpSpeed);

7.3.4.3 Signifier Completeness

Two signifier completeness specifications are considered: PowerSupplied completeness and Pump-

Speed completeness. PowerSupplied completeness reads, “it is never true that power supplied is not

signified audibly, visually, or through accompanying documentation.”

PowerSupplied Completeness:

G(NOT(Visually Signified PowerSupplied = PowerSuppliedNotSignified AND

Audibly Signified PowerSupplied = PowerSuppliedNotSignified AND

Documented PowerSupplied = PowerSuppliedNotSignified));

PumpSpeed completeness reads, “it is never true that pump speed is not signified audibly, visually,

or through accompanying documentation.”

PumpSpeed Completeness:

G(NOT(Visually Signified PumpSpeed = PumpSpeedNotSignified AND

Audibly Signified PumpSpeed = PumpSpeedNotSignified AND

Documented PumpSpeed = PumpSpeedNotSignified));
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7.3.5 Verification

Specifications were verified using SAL’s symbolic model checker (SAL-SMC) [68]. Results, number

of states visited, and execution times are shown in Table 7.3. Signifiers could be considered safe

with respect to audible signifier consistency, power supplied signifier completeness, and pump speed

signifier completeness, but unsafe with respect to visual signifier consistency and partial signifier

redundancy.

Table 7.3: Case study model checking results

Specification name Result States visited Execution time (s)

Visual consistency counterexample 5.5465277668511× 1023 1.31

Audible consistency proved 3.1448812438046× 1026 3.90

PowerSupplied visual audible
redundancy

counterexample 5.5465277668511× 1023 1.20

PumpSpeed visual
documented redundancy

counterexample 7.0256018380114× 1023 1.15

PowerSupplied completeness proved 3.1448812438046× 1026 3.96

PumpSpeed completeness proved 3.1448812438046× 1026 3.92

The counterexample to visual consistency represents the initial state in which the pump stopped

alarm colored Red signifies a pump speed of Stopped, while the speed setting knob labeled Three

signifies a pump speed of Medium (Fig. 7.7). This state represents a potential understandability fail-

ure, as the speed setting knob label Three and the pump stopped alarm color Red signify conflicting

pump speeds concurrently.

Figure 7.7: Visualization of case study counterexample to visual consistency. Variables and
values are listed in italic text within rectangles. Arrows point from variables to interface com-
ponents. Conflicting meanings are listed in boldface white text within black rectangles

The counterexample to PowerSupplied visual audible redundancy represents the initial state in

which the visually signified power supplied is SixToSevenUnits and the audibly signified power sup-
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plied is ThirteenUnits (Fig. 7.8). Power indicators labeled SixAndSeven signify SixToSevenUnits

while the pump stopped alarm volume level Loud and audible pattern Continuous signify Thirtee-

nUnits. This state reflects a potential understandability failure, as there are conflicting meanings

regarding power supplied signified concurrently through audible and visual channels.

Figure 7.8: Visualization of case study counterexample to PowerSupplied visual audible re-
dundancy. Variables and values are listed in italic text within rectangles. Arrows point from
variables to interface components. Conflicting meanings are listed in boldface white text within
black rectangles

The counterexample to PumpSpeed visual documented redundancy represents a one-step trace

through the model in which the visually signified pump speed is High, but the documented pump

speed is SpeedNotSignified (Fig. 7.9). The speed setting knob labeled Four signifies a pump speed

of High through the visual channel, while pump speed is not signified through the documentation

channel. This is due to the tables in the patient handbook indicating that when the power indicators

are labeled 8–9, the pump speed could be either 11,000 or 12,000 RPM. Because such a one-to-many

relationship is not specifiable in the BIGSIS formalism, pump speed is not signified through the

documentation channel when the end-user description of label for the power indicators is EightAnd-

Nine. This state reflects a potential understandability failure: conflicting pump speeds are signified

concurrently through visual and documentation channels.

7.4 Scalability

In the case study model, a subset of next-state end-user descriptions were enabled via the exchange of

input/output variables with an auxiliary device model. However, it could be possible for a human-
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Figure 7.9: Visualization of case study counterexample to PumpSpeed visual documented
redundancy. Variables and values are listed in italic text within rectangles. Arrows point from
variables to interface components. Conflicting meanings are listed in boldface white text within
black rectangles

system interface to support all end-user descriptions, and formal verification of signifier models

should be scalable for such an interface. Thus, scalability of the BIGSIS approach was evaluated to

assess the effects on model size and symbolic model checking verification times with respect to:

• One-to-one relations

• Guarded transitions enabling all end-user descriptions

A base model and five increasingly larger models were encoded in BIGSIS-XML, translated to SAL,

augmented with initial- and next-state end-user descriptions, and verified using symbolic model

checking. BIGSIS-XML nodes of the base model are described in outline form below:

• two signified-meanings nodes having one word each as text content

• one signifier-properties node having:

– one audibly perceivable property child node having one end-user description and one

signified meaning

– one visually perceivable property child node having one end-user description and one

signified meaning

This model encompasses two one-to-one relations. The base model was enlarged by adding one addi-

tional comma-separated word to each signified meanings node, duplicating the perceivable property
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nodes, and modifying the when- attribute/text content of duplicated nodes such that two new one-to-

one relations were introduced. This technique does not modify the number of signified meaning nodes

or channels represented in perceivable property nodes, which constrains the scalability evaluation to

guarded transitions and one-to-one relations. This process was repeated four times to generate six

BIGSIS-XML representations. Each BIGSIS-XML representation was translated to SAL; one set of

initial end-user descriptions was assigned (i.e. one for each property of each components); and two

guarded transitions were encoded for each one-to-one relation such that all descriptions could be

assigned in subsequent states:

1. The 1st (base) model has two one-to-one relations and four guarded transitions

2. The 2nd model has four one-to-one relations and eight guarded transitions

3. The 3rd model has eight one-to-one relations and 16 guarded transitions

4. The 4th model has 16 one-to-one relations and 32 guarded transitions

5. The 5th model has 32 one-to-one relations and 64 guarded transitions

6. The 6th model has 64 one-to-one relations and 128 guarded transitions

An LTL specification (encoded generally in (7.8)) was developed for each model to ensure that all

reachable states are enumerated verification. The specification, which is always true, asserts that the

one component’s perceivable property always signifies one meaning from the set of possible meanings

represented in the model.

G(Ci .Pi .Si = w0 ∨ . . . ∨ Ci .Pi .Si = wn) (7.8)

Specifications were verified using SAL-SMC [68]. The number of states visited and verification

times for each model are reported in Table 7.4. Doubling the number of one-to-one relations and

guarded transitions increased model size and verification time exponentially. On the target work-
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station, model checking succeeded in the first five models, but failed on the 6th model having 64

one-to-one relations and 128 guarded transitions.

Table 7.4: Results of scalability evaluation. “—” indicates that model checking failed

One-to-one relations Guarded transitions States visited Verification time (s)

2 4 4 0.06

4 8 49 0.08

8 16 9.37890625× 108 0.35

16 32 3.595305184641× 1012 7.01

32 64 3.9402006196395× 10115 328,195.36

64 128 — —

7.5 Discussion

This chapter introduced a novel, formal methods based approach for analyzing interface signifiers,

including:

1. The BIGSIS formalism and modeling technique

2. LTL signifier specifications based on safety-critical system usability standards

3. An encoding tool that facilitates the development of formal models and LTL signifier specifi-

cations

The approach was demonstrated in a medical device case study, and scalability of the approach

was evaluated using symbolic model checking. Methodological considerations and directions of future

work are discussed in the following sections.

7.5.1 The BIGSIS Formalism and Modeling Technique

The BIGSIS formalism is the first attempt of representing signifiers within a formal model. In

determining what is signified the analyst is meant to consider end-user knowledge of the system,

cultural context, and perceptual capabilities. By representing what is signified as outputs of the

human-system interface, the BIGSIS formalism and modeling technique force the analyst to reason

about interactions between the user and device. Similar to how the process of encoding formal models
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has proven useful in other applications [101], the process of instantiating the BIGSIS formalism could

be useful for informing the design of visual, audible, and haptic properties of interface components

that support understandability for a specified end user.

By representing information within a system’s accompanying documentation as a signifier chan-

nel, the BIGSIS formalism provides a new way of incorporating documentation as part of the in-

terface. Other formal methods-based frameworks do not represent documentation in this way. For

example, the EOFM task analytic formalism [10] was useful for analyzing how device descriptions

could influence end-user task behavior in Chapter 5; however, device descriptions were only applica-

ble within the context of a procedure. Additionally, interactions among user manual text, perceivable

properties of the device, and end-user interpretation were difficult to model. The BIGSIS formalism

provides these modeling capabilities.

The relation and explanation functions of the signifiers schema enable the analyst to specify what

is signified by individual properties of interface components. Currently, these functions are limited

to specifying what is signified by one component, property, and end-user description. Researchers

in semiotics have demonstrated that signifiers could operate as hierarchical systems in which many

components and properties interact (see for example [213]). There is no way to represent these

phenomena using the BIGSIS formalism. If multiple properties and components are necessary for

a function or meaning to be signified, the analyst must abstract their interaction by specifying

linked properties. Additionally, these interactions are specifiable in a heterarchical way. Abstracting

interactions between signifiers by linking them proved useful in the case study; however, it could be

beneficial to refine the BIGSIS formalism in future work such that a broader range of interactions

among components and properties can be modeled.

7.5.2 Signifier Specifications

The signifier specifications introduced in this research integrate the formal semantics of LTL with

the theory of signifiers from HCI [37]. Generalizable specifications assert signifier consistency and

signifier redundancy, which could be useful for verifying two aspects of interface understandability

early in the design cycle. The signifier completeness specification could be useful for ensuring that
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if perceivable properties on the device are insufficient, accompanying documentation provides the

missing information. For system models that utilize separate representations of displays, controls,

or human-system interaction, constrained specifications enable the analyst to verify signifier spec-

ifications for particular states of interest, such as those in which a certain alarm is engaged. This

encoding technique was inspired by the approach discussed in [46].

While these specification proved useful in the case study, they should be validated empirically in

future work to determine if model checking counterexamples represent real usability problems for hu-

man study participants. Additionally, the specifications do not capture all five safety-critical system

usability measures identified in Chapter 1. For example, the understandability- and completeness-

related specifications do not consider whether what is signified is correct with respect to the system’s

operational state (i.e. whether signifiers are accurate). One way of specifying signifier accuracy is

addressed in Chapter 9. The applicability of other safety-critical system usability measures with

respect to LTL signifier specifications should be explored in future work.

7.5.3 Encoding Tool: BIGSIS-XML and Translator

BIGSIS-XML is the first formal grammar developed to facilitate formal signifier modeling. Lever-

aging theories of perception from psychology and HCI, a constrained set of keywords identifies

different kinds of interface component properties that could be perceived and identified in different

ways. While the tool was developed to facilitate formal model development, it could be useful on

its own for evoking design considerations during the encoding process. For example, while encoding

the BIGSIS-XML representation of the medical device interface, it was observed that the numbers

8–9 illuminated green on the power indicators could signify two pump speeds through the documen-

tation channel, 11,000 and 12,000 RPM (Table 7.2). Therefore, accompanying documentation may

not support the end user in identifying a pump speed if the numbers 8–9 are illuminated. Uncov-

ering this potential problem was possible because the formal semantics of BIGSIS-XML require the

analyst to encode one-to-one relationships between end-user descriptions and signified functions or

meanings. This concern is revisited in Section 7.5.4.

The constrained set of visual, audible, and haptic properties that are specifiable in BIGSIS-XML
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proved useful in the case study (discussed further in Section 7.5.4), but it could be beneficial to

explore a broader range of properties in future work. For example, keywords for specifying the

spatial position of components and properties with respect to each other could improve applicability

of BIGSIS-XML to a broader range of systems. Another area of interest involves properties that

perceivable through multiple channels, such as length, width, and depth dimensions that are both

kinesthetic and visual. These properties are critical for understanding what motor actions the

end user could execute to manipulate interface components, such as whether a button appears

pushable based on its depth and diameter. Incorporating these properties within the BIGSIS-

XML grammar could enable integrated analyses of signifiers and, leveraging the methodologies from

Chapter 6, affordances. For example, it could be useful for a BIGSIS-XML representation to specify

whether a button’s dimensions signify “pushable,” while a CAVEMEN-XML representation specifies

what human-environment system constraints enable the “pushable” affordance. Models could be

translated and verified to ensure that pushability is always signified and afforded. Extensions to

BIGSIS-XML supporting such a technique should be explored in future work.

To facilitate model checking analyses of signifiers, BIGSIS-SAL models and LTL signifier safety

specifications are automatically generated by the automated translation tool. One reason the trans-

lator is advantageous is because it makes model checking analyses possible without the need for

SAL syntax. However, knowledge of XML is still needed, and additional SAL infrastructure needs

to be encoded manually if the analyst wants to model end user-device interaction. Formal methods

researchers have developed GUI-based tools for generating formal model code from visual represen-

tations (see for example [48]), and it could be beneficial to develop such a tool for BIGSIS in future

work.

7.5.4 Medical Device Case Study

Case study results indicate that the BIGSIS approach shows promise for enabling formal verification

of signifiers for an interface having colors, labels, patterns, volumes, and accompanying documenta-

tion explaining what is signified. Modeling checking counterexamples proved useful for uncovering

potential consistency and redundancy problems, while the process of instantiating a BIGSIS-XML
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model aided in identifying what model checking analyses should be conducted. For example, the

PowerSupplied visual documented redundancy specification was selected to revisit a potential under-

standability problem uncovered during the BIGSIS-XML encoding process: power indicator lights

labeled 8–9, corresponding to one end-user description of label, relate to multiple pump speeds in

Table 7.2; thus, in the BIGSIS-XML representation, a pump speed was not signified through the

documentation channel. The PowerSupplied visual documented redundancy specification was en-

coded to investigate this concern. Its counterexample revealed that documentation could introduce

a potential understandability because it provides information that conflicts with the pump speed

signified by the speed setting knob label. Therefore, the sequential approach of flagging the poten-

tial problem during the BIGSIS-XML encoding process, revisiting it in a safety specification, and

analyzing it via model checking proved useful.

While encoding guarded transitions for end-user descriptions, it was observed that the power

indicator label description of “ElevenAndTwelve” is never assigned (i.e., numbers 11–12 on the

controller are never illuminated green). In Table 7.2, the numbers 11–12 are unused and the numbers

8–9 are used twice to provide two signified pump speeds, which is equivalent to no signified pump

speed. The process of encoding a separate device model as part of the BIGSIS approach helped

identify this potential problem.

7.5.5 Scalability

Scalability of BIGSIS-SAL models was evaluated using symbolic model checking in models having up

to 128 guarded description transitions and 64 one-to-one relations between end-user descriptions and

signified meanings. Results indicate that scalability is limited with respect to SAL-SMC verification

time in models having up to 32 one-to-one relations and 64 guarded transitions, while a 64 GB

workstation cannot support SAL-SMC in models having as many as 64 one-to-one relations and

128 guarded transitions. In future work, it could be beneficial to explore scalability of the BIGSIS

approach using other model checking tools, such as bounded model checking.
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Chapter 8: A Formal Approach to Controlled Actuators: Modeling of
Continuous Device Dynamics Derived from Spreadsheet Data

The model checking methodologies discussed in Chapters 4–7 have dealt with discrete models of

system and human operator behaviors, building toward the integrated framework outlined in Chap-

ter 1. To complete this framework, an approach for incorporating continuous device behavior within

model checking analyses is needed.

Several model checking tools and techniques have proven useful for representing continuous device

behavior in HFE [46, 76, 77, 214, 79]. In such applications, formal models utilize abstract repre-

sentations of differential equations [119], and outputs are approximate solutions resembling those

captured by numerical and analytical methods. Solutions could be utilized to represent continuous

device behaviors considered possible in the actual system (see for example [215]); however, there are

often more behaviors represented in an abstract model than are actually possible in the underlying

system.

In other engineering domains, data from computational simulations and tests (e.g. benchtop

medical device tests performed in a laboratory) are often collected throughout the design cycle

to evaluate critical performance characteristics [216]. Computational models leveraging differential

equations are often utilized, and the solutions they produce are precise calculations of actual device

behavior. Examples include pressure and flow measurements for an implantable blood pump [87]

and therapy rendered in a patient-specific physiology [217].

In regard to safety-critical systems, an advantage of simulation and laboratory testing is preci-

sion with respect to critical performance; however, it could be difficult leverage these data within

analyses that consider the interface and human operator. As discussed in Chapter 1, advantages of

formal methods are inclusiveness with respect to human-system interface models; however, differen-

tial equation abstractions of continuous device dynamics are imprecise. Considering complementary

characteristics of simulation/testing and formal methods, it could be beneficial for analysts to com-
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bine them.

For such a combined approach to be possible, data collected in simulations and tests must

be represented formally using model checking syntax. Such data are often stored in tabulated

spreadsheet formats such as .xls (Microsoft Excel) or .csv (comma-separated values) having rows

and columns of cells. A common way of organizing tabulated data is by representing one group of

similar measurements (e.g. blood glucose, heart rate) in a column with individual numbers in cells.

If there are multiple kinds of measurements, they are typically organized in a row of cells. It is also

possible to tabulate data using rows, columns, and sets of columns called slices (Fig. 8.1a). Analysts

recording data in Microsoft Excel, for example, may use tabs (considered slices) to store data for

different experimental conditions such as device settings. For example, the graphical representation

of medical device testing data in Fig. 8.1b has two kinds of measurements (flow and wattage) in five

slices representing different settings (rotational speed setting).

Figure 8.1: (a) Graphical representation of tabulated data having rows, columns, and slices.
(b) Graphical representation of blood pump testing data having two kinds of measurements
(flow rate on the x-axis and power on the y-axis) and five slices (rotational speed represented
by each line)

Considering common characteristics of testing data, a tool supporting model checking analyses

that incorporate them should be capable of parsing spreadsheet files containing numeric simula-
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tion/testing data. It should generate model checking syntax representations in a way that separates

cells within one or more rows, columns and slices. It could also be beneficial for these representations

to support model checking techniques that have proven useful, such as relational abstraction [46].

This chapter describes such a tool. Utilizing a custom MATLAB function, a spreadsheet file

containing data from prior simulations/tests is translated to SAL syntax representing its contents.

This SAL syntax leverages the relational abstraction technique described in Chapter 3, Section 3.2.2

by generating a constraints model. The analyst can encode a separate SAL model representing

continuous device elements (i.e. a plant model), and these two can be composed in a continuous

device model. Instead of matching abstract differential equation behaviors, continuous device model

outputs match simulation or testing data represented in the spreadsheet file.

The MATLAB-based translation function, the format of spreadsheet data required by the func-

tion, and SAL syntax of translated representations are discussed in the following sections. The

approach is demonstrated by augmenting the relational abstraction technique described in [46] with

a SAL representation of testing data for a medical device under development. A scalability evalua-

tion is conducted using exemplar data generated in MATLAB, and a discussion of methodological

considerations and future work follows.

8.1 Modeling Methodology: Representing Testing Data Formally

The MATLAB-based translation tool is a function having three inputs:

1. A .xls, .xlsx, or .csv spreadsheet containing testing data (e.g. C:\tests\test1.xlsx )

2. An optional integer specifying the number of columns per slice (explained later in this section)

3. A name for the SAL context being generated (e.g. test1 )

If the spreadsheet file containing test data has slices representing different testing conditions,

such as device settings, data for each slice could be organized in multiple spreadsheet tabs (one for

each slice) within a single .xls or .xlsx file. Utilizing such an organization, each spreadsheet must

have the same number of columns, and each cell must contain a number. If a cell does not contain

a number, the function inserts a zero. If spreadsheets have different numbers of rows, the function
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inserts zeros in empty rows. If such an organization is utilized within a .xls or .xlsx file, the second

function input is not required.

If the spreadsheet containing test data has slices and is a .csv file, the analyst must organize

slices in sets of parallel columns, since the .csv format does not support multi-spreadsheet files. If

desired, the analyst could optionally organize slices within a single .xls or .xlsx file spreadsheet in

this way. If such an organization is utilized, the second function input must be an integer specifying

the number of columns per slice.

The filename is specified in the second input (or third if the parallel column organization is

utilized), and the analyst should choose a filename that aids in identifying the testing data being

translated to SAL. The tool automatically appends the extension .sal to this input and saves the

translated SAL model in the current MATLAB directory.

The translated SAL model has Boolean functions representing slices, where inputs to the func-

tions represent data in each slice. One row of cells within a slice is translated to a set of Boolean

function inputs creating an output value of true. If a Boolean function’s inputs do not match data

within at least one row, its value is false. The automatically generated constraints model sets a

Boolean variable named fitsData to true if all Boolean functions representing slices produce output

values of true. Otherwise, fitsData is set to false. This translation protocol and the formal semantics

of generated SAL models are explained using an instantiated example in the next section.

8.1.0.1 Formal Semantics of Translated SAL Models

For a spreadsheet file having s slices and c columns per slice (where s and c are integers), a translated

SAL model represents slices within s Boolean-valued functions. Each function takes a single input

named inVars (called a tuple) of length c (i.e. a c-tuple). Each element of the c-tuple inVars has

the SAL type REAL, which corresponds to any real number, positive or negative, having up to ten

decimals places. The general encoding of such Boolean valued functions for a spreadsheet file having

s slices is shown below.

slice 1(inVars: [REAL,..., REAL]): BOOLEAN =

...

slice s(inVars: [REAL,..., REAL]): BOOLEAN =
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For each function representing a slice (referred to as a slice Boolean), each row is represented by

a value of inVars. This value is a set of comma-separated numbers corresponding to all cells in a

row. Each set of comma-separated values is separated by the SAL operator OR, specifying that the

slice Boolean is valued true if inVars is equal to a row of values from the spreadsheet. A general

encoding is shown below for a slice Boolean representing the first slice of testing data having r rows

and c columns. Text is utilized instead of numbers (cell 1,..., cell c, where cell c is contained

within a row’s last column) to represent numeric values contained within cells. Parenthesized text

is added to aid in identifying SAL syntax corresponding to spreadsheet rows.

slice 1(inVars: [REAL,..., REAL]): BOOLEAN =

inVars = (cell 1, ..., cell c) OR (row 1)
... OR (rows between 1 and r)

inVars = (cell 1, ..., cell c); (row r)

The automatically generated constraints model is a SAL module whose name is the third MAT-

LAB function input (the translated SAL context name) with Constraints added at the end. The

module has one local variable for each column in a slice (var 1,..., var c for a data having c

columns and one or more slices) and one output variable named fitsData by default. One guarded

initialization command and one guarded transition command (Chapter 3, Section 3.2.1.1) are gen-

erated for each slice.

Each initialization guard asserts that local variable values are inputs to each slice Boolean, and

if those inputs make a slice Boolean true, the initial value of fitsData is true. Otherwise, fitsData

is false (asserted in a final []ELSE guard). This initialization command syntax is encoded generally

below.

INITIALIZATION [

slice 1(var 1,..., var c) -->

fitsData = true;

...

[]slice c(var 1,..., var c) -->

fitsData = true;

[]ELSE -->

fitsData = false;

];

Generated guarded transition commands represent the opposite conditions for next-states: if

the next-states of local variable values make a slice Boolean false (denoted by not in the general
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encoding below), the next-state of fitsData is false. Otherwise, the value of fitsData remains

unchanged (asserted in the []ELSE guard triggering no next-state assignment).

TRANSITION [

not(slice 1(var 1’,..., var c’)) -->

fitsData’ = false;

...

[]not(slice c(var 1’,..., var c’)) -->

fitsData’ = false;

[]ELSE -->

];

To demonstrate the syntax of a complete SAL context, an example model is stantiated based on

hypothetical spreadsheet data having two slices, two columns, two rows, and eight cells (Table 8.1).

For such a dataset, inputs to the MATLAB-based translation function are:

1. example.csv, specifying the filename of hypothetical data

2. 2, specifying that example.csv has two columns per slice organized in parallel

3. example, specifying the name of a generated SAL context (filename example.sal)

The generated SAL syntax is shown below Table 8.1. Parenthesized text is added to aid in identifying

what SAL syntax corresponds to the data.

Table 8.1: Tabulated representation of hypothetical testing data in a file named example.csv

slice 1 slice 2

1.049 0.554 1.296 0.347

0.998 2.717 2.101 1.816



235

example: CONTEXT =

BEGIN

slice 1(inVars: [REAL, REAL]): BOOLEAN =

inVars = (1.049, 0.554) OR (First row in slice-1 of Table 8.1)
inVars = (0.998, 2.717); (Second row in slice-1 of Table 8.1)

slice 2(inVars: [REAL, REAL]): BOOLEAN =

inVars = (1.296, 0.347) OR (First row in slice-2 of Table 8.1)
inVars = (2.101, 1.816); (Second row in slice-2 of Table 8.1)

example Constraints: MODULE =

BEGIN

LOCAL var 1: REAL

LOCAL var 2: REAL

OUTPUT fitsData: BOOLEAN

INITIALIZATION [

slice 1(var 1, var 2) -->

fitsData = true;

[]slice 2(var 1, var 2) -->

fitsData = true;

[]ELSE -->

fitsData = false;

];

TRANSITION [

not(slice 1(var 1’, var 2’)) -->

fitsData’ = false;

[]not(slice c(var 1’, var 2’)) -->

fitsData’ = false;

[]ELSE -->

];

END;

END

8.1.1 Verification Methodology

To conduct model checking analyses, the analyst could encode a separate plant model representing

continuous behaviors of the system that produced spreadsheet data. Such a model could employ any

of the continuous formal modeling techniques discussed in Chapter 1 or a different representation

that does not employ differential equations. The only requirements of a plant model are that its

outputs are real numbers, and at least one output is represented in spreadsheet data.

A graphical representation of the model architecture employed within model checking analyses

is shown in Fig. 8.2. The plant and constraints models are synchronously composed so they tran-

sition at the same time, creating a continuous device model that synchronizes local variables of

constraints and output variables of plant in-sync (Fig. 8.2a). Outputs of the plant model (repre-

sented generally as Output 1,..., Output n) must be inputs to the constraints model, and one or
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Figure 8.2: A graphical representation of continuous model architecture employed within
model checking analyses. (a) A continuous device model having synchronously composed plant
and constraints models. (b) One or more LTL specifications encoded using continuous device
model outputs, where Output i = value is a generic plant model state that should always hold

more automatically generated local variables are set equal to these inputs.

Continuous device model outputs are utilized within LTL specifications (Fig. 8.2b). The con-

straints model output variable fitsData is utilized to force the model checker to only consider plant

model outputs matching simulation data. This LTL specification encoding technique is based on the

relational abstraction approach described in Chapter 3, Section 3.2.2.

8.2 Case Study

To demonstrate an application of the approach, a case study was developed using computational

fluid dynamics simulation data from a medical device under development. The device, testing data,

a SAL context translated from testing data, and additional SAL model infrastructure supporting

model checking analyses are discussed in this section. A plant model is encoded as an input-output

function, and a constraints model is generated using the MATLAB-based tool. These models are

composed within continuous device model, and SAL’s infinite bounded model checker (SAL-INF-

BMC) [68] is utilized to verify that output values match simulation data.

8.2.1 The Device

The case study device under development is intended for pediatric patients lacking a functional

right ventricle, which normally pumps oxygen-poor blood from bodily circulation to the lungs. Such

patients typically undergo a series of surgical procedures that reconfigure circulatory anatomy in a
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way that bypasses the right ventricle and goes directly to the lungs, resulting in a condition called

Fontan physiology [218].

A mechanical circulatory support device is often necessary to render therapy in patients with

Fontan physiology as a bridge to recovery or heart transplantation [219]. Engineered to provide such

therapy, the case study device is an intravenous blood pump intended for implantation in a major

vein carrying oxygen-poor blood from the lower half of the body directly to the lungs. It augments

blood pressure and flow using a rotating impeller, a stationary protective cage, and a stationary

diffuser (Fig. 8.3).

Figure 8.3: Graphical rendering of the case study device. Reprinted from [15]

8.2.2 Testing Data

One critical design target for the case study device is electrical power in watts required by the pump,

which depends on many interacting factors.Two are considered in this case study: impeller speed in

rotations per minute (RPM) and blood flow augmentation in liters per minute (LPM).

Power usage data were collected as a dependent measure for independent measures of flow rate

and impeller speed using computational fluid dynamics simulation (ANSYS CFX) [220]. Five rota-

tional speeds ranged from 2,000–6,000 RPM in 1,000 RPM increments and 26 flow rates ranged from

1–7.25 LPM in 0.25 LPM increments. Data were organized in a spreadsheet (represented graphically

in Fig. 8.1b) having five, two-column slices, where each slice represents data for a different rotational

speed. Flow rates are placed in the first column of each slice and power usage measurements are

placed in the second column.

Rotational speeds and flow rates tested were 2,000 RPM for 1–2.5 LPM, 3,000 RPM for 1–4.25

LPM, 4,000 for 1–6 LPM, 5,000 RPM for 1–6 LPM, and 6,000 RPM for 1–7.25 LPM. These data

(Table 8.2) were saved in a file simulationData.csv having 260 cells (48 empty), 26 rows and ten
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Table 8.2: Testing data for the case study device at five rotational speeds. “•” indicates no
data collected, corresponding to empty cells of the spreadsheet

2,000 RPM 3,000 RPM 4,000 RPM 5,000 RPM 6,000 RPM

LPM Watts LPM Watts LPM Watts LPM Watts LPM Watts

1.00 0.1329 1.00 0.4553 1.00 1.0777 1.00 2.0874 1.00 3.5707

1.25 0.1260 1.25 0.4443 1.25 1.0577 1.25 2.0607 1.25 3.5349

1.50 0.1187 1.50 0.4309 1.50 1.0375 1.50 2.0312 1.50 3.4969

1.75 0.1109 1.75 0.4134 1.75 1.0167 1.75 1.9983 1.75 3.4569

2.00 0.1011 2.00 0.3936 2.00 0.9926 2.00 1.9632 2.00 3.4118

2.25 0.0901 2.25 0.3748 2.25 0.9620 2.25 1.9309 2.25 3.3589

2.50 0.0783 2.50 0.3551 2.50 0.9249 2.50 1.8953 2.50 3.3061

• • 2.75 0.3333 2.75 0.8870 2.75 1.8510 2.75 3.2636

• • 3.00 0.3063 3.00 0.8495 3.00 1.7890 3.00 3.2158

• • 3.25 0.2804 3.25 0.8156 3.25 1.7278 3.25 3.1475

• • 3.50 0.2521 3.50 0.7767 3.50 1.6631 3.50 3.0645

• • 3.75 0.2193 3.75 0.7252 3.75 1.6051 3.75 2.9675

• • 4.00 0.1849 4.00 0.6745 4.00 1.5512 4.00 2.8776

• • 4.25 0.1464 4.25 0.6269 4.25 1.4889 4.25 2.7827

• • • • 4.50 0.5713 4.50 1.4126 4.50 2.7001

• • • • 4.75 0.5130 4.75 1.3226 4.75 2.6209

• • • • 5.00 0.4532 5.00 1.2517 5.00 2.5298

• • • • 5.25 0.3938 5.25 1.1684 5.25 2.4201

• • • • 5.50 0.3274 5.50 1.0764 5.50 2.2929

• • • • 5.75 0.2559 5.75 0.9845 5.75 2.1848

• • • • 6.00 0.1766 6.00 0.8903 6.00 2.0752

• • • • • • • • 6.25 1.9386

• • • • • • • • 6.50 1.7997

• • • • • • • • 6.75 1.6619

• • • • • • • • 7.00 1.5329

• • • • • • • • 7.25 1.3981

columns.

8.2.3 Translation

Translation to SAL was coordinated using three inputs to the MATLAB-based translation function:

1. simulationData.csv, the name of the spreadsheet file
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2. 2, the number of columns per slice in simulationData.csv

3. simData, the desired name of the generated SAL context representing spreadsheet data

This generated a 139-line SAL context named simData.sal having five slice Booleans (Appendix).

Empty cells represented by “•” in Table 8.2 were replaced with zeros.

The generated constraints model is similar to the one from Section 8.2.3, except its name is

simData Constraints instead of example Constraints and it has five guarded initializations and

transitions instead of two.

8.2.4 Additional SAL Model Infrastructure

In support of representing continuous device dynamics within model checking analyses, the generated

SAL context was modified in two ways:

1. plant model infrastructure was encoded using the technique described in Chapter 3, Sec-

tion 3.2.2

2. The automatically generated constraints model was augmented with inputs that are outputs

of the plant model

A plant model was encoded within the automatically generated SAL context using uninterpreted

functions and a SAL module having real number outputs of impeller speed, flow augmentation, and

power usage. Unlike uninterpreted functions in relational abstraction, these functions do not need

to represent differential equations.

Device information from Section 8.2.1 and the graphical representation of power usage data in

Fig. 8.1b are utilized to inform the encoding of a plant model. As described in Section 8.2.1, power

usage in watts for the case study device is a function of blood flow augmentation in LPM and impeller

speed in RPM. Therefore, an uninterpreted function having power usage as an output has LPM and

RPM as inputs. The graphical representation of power usage data in Fig. 8.1b indicates that each

impeller speed produces a differently sloped curve, each corresponding to a function. Therefore, the

plant model has one uninterpreted function for each impeller speed (five in total).
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Each function’s name identifies the impeller speed it represents: 2k RPM, 3k RPM, 4k RPM, 5k RPM,

6k RPM. As described in the previous paragraph, inputs are real numbers corresponding to blood

flow augmentation in LPM (flow) and impeller speed in RPM (speed). The SAL syntax of one

such function is shown below.

2k RPM(flow: REAL, speed: REAL): [REAL -> BOOLEAN];

Leveraging these five uninterpreted functions, plant model output variables represent impeller

speed, flow augmentation, and power usage within a SAL module named device (encoded as shown

below and explained in the next paragraph).

device: MODULE =

BEGIN

OUTPUT: speed, flow, power: REAL

INITIALIZATION

speed = 2000;

flow = 1;

TRANSITION

speed’ IN {2000, 3000, 4000, 5000, 6000};
flow’ IN {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3,

3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25,

5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25};
[

speed = 2000 -->

power’ IN 2k RPM(flow, speed);

[]speed = 3000 -->

power’ IN 3k RPM(flow, speed);

[]speed = 4000 -->

power’ IN 4k RPM(flow, speed);

[]speed = 5000 -->

power’ IN 5k RPM(flow, speed);

[]speed = 6000 -->

power’ IN 6k RPM(flow, speed);

];

END;

Since data collected in computational simulations utilize independent measures of impeller speed

and flow augmentation, variables representing them are assigned values independently of other vari-

ables. Initial values are 2,000 RPM for impeller speed and 1 LPM for flow augmentation. Next-state

values are randomly assigned, where an impeller speed could be any of the five speeds represented

in simulation data and flow augmentation can be any of the flow rates. When the model checker

runs, it will randomly assign an initial power usage value.



241

Five guarded transition statements determine next-state values of power usage. Each guard

incorporates an impeller speed, and if a guard is satisfied the next-state value of power usage is

controlled by a corresponding uninterpreted function.

As-is, power usage outputs of the plant model could be any real number, positive or negative, since

no other information about power usage is provided. This is corrected by updating the automatically

generated constraints model with the modifications shown below in colored text (explained in the

next paragraph).

simData Constraints: MODULE =

BEGIN

INPUT speed, flow, power: REAL

LOCAL var 1: REAL

LOCAL var 1: REAL

OUTPUT fitsData: BOOLEAN

DEFINITION

var 1 = flow;

var 2 = power;

INITIALIZATION [

slice 1(var 1, var 2) AND speed = 2000 -->

fitsData = true;

...

[]slice 5(var 1, var 2) AND speed = 6000 -->

fitsData = true;

[]ELSE -->

fitsData = false;

];

TRANSITION [

not(slice 1(var 1’, var 2’)) AND speed’ = 2000 -->

fitsData’ = false;

...

[]not(slice 5(var 1’, var 2’)) AND speed’ = 6000 -->

fitsData’ = false;

[]ELSE -->

];

END;

The first modification (in red) incorporates inputs from the plant model representing impeller

speed, flow augmentation, and power usage. The second modification (in blue) makes automatically

generated local variables var 1 and var 2 equal to the corresponding plant model inputs. Since slice

Booleans represent data with flow in the first column and power usage in the second, var 1 is made

equal to flow and var 2 is made equal to power.

The fourth modification (in orange) employs impeller speed inputs within each automatically
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generated guard expression. Since each slice Boolean corresponds to data collected for an impeller

speed, each automatically generated guard expression is modified by adding a corresponding speed.

For brevity, the first and last guarded initialization and transition commands are shown and an

ellipsis (...) is inserted in place of similarly encoded commands.

Table 8.3: LTL Specifications and model checking verification times

LTL syntax Meaning Verification
time (s)

G(fitsData⇒ power > 0) If fitsData is true, then power usage is
always greater than 0 watts

5.07

G

(
fitsData ∧ speed = 2000 ⇒

slice (flow , power)

)
If fitsData is true and impeller speed is
2,000 RPM, then flow augmentation and
power usage always match the first slice
of spreadsheet data

0.33

G

(
fitsData ∧ speed = 3000 ⇒

slice (flow , power)

)
If fitsData is true and impeller speed is
3,000 RPM, then flow augmentation and
power usage always match the second
slice of spreadsheet data

0.37

G

(
fitsData ∧ speed = 4000 ⇒

slice (flow , power)

)
If fitsData is true and impeller speed is
4,000 RPM, then flow augmentation and
power usage always match the third slice
of spreadsheet data

0.39

G

(
fitsData ∧ speed = 5000 ⇒

slice (flow , power)

)
If fitsData is true and impeller speed is
5,000 RPM, then flow augmentation and
power usage always match the fourth
slice of spreadsheet data

0.43

G

(
fitsData ∧ speed = 6000 ⇒

slice (flow , power)

)
If fitsData is true and impeller speed is
6,000 RPM, then flow augmentation and
power usage always match the fifth slice
of spreadsheet data

0.46

8.2.5 Verification

Model checking analyses were conducted to verify that the continuous device model could be utilized

to conduct model checking analyses that only consider plant model outputs matching simulation data

(i.e. the model is correct). To enable such analyses, simData Constraints and plant models were

composed synchronously to establish a continuous device model using the architecture described in

Section 8.1.1.
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Six LTL specifications (Table 8.3) were encoded. The first specification of Table 8.3 is needed to

ensure that empty cells replaced with zeros by the translation tool are not erroneously considered

to fit spreadsheet data, since all dependent measures of power usage computed in simulations were

greater than zero. The next five specifications are needed to ensure that each speed setting always

has corresponding flow and power values that match spreadsheet data. If no counterexamples are

returned for all six specifications, then the continuous device model is considered correct. Specifica-

tions were verified using SAL-INF-BMC [68]. All verification reports returned no counterexample,

indicating that the model is correct. Verification times are shown in the last column of Table 8.3.

8.3 Scalability

To evaluate scalability of model checking analyses employing the MATLAB-based translation tool,

two sets of tests were conducting utilizing a modified version of the MATLAB-based tool tool

(described later in this section). A set of nine increasingly larger spreadsheet files were generated

in MATLAB, and SAL models and specifications were automatically generated. Model checking

analyses were conducted using SAL-INF-BMC [68].

Spreadsheet files were generated using the MATLAB function magic(n), which creates a square

matrix having n rows, n columns, and n2 cells containing numeric values. The first matrix had two

rows, two columns, and four cells. Subsequent matrices double in size (i.e., the 9th one had 512

rows, 512 columns, and 262,144 cells). Each matrix was then converted to a .csv file. Both sets of

tests utilized the same nine files, but SAL contexts were generated using different MATLAB function

inputs specifying the number of columns per slice. The notation r × c × s is utilized to describe

the spreadsheet data organization considered in each automatically generated model, where r is the

number of rows, c is the number of columns, and s is the number of slices.

A set of nine SAL contexts and a specification within each context were generated to evaluate

scalability with respect to increasingly larger datasets having one slice (i.e. the first file organization

is 2 × two × 1 and the last 512 × 512 × 1). Corresponding SAL syntax for each file has one slice

Boolean and a constraints model having one local variable for each column (i.e. the first SAL context

has two local variables and the 9th has 512).
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The MATLAB-based translation tool was modified to automatically generate an LTL specifica-

tion within each SAL context named one slice, which ensures that all spreadsheet cells are considered

within model checking analyses. The SAL syntax of each specification is encoded generally below,

which reads, “if fitsData is true, then the slice Boolean is always true for inputs var 1,..., var -

c,” where the inputted spreadsheet file has c columns within one slice. Automatically generated

constraints model infrastructure ensures that SAL-INF-BMC always returns no counterexamples.

one slice: THEOREM simData Constraints |-

G(fitsData => slice 1(var 1,..., var c));

Nine more SAL contexts were generated to evaluate scalability with respect to the maximum

number of slices, which is c for a spreadsheet file having c columns. The same nine randomly

generated spreadsheet files were utilized, but inputs to the translation tool specified that each

column is contained within its own slice (i.e. the first file organization is considered 2×2×2 and the

ninth 512×512×512). The tool was modified to automatically generate an LTL specification named

many slices, which has formal semantics ensuring that all slices are considered in model checking

analyses. Its SAL syntax is encoded generally below, which reads “if fitsData is true, then at least

one slice Boolean (slice 1,..., slice s) is always true for inputs var 1,..., var c,” where

the inputted spreadsheet file has c columns within s slices, and c = s. Like one slice specifications,

automatically generated constraints model infrastructure ensures that SAL-INF-BMC always returns

no counterexamples.

many slices: THEOREM simData Constraints |-

G(fitsData => slice 1(var 1,... var c) OR;

slice 2(var 1,... var c) OR

...

slice s(var 1,... var c));

Verification times for both sets of test are presented in Table 8.4. Verification times increased

with model size in both sets of tests; however, increases were larger in models having many slices.

Model checking analyses failed in SAL contexts representing spreadsheet data with 262,144 cells,

which were too large for SAL-INF-BMC to compute on the target workstation.
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Table 8.4: Model checking results for scalability tests. Both tests for a single model are
reported in the same row. “—” in the verification time column indicates that model checking
failed

Number of cells in Rows, columns, slices Specification Verification
spreadsheet (r × c × s) name time (s)

4
2× 2× 1 one slice 0.01
2× 2× 2 many slices 0.02

16
4× four × 1 one slice 0.04
4× four × 4 many slices 0.02

64
8× 8× 1 one slice 0.12
8× 8× 8 many slices 0.05

256
16× 16× 1 one slice 0.75
16× 16× 16 many slices 1.43

1,024
32× 32× 1 one slice 2.57
32× 32× 32 many slices 4.75

4,096
64× 64× 1 one slice 18.89
64× 64× 64 many slices 125.76

16,384
128× 128× 1 one slice 513.57
128× 128× 128 many slices 2,834.29

65,536
256× 256× 1 one slice 2,663.52
256× 256× 256 many slices 100,382.02

262,144
512× 512× 1 one slice —
512× 512× 512 many slices —

8.4 Discussion

This chapter has presented a novel approach for representing spreadsheet data formally within a

continuous device model. A MATLAB-based tool provides an automated way of translating data

collected in device tests/simulations to the model checking syntax of SAL. Leveraging a relational

abstraction technique, the tool generates formal model infrastructure that could be composed with

a separate model of the device, supporting model checking analyses that consider outputs matching

simulation data. Applicability of the approach was demonstrated in a case study using computational

fluid dynamics simulation data for a medical device under development. Case study results indicate

that continuous device models encoded using this approach produce a set of outputs represented

in spreadsheet data. Scalability tests indicate that the approach could be utilized to represent

spreadsheets having up to 65,536 cells that are organized in up to 256 one-column slices. Considering



246

these results, the approach shows promise for enabling model checking analyses of continuous device

dynamics that are correct with respect to testing/simulation data and scalable with respect to at

least 65,536 independent and dependent variable measurements. Methodological considerations and

future work are discussed in the following sections.

8.4.1 Methodological Considerations

The approach described in this chapter provides a new way of instantiating the continuous states

of a hybrid formalism. Case study results indicate that such a model could be considered correct

with respect to medical device simulation data. However, potential applications of such a model

were not demonstrated. One way to demonstrate usefulness requires the analyst to incorporate the

continuous device model within a larger system model representing discrete device and/or human

operator behaviors. Such an application is explored in the next chapter.

While the purpose of the case study was to demonstrate applicability to safety-critical system

testing/simulation data, the MATLAB-based tool and relational abstraction-based approach could

be applied to any interactive system amenable to testing/simulation of continuous elements, granted

that such data are numeric values stored in a .xls, .xlsx, or .csv spreadsheet file. In addition to

enabling model checking analyses that incorporate these data, another advantage of the approach

is that knowledge of differential equations is not necessary, unlike extant formal methods-based ap-

proaches for modeling continuous device elements. Since the MATLAB-based tool automatically

generates a constraints model, the analyst does not need to manually encode representative rela-

tionships among variables within guarded expressions. However, the approach does not preclude

relational abstraction: additional constraints model infrastructure could be encoded and uninter-

preted functions could be represent differential equations if desired.

Scalability tests demonstrated that SAL-INF-BMC supports model checking analyses of data

having up to 65,536 cells on a 3.5 GHz workstation with 64 GB RAM running the Ubuntu 14.04

LTS desktop. Organizing each column in its own slice increased verification times substantially in

models representing spreadsheets with 4,096 cells or more. This result was surprising: generally,

model verification time increases with the number of variables in a formal model (see for example
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[166]), and the translation tool generates more variables in models with one slice. The increase

in verification times for the second set of tests therefore could have been caused by many slices

specifications incorporating more variables than one slice specifications. It could be possible to

achieve different scalability results in applied model checking analyses of real testing/simulation

data.

8.4.2 Future Work

While knowledge of differential equations is not necessary to apply the approach described in this

chapter, some knowledge of both MATLAB and SAL is still required. To remove the need for

knowledge of SAL, it could be beneficial to explore ways of automatically generating plant model

infrastructure (including uninterpreted functions) from spreadsheet data. Another avenue of future

work involves a GUI-based model development environment, which could remove the need for knowl-

edge of both MATLAB and SAL. Since the approach is intended for application within a larger,

integrated framework, it would be desirable for such a development environment to incorporate the

tools and techniques discussed in earlier chapters.
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Chapter 9: An Integrated Framework for Verifying Safety-Critical,
Human-Interactive System Usability

As discussed in Chapter 1, usability standards and guidelines for safety-critical systems state that

the human-system interface should be accurate, understandable, error-tolerant, time-efficient, and

complete [17, 23, 27, 20, 29, 19, 24]. Methods from human factors and HCI inform the development

of such an interface [88, 131, 221, 89, 82, 90]. Model-based design methodologies at the intersection

of human factors and formal methods aid in identifying potential problems and design improvements

early in the design cycle [40, 42, 96, 56, 97, 98, 49]. Much work in this design space has centered

on analyzing safety-critical properties with respect to normative human task behavior, interface

displays/controls, and automation [51? , 55, 59, 56, 54, 53, 44, 58, 43, 202, 57].

The five methodologies developed and applied in this research have extended the scope of extant

tools and techniques at the intersection of human factors and formal methods. New methodolo-

gies enable formal modeling, specification, and verification of documentation navigability, procedure

usability, hardware configurability, and interface understandability. The approaches were demon-

strated in a series of medical device case studies, and they have been building toward the integrated

framework outlined in Chapter 1 (Fig. 1.2). The framework is presented in this chapter. An

integrated model architecture is developed to represent a broad range of interactions among human-

interactive system elements. Ten generalizable temporal logic specifications and a model checking

technique are developed to enable formal verification of usability with respect to an instantiated

framework model. An implementation of the framework is demonstrated in a case study based on

the pediatric blood pump under development from Chapter 8 and the existing blood pump interface

from Chapters 5 and 7. By modifying the existing system, a prototype interface is developed for

the pediatric blood pump. An implementation of the model architecture is instantiated to represent

the prototype system, and model checking analyses are conducted to verify usability-related speci-

fications. Methodological considerations are discussed in Section 9.13, and areas of future work are
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addressed in the next chapter.

9.1 Modeling Methodology: Integrated Framework Architecture

In this research, an interface should support the end user in locating pages of documentation having

necessary content, understanding what is signified on the device, executing procedural steps, and

avoiding erroneous hardware configurations. Verifying these characteristics requires a formal model

representing the integrated human-interactive system. The minimal set of elements that should be

modeled includes:

• Documentation having:

– Navigational tools that are needed to support the end user in locating necessary content

– Procedures that are needed to support the end user in operating and troubleshooting the

device

– Device descriptions that are needed to explain information that is missing from the device

• Configurable cables, power supplies, and input–output connections

• A control unit having displays, widgets, and internal algorithms

• Actuators connected to the control unit

• End user-device interaction that is shaped by:

– Knowledge provided by the interface (including procedures, signifiers on the device, and

signifiers explained in documentation)

– Motor capabilities and constraints imposed by the spatial environment (i.e., Gibsonian

affordances)

Because there many ways in which these elements could interact, an integrated framework should

provide a model architecture enabling the exchange of input/output variables, and the analyst should

be able to instantiate the framework using all of its constituent models or a subset. The minimal set

of requirements listed below identifies the capabilities of a model architecture enabling such analyses.
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1. The architecture should be capable of integrating documentation within a system model

In Chapter 4, a subset of documentation navigation tasks was modeled utilizing integers to

represent the pages of a printed or electronic document. The content on each page was not explicitly

modeled. In Chapters 5 and 7, procedures and signifiers explained in documentation were modeled

independently of page numbers. For the integrated human-system interface to be usable, the end

user should be able to locate the pages containing necessary content, and the content on each page

should be usable. Thus, to support the analyst in verifying that documentation navigation and the

content therein interact in a way that supports usability, the model architecture should integrate

documentation navigation, task, and signifier models. The architecture should also enable the

analyst to employ the techniques from Chapters 5 and 7 independently of documentation navigation.

Thus, the use of a page number output as an input to task and signifier models should be optional.

2. The architecture should be capable of integrating signifiers within a human-system interface model

In Chapter 7, the capabilities of existing frameworks were extended by enabling the formal

modeling of visual-, audible-, haptic-, and documentation-channel signifiers; however, variables rep-

resenting what is signified were not considered with respect to end-user task behavior. To analyze

the ways in which signifiers shape task behavior, the analyst may want to utilize variables represent-

ing what is signified as inputs to a task model controlling activity execution conditions. Therefore,

the framework should be capable of utilizing outputs of a signifier model as inputs to one or more

task models.

3. The model architecture should be capable of integrating affordances within a human-system

interface model

In Chapter 6, affordances were modeled independently of the end user’s goal-driven task behav-

iors. End user-device interaction was abstracted utilizing the exchange of input/output variables

between affordance and human-environment system (HES) models. In Chapters 5 and 7, hardware

configurations, displays, control logic, and end user-device interaction were represented without
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modeling spatial relations among HES entities. All of these elements are needed within an inte-

grated model of the human-system interface. Thus, to integrate affordances, the architecture should

provide a way of exchanging input/output variables among affordance, HES, and end user-device

interaction models.

4. The architecture should be capable of integrating controlled actuators within a human-system

interface model

Researchers have utilized differential equation abstractions to model the interactions between a

target system’s control logic and approximate actuator behaviors (see for example [46]). In Chap-

ter 8, a formal model of controlled actuator behaviors was derived from simulation data without

the need for approximation or differential equations, but the target system’s interface was not mod-

eled. The analyst may want to integrate such a model with models representing the interface. For

the interface to govern actuator behaviors, hardware must be configured in a way that supports

functionality, and existing methodologies are limited with respect to configurable hardware. For

example, a power supply may need to be connected to a control unit for controlled actuators to op-

erate normally. The analyst may want to ensure that the human-system interface supports the end

user in configuring hardware in such a way that supports normal actuator operation. Therefore, the

architecture should be capable of exchanging input/output variables among display/control logic,

actuator, and end user-device interaction models.

5. The architecture should support existing modeling methodologies

As discussed in Chapter 1 researchers have developed a variety of frameworks that support the mod-

eling and verification of human-interactive system usability. As mentioned, the integrated framework

should support them. Considering the needs identified in requirements 1–4 (listed above), support

for existing methodologies introduces additional input/output variable exchange mechanisms. The

minimal set that the architecture should enable is listed below.

5.1. The architecture should support the modeling of interactions between device states and end-

user task behaviors
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To control what actions execute in a formal task model, researchers have utilized input/output

variables representing a variety of elements, including input–output cable connections (see for

example [143]), procedural/strategic knowledge (see for example [10]), and end-user interpre-

tation of graphical display messages (see for example [61]). Thus, to support the analyst in

utilizing an existing modeling methodology, the architecture should enable the exchange of

input/output variables between device and task models.

5.2. The architecture should support the modeling of interactions between affordances and end-user

task behaviors

Leveraging task analytic methods, researchers have modeled end-user task behaviors that

are shaped by affordances; for example, in [202], a driver’s goal of exiting a multi-vehicle

highway system was considered reachable if affordances enabled a necessary sequence of driving

tasks. Here, an action was allowed to execute only if the affordance enabling it was perceived

first (i.e., the affordance needs to exist before an action is attempted). Such a technique

was not employed in Chapter 6. To support a similar kind of analysis within the integrated

framework, the architecture should enable the exchange of input/output variables between

task and affordance models.

The model architecture developed in this research (Fig. 9.1) aims to satisfy the minimal set of

requirements. To represent end-user task behaviors, the analyst could encode:

(a) One documentation navigation model (Fig. 9.1a) representing an end user navigating through

a printed or electronic documentation using its navigational tools

(b) One or more task models (Fig. 9.1b), each representing the end user executing a respective

procedure. Such a model can be encoded using the technique from Chapter 5 or a technique

developed by other researchers (e.g., [56])

An asynchronous composition of these models abstracts documentation navigation tasks and tasks

prescribed in documented procedures as separate elements, where the end user could interact with

either the document or the device, but not both at the same time. Composing these models syn-
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Figure 9.1: Diagrammatic representation of the model architecture employed in the holistic
human-system interface framework. Outgoing arrows direct output variables from one model
as inputs to another. Labels within each arrow identify what variables are exchanged and what
behaviors are controlled. Arrows connecting to shapes labeled xor indicate that the analyst must
implement the framework using exactly one set of variables identified in the labels of incoming
arrows (j) or outgoing arrow (k). Arrows connecting to the shape labeled and indicate that
the analyst must implement the framework using both sets of variables connected to the shape.
Arrows having dotted lines indicate that the use of a page number output of the documentation
navigation model is optional

chronously represents the end user interacting with both the document and device at the same time,

which could be necessary if electronic documentation is incorporated within the device (e.g., a “help”

menu on a display screen).

To represent the device (Fig. 9.1e), the analyst could encode four concurrently transitioning

models:

(f) A plant model representing actuators controlled by the interface (Fig. 9.1f)

(g) A constraints model that determines what actuator behaviors are considered in model checking

analyses (Fig. 9.1g)

(h) A display/control logic model representing the target system’s algorithms and what is displayed

through visual, audible, and haptic channels (Fig. 9.1h)
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(i) An end user-device interaction model representing end-user inputs to widgets and configurable

hardware (Fig. 9.1i)

Such a composition allows the device model to reflect the current-states of actuators, control logic,

and hardware configurations. To integrate device and end-user models, the analyst can encode:

(c) A signifier model (Fig. 9.1c) representing what is signified to the end user by visual, audi-

ble, and haptic properties of the device, including explanations provided in accompanying

documentation

(d) An affordance model representing opportunities for action that emerge in the operational

environment (Fig. 9.1d)

Composing these models synchronously with device models ensures that what is signified and what

actions are afforded reflect the current states of displays, controlled actuators, and configurable

hardware in the spatial environment.

Depending on what interactions the analyst would like to model, the framework enables a variety

of input/output variable exchange combinations. Utilizing a documentation navigation model, the

analyst could optionally encode the page number output as an input to:

• The signifier model such that signifiers operating through the documentation channel depend

on what page(s) have been navigated to

• A task model such that activity execution conditions depend on what page(s) have been

navigated to

One way of using these input/output variable exchange mechanisms treats pages of accompanying

documentation similarly to screens of a separate graphical display, where the content on a page

(represented as a number) is analogous to the content on a screen (commonly represented using

named variable, e.g. “XrayData,” “NoData” [56]). The analyst could instantiate a documentation-

integrated model in one of two ways:

1. Documentation-channel signifiers and execution of procedural steps in documentation depend

on the current page
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2. Documentation-channel signifiers and execution of procedural steps in documentation depend

on whether a referent page has been visited

The first technique abstracts a situation in which the end user does not learn what content is in the

document; thus, the current-page must contain the procedural steps execute, and a device description

must be on the current-page for a function or meaning to be signified through the documentation

channel (demonstrated in Section 9.4). The second technique abstracts a situation in which the end

user learns what content is on a page after navigating to it once (demonstrated in Appendix C.3).

Utilizing one or more task models, the analyst can leverage human action output variables to

control next-states of configurable hardware/widgets represented in the end user-device interaction

model (as in Chapters 5 and 7). Affordances can be integrated in one of two ways:

1. Leveraging a technique developed by other researchers [202], outputs of the affordance model

can operate as inputs to one or more task models controlling activity execution conditions.

For example, if a task model represents the end user connecting a cable output end to an input

socket, a precondition for this action could be that the corresponding connectability affordance

is available

2. Using a new technique, affordance model outputs can be used in conjunction with human

action task model outputs to control what changes occur in the end user-device interaction

model. For example, if an action executes (e.g. the end user attempts to connect a cable output

end to an input socket), but the corresponding affordance is not available (e.g. the cable is not

connectable for the end user), no change will occur in the end user-device interaction model

To control changes that emerge when an action executes successfully (i.e., the affordance enabling it

was available), outputs of the end user-device interaction model operate as inputs to the affordance

model controlling changes to spatial relations among HES entities.

The analyst can integrate signifiers using one of two techniques:

1. The methodology developed in Chapter 7

2. A new methodology integrating task and signifier models: signifier model outputs representing
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what is signified can be utilized as inputs to one or more task models controlling activity

execution conditions. For example, if an alarm is engaged on a device controller, the end user

will only begin executing a troubleshooting procedure if the meaning of that alarm is signified

through at least one channel

Outputs of the device model represent electrical/mechanical interface components (i.e., end user-

device interaction and display/control logic model outputs). As in Chapter 7, they operate as inputs

controlling end-user descriptions of visual, audible, and haptic properties of the device; and as in

Chapter 5, the same outputs can be leveraged to control activity execution conditions in one or

more task models. To combine signifier, device, and task models in the integrated architecture, the

analyst could utilize different combinations of output variables representing hardware configurations,

what is displayed, and what is signified to control activity execution conditions.

Discrete and continuous states are communicated via the exchange of input/output variables

between the display/control logic and plant models. To extend the capabilities of existing frame-

works, outputs of the end user-device interaction model also operate as inputs to the display/control

logic model. Such a technique enables the analyst to represent the set of hardware configurations

that supports normal actuator functionality (such as a power supply connected to the control unit

and a driveline cable connected to a motor). As in Chapter 8, the constraints model provides a

Boolean output variable enabling model checking analyses that are constrained to a subset of con-

tinuous actuator states. For broader applicability, plant and constraints models can be encoded

using either:

• The methodology from Chapter 8, which constrains model checking analyses to continuous

states represented in spreadsheet data

• A differential equation abstraction technique (e.g. [46])
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9.2 Verification Methodology: Integrated Specifications and Model
Checking Technique

The analyses conducted in prior chapters have generally involved no more than two models at a

time (one of the user and one of the device/spatial environment). Additionally, specifications have

captured no more than one usability-related measure at a time. Considering interactions that can

be modeled in the integrated framework architecture, new specifications are needed. One way to

derive new specifications involves intersecting safety-critical system usability measures of accuracy,

understandability, error tolerance, time efficiency, and completeness (Table 1.3).

Each specification described in Table 1.3 encompasses two measures of safety-critical system

usability and characteristics of the interface supporting them. In this research, they are encoded

using instantiated model variables and the formal semantics of linear temporal logic (LTL) [62]. To

support the analyst in conducting model checking analyses, generalizable LTL syntax for encoding

each specification is discussed in the next section.

9.2.1 Specifications

Specifications that are applicable to an integrated framework model can be encoded using propo-

sitional operators, the LTL temporal operators “G” meaning “always” and “X” meaning “in the

next-state,” and the formal semantics of Z [153]: “∀” meaning “for all,” “∃” meaning “there exists,”

and “•” meaning “such that.” In this section, subscripts i and j (e.g. Ci , Cj ) identify unique

variables having the same symbol or keyword (as in Chapter 7). For example, leveraging BIGSIS

formalism semantics, Ci and Cj represent two distinct interface components; however, in ci .vis.si ,

which represents all visually perceivable properties of a component signifying the same category of

function or meaning, the “i” in ci and the “i” in si are unrelated. Leveraging these semantics,

generalizable encodings of each specification intersect two safety-critical system usability measures.

When these specifications are verified, a counterexample reflects a trace through the model leading

up to a potentially unsafe state; otherwise, if no counterexamples are returned, the human-system

interface can be considered usable with respect to the specification.

Specifications involving accuracy consider the subset of continuous states fitting spreadsheet
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data, a subset of discrete device states, and the end-user actions that execute while following a

procedure. Variables representing these states are encoded conjunctively on the left-hand side of an

implication operator (⇒). The conjunction of three axioms specifies a subset of states considered in

the analysis:

• The Boolean variable fitsData (leveraged from the constraints model) constrains the analysis

to continuous states fitting spreadsheet data

• The axiom aProcedure = Executing (leveraged from EOFM semantics [10] utilized in task

models) constrains the analysis to end-user actions that execute as specified in a task model

• The axiom state variable = valuei (leveraged from either the display/control logic or end user-

device interaction model) constrains the analysis to a subset of device modes or configurations

Axioms encoded on the right-hand side of the implication operator, denoted by “. . . ” in (9.1),

encompass the usability-related characteristics that are desired with respect to constraints specified

on the left-hand side.

G(fitsData ∧ aProcedure = Executing ∧ state variable = valuei ⇒ . . . ) (9.1)

Specifications involving understandability consider signifier consistency through visual, audible,

and haptic channels. If it is relevant, signifier redundancy can also be incorporated within these

specifications. For example, redundancy through visual/audible channels may not be relevant for

states in which no alarms are engaged and the system is functioning normally (i.e., all relevant

signifiers operate through visual, haptic, or documentation channels). However, it may be relevant

if there are concurrent visual, audible, and haptic alerts that engage when a malfunction occurs. In

these specifications, the formal semantics of consistency (and redundancy, if applicable) assertions

are leveraged from Chapter 7. They should be encoded on the right-hand side of the implication

operator (⇒, meaning “implies”), and analyses should be constrained to continuous states fitting

spreadsheet data. This ensures that the model checker only consider signifiers with respect to states

enabled in the continuous device model.
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Specifications involving error-tolerance consider:

• One or more affordances that should not emerge when the system is in a particular configura-

tion (as in the weak affordance error tolerance specification of Chapter 6), or

• One or more affordances that should never emerge in any configuration, such as the opportunity

to connect a cable output end to the wrong input socket (as in the strong affordance error

tolerance specification of Chapter 6)

Axioms encoded on the right-hand side of the implication operator, denoted by “affordanceunsafe” in

(9.2), encompass one or more affordances that should not emerge when constraints on the left-hand

side (denoted by “. . . ”) are satisfied.

G(. . .⇒ ¬affordanceunsafe) (9.2)

Specifications involving time efficiency consider a discrete device state that emerges in the im-

mediate next-state, inspired by the display/control feedback specifications developed at the in-

tersection of formal methods and human factors [58, 43]. Axioms encoded on the left-hand side

of the implication operator in (9.3) encompass one or more discrete device states (denoted by

state variable = valuei) that change in the next state (denoted by X(state variable = valuej )).

Axioms encoded on the left-hand side (denoted by “. . . ”) should be satisfied.

G(fitsData ∧ state variable = valuei ∧ X(fitsData ∧ state variable = valuej ) ⇒ . . . ) (9.3)

Specifications involving completeness involve a function or meaning signified through all channels.

In (9.4), axioms encoded on the left-hand side of the implication operator always include the variable

fitsData. This ensures that model checking analyses are constrained to continuous variables fitting

simulation data. Depending on what is encoded in place of “. . . ” on the left-hand side, an axiom

encoded on the right-hand side could assert one of two things:

1. The word corresponding to nothing signified (w0) is not signified through all channels (corre-
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sponding to the signifier completeness specification of Chapter 7)

2. A particular function or meaning (wi) is signified through at least one channel (utilized for the

accuracy and completeness specification explained later in this section)

In (9.4), a vertical bar separating these two kinds of axioms denotes that the analyst could encode

one or the other exclusively.

G


fitsData ∧ . . . ⇒ ¬



visually signifiedi = w0 ∧

audibly signifiedi = w0∧

haptically signifiedi = w0 ∧

documentedi = w0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

visually signifiedi = wi ∨

audibly signifiedi = wi∨

haptically signifiedi = wi ∨

documentedi = wi


(9.4)

Beginning with accuracy and understandability (Table 1.3, upper-left-hand corner) each of the

ten integrated framework specifications are listed, explained, and encoded generally below.

1. Accuracy and understandability : signifiers are accurate, consistent, and (optionally) redundant

while a procedure is executing and the system is in a particular state

This specification could help ensure that signifiers are understandable (i.e., consistent) and correct

(i.e., accurate) with respect to a particular situation, such as when an alarm is engaged and the end

user is executing a procedure to correct it. A potential violation of this specification was observed

in the Three Mile Island accident: human operators understood what was signified by individual

indicator lights on the coolant system control panel; however, multiple, concurrently illuminated

lights had conflicting meanings, and the procedure required for corrective action was not executed

in a way that could correct the problem [209].

A example specification is shown in (9.5) for a hypothetical framework model having a device

model with i state variable values and signifiers operating through visual, audible, and haptic chan-

nels. It reads, “it is always true (G) that when a procedure is executing (aProcedure = Executing)

and certain device conditions are satisfied (fitsData ∧ state variable = valuei), this implies (⇒) that

signifiers operating through visual, audible, and haptic channels are consistent (i.e., they all signify
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the same thing) and one of them signifies the correct state (ci ∨ j .Pi ∨ j .si = signifiedvaluei ).”

G



aProcedure = Executing

fitsData∧

state variable = valuei ∧

⇒

Ci .vis.Si = Cj .vis.Si ∧

Ci .aud .Si = Cj .aud .Si ∧

Ci .hap.Si = Cj .hap.Si ∧

Ci ∨ j .Pi ∨ j .Si = signifiedvaluei


(9.5)

2. Accuracy and error tolerance: an unsafe affordance does not emerge while a procedure is executing

and the system is in a particular state

This specification could help ensure that a procedure and the configurable hardware involved

in the procedure are designed in a way that prevents an unsafe affordance. Such a problem was

observed in the medical device adverse event analyzed in Chapter 6: during a surgical procedure,

the surgeon was able to connect a pacemaker lead output end to the wrong import end of the pulse

generator [203]. While the procedure was not modeled in Chapter 6, the integrated framework

broadens the analytic scope in a way that could help identify problems involving interactions among

the temporal ordering of procedural steps, task descriptions identifying part-whole components, and

hardware configurability [204].

An example specification is shown in (9.6) for a hypothetical framework model having a device

model with i state variable values. It reads, “it is always true (G) that when a procedure is executing

(aProcedure = Executing) and certain device conditions are satisfied (fitsData ∧ state variable =

valuei), this implies (⇒) that an unsafe affordance does not emerge (¬affordanceunsafe).”

G


aProcedure = Executing∧

fitsData∧

state variable = valuei

⇒ ¬affordanceunsafe)

 (9.6)

For such a specification to be applicable the analyst could encode one or more affordances that
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are always unsafe using the CAVEMEN approach, as in Chapter 6. Alternatively, affordances that

are safe in some situations may be unsafe in others, such as aircraft fuselage door openability

when the aircraft is above a certain altitude (i.e., door openability is unsafe) or on the ground

(i.e., door openability is safe). Such an affordance can be encoded on the right-hand side of the

implication operator for a particular situation represented on the left. This technique is demonstrated

in Section 9.11.

3. Accuracy and time efficiency : if a procedure is executing and the next-state of the device is

different from the current-state, a desired affordance emerges in the next-state

As mentioned in Chapter 6, the analyst may want to ensure that configurable hardware enables an

affordance to emerge at the right time, such as immediately after a particular change-of-state for the

device. Consider the home-use dialysis machine and setup procedure mentioned in Chapter 5: during

setup, patients should connect a fluid-filled tube after it has been properly primed; thus, in support

of accuracy and time efficiency, the affordance of “tube connectable” should emerge when the fluid-

filled tube transitions to “primed.” A specification enabling such an analysis is encoded generally in

(9.7). It reads, “it is always true (G) that when a procedure is executing (aProcedurei = Executing),

certain device conditions are satisfied (fitsData ∧ state variable = valuei), and these conditions

change in the next-state (X(fitsData ∧ state variable = valuei)), this implies (⇒) that a desired

affordances emerges in the next-state (X(affordancesafe)).”

G



aProcedurei = Executing∧

fitsData∧

state variable = valuei ∧

X(fitsData ∧ state variable = valuej )

⇒ X(affordancesafe)


(9.7)

4. Accuracy and completeness: signifiers are accurate and complete while a procedure is executing

and the device is in a particular state

This specification could help ensure that information that while a procedure is executing, relevant



263

functions/meanings are signified to the end user through at least one channel. A potential violation

of this specification was observed in the medical device adverse event discussed in Chapter 7: a

patient went into cardiac arrest during surgery, and a surgical team member reacted by pushing a

red button labeled “stop” on the X-ray imaging system control panel. This action unexpectedly

shut down the life support system, and the patient expired [207]. Visual signifiers on the button

may have been insufficient for understanding the consequences of pushing it; additionally, technical

documentation on the manufacturer’s website does not explain what is meant by the red color and

“stop” label [208]. Thus, this event can be characterized as a violation of signifier completeness and

accuracy with respect to a particular procedure and signified function.

An example specification is shown in (9.8) for a hypothetical framework model having a device

model with j state variables and signifiers operating through visual, audible, haptic, and documen-

tation channels. It reads, “it is always true (G) that when a procedure is executing (aProcedure =

Executing) and certain device conditions are satisfied (fitsData ∧ state variable = valuei) , this

implies (⇒) that a function or meaning corresponding to valuei is signified through at least one

channel.”

G



aProcedure = Executing∧

fitsData∧

state variable = valuei

⇒

visually signifiedi = wvaluei ∨

audibly signifiedi = wvaluei∨

haptically signifiedi = wvaluei ∨

documentedi = wvaluei


(9.8)

5. Understandability and error tolerance: an unsafe affordance does not emerge and signifiers are

consistent and (optionally) redundant

This specification considers simultaneous error-tolerance and understandability by combining con-

cepts from Chapters 6 and 7. Consider the adverse event involving the red button labeled “stop” on

the X-ray imaging system control panel: as mentioned, the color and label of the button could have

been insufficient for understanding the consequences of pushing it. Alternatively, the red color and
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“stop” label could have had conflicting (i.e., inconsistent) meanings, perhaps signifying “emergency”

and “shut down the system” respectively. In either case, the event could have been prevented if

the affordance of button pushability did not exist at an inappropriate time. These problems reflect

concurrent violations of understandability, error tolerance, or both.

A specification asserting the concurrent absence of such problems is shown in (9.9) for a hypothet-

ical framework model having one unsafe affordance encoded in the affordance model and signifiers

operating through visual, audible, and haptic channels encoded in the signifier model. It reads,

• “It is always true (G) that an unsafe affordance never emerges (¬(affordanceunsafe)); and (∧),

• it is always true (G) that when certain device conditions are satisfied (fitsData ∧

state variable = valuei), this implies ⇒ that signifiers operating through all channels are

consistent for all categories of function/meaning”

G(¬affordanceunsafe) ∧ G


fitsData ⇒

∀ ci : Ci ; cj : Cj ; si : Si •

ci .vis.si = cj .vis.si ∧

ci .aud .si = cj .aud .si ∧

ci .hap.si = cj .hap.si


(9.9)

6. Understandability and time efficiency : if the next-state of the system is different from the current-

state, signifiers are consistent and (optionally) redundant in the next-state

This specification combines signifier understandability specifications developed in Chapter 7 with

feedback specifications developed by other researchers [58, 59]. It could help ensure that signifiers are

updated in a way that is both time-efficient and understandable. An example specification is shown in

(9.10) for a hypothetical framework model having a discrete device model with j modes and signifiers

operating through visual, audible, and haptic channels encoded in the signifier model. It reads, “it

is always true (G) that when certain device conditions are satisfied (fitsData ∧ state variable =

valuei) and these conditions change in the next-state (X(fitsData ∧ state variable = valuej )), this
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implies (⇒) that, in the next-state (X), signifiers operating through all channels are consistent for

all categories of function/meaning.”

G



fitsData ∧

state variable = valuei ∧

X(fitsData ∧ state variable = valuej )

⇒ X



∀ ci : Ci ; cj : Cj ; si : Si •

ci .vis.si = cj .vis.si ∧

ci .aud .si = cj .aud .si ∧

ci .hap.si = cj .hap.si




(9.10)

7. Understandability and completeness: signifiers are consistent, (optionally) redundant, and com-

plete

This specification combines the signifier specifications developed in Chapter 7. It could help ensure

that what is signified on the device is understandable with respect to consistency. As mentioned in

Chapter 7, it could be possible for a signifier consistency specification to be satisfied spuriously if all

perceivable properties operating through the same channel never signify any functions or meanings

to the end user (i.e., they are always equal to the word corresponding to nothing signified, w0).

The same can be said of a redundancy specification, where all perceivable properties operating

concurrently through visual, audible, and haptic channels always signify nothing. In such cases, it is

critical that signifiers operate through the documentation channel for the interface to be complete.

The example specification in (9.11) asserts such a property. It reads, “it is always true (G) that when

the device is operating within data-constrained parameters (fitsData), this implies (⇒) that signifiers

operating through all channels are consistent and complete for all categories of function/meaning.”
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G



fitsData ⇒

∀ ci : Ci ;

cj : Cj ;

si : Si •

ci .vis.si = cj .vis.si ∧

ci .aud .si = cj .aud .si ∧

ci .hap.si = cj .hap.si

∧ ¬



∀ visually signifiedi ;

audibly signifiedi ;

haptically signifiedi ;

documentedi : signified i •

visually signifiedi = w0 ∧

audibly signifiedi = w0 ∧

haptically signifiedi = w0 ∧

documentedi = w0





(9.11)

8. Error tolerance and time efficiency : if the next-state of the system is different from the current-

state, an unsafe affordance does not emerge in the next-state

The error tolerance-related specifications discussed thus far have involved an unsafe affordance that

emerges while a procedure is executing. In support of ensuring error tolerance and time efficiency, the

analyst may want to verify that an unsafe affordance does not emerge at a particular time, such as

immediately after an automated event or human input effects a change in the system. For example,

in the case study of Chapter 5, a potential time-efficiency problem involved the end user connecting

a lithium-ion battery without checking its charge level first; and in regard to error tolerance, a

possibly discharged or malfunctioning battery that was disconnected earlier in the procedure was

connectable to the replacement controller. Considering both time efficiency and error tolerance,

the analyst may want to verify that a lithium-ion battery becomes connectable to the replacement

controller immediately after checking the battery level.

The specification in (9.12) enables such analyses for a hypothetical framework model repre-

senting a device with at least one affordance considered unsafe with respect to a particular, tem-

porally ordered change to the device. It reads, “it is always true (G) that when certain de-

vice conditions are satisfied (state variable = valuei) and (∧) these conditions change in the

next-state (X(state variable = valuej )), an unsafe affordance does not emerge in the next-state
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(X¬(unsafeUnaffordance)).”

G

state variable = valuei ∧

X(state variable = valuej )

⇒ X¬(affordanceunsafe)

 (9.12)

9. Error tolerance and completeness: an unsafe affordance does not emerge and signifiers are com-

plete

This specification combines error tolerance and completeness specifications with respect to one unsafe

affordance and signifiers of all functions/meanings operating through all channels. It is similar to

the understandability and error tolerance specification (9.9), but instead of asserting error tolerance

and signifier consistency (and, optionally, redundancy), the specification asserts error tolerance

and completeness. Consider the adverse event involving the red button labeled “stop” on the X-ray

imaging system control panel: as mentioned, signifiers on the pushbutton may have been inconsistent;

alternatively, the system’s documentation may not explain the consequences of pushing the button.

In either case, the event could have been prevented if the affordance of button pushability did

not exist at an inappropriate time. These problems reflect concurrent violations of error-tolerance,

completeness, or both.

A specification asserting the concurrent absence of such problems is shown in (9.13) for a hypo-

thetical framework model having one unsafe affordance encoded in the affordance model and signi-

fiers operating through visual, audible, haptic, and documentation channels encoded in the signifier

model. It reads, “it is always true (G) that an unsafe affordance never emerges (¬(affordanceunsafe))

and (∧) it is always true (G) that signifiers of all categories of function/meaning are complete.”
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G¬(affordanceunsafe) ∧ G¬



fitsData ⇒

∀ visually signifiedi ; audibly signifiedi ;

haptically signifiedi ; documentedi :

signified i •

visually signifiedi = w0 ∧

audibly signifiedi = w0 ∧

haptically signifiedi = w0 ∧

documentedi = w0



(9.13)

10. Time efficiency and completeness: if the next-state of the system is different from the current-

state, signifiers are complete in the next-state

This specification combines the signifier completeness specification developed in Chapter 7 with

feedback specifications developed by other researchers [58, 59]. It could help ensure that signifiers

are updated in a way that is both time efficient and complete. An example specification is shown

in (9.10) for a hypothetical framework model having a discrete device model with j state variables

and signifiers operating through visual, audible, haptic, and documentation channels encoded in the

signifier model. It reads, “it is always true (G) that when certain device conditions are satisfied

(fitsData ∧ state variable = valuei) and (∧) these conditions change in the next-state (X(fitsData ∧

state variable = valuej )), this implies (⇒) that signifiers of all categories of function/meaning are

complete in the next-state.”
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G



fitsData ∧

state variable = valuei∧

X(state variable¬valuei)

⇒ X¬



∀ visually signifiedi ; audibly signifiedi ;

haptically signifiedi ; documentedi :

signified i •

visually signifiedi = w0 ∧

audibly signifiedi = w0 ∧

aptically signifiedi = w0 ∧

documentedi = w0





(9.14)

9.2.2 Model Checking Technique

SAL-INF-BMC is utilized to verify specifications for an integrated framework model; however, using

the default settings of SAL-INF-BMC, it can only generate counterexamples having no more than ten

steps [68]. If counterexamples having more than ten steps exist, they will not be uncovered unless the

analyst increases search depth to accommodate the longest possible counterexample [149]. Increasing

search depth of a bounded model checking analysis generally increases verification time; thus, it

could be beneficial for the analyst to compute the longest possible counterexample of an integrated

framework model before invoking SAL-INF-BMC. This can be accomplished automatically using

symbolic model checking. The method utilized in this research proceeds as follows for a integrated

framework model and each LTL specification:

1. Invoke SAL-INF-BMC at the default counterexample length of ten. If a counterexample is

returned, the system could have a potential usability problem with respect to the specification.

If no counterexample is returned:

2. Asynchronously compose documentation navigation, end user-device interaction, affordance,

and all task models within a new system model: a discrete framework model encompassing a

subset of discrete state variables

3. Instantiate the specification encoded generally in (9.15), which reads, “it always untrue (G¬)
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that all procedures are executing and done at the same time.” Such a specification is trivially

always true, and it ensures that the model checker visits all reachable states

4. Pass this specification and the discrete framework model to SAL-SMC. The verification report

will return “proved” and the number of iterations required to prove the specification (i.e.,

steps that are needed to find the longest possible counterexample). This number is greater

than or equal to the depth required for a bounded model checking analysis to be exhaustive

with respect to all discrete state variables

5. Pass the integrated framework model and a specification to SAL-INF-BMC at the appropriate

depth

G¬


aProcedure1 = Done ∧ aProcedure1 = Executing

∧ . . . ∧

aProceduren = Done ∧ aProceduren = Executing

 (9.15)

9.3 Case Study

To evaluate applicability of the integrated framework, a case study was developed based on the

early prototype of a safety-critical, human-interactive system. The target system is a pediatric

blood pump (actuator dynamics modeled in Chapter 8) and a prototype interface based on the

system from Chapters 5 and 7, an LVAD intended for adult patients. The prototype interface

includes configurable hardware of the existing system and modified versions of its documentation (a

29-page patient handbook) and controller. Because the case study device is for pediatric patients,

end users of the implanted pump are considered too young to be end users of the interface. End

users of the interface are assumed to be normally-abled, English-speaking, adult caregivers having

no training or experience operating or troubleshooting the device.

Leveraging simulation from Chapter 8, the existing system’s displays and controls are modified

to fit the pump speed and power supply parameters of the pediatric pump. Utilizing design insights
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gleaned in previous chapters:

• The pump stopped alarm troubleshooting procedure from Chapter 5 is modified in a way that

aims to improve accuracy, time efficiency, and completeness

• Signifiers from Chapter 7 and the controller’s algorithms are modified in a way that aims to

improve consistency, redundancy, and completeness while fitting power and speed dynamics of

the pediatric pump

Informed by safety-critical system usability measures and design standards:

• A draft patient handbook is developed with navigational tools that aim to support end users

is quickly navigating within and between content listed on different pages

• An operational procedure is developed to support end users in adjusting the pump speed to a

desired speed

To be usable, this interface should support the end user in locating pages of the patient handbook

having necessary content, understanding what is signified, accurately manipulating configurable

hardware, executing procedural steps, and avoiding erroneous hardware configurations. To evaluate

applicability of the framework, a subset of usability measures (discussed later) are investigated within

one possible implementation of the integrated model architecture.

One of each specification from Section 9.2.1 is encoded and verified using the model checking

technique developed in Section 9.2.2.

9.3.1 Configurable Hardware

The case study system’s hardware components include the controller, cables, connectors, portable

lithium-ion batteries, and lead battery considered in Chapter 5. As mentioned in Chapter 5, interface

components are intended for portability such that external controllers and batteries may be carried

using harnesses, holsters and/or straps. Caregivers must also carry select replacement components at

all times in the case of a mechanical malfunction or power supply issues. The components considered

in this case study include two controllers (Fig. 9.2a–c), two lithium-ion battery cables (Fig. 9.2d, e),
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one pump cable (Fig. 9.2f, g), one abdominal cable (Fig. 9.2h, i), one Y-cable (Fig. 9.2j–l), one lead

battery (Fig. 9.2m, n), two lithium-ion batteries (Fig. 9.2o–q), and one red tag (Fig. 9.2r).

Figure 9.2: Labeled diagram of case study configurable hardware components. This figure
appears on pages 13 and 14 of the modified patient handbook to aid end users in identifying
components involved in the pump stopped alarm troubleshooting procedure

For the device to function normally, a power supply must be connected to the controller; the pump

must be connected to the controller (either via the abdominal cable or directly via the pump cable);

and the connector permanently attached to the heart must be assembled. In such a configuration,

all components may appear to be functioning normally; and on the system’s controller, no alarm

could be engaged. The pump stopped alarm or the high power alarm could engage if a malfunction

occurs while the system is in a functional configuration. Otherwise, is a power supply/pump cable is

not connected or the permanently attached connector is broken, the pump stopped alarm engages.

While it is also necessary for the power supply to be charged, battery charge levels are not modeled

in this case study.
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9.3.2 Modified Controller

The case study controller has four alarms and a speed setting knob having five settings numbered

1–5. The same three components modeled in the case study of Chapter 7 are considered in this case

study: the audible/visual pump stopped alarm, the audible/visual high power alarm, and the speed

setting knob. Control logic involving visual/audible properties of these components is modified to fit

the performance characteristics of the pediatric pump from Chapter 8, while perceivable properties

operating as signifiers are modified to support end users in understanding what alarms mean. Like

the original controller, the modified one supplies as much power as necessary for the pump to

maintain one of five programmed speeds. The relationships between power supply and pump speed

were modified to fit simulation data for the case study pump (Table 9.1). An audible alarm can

be emitted if the 1/2 cell AA battery cap of a controller is tightened. An internal battery that

is separate from the 1/2 cell AA battery powers the pump stopped alarm indicator light when no

power supply is connected to the controller.

Figure 9.3: Graphical rendering of the case study system’s controller. (a) The speed setting
number 4 illuminates white and the power indicator light 6 illuminates green. (b) High power
alarm engaged: the word “HIGH” illuminates amber and a loud alarm emits the phrase “power
too high” with a one-second pause between emissions. (c) Pump stopped alarm engaged while
power is still supplied to the pump: the octagon shaped light illuminates red, one power indicator
light illuminates green, the speed setting knob light turns off, and a loud alarm emits the phrase
“pump stopped” with a one-second pause between emissions. (d) Pump stopped alarm engaged
while no power supplied to the pump: the octagon shaped light illuminates red, the speed
setting knob light turns off, the power indicator light turns off, and a loud alarm emits the
phrase “pump stopped” with a one-second pause between emissions.

Graphical renderings of the modified controller are shown in Fig. 9.3. For the power indicator

lights under normal conditions (i.e., no alarm is engaged), any one light numbered 1–10 illuminates

green (Fig. 9.3a) to signify power units supplied to the pump (Table 9.1). Each light maps to one of



274

Table 9.1: Control knob settings, programmed speeds, and approximate power supplied by
the controller leveraged from simulation data (Chapter 8)

Power indicator
number

illuminated

Approximate power
range (watts)

Setting Pump speed
(RPM)

Flow range (LPM)

1 0.05–0.15
1 2,000 1.00–2.25
2 3,000 4.25

2 0.16–0.30
2 3,000 3.00–4.00
3 4,000 5.75–6.00

3 0.31–0.45
2 3,000 1.25–3.00
3 4,000 5.00–5.50

4
0.46–0.70 2 3,000 1.00

3 4,000 4.00–4.75

5 0.71–1.00
3 4,000 2.00–3.75
4 5,000 5.75–6.00

6 1.01–1.40
3 4,000 1.00–1.75
4 5,000 4.50–5.50
5 6,000 7.25

7 1.41–1.90
4 5,000 2.50–4.25
5 6,000 6.50–7.00

8 1.91–2.50
4 5,000 1.00–2.25
5 6,000 5.25–6.25

9 2.51–3.10 5 6,000 3.50–5.00

10 3.11–3.60 5 6,000 1.00–3.25

ten non-overlapping power ranges. No lights illuminate when the controller is supplying no power

(Fig. 9.3d). This design was implemented because of a potential usability problem uncovered in

Chapter 7: the BIGSIS-XML encoding process revealed that power indicator lights numbered 8–9

could signify multiple pump speeds, while the BIGSIS-SAL model encoding process revealed that

the numbers 11–12 on the controller never illuminate. In the modified design, all lights are utilized

such that each light could signify one pump speed.

For the high power alarm, the indicator light labeled “HIGH” illuminates amber and a loud,

periodic alarm emits the phrase “power too high” when the controller is supplying more than 3.5

watts (Fig. 9.3b), where the maximum power supplied is four watts. This high power alarm control

logic was chosen to enable a possible high power alarm when the pump is operating within the

constraints of the simulation data. The new audible high power alarm was implemented to aid the
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end user in distinguishing the high power alarm from the pump stopped alarm, addressing a potential

problem uncovered in the Chapter 7 case study (model checking counterexample to PowerSupplied

visual audible redundancy). Additionally, the indicator light has the word “HIGH” instead of the

number 13, which could be an improved representation of the alarm’s meaning to an untrained user.

For the pump stopped alarm, the octagon light illuminates red and a loud, periodic alarm emits

the words “pump stopped” when the pump speed is 0 RPM (Fig. 9.3c). The new design was

implemented to address a potential usability problem identified in Chapter 7, Section 7.5.3: the

original controller has properties signifying a pump speed of ZeroRPM when the pump stopped

alarm is engaged; however, this alarm could engage when the actual pump speed is above 0 and

below 5,000 RPM. This concern is addressed by modifying the controller’s algorithms so the pump

stopped alarm engages when the pump speed is 0 RPM. The new audible alert for this alarm was

implemented to aid the user in distinguishing it from the high power alarm, which maps to the same

pattern and volume in the original controller.

The speed setting knob has a backlight that turns off when the pump stopped alarm is engaged

(as in Fig. 9.3c) and illuminates white when the pump stopped alarm is not engaged (as in Fig. 9.3a).

This modification to the original controller was implements to address a potential usability problem

identified in Chapter 7: the counterexample to visual consistency revealed that the pump stopped

alarm and the speed setting knob label could signify two different pump speeds at the same time when

the pump stopped alarm is engaged. The end-user description PumpStoppedAlarm.Color.Colored =

Red only occurs when the pumps topped alarm is engaged, but the speed setting knob label is

painted on the knob, producing an end-user description of SpeedSettingKnob.Label.Labeled = Four.

In the modified design, labels painted on the speed setting knob are replaced with transparent labels

that are backlit. When the pump stopped alarm is engaged, the backlight disengages, which could

enable an end-user description of SpeedSettingKnob.Label.Labeled = noLabel.

9.3.3 Modified Documentation

The draft manual is a graphically rendered prototype of a printed, spiral bound document based

on the 29-page patient handbook from Chapter 5. To support the user in navigating through the
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handbook, it has page-number labels in the bottom, left-hand corner of each page; cross-references;

and a draft table of contents on page-2 (Fig. 9.4a). Content in the manual includes text and

diagrams providing descriptions of the device, an operational procedure, and the pump stopped

alarm troubleshooting procedure.

Figure 9.4: Graphical rendering of pages in the draft patient handbook

In this case study, the draft table of contents references four pages:

1. Page-8, which contains a labeled diagram of the controller, text explaining its functionality,

and an operational procedure for adjusting pump speed (Fig. 9.3b)

2. Page-10, which contains a labeled diagram of the controller and information about the pump

stopped and high power alarms (Fig. 9.3c)

3. Page-13, which contains the first four steps of the troubleshooting procedure for addressing

the pump stopped alarm (continued onto page-14)
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4. Page-15, which contains a troubleshooting procedure for addressing the high power alarm

(procedure not developed or modeled in this case study)

Cross-references are added in Fig. 9.4 to aid the user in navigating between pages containing

procedures and pages containing device descriptions. The current page number and a cross-reference

to the table of contents are printed within the footer of every page in the body of the manual. Pages-

13 and 15 (not shown in Fig. 9.4) also contain cross references back to page-10. This design was

implemented because page-10 contains cross-references to pages 13 and 15, and the end user may

need to navigate between them.

Text and labeled diagrams appear on pages-8 and 10 (Fig. 9.4b,c). Unlike the original handbook,

the new design does not contain tables describing relationships between power indicator lights and

pump speeds. This design was implemented to remove a potential usability problem uncovered in the

model checking counterexample to PumpSpeed visual documented redundancy in Chapter 7, which

revealed that power indicator lights on the controller and information within the patient handbook

provide conflicting information about pump speed.

To support the end user in operating the device, the procedure on page-8 explains that the

pump’s speed setting can be adjusted by rotating the speed setting knob. To support the end user

in troubleshooting the device, the draft manual contains a modified version of the pump stopped

alarm troubleshooting instructions from Chapter 5. Setup, maintenance, and other troubleshooting

procedures (e.g. high power alarm) are not considered in this case study.

The modified pump stopped alarm troubleshooting procedure has six main steps with sub-steps

for completing tasks that are applicable to different initial hardware configurations. Its contents are

similar to the original procedure with respect to what the user must do, such as attempting to fix a

broken connector. Leveraging design principles from Chapter 1, the modifications listed below aim

to improve usability of the procedure with respect to completeness, accuracy, and time efficiency:

1. Task descriptions were designed for completeness such that the procedure is applicable to all

initial hardware configurations

2. Device descriptions were designed for accuracy such that tasks involving multi-part components
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identify the part on which the user should act

3. The procedure was designed for time efficiency such that:

(a) Actions that could correct the problem come before actions that cannot

(b) Text that was deemed unnecessary or potentially problematic in Chapter 5 was removed

In support of completeness, separate sets of sub-steps are developed to address initial component

configurations that are possible when the pump stopped alarm engages. Modifications to the original

procedure employing this principle appear in steps 1–4 of the modified procedure.

In support of accuracy, input/output ends of cables are identified specifically within steps of

the procedure, and a diagram similar to Fig. 5.3 from Chapter 5 appears pages containing steps

of the procedure. In addition to describing parts of components explicitly, the procedure includes

references to the diagram having graphical renderings of components and captions describing them

(Fig. 9.2). Modifications to the original procedure employing this principle appear in all steps of the

modified procedure.

In support of time efficiency, steps leveraged from the original procedure are reordered to priori-

tize steps that could potentially resolve the alarm over ones that cannot. A new version of steps 4a–b

from the original procedure (fixing the connector permanently attached to the heart) is placed at

the beginning of the modified procedure. The original step-3 (attached a red tag to old components)

is moved to the end (step-6 of the modified procedure), as it cannot resolve the alarm. The original

steps- 2b and 5a are switched so the end user attempts connecting a lead reserve battery to the

new controller before connecting a new lithium-ion battery. This modification was implemented to

reduce the number of actions: connecting the lead battery requires one action that could potentially

restart the pump, while connecting a lithium-ion battery requires two actions.

In support of time efficiency, text within the original procedure that was considered unnecessary

or potentially problematic was removed from the modified procedure. Step 1a of the original pro-

cedure had text instructing the end user to disconnect the lithium-ion battery cable. The formal

task model representation of this step enabled a potentially unsafe situation to emerge later in the
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procedure (reconnecting a potentially discharged or malfunctioning battery). Thus, it was removed

from the modified procedure. Step 6b of the original procedure had text explaining why a power

source should be disconnected from the controller if prior steps were unsuccessful for resolving the

alarm. As mentioned in Chapter 5, this text was not represented within the formal task model, as

it was not necessary for understanding what components are involved in the task and how it should

be executed. Thus, the modified procedure does not include this text. Instead, text is added in

Step 5(c)i to provide declarative knowledge regarding what is displayed on the controller when the

task has been completed: no power indicator lights are illuminated on the controller.

The modified procedure is shown in the grey box below exactly as it is written on pages 13–14 of

the prototype patient handbook. Steps 1–4 appear on page-13, while steps-5 and 6 continue onto

page-14.

Follow this procedure if the pump stopped alarm is on (see page-10 for more information on the
pump stopped alarm). To complete the following steps safely use the bold letters in parentheses
referencing components shown in Box 1.

1. Check to see if the connector permanently attached to the heart (f) is broken. If it is not
broken, proceed immediately to step-2. If it is broken:

(a) Put it back together where it is broken. If the pump stopped alarm turns off, discon-
tinue this procedure. Otherwise:

i. Take the connector apart again, rotate the parts 90 degrees, and put it back together
again

ii. If the pump stopped alarm is still on, repeat steps 1a-i three times
iii. If the pump stopped alarm turns off, discontinue this procedure

2. If the abdominal cable is in-use:

(a) Disconnect output (h) of the pump cable from input (i) of the abdominal cable

(b) Loosen the 1/2 cell battery cap on the controller (b) to silence the audible alarm

(c) Leave all cables attached to the controller and battery and set them aside

Otherwise, if the abdominal cable is not in-use:

(d) Disconnect output (g) of the pump cable from input (a) of the controller

(e) Loosen the 1/2 cell battery cap on the controller (b) to silence the audible alarm

(f) Leave all cables attached to the controller and battery and set them aside

3. Retrieve a replacement controller and:

(a) Connect output (g) of the pump cable to input (a) of the replacement controller

(b) Tighten the 1/2 cell battery cap (b) to activate the audible alarm

4. If you have the lead battery with you (cable segment shown in Box 1, (m)) and it was not
connected when the pump stopped alarm turned on:

(a) Connect output (m) of the lead battery cable to input (c) of the replacement controller

(b) If the pump stopped alarm turns off, proceed to step-6. If the pump stopped alarm
remains on, disconnect output (m) of the lead battery cable from input (c) of the
replacement controller
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Figure 9.5: Outline form of case study troubleshooting procedure

Otherwise, if you do not have the lead battery with you or you have already completed steps
4a–b, retrieve a replacement lithium-ion battery and proceed to step-5

5. While depressing the black button (o) on a replacement lithium-ion battery, make sure five
charge level indicator lights (q) illuminate. If four or fewer lights illuminate, call your emer-
gency number immediately and have the patient lie down in a comfortable position while
awaiting emergency help

Otherwise, if five lights illuminate:

(a) Retrieve a replacement lithium-ion battery cable and connect output (e) to input (c) of
the replacement controller

(b) Connect output (d) of the replacement lithium-ion battery cable to input (q) of the
replacement lithium-ion battery

(c) If the pump stopped alarm remains on:

i. Disconnect output (e) of the replacement lithium-ion battery cable from input (c) of
the replacement controller, ensuring that no power indicator lights on the controller
are illuminated green

ii. Call your emergency number immediately

iii. Have the patient lie down in a comfortable position while you await emergency help

6. Attach a red tag (r) to the old components you set aside earlier

9.4 Integrated Framework Model

To analyze the case study system, the integrated framework architecture was implemented by en-

coding and composing:

• A documentation navigation model representing the end user navigating through the patient

handbook using its navigational tools

• Two task models representing the end user executing:

– The draft operational procedure

– The draft pump stopped alarm troubleshooting procedure

• A device model, including:

– A display/control logic model representing the system’s internal algorithms and what is

displayed on the device

– An end user-device interaction model representing changes to controls and configurable

hardware that emerge following end-user inputs
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– A plant model representing pump speed and power supplied by the controller

– A constraints model that aids in constraining model checking analyses to plant model

outputs matching simulation data

• An affordance model representing opportunities for the end user to execute actions needed to

resolve the pump stopped alarm

• A signifier model representing what is signified to the end user through audible, visual, and

documentation channels

In regard to locating pages of the patient handbook having necessary content, the end user should

be able to navigate to pages of the handbook containing procedural steps and text, tables, and

diagrams explaining what is signified through audible and visual channels. To evaluate usability of

the interface for an end user having no training or experience using the device, the model precludes

any possibility of the end user remembering documented procedural steps or device information.

Thus, the documentation navigation model page number output operates as an input to task and

signifier models. Preconditions of formal task model activities specify that procedural steps listed on

that page could begin executing when the end user is on the page. Otherwise, if a page containing

procedural steps cannot be locating using the patient handbook’s navigational tools, those steps

cannot execute. In the signifier model, the page number output operates as an input such that

a function or meaning is signified through the documentation channel only if the explanation is

provided on the current page. Otherwise, nothing is signified through the documentation channel.

In regard to understanding of what is signified, signifiers on the device should be consistent,

redundant (if applicable, e.g. when the audible/visual pump stopped alarm is engaged), and updated

in a time-efficient way when operational states of the device change. To enable analyses of these

characteristics, input/output variables are exchanged among the task, end user-device interaction,

display/control logic, plant, and signifier models. Changes to controls and configurable hardware are

represented via human action outputs of the task models operating as inputs to the end user-device

interaction model (as in Chapter 5).
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9.5 Documentation Navigation

The documentation navigation model represents the end user navigating through the 29-page patient

handbook using its navigational tools, including sequentially ordered, numerically labeled pages; a

main table of contents on page-2; text, tables, and diagrams on pages 8, 10, 13, 14, and 15; and

cross-references on pages 2, 8, 10, 13, 14, and 15. Page-2 is modeled as the initial page. Transitions

represent the end user remaining on pages having text, tables, or diagrams (8, 10, 13, 14, and 15);

turning from page 13 to 14 to continue the pump stopped alarm troubleshooting procedure; and

navigating to any cross-referenced page in one step. Cross-referenced pages are listed below. Each

page having cross-references is listed as “Page number. Page title,” where the page number and title

appear in the bottom left-hand corner (Fig. 9.4).

2. Table of contents: 8, 10, 13, 15

8. The controller : 2, 10

10. Alarms: 2, 8, 13, 15

13. Pump stopped alarm: 2, 10

14. Pump stopped alarm: 2

15. High power alarm: 2, 10

The model was 27 lines of SAL code (Appendix H.2.1).

9.6 Task Models

Applying the formalism/tool described in [10] and the modeling technique discussed in Section 9.1,

two task models are encoded to represent procedures in the prototype patient handbook. The

first model represents the procedure for adjusting pump speed, which is listed in text on page-8

(Fig. 9.4c). The second model represents the troubleshooting procedure for addressing the pump

stopped alarm: steps 1–4 are listed on page-13, and steps 5–6 are listed on page-14.

The formal task models are visualized using the graphical notation of EOFM [73]. Activities not

at the lowest level begin with a for activity and are surrounded by rectangles with rounded edges. The
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lowest level activities in the tree begin with h for human action and are represented inside rectangles

with right-angle edges. Preconditions (conditions for when an activity can initiate) in the figures

are denoted by yellow triangles pointing downward. Completion conditions (conditions for when an

activity has been completed) are denoted by pink triangles pointing upward. Input variables, which

begin with a lowercase i, are used in preconditions, repeat conditions, and completion conditions to

govern activity/action execution. The final EOFM-XML model representing both procedures was

253 lines of XML code (Appendix H.1.1). The automated translator described in [10] generated a

754-line SAL model (Appendix).

9.6.1 Pump Speed Adjustment

The end user could either increase or decrease the speed setting if the current setting is not desired.

As indicated by the procedure, it is only possible to increase the setting if it is not already at the

maximum setting of 5, and it is only possible to decrease if it is not already at the minimum setting

of 1. Additionally, the manual indicates that speed setting should be adjusted only when no alarms

are engaged. This information is utilized within activity execution conditions.

In the formal task model (Fig. 9.6), there is one top-level activity named aAdjustPumpSpeed

and two sub-activities named aIncreaseSpeed and aDecreaseSpeed respectively. The pump’s speed

setting is an input variable with prefix i), iSpeedSetting, which could be a numeric value between 1

and 5. The user’s desired speed is a local variable (with prefix l), lDesiredSetting. Its initial value

is assigned randomly. A second input variable iAlarm is incorporated within the precondition to

specify that no alarms should be engaged. The completion condition specifies that the procedure

has finished executing when the speed setting is equal to the end user’s desired speed.

Text in the procedure identifies two different sets of preconditions for increasing or deceasing

speed as well as what component should be acted on (the speed setting knob); thus, this activity is

decomposed by xor into two sub-activities:

1. The first sub-activity (aIncreaseSetting) represents the task of increasing the speed setting by

rotating the knob in the direction of the curved arrow (counterclockwise). The precondition

specifies that the activity begins executing if the speed setting is less than the desired speed
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Figure 9.6: Graphical representation of the task model representing the user manual procedure
for adjusting speed setting on the pump’s controller

(iSpeedSetting < lDesiredSpeed); the speed setting is below the maximum (iSpeedSetting < 5 );

and, because text prescribing this text is listed on page-8 of the user manual, the end user

is on page-8 (iPage = 8). The repeat condition specifies that the activity repeats execution

if the speed setting is less than the desired speed. The activity is decomposed by ord into

one human action representing the end user rotating the speed setting knob counterclockwise

(hRotateKnobCounterClockwise)

2. The second sub-activity (aDecreaseSetting) represents task of decreasing the speed setting by

rotating the knob in the opposite direction of the curved arrow (clockwise). The precondition

specifies that the activity begins executing if the speed setting is greater than the desired speed

(iSpeedSetting > lDesiredSpeed); the speed is setting is above the minimum (iSpeedSetting >

1 ); and, because text prescribing this text is listed on page-8 of the user manual, the end user

is on page-8 (iPage = 8). The repeat condition specifies that the activity repeats execution

if the speed setting is greater than the desired speed. The activity is decomposed by ord

into one human action representing the end user rotating the speed setting knob clockwise

(hRotateKnobClockwise)
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9.6.2 Pump Stopped Alarm Troubleshooting

The six main steps of the modified troubleshooting procedure are depicted as six sub-activities of

a top-level activity aRespondToPumpStoppedAlarm, representing the entire procedure (Fig. 9.7).

Individual steps and sub-steps are depicted in Figs. 9.8–9.13. The top-level activity in Fig. 9.7

has execution conditions specifying that the procedure begins executing when the pump stopped

alarm is engaged and completes execution when the alarm disengages (modeling of the alarm status

discussed later).

Figure 9.7: Visualization of the six main steps of the modified troubleshooting procedure
encoded as six EOFM sub-activities. The top-level activity aRespondToPumpStoppedAlarm
represents the entire procedure, while the six sub-activities represent end-user activities pre-
scribed within the six main steps. A top-level activity precondition specifies that the procedure
begins executing when the pump stopped alarm engages. A completion condition specifies that
the procedure completes execution when the alarm disengages. The ord decomposition operator
specifies that all six sub-activities must execute in order

Step 1 (aStep1FixBrokenConnector) appears in Fig. 9.8. The precondition specifies that the

activity begins executing if the connector permanently attached to the heart is broken (iPerma-

nentlyAttachedConnector = Broken). Because text instructing this step is on page-13 of the patient

handbook, the precondition also specifies that the end user is on page-13 (iPage = 13 ). The activ-

ity is decomposed by ord into two sub-activities representing sub-tasks of reassembling the broken

connector and rotating connector parts. Text of the modified procedure instructing these sub-tasks

is similar to step 4 of the original procedure. The sub-activities representing them are the same as

aReassembleConnector and aTryRotatingParts of Chapter 5.

Step 2 (aStep2DisconnectOldParts) appears in Fig. 9.9. Because text instructing this step is on

page-13 of the patient handbook, the precondition specifies that the activity begins executing if the

end user is on page-13 (iPage = 13 ). The activity is decomposed by ord into three sub-activities

having different preconditions:
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Figure 9.8: Visualization of the formal task model representing step-1

Figure 9.9: Visualization of the formal task model representing step-2

1. The first sub-activity (aDiscPumpFromOldController) represents the first sub-task in the text,

which instructs the end user to disconnect the pump cable from either the old controller or the

abdominal cable. Because text identifies two sets of sub-tasks that address different component

configurations, the activity is decomposed by xor into two sub-activities:

(a) The first sub-activity (aDisPumpCableFromAbdominalCable) represents the sub-task that

is possible if the abdominal cable is in-use. The precondition specifies that the activity

begins executing if the pump cable is connected to the abdominal cable (iPumpCable-
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ToAbCable = Connected) and the abdominal cable is connected to the old controller

(iAbCableToOldController = Connected). Because text identifies what parts should be

acted on (the pump cable output end and the abdominal cable input socket), the activity

is decomposed by ord into one human action representing the end user disconnecting the

pump cable from the abdominal cable (hDiscPumpCableFromAbdominalCable)

(b) The second sub-activity (aDiscPumpCableFromOldController) represents the sub-task

that is possible if the abdominal cable is not in-use. The precondition specifies that the

activity begins executing if the pump cable is connected to the old controller (iPumpCa-

bleToOldController = Connected). Because text identifies what parts should be acted on

(the pump cable output end and the old controller’s pump cable input socket), the activ-

ity is decomposed by ord into one human action representing the end user disconnecting

the pump cable from the old controller (hDiscPumpCableFromOldController)

2. The second sub-activity (aSilenceAlarmOnOldController) represents the second sub-task,

which instructs the end user to silence the alarm by loosening the 1/2 cell alarm battery

cap on the old controller. Text of the modified procedure instructing this sub-task is similar

to the last sub-task in step 1a of the original procedure. The sub-activity representing it is

the same as aSilenceAlarmOnOldController of Chapter 5.

3. The third sub-activity (aSetAsideOldComponents) represents the third sub-task, which in-

structs the end user to set aside old components. Text of the modified procedure instructing

this task is similar to the original procedure. The sub-activity representing it is the same as

aSetAsideOldComponents of Chapter 5.

Step 3 (aStep3ConnectNewController) appears in Fig. 9.10. Because text instructing this step

is on page-13 of the patient handbook, the precondition specifies that the activity begins executing

if the end user is on page-13 (iPage = 13 ). Text of the modified procedure instructing the two

sub-tasks is similar to the original procedure. The sub-activities representing them are the same as

aConPumpCableTpNewController and aActivateAlarmOnNewController of Chapter 5.
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Step 4 (aStep4TryLeadBattery) appears in Fig. 9.11. Because text instructing this step is on page-

13 of the patient handbook, the precondition specifies that the activity begins executing if the end

user is on page-13 (iPage = 13 ). The precondition also specifies that the activity begins executing

if the lead battery was not in-use when the pump stopped alarm engaged (iLeadBattToOldCon-

troller = Disconnected AND NOT(iLeadBattToYCable = Connected AND iYCableToOldController

= Connected)). The activity is decomposed by ord into two sub-activities representing two subtasks

prescribed in the text:

1. The first sub-activity (aConLeadBattToNewController) represents the first sub-task, which

instructs the end user to connect the lead battery to the new controller. The precondition

specifies that the activity begins executing if the lead battery is disconnected from the new

controller (iLeadBattToNewController = Disconnected). The completion condition specifies

that the activity has completed executing when the lead battery is connected to the new

controller (iLeadBattToNewController = Connected). Because text identifies what part should

be acted on (the lead battery cable output end), the activity is decomposed by ord into one

human action representing the end user connecting the lead battery to the new controller

(hConLeadBattToNewController)

2. The second sub-activity (aDiscLeadBattFromNewController) represents the second sub-task

Figure 9.10: Visualization of the formal task model representing step-3
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Figure 9.11: Visualization of the formal task model representing step-4. The activities aCallE-
mergencyNumber and aCallEmergency represent the same task. This task appears twice because
the first instance, aCallEmergencyNumber, has a precondition (iNewLiBattLights < 5 ) while
the second instance, aCallEmergency, has no precondition

prescribed in the text, which instructs the end user to disconnect the lead battery from the

new controller if connecting it did not resolve the alarm (discussed further in Section 9.8.1).

The precondition specifies that the activity begins executing if the lead battery is connected

to the new controller (iLeadBattToNewController = Connected). The completion condition

specifies that the activity has completed executing when the lead battery is disconnected from

the new controller (iLeadBattToNewController = Disconnected). It is decomposed by ord

into one human action representing the end user disconnecting the lead battery from the new

controller (hDiscLeadBattFromNewController)

Step 5 (aStep5TryLiIonBattery) appears in Fig. 9.12. Because text instructing this step is on

page-14 of the patient handbook, the precondition specifies that the activity begins executing if the

end user is on page-14 (iPage = 14 ). The activity is decomposed into two sub-activities representing

the two sub-tasks prescribed in text:

1. The first sub-activity (aCheckNewLiBattLevel) represents the first sub-task, which instructs

the end user to check the new lithium-ion battery’s charge level. Because text identifies what
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Figure 9.12: Visualization of the formal task model representing step-5

part should be acted on (black button on the battery), the activity is decomposed by ord into

one human action representing the end user depressing the black button to check the battery’s

charge level (hDepressBlackButtonOnNewLiBatt)

2. The second sub-activity (aConnectBattOrCallEmergencyNumber) represents the second sub-

task. It is decomposed by xor into two sub-activities, one of which could execute under different

preconditions:

(a) The first sub-activity (aCallEmergencyNumber) represents the sub-task that could exe-

cute if the new lithium-ion battery is not fully charged. The precondition specifies that

the activity begins executing if fewer than five lights illuminate on the new lithium-ion

battery (iNewLiBattLights < 5 ). It is decomposed by ord into one human action repre-

senting the end user calling an emergency number (hCallEmergencyNumber)

(b) The second sub-activity (aConnectFullyChargedLiBatt) represents the other sub-task that
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could execute if the new lithium-ion battery is fully charged. The precondition specifies

that the activity begins executing if all five lights illuminate on the new lithium-ion

battery (iNewLiBattLights = 5 ). It is decomposed by ord representing the three sub-

tasks prescribed in text:

i. The first sub-activity (aConNewLiBattCableToNewController) represents the first

sub-task, which instructs the end user to connect the new lithium-ion battery battery

to the new controller. The precondition specifies that the activity begins executing if

the new lithium-ion battery cable is disconnected from the new controller (iNewLi-

BattCableToNewController = Disconnected). The completion condition specifies that

the activity has completed executing when the cable is connected (iNewLiBattCable-

ToNewController = Connected). It is decomposed by ord into one human action

representing the end user connecting the lead battery to the new controller (hCon-

LeadBattToNewController)

ii. The second sub-activity (aConNewLiBattCableToNewLiBatt) represents the second

sub-task prescribed in the text, which instructs the end user to connect the new

lithium-ion battery cable to a fully charged lithium-ion battery. The precondition

specifies that the activity begins executing if the new lithium-ion battery cable is dis-

connected from the new lithium-ion battery (iNewLiBattCableToNewLiBatt = Dis-

connected). The completion condition specifies that the activity has completed ex-

ecuting when the cable has been connected (iNewLiBattCableToNewLiBatt = Con-

nected). Because text identifies what parts should be acted on (a new lithium-ion

battery cable output end and the new lithium-ion battery input socket), the activity

is decomposed by ord into one human action representing the end user connecting the

new lithium-ion battery cable to the new lithium-ion battery (hConNewLiBattCable-

ToNewLiBatt)

iii. The third sub-activity (aBreakCircuit) represents the third sub-task, which instructs

the end user to break the circuit if connecting the new lithium-ion battery did not
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resolve the alarm (discussed further in Section 9.8.1). The completion condition spec-

ifies that the activity has completed executing when no power lights are illuminated

on the controller (iPowerLight = 0 ). Because text identifies what part should be

acted on (the lithium-ion battery cable output end connected to the new controller),

the activity is decomposed by ord into one human action representing the end user

disconnecting the lithium-ion battery cable from the new controller (hDiscNewLi-

BattCableFromNewController)

iv. The fourth sub-activity (aCallEmergency) represents the last sub-task, which in-

structs the end user to call an emergency number. It is decomposed by ord into one

human action representing the end user calling an emergency number (hCallEmer-

gencyNumber)

Step 6 (aStep6TagOldParts) appears in Fig. 9.13, which instructs the end user to attach a red

tag to the old components set aside in step 2c. Because text instructing this step is on page-14 of

the patient handbook, the precondition specifies that the activity begins executing if the end user

is on page-14 (iPage = 14 ). Text of the modified procedure instructing this task is similar to the

original procedure. The sub-activity representing it is the same as aStep3RedTagOldComponents of

Chapter 5.

Figure 9.13: Visualization of the formal task model representing step-6

9.7 Affordances

Using the CAVEMEN approach (Chapter 6), an affordance model was encoded to represent config-

urable hardware components shown in Fig. 9.2a–o and thirteen affordances involving them. 11 of
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13 correspond to human action variables from the pump stopped alarm troubleshooting procedure

task model. All 11 involve connecting cables, disconnecting cables, or repairing the connector per-

manently attached to the heart. The purpose of encoding these 11 affordances was to demonstrate

an implementation of the framework integrating task, affordance, and end user-device interaction

models. The 11 EOFM human action variables and corresponding affordances are listed below as

“action variable–affordance variable”:

1. hReassembleBrokenConnector–ConnectorPartsAssemblable

2. hDisassembleConnector–ConnectorPartsDisassemblable

3. hRotateConnectorParts–ConnectorPartsRotatable

4. hDiscPumpCableFromAbCable–PumpCableDisconnectableFromAbCable

5. hDiscPumpCableFromOldController–PumpCableDisconnectableFromOldController

6. hConPumpCableToNewController–PumpCableConnectableToNewController

7. hConLeadBattToNewController–LeadBattConnectableToNewController

8. hDiscLeadBattFromNewController–LeadBattDisconnectableFromNewController

9. hConNewLiBattCableToNewController–NewLiBattCableConnectableToNewController

10. hConNewLiBattCableToNewLiBatt–NewLiBattCableConnectableToNewLiBatt

11. hDiscNewLiBattCableFromNewController–NewLiBattCableDisconnectableFromNewController

Two of 13 affordances enable the end user to connect the old lithium-ion battery to the new

controller during the pump stopped alarm troubleshooting procedure, and corresponding actions

are not represented in the task model. The purpose of encoding these affordances was to enable

formal verification of usability specifications involving error tolerance (discussed later). One affor-

dance variable (NewLiBattCableConnectableToOldLiBatt) represents the end user’s opportunity to

connect the new lithium-ion battery cable to the old lithium-ion battery. The other variable (OldLi-

BattCableConnectableToNewController) represents the end user’s opportunity to connect the old
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lithium-ion battery cable to the new controller. Both affordances are considered unsafe if the old

lithium-ion battery was in-use when the pump stopped alarm engaged.

The 398-line CAVEMEN-XML model (described in Section 9.7.1) was translated to 290 lines of

SAL code using the JavaScript-based translator described in Chapter 6. The automatically generated

HES model was augmented with manually encoded infrastructure representing static end-user motor

capabilities and evolving spatial relations among HES entities (described in Section 9.7.2). The final

model was 486 lines of SAL code (Appendix H.2.3).

9.7.1 CAVEMEN-XML Model

10 configurable hardware components and 13 affordances were encoded using CAVEMEN-XML.

Configurable hardware specifications are described in Section‘9.7.1.1. Affordance specifications are

described in Sections 9.7.1.3–9.7.1.5. To demonstrate an application of CAVEMEN-XML to specify

Chemero’s formalism, all 13 affordance nodes have the formalism attribute valued chemero.

9.7.1.1 Modelobject, Subobject, and Atomicobject Nodes

10 configurable hardware components are involved in the 13 affordances: two controllers, two lithium-

ion battery cables, one pump cable, one abdominal cable, one Y-Cable, two lithium-ion batteries,

and one lead battery. Components were encoded within ten CAVEMEN-XML modelobject nodes

using 42 lines of CAVEMEN-XML (Appendix H.1.2, lines 4–46). For each modelobject node, parts

of components involved in the affordances were represented within subobject and atomicobject nodes.

Parts that are not involved in these affordances, such as the 1/2 cell AA battery caps of controllers,

were not specified.

For the two controllers, parts considered in the case study include one input socket for the

pump cable/abdominal cable and one input socket for a battery cable (lead, lithium-ion, or Y-

cable). CAVEMEN-XML nodes representing the old controller and its two input sockets are shown

in Fig. 9.14a–c. The controller is specified using a modelobject node with the name attribute valued

mOldController (Fig. 9.14a). The input socket for the pump cable of abdominal cable output end is

specified using an atomicobject node with the nameattribute aoOCPumpInput, where “OC” stands
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for “old controller” (Fig. 9.14b). The input socket for the lead, Y, or lithium-ion battery cable is

specified using an atomicobject node with the nameattribute aoOCBatteryInput (Fig. 9.14c). The

new controller is encoded in a similar way, replacing the modelobject nameattribute value with

mNewController and each instance of “OC” with “NC,” where “NC” stands for “new controller.”

Figure 9.14: Graphical representation of the case study system’s old controller, old lithium-
ion battery cable, and CAVEMEN-XML nodes representing them. Node names are listed
within square-edge rectangles. Name attribute values are listed within rounded-edge rectangles.
Letters aid in identifying what components correspond to modelobject nodes and what parts
correspond to subobject and atomicobject nodes

For the two lithium-ion battery cables, parts include controller and battery output ends.

CAVEMEN-XML nodes representing the old lithium-ion battery and its two output ends are shown

in Fig. 9.14d–f. The cable is specified using a modelobject node with the nameattribute valued

mOldLiBattCable (Fig. 9.14d). The output end connecting to a lithium-ion battery is specified us-

ing an atomicobject node with the nameattribute aoOBCBatteryOutput, where “OBC” stands for

“old lithium-ion battery cable” (Fig. 9.14e). The output end connecting to a controller or Y-Cable

input socket is specified using an atomicobject node with the nameattribute aoOBCControllerOutput

(Fig. 9.14f). The new lithium-ion battery cable is encoded in a similar way, replacing the modelob-

ject nameattribute value with mNewLiBattCable and each instance of “OBC” with “NBC,” where

“NBC” stands for “new lithium-ion battery cable.”

For the pump cable, parts include the output end connecting to a controller or abdominal ca-

ble input socket, the connector permanently attached to the heart, and the two connector parts.
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Figure 9.15: Graphical representation of the case study system’s pump cable, lead battery,
and CAVEMEN-XML nodes representing them. Node names are listed within square-edge
rectangles. Name attribute values are listed within rounded-edge rectangles. Letters aid in
identifying what components correspond to modelobject nodes and what parts correspond to
subobject and atomicobject nodes

CAVEMEN-XML nodes representing the pump cable are shown in Fig. 9.15a–e. The cable is specified

using a modelobject node with the nameattribute valued mPumpCable (Fig. 9.15a). The connec-

tor permanently attached to the heart is specified using a subobject node with the nameattribute

valued sConnector (Fig. 9.14b). The two connector parts are specified using atomicobject nodes

with nameattributes valued aoConnectorPart1 and aoConnectorPart2 respectively (Fig. 9.14c, d).

The output end connecting to a controller or abdominal cable input socket is specified using an

atomicobject node with the nameattribute aoPCControllerOutput, where “PC” stands for “pump

cable” (Fig. 9.14e).

For the lead battery, parts include the cable and its output end connecting to a controller or Y-

cable input socket. CAVEMEN-XML nodes representing the lead battery are shown in Fig. 9.14f–h.

The battery is specified using a modelobject node with the nameattribute valued mLeadBattery

(node shown in Fig. 9.14f, battery not shown). The cable is specified within a subobject node with

the nameattribute valued sLeadBattCable (Fig. 9.14g). The output end connecting to a controller
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or Y-Cable is specified using an atomicobject node with the nameattribute valued aoLeadBattCon-

trollerOutput(Fig. 9.14h).

For the abdominal cable, parts include the pump input socket and controller output end.

CAVEMEN-XML nodes representing the abdominal cable are shown in Fig. 9.16a–c. The cable

is specified using a modelobject node with the nameattribute valued mAbdominalCable (Fig. 9.16a).

The input socket for the pump cable is specified using an atomicobject node with the nameattribute

valued aoACPumpInput, where “AC” stands for “abdominal cable” (Fig. 9.16b). The output end

connecting to a controller input socket is specified using an atomicobject node with the nameattribute

aoACControllerOutput (Fig. 9.16c).

Figure 9.16: Graphical representation of the case study system’s abdominal cable, old lithium-
ion battery, Y-cable, and CAVEMEN-XML nodes representing them. Node names are listed
within square-edge rectangles. Name attribute values are listed within rounded-edge rectangles.
Letters aid in identifying what components correspond to modelobject nodes and what parts
correspond to subobject and atomicobject nodes

For each lithium-ion battery, a part is the input socket for a lithium-ion battery cable.

CAVEMEN-XML nodes representing the old lithium-ion battery are shown in Fig. 9.16d, e. The

battery is specified using a modelobject node with the nameattribute valued mOldLiIonBattery

(Fig. 9.16d). The input socket for a lithium-ion battery cable is specified using an atomicobject node

with the nameattribute valued aoOBBattCableInput, where “OB” standards for “old lithium-ion

battery” (Fig. 9.16e). The new lithium-ion battery is encoded in a similar way, replacing the mode-

lobject nameattribute value with mNewLiIonBattery and each instance of “OB” with “NB,” where

“NB” stands for “new lithium-ion battery.”
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For the Y-cable, parts include the two input sockets for a lithium-ion or lead battery cable and the

output end connecting to a controller input socket. CAVEMEN-XML nodes representing the Y-cable

are shown in Fig. 9.16f–i. The cable is specified using a modelobject node with the nameattribute

valued mYCable (Fig. 9.16f). The two input sockets are specified using atomicobject nodes with

nameattributes valued aoYCableBatteryInput1 and aoYCableBatteryInput2 respectively (Fig. 9.14g,

h). The output end connecting to a controller input socket is specified using an atomicobject node

with the nameattribute aoYCControllerOutput, where “YC” stands for “Y-cable” (Fig. 9.14i).

9.7.1.2 Affordance Nodes

As mentioned, 13 affordances were encoded to represent the spatial relations among HES entities

and end-user capabilities that are necessary to:

• Complete actions prescribed in the pump stopped alarm troubleshooting procedure (11 of 13

affordances)

• Connect the old lithium-ion battery to the new controller during the pump stopped alarm

troubleshooting procedure (two of 13 affordances)

For the purpose of this case study, it is assumed that:

• All components are in-reach for the end user in all possible initial HES configurations (possible

initial configurations discussed later)

• No HES entities are blocking connections (i.e., spatial relations involving connections being

blocked are not specified, unlike the model in Chapter 6)

Three of 13 affordances involve the connector permanently attached to the heart; six of 13 involve

connectability of a cable output end to an input socket; and four of 13 involve disconnectability of

a cable output end from an input socket. All 13 affordances have one humanoperator child node

with the nameattribute valued pPumpOperator (i.e., the end user is the pump operator). The

affordance nodes are described in the following sections. The end user’s visual perspective and a

subset of component configurations satisfying relation nodes are depicted in Figs. 9.17–9.22.
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9.7.1.3 Affordances Involving the Permanently Attached Connector

The CAVEMEN-XML affordances involving the connector permanently attached to the heart in-

clude:

1. ConnectorPartsAssemblable, representing the end user’s opportunity to reassemble the two

connector parts that have broken and come apart

2. ConnectorPartsDisassemblable, representing the end user’s opportunity to disassemble the two

connector parts

3. ConnectorPartsRotatable representing the end user’s opportunity to rotate the two connector

parts 90°

All three affordances may need to be actualized multiple times to complete step-1a of the pump

stopped alarm troubleshooting procedure. To actualize ConnectorPartsAssemblable, the two con-

nector parts must be disassembled and the end user must be able to push them together by pushing

one part back and the other part forth at the same time. The parts are disassembled if the part

closest to the pump cable output end is not covering the front surface of the part farthest from

the output end. The CAVEMEN-XML specification (Appendix H.1.2, lines 48–63) is described in

outline form below:

• The part closest to the pump cable output end (aoConnectorPart1 ):

– Cannot be covering the front surface of the other part (shown as disjoint in Fig. 9.17b)

– And must be positionable back (end user’s visual perspective of the pump cable, connec-

tor, and connector parts shown Fig. 9.17a)

• The other part (aoConnectorPart2 ), which is smaller and farthest from the output end, must

be positionable forth

To actualize ConnectorPartsDisassemblable, the parts must be assembled and the end user must

be able to pull them apart. The CAVEMEN-XML specification (Appendix H.1.2, lines 64–79) is

described in outline form below:
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• The part closest to the pump cable output end (aoConnectorPart1 ) must be:

– Covering the front surface of the other part (as in Fig. 9.17c)

– Positionable back (end user’s visual perspective of the pump cable, connector, and con-

nector parts shown Fig. 9.17c)

• The other part (aoConnectorPart2 ), which is smaller and farthest from the output end, must

be positionable back

Figure 9.17: (a) Labeled axes show the pump operator’s visual perspective for surfaces of
the pump cable (mPumpCable). Surfaces are the same for the permanently attached connector
(sConnector) and connector parts (aoConnectorPart1/aoConnectorPart2 ). (b–c) Graphical
renderings of configurations satisfying relation nodes (relation nodes not shown). (b) aoCon-
nectorPart1 disjoint to aoConnectorPart2. (c) aoConnectorPart1 covering front-side surface of
aoConnectorPart2

To actualize ConnectorPartsRotatable, the parts must be disassembled and the end user must be

able to rotate both parts. Because this affordance corresponds to the EOFM human action variable

hRotateParts, which represents the end user rotating both parts at the same time, it is assumed

that both parts must be rotatable rightward and leftward. The CAVEMEN-XML specification

(Appendix H.1.2, lines 80–97) is described in outline form below:

• The part closest to the pump cable output end (aoConnectorPart1 ) must be:

– Disjoint to the other part (as in Fig. 9.17b)
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– Rotatable right (end user’s visual perspective shown in Fig. 9.17c)

– Rotatable left

• The other part (aoConnectorPart2 ), which is smaller and farthest from the output end, must

be:

– Disjoint to the other part (as in Fig. 9.17b)

– Rotatable right (end user’s visual perspective shown in Fig. 9.17c)

– Rotatable left

9.7.1.4 Affordances Involving Cable Disconnectability

As mentioned, four of 13 affordances involve cable disconnectability. Two of 13 CAVEMEN-XML

affordance nodes specify disconnectability of the pump cable from the old controller. The other two

of 13 specify disconnectability of a battery cable from the new controller.

The pump cable disconnectability affordances include:

1. PumpCableDisconnectableFromAbCable representing the end user’s opportunity to disconnect

the pump cable output end from the abdominal cable input socket

2. PumpCableDisconnectableFromOldController representing the end user’s opportunity to dis-

connect the pump cable output end from the old controller input socket

Either one of these affordances needs to be actualized once to complete step-2a or step-2d of the

pump stopped alarm troubleshooting procedure, depending on the initial pump cable configuration.

To actualize PumpCableDisconnectableFromAbCable, the pump cable must be connected to the

abdominal cable and the end user must be able to move both cable ends at the same time. The

CAVEMEN-XML specification (Appendix H.1.2, 98–112) is described in outline form below:

• The pump cable output end (aoPCControllerOutput) must be positionable back (end user’s

visual perspective shown in Fig. 9.18b)

• The abdominal cable input socket (apACPumpInput) must be:
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– Positionable back (end user’s visual perspective shown in Fig. 9.18b)

– Covering all surfaces of the pump cable output end (as in Fig. 9.18d)

Figure 9.18: (a–c) Labeled axes show the pump operator’s visual perspective for the: (a)
abdominal cable (mAbdominalCable), (b) pump cable (mPumpCable), and (c) old controller
(mOldController). (d–e) Graphical renderings of configurations satisfying relation nodes (re-
lation nodes not shown). (d) Abdominal cable input socket (aoACPumpInput) covering all
surfaces of the pump cable output end (aoPCControllerOutput). (e) Old controller pump cable
input socket (aoOCPumpInput) covering all surfaces of the pump cable output end (aoPCCon-
trollerOutput)

To actualize PumpCableDisconnectableFromOldController, the pump cable must be connected to

the old controller and the end user must be able to move the pump cable output end and old controller

at the same time. The CAVEMEN-XML specification (Appendix H.1.2, 113–129) is described in

outline form below:

• The old controller (mOldController) must be positionable back (end user’s visual perspective

shown in Fig. 9.18c)

• The pump cable output end (aoPCControllerOutput) must be positionable back (end user’s

visual perspective shown in Fig. 9.18b)



303

• The old controller pump cable input socket (aoOCPumpCableInput) must be covering all

surfaces of the pump cable output end (as in Fig. 9.18e)

Affordances involving battery cable disconnectability include:

1. LeadBattDisconnectableFromNewController representing the end user’s opportunity to discon-

nect the lead battery cable from the new controller

2. NewLiBattCableDisconnectableFromNewController representing the end user’s opportunity to

disconnect the new lithium-ion battery cable from the new controller

LeadBattDisconnectableFromNewController needs to be actualized to complete steps-4b of the pump

stopped alarm troubleshooting procedure. To actualize LeadBattDisconnectableFromNewController,

the lead battery cable must be connected to the new controller and the end user must be able to

move the lead battery cable output end and new controller at the same time. The CAVEMEN-XML

specification (Appendix H.1.2, 130–146) is described in outline form below:

• The new controller (mNewController) must be positionable back (end user’s visual perspective

shown in Fig. 9.19c)

• The lead battery cable output end (aoLeadBattControllerOutput) must be positionable back

(end user’s visual perspective of the lead battery cable output end shown in Fig. 9.19a)

• The new controller’s battery cable input socket (aoNCBatteryInput) must be covering all

surfaces of the lead battery cable output end (as in Fig. 9.19d)

NewLiBattCableDisconnectableFromNewController needs to be actualized to complete step-5(c)i

of the pump stopped alarm troubleshooting procedure. To actualize NewLiBattCableDisconnectable-

FromNewController, the new lithium-ion battery cable must be connected to the new controller and

the end user must be able to move the cable output end and new controller at the same time. The

CAVEMEN-XML specification (Appendix H.1.2, 147–163) is described in outline form below:

• The new controller (mNewController) must be positionable back (end user’s visual perspective

of the new controller shown in Fig. 9.19c)
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Figure 9.19: (a–c) Labeled axes show the pump operator’s visual perspective for the: (a)
lead battery cable output end (aoLeadBattControllerOutput) (b) new lithium-ion battery cable
(mNewLiBattCable) and its output ends (aoNBCControllerOutput/aoNBCControllerOutput),
and (c) new controller (mNewController). (d) New controller battery cable input socket (aoN-
CBatteryInput) covering all surfaces of the lead battery cable output end (aoLeadBattCon-
trollerOutput). (e) New controller battery cable input socket (aoNCBatteryInput) covering all
surfaces of the new lithium-ion battery cable output end (aoNBCControllerOutput)

• The new lithium-ion battery cable output end (aoNBCControllerOutput) must be positionable

back (end user’s visual perspective shown in Fig. 9.19a)

• The new controller’s battery cable input socket (aoNCBatteryInput) must be covering all

surfaces of the new lithium-ion battery cable output end (as in Fig. 9.19e)

9.7.1.5 Affordances Involving Cable Connectability

As mentioned, six of 13 affordances involve cable connectability. One of 13 CAVEMEN-XML af-

fordance nodes specifies connectability of the pump cable to a new controller; three of 13 specify

connectability of a battery cable to the new controller; and two of 13 specify connectability of a

battery cable to a lithium-ion battery.

The pump cable connectability affordance is PumpCableConnectableToNewController, represent-

ing the end user’s opportunity to connect the pump cable to the new controller. The affordance

needs to be actualized to complete step 3a of the pump stopped alarm troubleshooting procedure.
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To actualize PumpCableConnectableToNewController, the pump cable cannot be connected to any

input socket and the end user must be able to move the new controller and the pump cable output

end at the same time. The CAVEMEN-XML specification (Appendix H.1.2, 164–198) is described

in outline form below:

• The new controller (mNewController) must be positionable, translatable, and orientable along

all axes (end user’s visual perspective shown in Fig. 9.20b). This is because the new controller’s

pump cable input socket needs to be aligned with the pump cable output end

• For the same reason, the pump cable output end (aoPCControllerOutput) must be positionable,

translatable, and orientable along all axes (end user’s visual perspective shown in Fig. 9.20a)

• The abominable cable input socket, new controller pump cable input socket, and old controller

pump cable input socket cannot be covering the pump cable output end (as in Fig. 9.20c)

Figure 9.20: (a–b) Labeled axes show the pump operator’s visual perspective for (a) the pump
cable output end (aoPCControllerOutput) and (b) new controller (mNewController). (c) Pump
cable output end is disjoint to all components

Battery cable-to-controller connectability affordances include:
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1. LeadBattConnectableToNewController, representing the end user’s opportunity to connect the

lead battery cable to the new controller

2. NewLiBattCableConnectableToNewController, representing the end user’s opportunity to con-

nect the new lithium-ion battery cable to the new controller

3. OldLiBattCableConnectableToNewController, representing the end user’s opportunity to con-

nect the old lithium-ion battery cable to the new controller

LeadBattConnectableToNewController needs to be actualized to complete step-4a of the pump

stopped alarm troubleshooting procedure. To actualize LeadBattConnectableToNewController, the

lead battery cable cannot be connected to any input socket; the new controller’s battery cable input

socket cannot have a battery cable output end connected to it; and the end user must be able to

move the lead battery cable output end and new controller at the same time. The CAVEMEN-XML

specification (Appendix H.1.2, 199–243) is described in outline form below:

• The new controller (mNewController) must be positionable, translatable, and orientable along

all axes (end user’s visual perspective shown in Fig. 9.21b). This is because the new controller’s

battery cable input socket needs to be aligned with the lead battery cable output end

• For the same reason, the lead battery cable output end (aoLeadBattControllerOutput) must be

positionable, translatable, and orientable along all axes (end user’s visual perspective shown

in Fig. 9.21a)

• The 1st Y-cable input socket (aoYCableBatteryInput1 ), 2nd Y-cable input socket (aoYCa-

bleBatteryInput2 ), new controller battery cable input socket (aoNCBatteryInput), and old

controller battery cable input socket (aoOCBatteryInput) cannot be covering the lead battery

cable output end (as in Fig. 9.21e)

• The new controller’s battery cable input socket (aoNCBatteryInput) cannot be covering the old

lithium-ion battery cable’s controller output end (aoOBCControllerOutput), the new lithium-

ion battery cable’s controller output end (aoNBCControllerOutput), the lead battery cable

output end (aoLeadBattControllerOutput), or the Y-cable output end (aoYCControllerOutput)
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Figure 9.21: (a–c) Labeled axes show the pump operator’s visual perspective for: (a) the
lead battery cable output end (aoLeadBattControllerOutput), (b) the new controller (mNew-
Controller), and (c) the new lithium-ion battery cable output ends (aoNBCControllerOut-
put/aoNBCBatteryOutput) and old lithium-ion battery cable output ends (aoOBCController-
Output/aoOBCBatteryOutput). (d) Lead battery cable output end disjoint to the controller’s
battery input socket. (e) New (or old) lithium-ion battery cable’s controller output end disjoint
to the new controller’s battery input socket

NewLiBattCableConnectableToNewController needs to be actualized to complete step-5a of the

pump stopped alarm troubleshooting procedure. To actualize NewLiBattCableConnectableToNew-

Controller, the new lithium-ion battery cable’s controller output end cannot be connected to any

input socket; the new controller’s battery cable input socket cannot have a battery cable output end

connected to it; and the end user must be able to move the new lithium-ion battery cable output

end and the new controller at the same time. The CAVEMEN-XML specification (Appendix H.1.2,

244–288) is described in outline form below:

• The new controller (mNewController) must be positionable, translatable, and orientable along

all axes (end user’s visual perspective shown in Fig. 9.21b). This is because the new controller’s

battery cable input socket needs to be aligned with the new lithium-ion battery cable’s con-

troller output end

• For the same reason, the new lithium-ion battery cable’s controller output end (aoNBCCon-
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trollerOutput) must be positionable, translatable, and orientable along all axes (end user’s

visual perspective shown in Fig. 9.21a)

• The 1st Y-cable input socket (aoYCableBatteryInput1 ), 2nd Y-cable input socket (aoYCable-

BatteryInput2 ), new controller battery cable input socket (aoNCBatteryInput), and old con-

troller battery cable input socket (aoOCBatteryInput) cannot be covering the new lithium-ion

battery cable’s controller output end (as in Fig. 9.21e)

• The new controller’s battery cable input socket (aoNCBatteryInput) cannot be covering the old

lithium-ion battery cable’s controller output end (aoOBCControllerOutput), the new lithium-

ion battery cable’s controller output end (aoNBCControllerOutput), the lead battery cable

output end (aoLeadBattControllerOutput), or the Y-cable output end (aoYCControllerOutput)

OldLiBattCableConnectableToNewController should not be actualized if the old lithium-ion bat-

tery cable was in-use when the pump stopped alarm engaged. To actualize OldLiBattCableCon-

nectableToNewController, the old lithium-ion battery cable’s controller output end cannot be con-

nected to any input socket; the new controller’s battery cable input socket cannot have a battery

cable output end connected to it; and the end user must be able to move the old lithium-ion bat-

tery cable output end and new controller at the same time. The CAVEMEN-XML specification

(Appendix H.1.2, 289–333) is similar to NewLiBattCableConnectableToNewController, but with two

modifications:

• The old lithium-ion battery cable’s controller output end (aoOBCControllerOutput, replacing

aoNBCControllerOutput) must be positionable, translatable, and orientable along all axes (end

user’s visual perspective shown in Fig. 9.21a)

• The 1st Y-cable input socket (aoYCableBatteryInput1 ), 2nd Y-cable input socket (aoYCa-

bleBatteryInput2 ), new controller battery cable input socket (aoNCBatteryInput), and old

controller battery cable input socket (aoOCBatteryInput) cannot be covering the old (instead

of new) lithium-ion battery cable’s controller output end (as in Fig. 9.21e)

Lithium-ion battery cable-to-battery connectability affordances include:
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1. NewLiBattCableConnectableToNewLiBatt, representing the end user’s opportunity to connect

the new lithium-ion battery cable to the new lithium-ion battery

2. NewLiBattCableConnectableToOldLiBatt, representing the end user’s opportunity to connect

the new lithium-ion battery cable to the old lithium-ion battery

NewLiBattCableConnectableToNewLiBatt needs to be actualized to complete step-5b of the pump

stopped alarm troubleshooting procedure. To actualize NewLiBattCableConnectableToNewLiBatt,

the new lithium-ion battery cable’s battery output end cannot be connected to a lithium-ion battery

and the end user must be able to move the battery cable output end and the battery at the same

time. The CAVEMEN-XML specification (Appendix H.1.2, 334–365) is described in outline form

below:

• The new lithium-ion battery (mNewLiIonBattery) must be positionable, translatable, and

orientable along all axes (end user’s visual perspective shown in Fig. 9.22b). This is because

the new lithium-ion battery’s input socket needs to be aligned with the new lithium-ion battery

cable’s battery output end

• For the same reason, the new lithium-ion battery cable’s battery output end (aoNBCBattery-

Output) must be positionable, translatable, and orientable along all axes (end user’s visual

perspective shown in Fig. 9.22a)

• The old lithium-ion battery input socket (aoOBBatteryInput) cannot be covering the new

lithium-ion battery cable’s battery output end (as in Fig. 9.22c)

• The new lithium-ion battery input socket (aoNBBatteryInput) cannot be covering the old

lithium-ion battery cable’s battery output end (aoOBCBatteryOutput) or the new lithium-ion

battery cable’s battery output end (as in Fig. 9.22c)

NewLiBattCableConnectableToOldLiBatt should not be actualized if the old lithium-ion bat-

tery was in-use when the pump stopped alarm engaged. To actualize NewLiBattCableConnectable-

ToOldLiBatt, the new lithium-ion battery cable’s battery output end cannot be connected to a



310

Figure 9.22: (a, b) Labeled axes show the pump operator’s visual perspective for the: (a) new
lithium-ion battery cable output ends (aoNBCControllerOutput/aoNBCBatteryOutput) and old
lithium-ion battery cable output ends (aoOBCControllerOutput/aoOBCBatteryOutput), (b)
new lithium-ion battery (mNewLiIonBattery) and old lithium-ion battery (mOldLiIonBattery).
(c) New (or old) lithium-ion battery cable’s battery output end disjoint to new controller’s
battery input socket

lithium-ion battery and the end user must be able to move the battery cable output end and the

battery at the same time. The CAVEMEN-XML specification (Appendix H.1.2, 366–397) is similar

to NewLiBattCableConnectableToNewLiBatt, but with two modifications:

• The old lithium-ion battery (mOldLiIonBattery, instead of mNewLiIonBattery), must be po-

sitionable, translatable, and orientable along all axes (end user’s visual perspective shown in

Fig. 9.22b)

• The old lithium-ion battery input socket (aoOBBatteryInput, instead of aoNBBatteryInput),

cannot be covering the old lithium-ion battery cable’s battery output end (aoOBCBatteryOut-

put) or the new lithium-ion battery cable’s battery output end (as in Fig. 9.21e)
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9.7.2 HES Module

As mentioned, the automatically generated HES module was augmented with manually encoded

infrastructure to specify:

• Static end-user motor capabilities

• Evolving spatial relations among human-environment system (HES) entities

The 26 ability nodes of the CAVEMEN-XML representation were translated to 11 output variables

having the record type abilities (i.e., the translator automatically removed duplicate nodes). For

all 11 variables, initializations were encoded to specify that the end user can move all components

along all six degrees of freedom (Appendix H.2.3, lines 284–327).

The 38 relation nodes of the CAVEMEN-XML representation were translated to 11 output vari-

ables having corresponding record types (Appendix H.2.3, lines 260–270). Nine of 11 represent

input sockets and two of 11 represent parts of the permanently attached connector. Initial and next-

state spatial relations were assigned using the SAL DEFINITION construct, conditional expressions,

and EOFM input variables leveraged from the pump stopped alarm troubleshooting procedure task

model. For each of the 13 EOFM input variables representing a cable connection (e.g. iPumpCable-

ToOldController), a value of “Connected” corresponds to an input socket covering all surfaces of a

cable output end. Otherwise, a value of “Disconnected” corresponds to an input socket disjoint to

all surfaces of a cable output end. The SAL syntax encoded generally below was utilized to assign

nine of 11 spatial relations using the 13 EOFM input variables representing cable connections.
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aoInputSocket =

IF iComponentToSource 1 = Connected THEN

(#aoOutputEnd 1 := [[x: directional]covering],

aoOutputEnd 2 := [[x: directional]disjoint to],

...

aoOutputEnd N := [[x: directional]disjoint to]#)

ELSIF ...

ELSIF iComponentToSource N = Connected THEN

(#aoOutputEnd 1 := [[x: directional]disjoint to],

aoOutputEnd 2 := [[x: directional]disjoint to],

...

aoOutputEnd N := [[x: directional]covering]#)

ELSE

(#aoOutputEnd 1 := [[x: directional]disjoint to],

aoOutputEnd 2 := [[x: directional]disjoint to],

...

aoOutputEnd N := [[x: directional]disjoint to]#)

ENDIF;

Two of 11 spatial relations were assigned using the EOFM input variable representing the connec-

tor permanently attached to the heart (iPermanentlyAttachedConnector). A value of “Assembled”

corresponds to aoConnectorPart1 covering the front-side surface of aoConnectorPart2 and aoCon-

nectorPart2 covering the back-side surface of aoConnectorPart1. Otherwise, a value of “Broken”

corresponds to all surfaces of both parts disjoint to each other. The SAL syntax representing these

relations is provided in Appendix H.2.3, lines 465–483.

9.8 Device

The device model is composed of:

1. One end user-device interaction model (described in Section 9.8.1)

2. One display/control logic model (described in Section 9.8.2)

3. One plant model (described in Section 9.8.3)

4. One constraints model (described in Section 9.8.3)

9.8.1 End User-Device Interaction

The end user-device interaction model is a modified version of the model from Chapter 5. Because

configurable hardware was not modified in the redesigned interface, initial configuration assignments
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were specified using the same SAL code (Appendix H.2.5, lines 66–111). 18 guarded transitions

were encoded. 16 of 18 correspond to human actions represented in the pump stopped alarm trou-

bleshooting procedure task model. Two of 18 correspond to actions represented in the pump speed

adjustment procedure task model (Fig. 9.23d):

1. hRotateKnobClockwise

2. hRotateKnobCounterClockwise

11 of 18 transitions have corresponding affordances represented in the affordance model, where

11 affordance model variables correspond to respective EOFM human actions. In this case study,

one action variable and one affordance variable are leveraged within conditional expressions of the

end user-device interaction model controlling whether each action effects changes to configurable

hardware (Fig. 9.23a–c). Eight cable connection/disconnection transitions were encoded individu-

ally; however, because they were encoded in a similar way, all eight are depicted in Fig. 9.23a. Cable

connection/disconnection affordances are encoded generally as CableToSourceConnectable and Ca-

bleToSourceDisconnectable respectively. Two guarded transitions represent the end user disassem-

bling and reassembling the connector permanently attached to the heart (Fig. 9.23c). One guarded

transition represents the end user rotating parts of the connector permanently attached to the heart

(Fig. 9.23d).

SAL code of the end user-device interaction model is provided in Appendix H.2.5, lines 9–155.

9.8.2 Display/Control Logic

The display/control logic model represents the controller’s algorithms for illuminating lights and

emitting audible alerts. Leveraging the syntax of EOFM, one output variable represents what alarm

is engaged on the controller (iAlarm) and one output variable represents what power indicator light

is illuminated (iPowerLight). A third, Boolean output variable represents whether the system is in a

functional configuration (functional). This variable was encoded to demonstrate an implementation

of the framework integrating configurable hardware and the target system’s control logic.

Guarded initializations for iAlarm and iPowerLight are represented graphically in Fig. 9.24,
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Figure 9.23: Visual representation of transitions encoded in the end user-device interaction
model. (a) General encoding of the eight cable connection/disconnection transitions involv-
ing end-user connection/disconnection actions and connectable/disconnectable affordances. (b)
Transitions involving the end-user action of rotating connector parts and the affordance of part
rotatability. (c) Transition involving the end-user actions of assembling/disassembling parts of
the permanently attached connector and assemblable/disassemblable affordances (d) Transitions
to the speed setting knob. The EOFM human action variable hRotateKnobCounterClockwise
represents the end user rotating the knob in the direction of the curved arrow to increase the
speed setting by one. The variable hRotateKnobClockwise represents the end user rotating the
knob in the opposite direction to decrease the speed setting by 1

where speed and power are outputs of the plant model (discussed later). The initial state of iAlarm

is:

• HighPower if the pump speed is greater than 0 and the power supplied to the pump is greater

than 3.5 watts

• PumpStopped if the pump speed is 0

• NoAlarm otherwise

The initial state of iPowerLight is:

• 0 if the power supplied to the pump less than or equal to 0.05 watts
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Figure 9.24: Graphical representation of guarded initializations of the display/control logic
model. Variable names are listed in boldface, italic text within square-edge rectangles. Variable
values are listed in italic text within rounded-edge rectangles. Arrow labels in italic text are
valued input variables from the plant model. (a) Transitions for the variable iAlarm repre-
senting what alarm is engaged on the controller. (b) Transitions for the variable iPowerLight
representing what indicator light is illuminated on the controller. The value “0” corresponds
to no lights illuminated. The values 1–10 correspond to lights having numeric labels 1–10. The
value “11” corresponds to the light labeled “HIGH ”

• 1–10 is the power supplied to the pump falls within corresponding ranges identified in Table 9.1

• 11 otherwise (power supplied is greater than or equal to 3.5 watts)

Guarded transitions for iAlarm and iPowerLight have the same semantics as guarded initializations,

replacing each instance of speed and power in Fig. 9.24 with speed’ and power’, where an apostrophe

means “in the next-state.” These semantics ensure that the indicator lights and audible alarms

reflect the current pump speed and power supplied. SAL syntax is provided in Appendix H.2.5,

lines 198–293.

The Boolean output variable functional represents whether hardware is configured and func-

tioning in a way that enables normal pump operation. As mentioned in Section 9.3, a functional

configuration is one in which a power supply is connected to the controller, the pump is connected

to the controller, and the permanently attached connector is assembled. In such a configuration, the

components may appear to be functioning normally; however, an unobservable malfunction could

occur and interrupt the power supply, causing the pump stopped alarm to engage. When functional

is valued true, this means that the hardware is in a functional configuration and there are no mal-

functions. When functional is valued false, this means there is a malfunction or hardware is not in a
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functional configuration. Thus, considering possible initial and next-state hardware configurations

represented in the end user-device interaction model, functional can be either true or false if:

• The pump cable is connected in one of the following configurations:

– Connected directly to the old controller

– Connected to the old controller via the abdominal cable

– Connected directly to the new controller

• A power supply is connected in one of the following configurations:

– The lead battery is connected directly to the old controller

– The lead battery is connected to the old controller via the Y-cable

– The old lithium-ion battery is connected directly to the old controller

– The old lithium-ion battery is connected to the old controller via the Y-cable

– The lead battery is connected to the new controller

– The new lithium-ion battery is connected directly to the new controller

• The permanently attached connector is assembled

Otherwise, functional is false. This was encoded in SAL using the DEFINITION construct, an IN

selection statement, a conditional expression, and EOFM input variables (Appendix H.2.5). These

semantics enable the pump stopped alarm to:

• Engage in all possible hardware configurations represented in the model

• Disengage during the pump stopped alarm troubleshooting procedure

9.8.3 Plant and Constraints

The plant and constraints models representing continuous pump dynamics are modified versions of

the models from Chapter 8. Two modifications were implemented for this case study:



317

1. Guarded transitions in the plant model incorporate the variable functional as an input from

the display/control logic model: speed, power, and flow can only be greater than 0 if the

human-system interface is in a functional configuration and there are no malfunctions (i.e.,

functional is valued true)

2. Guarded transitions in the constraints model enable fitsData to be true if speed, power,

and flow are equal to 0, which enables the pump stopped alarm to engage while the device

is operating within data-constrained parameters (i.e., 0 watts supplied to the pump, a pump

speed of 0 RPM, and a flow rate of 0 LPM will be considered within model checking analyses)

These models were 260 lines of SAL code (Appendix H.2.6).

9.9 Signifiers

Utilizing the BIGSIS approach, a formal signifier model was encoded to represent what is signified

by the power indicator lights (including the high power alarm), the pump stopped alarm, and the

speed setting knob. The model represents visual properties of color and label, audible properties of

pattern and volume, and explanations of what is signified within accompanying documentation. The

BIGSIS-XML model (described in Section 9.9.1) is a modified version of the model from Chapter 7.

The BIGSIS-SAL model (described in Section 9.9.2) was automatically translated and augmented

with additional model infrastructure controlling:

• Initial- and next-states of end-user descriptions via the exchange of input/output variables

with the display/control logic model. These semantics ensure that signifiers are updated to

reflect the current-state of the device

• What is signified through the documentation channel based on the variable iPage from the

documentation navigation model. These semantics demonstrate an implementation of the

framework in which a documented device description is only known when the end user is on

the page containing it (i.e., pages of the patient handbook behave like screens of a graphical

display)
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9.9.1 BIGSIS-XML Model

18 words/phrases were encoded to represent what is signified by the power indicators, pump stopped

alarm, and speed setting knob; their colors, labels, audible patterns, and volumes; and accompanying

documentation describing what is signified. Six of 18 words were encoded as text content within

a signified-meanings node named PumpSpeed, all of which define relative pump speeds signified by

the visual/audible properties of the pump stopped alarm and visual properties of the speed setting

knob: Stopped, Low, Lowest, Medium, High, and Highest.

12 of 18 phrases were encoded as text content within a signified-meanings node named Pow-

erSupplied. 11 of 12 words define power supplied in units signified by visual/audible properties of

the pump stopped alarm and power indicators, excluding the high power alarm: ZeroUnits, OneU-

nit, TwoUnits, ThreeUnits, FourUnits FiveUnits, SixUnits, SevenUnits, EightUnits, NineUnits, and

TenUnits. One word defines relative power supplied signified by the high power alarm: TooHigh.

Signifier-properties, property-documentation, Color, Label, and aPattern nodes of the BIGSIS-

XML representation are described in outline form. The first outline describes what is signified

through visual and audible channel properties of interface components described in Section 9.3,

and the second outline describes what is signified through the documentation channel. To aid in

associating outlined descriptions of what is signified with model variable names in the BIGSIS-XML

representation, signifier-properties and property-documentation node of attributes are listed in italic

text within parentheses.

The first outline describing what is signified by colors, labels, audible patterns, and volumes

presented on the device is shown below.

1. Power indicators (signifier-properties of=“PowerIndicators” )

(a) Color : amber signifies too many power units supplied to the pump (TooHigh). Green

signifies power units supplied by the pump, depending on what label is colored

(b) Label : a number labeled 1–10 signifies a corresponding power unit supplied to the pump

(e.g. a label described as “One” signifies a power supplied of “OneUnit”). The label
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“HIGH” signifies too many power units supplied to the pump (TooHigh)

(c) Volume: a loud volume signifies power supplied to the pump, depending on what audible

pattern is emitted

(d) aPattern: the phrase “POWER TOO HIGH” emitted periodically signifies too many

power units supplied to the pump (TooHigh)

2. Pump stopped alarm (signifier-properties of=“PumpStoppedAlarm” )

(a) Color : red signifies that the pump is stopped. When no color is present, signified pump

speed depends on the speed setting knob’s label

(b) Volume: a loud volume signifies pump speed, depending on what audible pattern is

emitted

(c) aPattern: the phrase “PUMP STOPPED” emitted periodically signifies that the pump

is stopped

3. Speed setting knob (signifier-properties of=“SpeedSettingKnob” )

(a) Color : White signifies pump speed, depending on what label is colored. No color signifies

pump speed, depending on the color of the pump stopped alarm

(b) Label : a number 1–5 signifies relative pump speed, lowest–highest. No label signifies

pump speed, depending on the color of the pump stopped alarm

The second outline describing what is signified through the documentation channel is shown below.

1. Documentation of power indicators (property-documentation of=“PowerIndicators” )

(a) Color : amber signifies too many power units supplied to the pump (TooHigh). Green

signifies power units supplied by the pump, depending on what label is colored. No color

signifies that the pump is stopped and zero power units are supplied to the pump

(b) Label : a number labeled 1–10 signifies a corresponding power unit supplied to the pump.

The label “HIGH” signifies too many power units supplied to the pump (TooHigh). No

label signifies zero power units supplied to the pump
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(c) Volume: a loud volume signifies power supplied to the pump, depending on what audible

pattern is emitted

(d) aPattern: the phrase “POWER TOO HIGH” emitted periodically signifies too many

power units supplied to the pump (TooHigh)

2. Documentation of pump stopped alarm (property-documentation of=“PumpStoppedAlarm” )

(a) Color : red signifies that the pump is stopped. When no color is present, signified pump

speed depends on the speed setting knob’s label

(b) Volume: a loud volume signifies pump speed, depending on what audible pattern is

emitted

(c) aPattern: the phrase “PUMP STOPPED” emitted periodically signifies that the pump

is stopped

3. Documentation of speed setting knob (property-documentation of=“SpeedSettingKnob” )

(a) Color : White signifies pump speed, depending on what label is colored. No color signifies

pump speed, depending on the color of the pump stopped alarm

(b) Label : a number 1–5 signifies relative pump speed, lowest–highest. No label signifies

pump speed, depending on the color of the pump stopped alarm

The BIGSIS-XML representation was encoded in 76 lines (Appendix H.1.3).

9.9.2 BIGSIS-SAL Model

The BIGSIS-XML representation was translated to 86 lines of SAL code using the JavaScript-based

translation tool described in Chapter 7. As mentioned, additional model infrastructure was manually

encoded to represent:

• Initial- and next-state end-user descriptions via the exchange of input/output variables with

the display/control logic model

• What is signified through the documentation channel based on the value of iPage from the

documentation navigation model
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9.9.2.1 End-User Descriptions

Guarded transitions to end-user descriptions are depicted graphically in Figs. 9.25–9.27. Guarded

initializations were encoded in the same way by removing apostrophes from variables represented in

Figs. 9.25–9.27. These semantics ensure that initial- and next-states of end-user description reflect

the current-state of the device.

For color of the power indicators (Fig. 9.25a), the display/control logic model output variable

iPowerLight controls the end-user description. This is because a power light could be illuminated

green or distinguished when the pump stopped alarm is engaged, depending on whether hardware is

in a functional configuration and there are no malfunctions. For colors of the speed setting knob and

pump stopped alarm (Fig. 9.25b, c), the display/control logic model output variable iAlarm controls

end-user descriptions. As mentioned, the speed setting knob label backlight is extinguished and the

pump stopped alarm light is illuminated red when the pump stopped alarm is engaged. Otherwise,

the speed setting knob label is back-lit white and the pump stopped alarm light is extinguished.

Figure 9.25: Graphical representation of guarded transitions to end-user descriptions of color.
Variable names are listed in boldface, italic text within square-edge rectangles. Variable values
are listed in italic text within rounded-edge rectangles. Arrow labels in italic text are val-
ued variables from the display/control logic model. (a) End-user description of color for the
power indicators. (b) End-user description of color for the speed setting knob. (c) End-user
descriptions of color for the pump stopped alarm

Similar to the color, end-user description of label for the power indicators (Fig. 9.26a) is controlled
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by the display/control logic model output variable iPowerLight. Utilizing guarded transitions and

conditional expressions, end-user description of label for the speed setting knob (Fig. 9.26b) is

controlled by:

1. The display/control logic model output variable iAlarm

2. The end user-device interaction model output variable iSpeedSetting

For the speed setting knob, an end-user description of “noLabel” is assigned when the pump stopped

alarm is engaged; otherwise, if the pump stopped alarm is not engaged, the end-user description of

label reflects the current speed setting.

Figure 9.26: Graphical representation of guarded transitions to end-user descriptions of label.
Variable names are listed in boldface, italic text within square-edge rectangles. Variable values
are listed in italic text within rounded-edge rectangles. Arrow labels in italic text are valued
variables from the display/control logic or end user-device interaction models. (a) End-user
description of label for the power indicators. (b) End-user description of label for the speed
setting knob

When an alarm is engaged, an audible alert is only emitted by a controller if the 1/2 cell alarm

battery cap is tightened. Because one controller can be in-use at a time, end-user descriptions of

visual properties are derived from one controller. However, if both controllers are emitting audible

alarms at the same time, the end user may be unable to determine what controller is emitting the

alarm. Thus, in this case study, end-user descriptions of audible properties (Fig. 9.27) are controlled

by:
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1. The display/control logic model output variable iAlarm

2. The end user-device interaction model output variable iOldControllerABCap

3. The end user-device interaction model output variable iNewControllerABCap

For both audible alarms, the end-user descriptions of volume can be “Loud” if either 1/2 cell AA

alarm battery cap is tightened (Fig. 9.27a, b). Since both alarms are emitted at the same volume, the

level is considered the same if one or both controllers are emitting different alarms (i.e., the possible,

relatively minor increase in volume does not constitute a new identifiable volume). However, the

end-user description of audible pattern can be “PUMP STOPPED” or “POWER TOO HIGH ”

if exactly one 1/2 cell AA alarm battery cap is tightened (Fig. 9.27c, d). If both 1/2 cell AA

battery caps are tightened, two different audible patterns could be emitted (“high power” for the

controller in-use and “pump stopped” for the other controller). Thus, there could be multiple inputs

to the relation and explanation functions, resulting in nothing being signified. If both controllers

are emitting “pump stopped,” they could be asynchronous, also resulting in multiple inputs to the

relation and explanation functions. Thus, in this case study, exactly one alarm battery cap must be

tightened for there to be a one-to-one relation between audible pattern and signified meaning. The

possibility of both controllers emitting “pump stopped” synchronously is not considered.

The SAL code for end-user descriptions is provided in Appendix H.2.4. Lines 36–102 are initial-

izations and lines 125–191 are transitions.

9.9.2.2 Documentation Channel

Automatically generated model infrastructure controlling what is signified through the documenta-

tion channel was modified to specify that what is signified depends on:

1. End-user descriptions of perceivable device properties

2. What page of the patient handbook the end user is on

Such an encoding demonstrates an implementation of the framework in which pages of the patient

handbook behave similarly to screens of a graphical display. The modified SAL syntax for repre-

senting documentation-channel signifiers in this way is encoded generally below. For initializations,



324

Figure 9.27: Graphical representation of guarded transitions to end-user descriptions of vol-
ume and audible pattern. Variable names are listed in boldface, italic text within square-edge
rectangles. Variable values are listed in italic text within rounded-edge rectangles. Arrow labels
in italic text are valued variables from the display/control logic or end user-device interaction
models. (a) End-user description of volume for the pump stopped alarm. (b) End-user descrip-
tion of volume for the power indicators. (b) End-user description of audible pattern for the
pump stopped alarm. (d) End-user description of volume for the power indicators

conditional expressions are augmented with the current-value of iPage. For transitions, conditional

expressions are augmented with the next-state value of iPage. These semantics specify that a func-

tion or meaning is signified through the documentation channel if the end-user description of a

device property relates to the explanation provided in documentation and the end-user is on the

page containing that explanation.

INITIALIZATION

Doc Component.Property.Category =

IF iPage = page 1 AND Component.Property.Description = description 1

THEN signified 1

ELSIF iPage = page 2 AND Component.Property.Description = description 2

THEN ...ELSIF ...THEN ...

ELSE CategoryNotSignified;

TRANSITION

Doc Component’.Property.Category =

IF iPage = page 1 AND Component’.Property.Description = description 1

THEN signified 1

ELSIF iPage = page 2 AND Component’.Property.Description = description 2

THEN ...ELSIF ...THEN ...

ELSE CategoryNotSignified;

For the case study signifier model, page numbers controlling what is signified through the
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documentation channel are described in outline form below:

1. Page-8 explains what is signified by:

• Power indicators colored green and labeled 1–10

• The speed setting knob colored white and labeled 1–5

2. Page-10 explains what is signified by:

• Power indicators colored amber and labeled “HIGH”

• Power indicators having no color or label

• The pump stopped alarm colored red

• The speed setting knob having no color or label

• The pump stopped alarm emitting the audible pattern “pump stopped” at a loud volume

• Power indicators emitting the audible pattern “power too high” at a loud volume

The SAL code for documentation-channel signifiers is provided in Appendix H.2.4. Lines 112–121

are initializations and lines 192–210 are transitions.

9.10 System Model Composition

A system model was composed to demonstrate one implementation of the integrated framework

model architecture. In this case study, the documentation navigation model transitions sequen-

tially and asynchronously with other models, as it represents an end user interacting with just the

document and no other elements of the interface concurrently. Each task model also transitions

sequentially and asynchronously with other models, as the end user cannot concurrently execute

procedures listed on different pages in documentation. All other models transition concurrently

and synchronously with each other: signifier (Fig. 9.1c), affordance (Fig. 9.1d), plant (Fig. 9.1f),

constraints (Fig. 9.1g), display/control logic (Fig. 9.1h), and end user-device interaction (Fig. 9.1i).

Such a transition protocol ensures that all models representing the device, what is signified to the end

user, and affordances emergent in the operational environment respond correctly to human action

outputs of the task model(s) and the page number output of the documentation navigation model.
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In SAL, this model composition was encoded as shown below.

integrated framework: MODULE =

documentation navigation []

(signifier || affordance || display controlLogic || endUser device -

interaction ||

plant || constraints) []

task;

9.11 Specifications

One of each specification described in Section 9.2.1 (10 in total) was instantiated to evaluate appli-

cability of the integrated framework approach. Seven specifications were encoded to evaluate the

interface with respect to the modified pump stopped alarm troubleshooting procedure:

1. Three accuracy-related specifications involve understandability, completeness, and time effi-

ciency while the pump stopped alarm procedure is executing

2. Four error tolerance-related specifications (including accuracy and error tolerance) involve the

end user’s opportunity to reconnect a disconnected lithium-ion battery to the replacement

controller

3 specifications involve understandability, time efficiency, or completeness with respect to either

procedure (pump speed adjustment or pump stopped alarm troubleshooting). Each specification is

listed and explained below, and SAL syntax is provided in Appendices H.3.4–H.3.6.

1. Accuracy and understandability

As mentioned, the modified controller was designed to address the visual consistency signifier spec-

ification violation uncovered in Chapter 7. This modification was implemented to improve under-

standability; however, it is also critical that what is signified reflects the device’s operational state

(i.e., signifiers should be accurate). Because the pump stopped alarm has visual and audible prop-

erties, redundancy is also critical to understandability (i.e., what is signified by audible and visual

properties of the alarm should not conflict).

During the pump stopped alarm troubleshooting procedure, these characteristics are needed to

support the end user in identifying whether or not the alarm has been resolved. Thus, the accuracy
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and understandability specification reads, “it is always true that if the device is operating within data-

constrained parameters, the pump stopped alarm troubleshooting procedure is executing, and the

pump stopped alarm is engaged, this implies that a pump speed of “Stopped” is signified consistently

through the visual channel and redundantly through the audible/visual channels. The SAL syntax

of this specification is provided in Appendix H.3.1.

2. Accuracy and error tolerance

One accuracy-related usability problem identified in Chapter 5 involved the end user accidentally

connecting a previously disconnected lithium-ion battery to the replacement controller during the

pump stopped alarm troubleshooting procedure. This situation was considered unsafe because the

battery that was in-use when the alarm engaged could have been discharged or malfunctioning, and

erroneously reconnecting it to the replacement controller cannot resolve the alarm. One way such

a situation could be prevented is if an affordance enabling the end user to connect a previously

disconnected lithium-ion battery to the replacement controller does not emerge if the modified

procedure is executed as-written. An accuracy and error tolerance specification was encoded to

ensure this characteristic of the modified interface. It reads, “it is always true that if the device is

operating within data-constrained parameters, the pump stopped alarm troubleshooting procedure

is executing, and either:

• the old lithium-ion battery cable is connected to the old lithium-ion battery, or

• the old lithium-ion battery cable is connected to the old controller

(i.e., it was in-use when the alarm engaged), this implies that the old lithium-ion battery cable is

not connectable to the new controller and the new lithium-ion battery cable is not connectable to

the old lithium-ion battery.” The SAL syntax of this specification is provided in Appendix H.3.2.

3. Accuracy and time efficiency

The accuracy and error-tolerance specification could help ensure that a discharged or malfunctioning

battery cannot be connected to the replacement controller. It is also critical that a fully charged
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replacement battery can be connected quickly (i.e., as soon as the end user knows the replacement

battery is fully charged). An accuracy and time efficiency specification was encoded to ensure that

the interface supports such a behavior. It reads, “it is always true that if the device is operating

within data-constrained parameters, the pump stopped alarm troubleshooting procedure is execut-

ing, the new lithium-ion battery has no lights illuminated, and the new lithium-ion battery has five

lights illuminated in the next-state, this implies that affordances enabling the end user to connect

the new lithium-ion battery to the new controller emerge in the next-state.” The SAL syntax of this

specification is provided in Appendix H.3.3.

4. Accuracy and completeness

In support completeness, it is critical that a pump speed is signified through at least one channel;

and in support of accuracy, a pump speed of “Stopped” should be signified when the pump stopped

alarm is engaged and the pump stopped alarm procedure is executing. Both of these characteristics

are needed during the procedure for the end user to know whether the alarm has been resolved.

Thus, the accuracy and completeness specification reads, “it is always true that if the device is

operating within data-constrained parameters, the pump stopped alarm troubleshooting procedure

is executing, and the pump stopped alarm is engaged, this implies that a pump speed of “Stopped”

is signified through the visual, audible, or documentation channels.”

5. Understandability and error tolerance

This specification combines:

• Understandability with respect to consistency of audible/visual properties on the device sig-

nifying pump speed and power supplied

• Error tolerance with respect to connecting a potentially discharged or malfunctioning battery

to the replacement controller

Accuracy-related specifications assert either of these characteristics while the pump stopped alarm

procedure is executing; however, it is also critical that understandability is satisfied in other sit-
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uations, such as after the pump stopped alarm procedure has completed executing. Thus, the

understandability and error-tolerance specification reads, “it is always true that:

• an affordance enabling the end user to connect a discharged or malfunctioning battery to the

replacement controller never emerge; and,

• it is always true that pump speed and power supplied are signified consistently through the

audible and visual channels”

The SAL syntax of this specification is provided in Appendix H.3.5.

6. Understandability and time efficiency

As mentioned, one alarm at a time can be engaged on the case study system’s controller. In the

model, it is possible for the pump stopped alarm to disengage during the pump stopped alarm

troubleshooting procedure; and if the pump stopped alarm disengages, the high power alarm could

engage. In such a situation, it is critical that signifiers of pump speed and power supplied are

understandable to the end user. Thus, the understandability and time efficiency specification reads,

“it is always true that if the device is operating within data-constrained parameters, the pump

stopped alarm is engaged, and the high power alarm engages in the next-state, this implies that

power supplied and pump speed are signified consistently through audible/visual channels and power

supplied is signified redundantly through audible/visual channels in the next-state.” The SAL syntax

of this specification is provided in Appendix H.3.6.

7. Understandability and completeness

This specification combines:

• Understandability with respect to pump speed and power supplied signified through audi-

ble/visual channels

• Completeness with respect to pump speed and power supplied signified through audible, visual,

and documentation channels
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The accuracy and understandability and accuracy and completeness specifications only considered

what is signified while the pump stopped alarm troubleshooting procedure is executing and the pump

stopped alarm is engaged. In the other two understandability-related specifications, audible/visual

signifier consistency could be satisfied by virtue of the unsafe situation in which they all signify

nothing (i.e., understandability is satisfied, but completeness is violated). Thus, the understandabil-

ity and completeness specification is needed to ensure that the interface is both understandable and

complete in all continuous states matching simulation data and all discrete states, including those

that emerge before, during, and after execution of all procedural steps. It reads, “when the device

is operating within data-constrained parameters, this implies that:

• it is never true that neither pump speed nor power supplied is signified through at least one

channel (audible, visual, or documentation); and,

• it is always true that pump speed and power supplied are signified consistently

The SAL syntax of this specification is provided in Appendix H.3.9.

8. Error tolerance and time efficiency

As mentioned in Section 9.2.1, a potential usability problem identified in Chapter 5 involved:

• The end user connecting a new lithium-ion battery to the new controller without checking its

charge level first

• The end user being able to reconnect a potentially discharged or malfunction lithium-ion

battery that was disconnected earlier

In support of error tolerance, the redesigned interface should prevent the end user from reconnecting

a previously disconnected lithium-ion battery; and in support of time efficiency, the charge level of

a new lithium-ion battery should be checked before it is connectable to the replacement controller.

Thus, the error tolerance and time-efficiency specification reads, “it is always true that when the

old lithium-ion battery cable is connected to the the old controller (i.e., the old lithium-ion battery

was in-use when the pump stopped alarm engaged) and the new lithium-ion battery has 0 lights
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illuminated. In the next-state, if the new lithium-ion battery has five lights illuminated (i.e., it is

fully charged), this implies that:

• the new lithium-ion battery cable is not connectable to the old lithium-ion battery

• the new lithium-ion battery cable is connectable to the new lithium-ion battery”

The SAL syntax of this specification is provided in Appendix H.3.7.

9. Error tolerance and completeness

This specification combines:

• Error tolerance with respect to connecting a potentially discharged or malfunctioning battery

to the replacement controller

• Completeness with respect to pump speed and power supplied signified through audible, visual,

and documentation channels

Specifications encoded thus far have asserted either of these characteristics. The error tolerance and

completeness specification is needed to ensure that both are satisfied concurrently. It reads, “it is

always true that:

• affordances enabling the end user to connect a discharged or malfunctioning battery to the

replacement controller never emerge; and,

• when the device is operating within data-constrained parameters, this implies it is never true

that a pump speed or power supplied is not signified through audible, visual, or documentation

channels”

The SAL syntax of this specification is provided in Appendix H.3.8.

10. Time efficiency and completeness

In regard to the pump speed adjustment procedure, the interface should support the end user in

identifying whether progress has been made toward setting a desired speed. In support of complete-

ness, pump speed should be signified through at least one channel; and in support of time-efficiency,
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a pump speed should be signified immediately after a desired pump speed has been achieved. Thus,

the time-efficiency and completeness specification reads, “it is always true that when the device is

operating within data-constrained parameters, the speed setting is not equal to the desired speed,

and the speed setting is equal to the desired speed in the next-state, a pump speed is signified

through at least one channel in the next-state.” The SAL syntax of this specification is provided in

Appendix H.3.10.

9.12 Verification

Using the technique described in Section 9.2.2, each specification was verified by invoking SAL-INF-

BMC at the default depth of 10. No counterexamples were returned. To compute the maximum

depth of a possible counterexamples, documentation navigation, end user-device interaction, affor-

dance, and task models were asynchronously composed within a discrete framework model. The

specification encoded generally in (9.15) was instantiated for the discrete framework model (SAL

syntax shown below) and verified using SAL-SMC.

G(NOT(aRespondToPumpStoppedAlarm Executing AND aRespondToPumpStoppedAlarm Done

aAdjustSpeed Executing AND aAdjustSpeed Done);

SAL-SMC returned “proved” after 116 iterations. To ensure that no counterexamples exist in the

integrated framework model, each specification was verified again by invoking SAL-INF-BMC at a

depth of 116.

9.12.1 Results

Model checking results and verification times are reported in Table 9.2. The counterexample to

accuracy and understandability returned a 52-step trace through the model leading up to an unsafe

state in which:

• The pump stopped alarm troubleshooting procedure is executing

• The pump is operating within data-constrained parameters

• The pump stopped alarm is engaged
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Table 9.2: Model checking results

Specification name Result Execution time (s)

Accuracy and understandability counterexample 149,489.98

Accuracy and error-tolerance proved 307,032.41

Accuracy and time-efficiency proved 166,194.96

Accuracy and completeness proved 70,945.93

Understandability and error-tolerance proved 24,004.01

Understandability and time-efficiency proved 21,803.0

Understandability and completeness proved 189,181.66

Error-tolerance and time-efficiency proved 24,705.58

Error-tolerance and completeness proved 5,720.02

Completeness and time-efficiency proved 22,962.96

• Visual channel properties on the device signify a pump speed of “Stopped” consistently

• Audible channel properties do not signify a pump speed

This counterexample is visualized in Figs. 9.28–9.35. Each figure depicts states of interest through

the counterexample trace for plant, documentation navigation, task, end user-device interaction,

affordance, and signifier models. The trace through the plant model is shown in Fig. 9.28. In the

initial state, power, speed, and flow are 0. These values do not change in subsequent steps.

The trace through the documentation navigation model is shown in Fig. 9.29. Because an initial

state of iPage = 2 was assigned, the trace represents the end user starting on page-2 (the table of

contents); and in the next-state, the end user navigates to page-13 containing steps 1–4 of the pump

stopped alarm troubleshooting instructions. Finally, the end user remains on page-13 for remaining

steps of the trace.

The trace through the task model is shown in Fig. 9.30. This trace represents the end user

executing step 1a, 2a, and 2b of the pump stopped alarm troubleshooting procedure in order. The

ordering of actions is listed in outline form below, including the corresponding affordances that are

actualized (trace through the affordance model discussed next):

1. Attempting to fix the connector permanently attached to the heart, which has broken and
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Figure 9.28: Graphical representation of the case study counterexample trace through the
plant model. Flow rate in liters per minute (LPM) is shown on the x-axis. Power supplied
in watts in shown on the y-axis. Colored lines shown the flow rate and power supplied for
each speed setting 1–5 (corresponding to 2,000—6,000 RPM). The black circle indicates that
the initial and final states of power, speed, and flow, are 0 (variables and values listed inside
dashed-box rectangle)

Figure 9.29: Graphical representation of the case study counterexample trace through the
documentation navigation model. The curved arrow indicates that the initial state (step-0) is
page-2. Straight arrows indicate next-states that were possible in the counterexample trace.
Grey circles indicate the pages are along the path. The black circle indicates that the final state
is page-13; i.e., iPage = 13 for all remaining steps of the counterexample trace

come apart, by:

(a) Reassembling the connector parts (occurs for the first time at step-3 of the trace) by

executing the action hReassembleBrokenConnector and actualizing the affordance Con-

nectorPartsAssemblable

(b) Performing the following steps three times (represented over steps 7–37 of the trace):

i. Disassembling the parts by executing the action hDisassembleConnector and actual-

izing the affordance ConnectorPartsDisassemblable
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Figure 9.30: Graphical representation of the case study counterexample trace through the
pump stopped alarm troubleshooting procedure task model. White, rounded-edge rectangles
are activities that did not execute. White, square-edge rectangles are human actions that did
not execute. Colored, rounded-edge rectangles are activities that executed. Rectangles having
the same color are heterarchical. Black, square-edge rectangles are human actions that executed

ii. Rotating the parts 90° by executing the action hRotateConnectorParts and actualiz-

ing the affordance ConnectorPartsRotatable

iii. Reassembling the parts by executing the action hReassembleBrokenConnector and

actualizing the affordance ConnectorPartsAssemblable

2. Disconnecting parts that were in-use when the pump stopped alarm engaged by:

(a) Disconnecting the abdominal cable from the old controller by executing the action
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hDiscPumpCableFromAbCable and actualizing the affordance PumpCableDisconnectable-

FromAbCable (occurs at step-45 of the trace)

(b) Silencing the alarm on the old controller by executing the action hLoosenOldController-

ABCap (no corresponding affordance specified, occurs at step-51 of the trace)

The trace through end user-device interaction and affordance models are shown together in

Figs. 9.31–9.33. In the initial states (Fig. 9.31):

Figure 9.31: Graphical representation of end user-device interaction and affordance model
initial states in the case study counterexample. Letters are added for reference in text of Sec-
tion 9.12.1. In a–d, dashed-line rectangles contain enlarged graphical renderings of initial states
for a subset of configurable hardware components. Solid-line rectangles show the corresponding
variable value(s) from the end user-device interaction model. In e–g, solid-line rectangles show
variable of interest from the affordance model)

• The abdominal cable is connected to the old controller (Fig. 9.31a)
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• The old lithium-ion battery cable is connected to the old controller (Fig. 9.31b) and the end

user can disconnect it (Fig. 9.31e)

• The old lithium-ion battery cable is connected to the old lithium-ion battery (Fig. 9.31c) and

the end user can disconnect it (Fig. 9.31f)

• The pump cable is connected to the abdominal cable (Fig. 9.31d, first variable) and the end

user can disconnect it (Fig. 9.31g, first variable)

• The connector permanently attached to the heart has broken and come apart (Fig. 9.31d,

second variable) and the end user can reassemble it (Fig. 9.31g, second variable) as well as

rotate the parts 90° (Fig. 9.31g, third variable)

The first changes to the end user-device interaction and affordance models occur at step-4 of

the counterexample trace (Fig. 9.32). The end user executes the action prescribed in step 1a of

the troubleshooting procedure, reassembling the connector permanently attached to the heart by

pushing its two parts together. Executing this action changes the end user-device interaction model

variable iPermanentlyAttachedConnector from Broken to Assembled (Fig. 9.32a). In the affordance

model, assembling the connector renders the end user’s opportunity to assemble it and rotate its

parts unavailable; while the opportunity to dissemble the connector emerges (Fig. 9.32b). The first

time these states occur, the end user-device interaction model variable iRotationCounter is 0. In

subsequent states, it increases as the task model represents the end user executing step 1(a)ii of the

troubleshooting procedure.

Over steps 5–50 of the counterexample trace, the end user-device interaction and affordance

models transition between states represented in Figs. 9.31 and 9.32. This is because, over these steps,

the task model is representing the end user repeatedly disassembling, rotating, and assembling parts

of the permanently attached connector. As mentioned, at step-51, the task model represents the end

user silencing the alarm on the old controller by loosening the 1/2 cell AA battery cap. This leads

to the final states of end user-device interaction and affordance models at step-52 (Fig. 9.33). When

the end user loosens the alarm battery cap on the old controller, the end user-device interaction
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Figure 9.32: Graphical representation of end user-device interaction and affordance model
states in intermediate steps of the case study counterexample. Letters are added for reference
in text of Section 9.12.1. The dashed-line rectangle contains an enlarged graphical rendering
of the connector permanently attached to the hear. In (a), the solid-line rectangle shows the
corresponding variable values from the end user-device interaction model. In (b), the solid-line
rectangle shows the corresponding variable values from the affordance model

model variable iOldControllerABCap transitions from Tightened to Loosened (Fig. 9.33a). The

initial state of iNewControllerABCap (which is also the final state) is also shown in Fig. 9.33b, since

it is relevant to the unsafe state.

Figure 9.33: Graphical representation of end user-device interaction and affordance model
final states in the case study counterexample. Letters are added for reference in text of Sec-
tion 9.12.1. Dashed-line rectangles show enlarged graphical renderings of final states for the
old and new controllers. Solid-line rectangle shows corresponding variable values from the end
user-device interaction model

The trace through signifier and display/control logic models are shown together in Figs. 9.34 and

9.35. The value of functional is not shown; however, it is false in every state of the counterexample



339

trace. In the initial state of the display/control logic model, the pump stopped alarm is engaged

(Fig. 9.34a) and no power indicator lights are illuminated (Fig. 9.34b). These states do not change

in steps 1–52 of the counterexample trace. In the initial state of the signifier model, the volume

(Fig. 9.34c), audible pattern (Fig. 9.34d), and color (Fig. 9.34e) of the pump stopped alarm signify

a pump speed of “Stopped.” The pump speed signified by the speed setting knob label depends on

the color of the pump stopped alarm light; thus, it signifies a pump speed of “Stopped” (Fig. 9.34f).

These states do not change in steps 1–51 of the counterexample trace.

Figure 9.34: Graphical representation of signifier and display/control logic model initial states
in the case study counterexample. Letters are added for reference in text of Section 9.12.1. In
(a) and (b), rounded-edge rectangles highlighted green indicate what initial states were assigned
in the display/control logic model

In the final state of the signifier model (step-52 of the counterexample trace), the volume

(Fig. 9.34a) and audible pattern (Fig. 9.34b) of the pump stopped alarm do not signify pump speed.

This situation emerged because the 1/2 AA alarm battery caps on both controllers are loosened,

and no audible alarms are engaged (i.e., there are no identifiable audible patterns or volumes for the

end user). Color of the pump stopped alarm (Fig. 9.34c) and label of the speed setting (Fig. 9.34d)
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Figure 9.35: Graphical representation of signifier model final states in the case study coun-
terexample. Letters are added for reference in text of Section 9.12.1

signify a pump speed of “Stopped.” Here, visual and audible channel signifiers are both internally

consistent; however, conflicting meanings are signified through the audible channel.

Verification reports for the other three accuracy-related specifications returned no counterex-

amples. These results indicate that executing the pump stopped alarm troubleshooting procedure

as-written ensures that:

1. The end user can never connect the old lithium-ion battery to the new controller (i.e., no

counterexamples were returned for accuracy and error tolerance)

2. A new, fully charged lithium-ion battery is always connectable to the new controller imme-

diately after the end user checks its charge level (i.e., no counterexamples were returned for

accuracy and time efficiency)

3. A pump speed of “Stopped” is always signified through at least one channel (i.e., no coun-

terexamples were returned for accuracy and completeness)

Verification reports for the remaining six specifications also returned no counterexamples. These

results indicate that:

1. If a lithium-ion battery is in-use when the pump stopped alarm engages, the end user can

never connect the old lithium-ion battery to the new controller; additionally, visual/audible

signifiers of pump speed and power supplied are always consistent (i.e., no counterexamples

were returned for understandability and error tolerance)
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2. If the alarm transitions from pump stopped to high power, visual/audible signifiers of pump

speed and power supplied are always consistent and redundant in the next-state (i.e., no

counterexamples were returned for understandability and time-efficiency)

3. A pump speed and a power supplied are always signified through at least one channel; addi-

tionally, visual/audible signifiers of pump speed and power supplied are always consistent (i.e.,

no counterexamples were returned for understandability and completeness)

4. If a lithium-ion battery is in-use when the pump stopped alarm engages and the end user

checks the charge level of the new lithium-ion battery, in the next-state, the end user can

connect the new lithium-ion battery cable to the new lithium-ion battery but cannot connect

it to the old lithium-ion battery (i.e., no counterexamples were returned for error tolerance

and time efficiency)

5. If a lithium-ion battery is in-use when the pump stopped alarm engages, the end user can

never connect the new lithium-ion battery cable to the old lithium-ion battery; additionally

a pump speed and a power power supplied are always signified through at least one channel

(i.e., no counterexamples were returned for error tolerance and completeness)

6. If the end user adjusts the speed setting, in the next-state, a pump speed and a power supplied

are always signified through at least one channel

9.13 Discussion

This chapter has introduced an integrated framework for the formal modeling and verification of

human-interactive system usability. Leveraging the modeling methodologies developed in this re-

search, an integrated model architecture was developed to support the analyst in representing a broad

range of interactions. To support verification, usability-related measures of accuracy, understand-

ability, error tolerance, time efficiency, and completeness were leveraged to derive ten specifications

and their LTL encodings. Symbolic and infinite-bounded model checkers were leveraged to verify

specifications in a way that considers all discrete states and the subset of continuous states matching

simulation data.
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One implementation of the framework was demonstrated in a case study based on a pediatric

blood pump under development and a modified version of an existing system’s interface. Modifi-

cations were informed by safety-critical system usability measures and design insights gleaned in

prior chapters. Formal models were encoded and composed within a system model to represent

interactions among:

• Navigation through a 29-page printed document and:

– Signifiers operating through the documentation channel

– One operational and one troubleshooting procedure provided in text

• The two procedures in documentation and end user-device interaction

• End user-device interaction and:

– 13 affordances, 11 of which have corresponding motor actions prescribed in the trou-

bleshooting procedure

– A constrained set of spatial relations among cables and connectors

– The target system’s control logic

• The target system’s control logic and:

– Signified pump speed and power supplied (through visual, audible, and documentation

channels)

– Actual pump speed and power supplied

One of each LTL usability specification was instantiated and verified using infinite-bounded model

checking. Model checking results indicate that a problem related to accuracy and understandability

could emerge for the end user while executing the pump stopped alarm troubleshooting procedure:

while the audible alarms of both controllers are temporarily silenced, conflicting pump speeds are

signified through the audible and visual channels.

Steps leading up to this unsafe state show that the interface has some desired characteristics:
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• The trace through the documentation navigation model shows that the end user can locate the

pump stopped alarm troubleshooting procedure in one-step from the table of contents

• The trace through the task model shows that the modified procedure may reflect a time-

efficiency improvement with respect to the original procedure: the end user attempts to fix

the connector permanently attached to the heart (a corrective action identified in Chapter 5)

before attaching red tags to old components (a non-corrective action identified in Chapter 5)

• The traces through end user-device interaction and affordance models show that affordances

support the end user in completing procedural steps of assembling, disassembling, and rotating

parts of the permanently attached connector as well as disconnecting the pump cable from the

abdominal cable

• The traces through display/control logic and signifier models show that visual/audible signi-

fiers of pump speed are always internally consistent in the scenario represented in the coun-

terexample

• Considering states of the plant model that are constant throughout the counterexample trace,

pump speed signified through the visual channel is accurate with respect to the actual pump

speed

No counterexamples were returned for the other nine specifications, indicating that the human-

system interface can be considered usable with respect to three accuracy-related specifications and six

specifications involving intersecting aspects of understandability, time efficiency, and error tolerance.

9.13.1 Methodological Considerations

The integrated model architecture is the first to consider documentation, configurable hardware,

displays, controls, and actuators as interacting elements of a human-integrated system. The archi-

tecture was designed to support the analyst in combining the modeling methodologies developed in

this research and by other researchers. This was accomplished by allowing different combinations

of input/output variables to be exchanged between models. Specifications considered only two in-

tersecting measures of safety-critical system usability and only one interpretation of what interface



344

properties satisfy these measures. Case study results indicate that at least one implementation of

the framework and one set of usability measure interpretations could be useful early in the design

cycle of a medical device.

While it is possible that the case study counterexample to accuracy and understandability reflects

a usability problem, it is unclear if temporarily silencing the audible alarms of both controllers will

be problematic for an actual end user. As mentioned in Section 9.9.2.1, a situation in which both

controllers emit audible alarms could also be problematic; thus, modifying the pump stopped alarm

troubleshooting procedure so that both 1/2 cell battery caps are tightened may not resolve the

problem. This issue could be explored further in a validation study involving human participants.

Some of the tools and techniques from prior chapters, including the EOFM-to-SAL translator

developed by other researchers [10], helped facilitate the model development process. However,

some SAL model infrastructure needed to be encoded manually. The display/control logic, end

user-device interaction, HES, and plant models needed to be developed without tool support; while

the SAL syntax of automatically generated signifier and constraints models needed to be modified.

Understandability-related specifications were partially supported by the automated specification

generation tool from Chapter 7; however, they needed to be modified manually, and all other speci-

fications were developed without tool support.
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Chapter 10: Contributions and Future Work

This research has provided new and significant contributions to formal modeling and verification

methodologies, which enable a broad range of analyses for human factors engineers (Table 10.1).

Formal modeling, specification, and verification were leveraged in different ways to identify a new

Table 10.1: Human-system interface elements that must be modeled and usability measures
that must be verified in safety-critical systems. “X ” denotes that an area of methodological
support has been addressed by other researchers; “F” denotes that an area was addressed this
work; and ‘—” denotes and area must be addressed in future work

Usability
measure

Interface
element

Methodological support for the analyst

Developing formal models Conducting model checking

Formalism Technique Tool Spec. Technique Tool

Accuracy

Displays X X X X X X

Control logic X X X X X X

Hardware F F F F F F

Documentation X F X — — —

Understand-
ability

Displays F F F F F F

Control logic X X X X X X

Hardware F F F F F F

Documentation X F X F F —

Error
tolerance

Displays — — — — — —

Control logic X X X X X X

Hardware X F F F F —

Documentation — — — — — —

Time
efficiency

Displays X X X X X X

Control logic X X X X X X

Hardware — — — — — —

Documentation X F X F F —

Completeness

Displays F F F F F F

Control logic F F F X F F

Hardware — — — — — —

Documentation X F X — — —

set of usability problems that could emerge for the end user while interacting with documentation,
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displays, controls, and configurable hardware. Existing frameworks that are applicable to displays,

controls, approximate actuator dynamics, and goal-driven human task behaviors were extended

by integrating documentation, configurable hardware affordances, signifiers, and precise actuator

dynamics as elements of the human-interactive system. This was accomplished by developing novel

tools and techniques, applying them within a series of medical device case studies, and combining

them within an integrated framework that considers intersecting usability measures with respect to

a broad range of modeled interactions.

Chapters 4–8 built toward the framework by supporting the formal modeling of documentation,

signifiers, affordances, and controlled actuators. New formalisms were developed to characterize

documentation navigation and signifiers. To instantiate the documentation navigation formalism, a

modeling technique was developed using the native syntax of SAL [68]. To instantiate the signifier

formalism, a modeling technique and encoding tool were developed to support the analyst in spec-

ifying what is signified using a custom, XML-based language, an automated translation tool, and

an additional technique for incorporating a model of the device. Leveraging existing formalisms,

new modeling techniques and encoding tools were developed to enable the formal modeling of pro-

cedures in documentation, Gibsonian affordance, and controlled actuators. This research extended

the modeling capabilities of existing frameworks in three ways:

1. By considering documentation as part of the human-system interface, the analyst can model

documentation navigation, procedures as-written, and interactions between content in docu-

mentation and electrical/mechanical device components

2. By encoding signifier and affordance models, the analyst can model interactions between the

target system and a constrained set of end-user characteristics

3. By replicating simulation data within model checking analyses, the analyst can represent

controlled actuator behaviors without the need for differential equation abstraction

To verify safety-critical system usability, researchers have developed temporal logic specifications,

model checking techniques, and encoding tools. These methodologies have mainly focused on veri-
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fying accuracy, understandability, error tolerance, time efficiency, and completeness of displays and

control logic (Table 10.1, denoted by check marks last three columns). The LTL specifications and

model checking techniques developed in this research (Table 10.1, denoted by stars in the last three

columns) extend the capabilities of existing methodologies with respect to:

• Understandability of the interface with respect to signifiers

• Time efficiency of documentation with respect to:

– Page reachability

– The ordering of preparatory and corrective actions in procedures

• Accuracy and error-tolerance of configurable hardware

• Completeness of the interface with respect to signifiers on the device and explanations in

accompanying documentation

For each modeling and verification methodology, medical device case studies were utilized to demon-

strate an application. Results indicated the model-based methodologies developed in this research

can uncover potential usability problems in existing systems using highly abstracted models and

automated verification.

In regard to documentation navigation, case study results showed that page reachability problems

could emerge for the end user if PDF hyperlinking functionality does not support navigation between

a page containing procedural steps and a page containing information that is needed to complete

them. The analysis was conducted without representing documentation content or low-level user

tasks (e.g. keystroke level modeling [80]).

The case study analysis of procedures in documentation showed that formal modeling and verifi-

cation processes could be independently useful. The task modeling techniques aided in identifying a

potential accuracy-related problems regarding what device components are identified: a cable having

two output ends was ambiguously described in text of the procedure, and the formal task model

enabled the end user to disconnect it in a way that enables a discharged or malfunctioning batter
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to be connected later in the procedure. The device modeling technique proved useful for identify-

ing potential completeness-related problems involving what initial device configurations are possible

vis-a-vis what configurations are addressed in the procedure: eight initial cable configurations were

possible, but the instructions were only applicable to two. Model checking results showed that it is

possible to identify potential time-efficiency improvements by enabling one or more main steps of

the procedure to execute in any order. This was accomplished by instantiating two time-efficiency

specifications regarding the ordering of actions and modifying one EOFM decomposition operator

[10] in the formal task model.

In regard to configurable hardware, the CAVEMEN approach case study showed that:

• End-user opportunities to physically manipulate cable inputs and outputs can be modeled by

instantiating an existing affordance formalism

• Evolving spatial relations among HES entities can be modeled based on what affordances are

actualized

• Accuracy and error tolerance of configurable hardware can be verified using LTL and model

checking

This was accomplished by selecting a medical device adverse event report from the MAUDE database

[83] and analyzing it using the CAVEMEN approach. While it was necessary to encode HES model

infrastructure and LTL specifications manually in SAL, CAVEMEN-XML proved useful for instan-

tiating Greeno’s formalism [6] in a mathematical way. Model checking results revealed that initial

states of the HES supported a surgeon in connecting the leads of an implanted maker to correct

pulse generator input ports; however, the same initial conditions also enabled the erroneous affor-

dance of LV lead connectability to the RV port. Such a situation emerged in the adverse event,

and one potential manifestation of the event was captured in a counterexample trace through the

model. The scalability evaluation showed that the CAVEMEN approach is scalable using symbolic

model checking on the target workstation in models representing up to 64 unique affordances (for

comparison, the case study had three unique affordances).
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The BIGSIS approach case study showed that formal methods can be utilized to represent sig-

nifiers formally based on a constrained set of visual, audible, and haptic properties on the device;

explanations of what is signified in accompanying documentation; and end-user characteristics that

could shape what is signified. Using BIGSIS-XML and the JavaScript-based translator, it was pos-

sible to instantiate the BIGSIS formalism and LTL signifier specifications in the model checking

syntax of SAL, without the need for encoding them manually. A minimal model of the device’s

control logic and end user-device interaction proved useful for controlling end-user descriptions and

encoding constrained specifications. Model checking results helped identify potential usability prob-

lems involving:

• Internal consistency of visual signifiers

• Redundancy of signifiers operating through visual and audible channels

• Consistency between what is signified on the device and explanations in accompanying docu-

mentation (captured using a redundancy specification)

The scalability evaluation indicated that a formal signifier model incorporating up to 64 guarded

transitions can be verified using symbolic model checking on the target workstation (for comparison,

the case study model had five guarded transitions).

In regard to controlled actuators, the MATLAB-based tool and a case study using medical de-

vice simulation data showed that continuous actuator dynamics can be incorporated within model

checking analyses without using differential equation abstractions. The was accomplished by auto-

matically generating a constraints model and composing it with a manually encoded plant model

(based on the technique in [46]). Model checking results showed that a Boolean variable output of

the constraints model could be leveraged within LTL specifications, enabling the analyst to execute

model checking analyses that are constrained to the set of continuous states matching spreadsheet

data. Scalability evaluation results showed that the approach could be employed using infinite-

bounded model checking on the target workstation for models based on a spreadsheet having up to

65,536 cells.
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The tools and techniques represented in Table 10.1 were integrated in Chapter 9. Leveraging

various input/output variable exchange mechanisms, an architecture was developed to support the

analyst in representing a broad range of interactions among human-interactive system elements.

Different implementations of the architecture support new and existing ways of modeling human-

interactive system behaviors. Paired measures of accuracy, understandability, time-efficiency, error

tolerance, and completeness were leveraged within ten usability specifications that are applicable

to instantiated framework models. A model checking technique combined symbolic and infinite-

bounded model checking to support formal verification analyses that consider all discrete states

and a constrained set of continuous states. One implementation was demonstrated in a case study

based on a pediatric blood pump under development. Instantiating the model architecture showed

that it is possible to represent a target system’s end user, documentation, configurable hardware,

displays, control logic, and actuators within an integrated, human-system interface model. Model

checking results showed that the framework could be employed early in the design cycle to ensure

usability and identify potential problems with respect to a constrained set of modeled interactions

and specifications. One counterexample revealed a potential usability problem involving interac-

tions among a troubleshooting procedure in documentation, the target system’s control logic, and

visual/audible signifiers. No counterexamples were found for nine of ten specifications, indicating

that design insights gleaned in Chapters 5 and 7 helped improve usability of the existing system’s

interface, and no additional modifications are needed to improve the interface with respect to the

usability properties captured in these specifications.

10.1 Specific Contributions

While formal models are typically developed to enable verification; in this research, the process

of developing formal models was leveraged to analyze accuracy and completeness of procedures in

documentation and to identify signifier specifications that should be verified using model checking.

Thus, modeling and verifying the target system proved useful when analytic outputs were utilized

together.

To support the analyst in applying the methodologies, formalisms, modeling techniques, encoding
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tools, temporal logic specifications, model checking techniques, and a specification generation tool

were developed. In Chapters 4 and 7, new formalisms leveraged the Z specification language [153].

The accompanying modeling techniques employed the native syntax of SAL. In Chapters 6 and 7,

encoding tools were developed using XML and JavaScript. Researchers have leveraged the parsing

capabilities of Java to translate XML-based representations to a model checking syntax [10]. To

employ such a tool, the analyst needs to install Java and run the translator from either the command

line or a third-party integrated development environment (IDE). By using JavaScript, the analyst

can run translators from a desktop browser without installing additional software.

10.2 Future Work

Future work should address two areas:

• Practical applications of the framework (Section 10.2.1)

• Future development of the framework (Section 10.2.2)

10.2.1 Practical Applications

In general, this research centers on addressing methodological knowledge gaps at the intersection of

human factors and formal methods; however, there are practical applications that should be explored

in future work, including:

• Informing improved usability standards for safety-critical systems, such as ISO/IEC-62366 for

medical devices [17].

• Evaluating usability of high-risk, high-reward medical devices that are eligible for the U.S.

FDA Expedited Access Pathway (EAP) [222]

10.2.1.1 Informing Improved Usability Standards

In the safety-critical system standards literature, such as ISO/IEC-62366, usability is defined with

respect to one broadly categorized measure and one interface element, such as understandability of

a graphical display [17]. In Chapters 4–7, temporal logic specifications reasoned about one usability

measure and one interface element in a more specific way, such as internal consistency of signifiers
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operating through the same sensory channel. And in Chapter 9, integrated framework specifications

defined usability with respect to intersecting usability measures and multiple, interacting interface

components, such as internal consistency of signifiers operating through the same sensory channel

and error tolerance of configurable hardware. In future work, it would be beneficial to explore ways

of integrating these specifications within the standards literature, which could support improved

usability analyses without the need for formal methods.

10.2.1.2 Evaluating Usability of EAP Medical Devices

In April 2015, the U.S. FDA implemented the EAP: an expedited regulatory approval pathway for

medical devices that address an urgent, unmet public health need [222]. In the EAP paradigm,

one way of facilitating expedited access to eligible device—potentially the pediatric blood pump

evaluated in Chapter 9—is by relegating usability evaluations to the post-market period [222]. Thus,

while the Chapter 9 case study proved useful for demonstration, results also indicate that the

framework shows promise toward evaluating interface usability early in the design cycle, potentially

supporting the EAP paradigm without eliminating premarket usability analyses or delaying patient

access. This potential application should be explored further in future work.

10.2.2 Future Development of the Framework

Future work for improving the framework’s constituent methodologies were discussed in Chap-

ters 4–8. Many of the same areas should be addressed to enhance the integrated framework, in-

cluding:

• Extensions to the modeling and verification methodologies (Section 10.2.2.1)

• Case study implementations (Section 10.2.2.2)

• Tool support (Section 10.2.2.3)

10.2.2.1 Extensions to the Modeling and Verification Methodologies

The integrated framework could be extended to improve modeling and verification capabilities. In

regard to modeling, the integrated framework architecture currently centers on interface design in-
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dependently of end-user training. This limits applicability of the framework with respect to training

needs that inform design. For example, if an interface feature requires intensive training for end

users, designers may remove that feature [223]. Currently, the framework lacks methods and mea-

sures for evaluating the interface with respect to such training considerations. One way to address

this in future work involves developing methods and measures for modeling, specifying, and verifying

training needs within the integrated framework.

The framework architecture currently supports the analyst in applying one model checking frame-

work (SAL [68]), one implementation of SAL syntax, and one set of underlying formalisms. In future

work, alternative implementations should be tested by leveraging other formalisms (e.g. the CTT

task analytic notation [66]), alternative SAL constructs (e.g. HybridSAL [144]), and various model

checking frameworks (e.g. NuSMV [224]). By allowing the analyst to utilize a variety of tools

and techniques, the framework could have improved interoperability with tools developed by other

researchers (e.g. the IVY workbench, which utilizes CTT and NuSMV [59]).

Testing alternative implementations could also aid in improving scalability. Currently, the neces-

sary search depth of SAL-INF-BMC is mostly increased due to the XML-to-SAL translation protocol

of EOFM [10], which produces many guarded transitions, and consequently, an exponential increase

in verification time that is proportional to bounded model checking search depth [225]. While re-

searchers have developed ways of decreasing the number of guarded transitions in automatically

generated EOFM-SAL models [156], it could be possible that a different task analytic formalism is

advantageous in certain applications. It is also possible that affordance, signifier, and plant model

translation protocols could be improved in ways that decrease state space and verification time.

In regard to verification scope, the framework could be extended by leveraging different interpre-

tations and combinations of usability measures to derive new specifications. Different interpretations

of the usability measures could support a more complete set of analyses, such as error-tolerance of

signifiers, understandability of procedures in documentation, and completeness of affordances. New

formulations of the ten specifications involving two intersecting usability measures could also be

developed using different interpretations. For example, accuracy and understandability could be
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interpreted with respect to what affordances are signified. It could also be beneficial to intersect

three, four, or all five safety-critical system usability measures within more inclusive specifications.

10.2.2.2 Case Study Implementations

In the integrated framework case study, the display/control logic model was highly abstracted, two

of four alarms were omitted, and battery charge levels were not modeled. The signifier model

did not consider signifiers of configurable hardware or all specifiable signifiers on the controller.

The CAVEMEN-XML model precluded the full set of affordances that were applicable to both

procedures; and in the HES model, spatial relations were constrained to a subset of input–output

cable connections, while end-user motor capabilities were assumed to support all of the modeled

affordances. It could be beneficial to encode a more detailed representation of the target system

and more inclusive signifier/affordance models in future implementations of the framework. Such a

model could capture the set of affordances that are signified, and the affordances that are needed to

execute all motor tasks, including interactions with accompanying documentation. Additionally, only

one implementation of the framework architecture was tested, and future work should explore the

possible combinations identified in Fig. 9.1. Testing different implementations of the framework could

allow for comparing the applicability of different theories embodied in alternate implementations of

the architecture; for example, the framework allows analysts to utilize either affordances, signifiers,

or device states as task execution conditions. The same target system and specifications could be

analyzed using each implementation, and model checking counterexamples (if any) can be compared

to assess the trade-offs between each approach.

Because one purpose of the case study was to demonstrate an application of the integrated

specifications, only one of each specification was instantiated, and each mainly reasoned about one

troubleshooting procedure. Future work should explore the value of encoding and verifying a greater

number of specifications, such as all possible versions of accuracy and understandability mentioned

in Section 10.2.2.1. A broad range of systems should also be tested to assess the applicability

of specifications to usability problems observed in the literature (such as those recorded in U.S.

national databases [203]), while more complex systems should be modeled in greater detail to assess
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scalability.

10.2.2.3 Tool Support

Finally, the web-based tools developed in this research could be enhanced to better facilitate the

model and verification processes. As discussed in prior chapters, it could be beneficial for such a

tool to incorporate a graphical interface and point-and-click functionalities that reduce the need

for XML and SAL code. Researchers have also developed tools that automatically generate formal

models of control logic from implemented software [63, 59, 226], and it could be beneficial to provide

similar tools for this framework. Other tools, such as PVSio [140], allow the analyst to upload

an image of a device controller and use it to edit model syntax representing displays and control

logic. By combining automatic generation of display/control logic models with uploaded images of

the interface, it could be possible to enable automated generation of signifier model infrastructure

relating states of the device to visual appearances of displays and controls (i.e., end-user descrip-

tions). Open-source 3-D modeling applications, such as Blender [227], allow analysts to implement

and animate the physical construction of device hardware using the Python programming language

[228]. To facilitate the development of affordance models, it could be beneficial to develop a tool

that is capable of parsing Python code and automatically generating SAL syntax, including the

part-whole compositions of components and the spatial relations among them depicted in static or

animated Blender renderings.

While manually encoding one of each specification proved useful in the integrated framework case

study, it would be beneficial to explore ways of automatically generating the full set of specifications

that are relevant. One way of accomplishing involves developing a tool that parses instantiated

models and generates specifications, similar to the tools described in [57] and Chapter 7. For each

of the ten specifications developed in Chapter 9, such a tool should be capable of generating all

possible versions, such as multiple accuracy and understandability specifications that are applicable

to each procedure and relevant states of the device.

In regard to the model checking technique, the combined application of symbolic and infinite-

bounded model checking enabled analyses that were exhaustive with respect to discrete states and a
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constrained set of continuous states. Currently, the analyst needs to execute the step of computing

a necessary search depth manually, and support should be developed in future work to automate

this process. Additionally, the counterexamples traces through each framework model needed to be

visualized manually. Researchers have developed macros that automate counterexample visualiza-

tions [73], and it could be beneficial to develop a similar macro for the framework. In addition to

search depth computation and counterexample visualization, other parts of the verification process

that could be automated include:

• Witness generation (i.e. traces through the models leading up to state satisfying the specifica-

tion). In Chapter 4, witnesses were automatically generated by SAL-WMC [68]; however, no

such capability is available for SAL-INF-BMC. Such a capability should be explored in future

work, as it would support the analyst in validating the models by attempting to recreate a

desired trace while interacting with the target system (as done in Chapter 4)

• Design improvements. While model checking counterexamples could be leveraged to inform

design improvements, it would be beneficial to develop a tool that automatically suggests or

implements modifications that prevent the specification violation. For example, researchers

have leveraged machine learning to automatically generate target system control logic that

supports normative end-user task behavior [229]. For the framework, a similar approach

could be developed to automatically implement or suggest improved versions of signifiers,

documentation, configurable hardware, and control logic that ensure no specifications are

violated

While these tool extensions could benefit the analyst, it is currently unclear what extensions are

necessary for the approach to be considered efficient. For example, if the analyst needs extensive

training to employ the framework, then its application may be inefficient relative to other usability

evaluation methods. Thus, future work should identify what knowledge and skills are needed for

the analyst to apply the framework using currently available web-based tools, modeling techniques,

and verification techniques. Such an evaluation could identify the minimal training an analyst

needs to employ the framework as compared with other methods, such as heuristic evaluation [34].
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Leveraging these data, tools and accompanying training curricula could be developed to improve

relative efficiency of the framework.

10.3 Conclusion

By providing novel modeling and verification methodologies, this research has extended the analytic

capabilities of model-based approaches at the intersection of human factors and formal methods.

Formalisms, modeling techniques, specifications, and model checking techniques were developed to

enable a new set of formal usability analyses, while tools were developed to facilitate their ap-

plication. A series of medical device cases studies showed that each approach could be applied

individually to support analyses of documentation, affordances, and signifiers for existing systems.

The integrated framework combined each approach and enabled holistic analyses of a prototype sys-

tem under development, without the need for a complete implementation of its interface, a manual

search for problems, or an interdisciplinary team of experts. These contributions support rigorous,

iterative, and highly automated usability analyses that are applicable throughout the design cycle

of safety-critical systems. Future work will broaden the analytic scope of modeling and verification

methodologies, explore their applicability toward a broader range of safety-critical systems, and

extend encoding tools to promote their widespread application in this design space.
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[58] P. Palanque and F. Paternò, Eds., Formal Methods in Human-Computer Interaction. Secau-
cus, NJ, USA: Springer, 1997.

[59] J. C. Campos and M. D. Harrison, “Interaction engineering using the IVY tool,” in Proceedings
of the 1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New
York, NY, USA: ACM, 2009, pp. 35–44.

[60] Y. Aı̈t-Ameur and M. Baron, “Formal and experimental validation approaches in HCI sys-
tems design based on a shared event B model,” International Journal on Software Tools for
Technology Transfer, vol. 8, no. 6, pp. 547–563, 2006.
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[101] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon, and H. Thim-
bleby, “The benefits of formalising design guidelines: A case study on the predictability of
drug infusion pumps,” Innovations in Systems and Software Engineering, pp. 1–21, 2013.

[102] J.-K. Joo and N.-H. Kim, “Modeling and simulation of emergent evacuation using affordance-
based fsa models,” Journal of Korean Institute of Industrial Engineers, vol. 37, no. 2, pp.
96–104, 2011.



364

[103] J. Crow, D. Javaux, and J. Rushby, “Models and mechanized methods that integrate hu-
man factors into automation design,” in Proceedings of the 2000 International Conference on
Human-computer Interaction in Aeronautics. New York, NY, USA: ACM, 2000, pp. 163–168.

[104] D. L. Parnas, “On the use of transition diagrams in the design of a user interface for an
interactive computer system,” in Proceedings of the 24th National ACM Conference. New
York, NY, USA: ACM, 1969, pp. 379–385.

[105] N. G. Leveson, L. D. Pinnel, S. D. Sandys, S. K., and J. D. Reese, “Analyzing software
specifications for mode confusion potential,” in Proceedings of the Workshop on Human Error
and System Development. Glasgow: University of Glasgow, 1997, pp. CD–ROM.

[106] K. L. McMillan, Symbolic Model Checking: An Approach to the State Explosion Problem.
Pittsburgh, PA, USA: Carnegie Mellon University, 1993.

[107] C. Heitmeyer, “On the need for practical formal methods,” in Proceedings of the 5th Interna-
tional Symposium on Formal Techniques in Real-Time Fault-Tolerant Systems. New York,
NY, USA: Springer, 1998, pp. 18–26.

[108] P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby, “Formal verification of medical
device user interfaces using PVS,” in Fundamental Approaches to Software Engineering. New
York, NY, USA: Springer, 2014, pp. 200–214.

[109] J. C. Campos and M. D. Harrison, “Formally verifying interactive systems: A review,” in
Design, Specification and Verification of Interactive Systems, 1997, pp. 109–124.

[110] R. Butterworth, A. Blandford, and D. Duke, “Using formal models to explore display-based
usability issues,” Journal of Visual Languages and Computing, vol. 10, no. 5, pp. 455–479,
1999.

[111] R. C. Boyatt and J. E. Sinclair, “A “lightweight formal methods” perspective on investigat-
ing aspects of interactive systems,” in Pre-proceedings of the 2nd International Workshop on
Formal Methods for Interactive Systems. New York, NY, USA: Springer, 2007, pp. 35–50.

[112] P. Masci, P. Curzon, A. Blandford, and D. Furniss, “Modelling distributed cognition systems
in pvs,” Electronic Communications of the EASST, vol. 45, 2011.

[113] R. D. Hill, “Event-response systems: a technique for specifying multi-threaded dialogues,”
ACM SIGCHI Bulletin, vol. 18, no. 4, pp. 241–248, 1987.

[114] T. A. Henzinger, “The theory of hybrid automata,” in Verification of Digital and Hybrid
Systems. New York, NY, USA: Springer, 2000, pp. 265–292.

[115] L. Rothrock, R. Wysk, N. Kim, D. Shin, Y.-J. Son, and J. Joo, “A modelling formalism for
human-machine cooperative systems,” International Journal of Production Research, vol. 49,
no. 14, pp. 4263–4273, 2011.

[116] H. Thimbleby, A. Gimblett, and A. Cauchi, “Buffer automata: A UI architecture prioritising
HCI concerns for interactive devices,” in Proceedings of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. New York, NY, USA: ACM, 2011, pp. 73–78.

[117] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstractions of hybrid sys-
tems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 971–984, 2000.

[118] S. Sankaranarayanan and A. Tiwari, “Relational abstractions for continuous and hybrid sys-
tems,” in International Conference on Computer Aided Verification. New York, NY, USA:
Springer, 2011, pp. 686–702.



365

[119] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,” in International
Workshop on Hybrid Systems: Computation and Control. New York, NY, USA: Springer,
2002, pp. 465–478.

[120] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. S. Sastry, “Dynamical properties
of hybrid automata,” IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 2–17, 2003.

[121] A. Banerjee, Y. Zhang, P. Jones, and S. Gupta, “Using formal methods to improve home-use
medical device safety,” Biomedical Instrumentation & Technology, vol. 47, no. 1, p. 43, 2013.

[122] S. J. Payne and T. R. Green, “Task-action grammars: A model of the mental representation
of task languages,” Human-Computer Interaction, vol. 2, no. 2, pp. 93–133, 1986.

[123] H. R. Hartson, A. C. Siochi, and D. Hix, “The UAN: A user-oriented representation for direct
manipulation interface designs,” ACM Transactions on Information Systems, vol. 8, no. 3, pp.
181–203, 1990.

[124] B. E. John and D. E. Kieras, “Using GOMS for user interface design and evaluation: Which
technique?” ACM Transactions Computer-Human Interaction, vol. 3, no. 4, pp. 287–319,
1996.

[125] D. Harel and A. Pnueli, “On the development of reactive systems,” in Logics and Models of
Concurrent Systems. New York, NY, USA: Springer, 1985, pp. 477–498.

[126] C. Martinie, P. Palanque, E. Barboni, M. Winckler, M. Ragosta, A. Pasquini, and P. Lanzi,
“Formal tasks and systems models as a tool for specifying and assessing automation designs,”
in Proceedings of the 1st International Conference on Application and Theory of Automation
in Command and Control Systems. Barcelona, Spain: IRIT Press, 2011, pp. 50–59.

[127] A. Dix, M. Ghazali, S. Gill, J. Hare, and D. Ramduny-Ellis, “Physigrams: Modelling devices
for natural interaction,” Formal Aspects of Computing, pp. 1–29, 2008.

[128] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann,
and B. Wirtz, “Exact state set representations in the verification of linear hybrid systems
with large discrete state space,” in International Symposium on Automated Technology for
Verification and Analysis. New York, NY, USA: Springer, 2007, pp. 425–440.

[129] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of
Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.

[130] P. A. Fuhrmann, “On weak and strong reachability and controllability of infinite-dimensional
linear systems,” Journal of Optimization Theory and Applications, vol. 9, no. 2, pp. 77–89,
1972.

[131] J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A theory of higher level cognition and
its relation to visual attention,” Human-Computer Interaction, vol. 12, no. 4, pp. 439–462,
1997.

[132] A. Wise, “Little-JIL 1.0 language report,” Technical Report 98-24, University of Massachusetts
at Amherst, Tech. Rep., 1998.

[133] P. Masci, Y. Zhang, P. Jones, P. Oladimeji, E. DUrso, C. Bernardeschi, P. Curzon, and
H. Thimbleby, “Combining PVSio with stateflow,” in NASA Formal Methods Symposium.
New York, NY, USA: Springer, 2014, pp. 209–214.

[134] C. Martinie, P. Palanque, M. Ragosta, and R. Fahssi, “Extending procedural task models by
systematic explicit integration of objects, knowledge and information,” in Proceedings of the
31st European Conference on Cognitive Ergonomics. New York, NY, USA: ACM, 2013, p. 23.



366

[135] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C. Burnett, J. Carter, S. McGlashan,
T. Lager, M. Helbing, R. Hosn et al., “State chart XML (scXML): State machine notation for
control abstraction,” W3C, Tech. Rep., 2007.

[136] J. Gow and H. Thimbleby, “MAUI: An interface design tool based on matrix algebra,” in
Computer-Aided Design of User Interfaces IV. New York, NY, USA: Springer, 2005, pp.
81–94.

[137] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “Icos: A model-based user interface
description technique dedicated to interactive systems addressing usability, reliability and scal-
ability,” ACM Transactions on Computer-Human Interaction (TOCHI), vol. 16, no. 4, p. 18,
2009.

[138] P. A. Akiki, A. K. Bandara, and Y. Yu, “Cedar studio: an IDE supporting adaptive model-
driven user interfaces for enterprise applications,” in Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems. New York, NY, USA: ACM,
2013, pp. 139–144.

[139] N. Almeida, S. Silva, and A. Teixeira, “Multimodal multi-device application supported by
an scXML state chart machine,” in Proceedings of the First EICS Workshop on Engineering
Interactive Computer Systems with SCXML. New York, NY, USA: Springer, 2014, pp. 12–17.

[140] P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby, “PVSio-web 2.0:
Joining PVS to HCI,” in Computer Aided Verification. New York, NY, USA: Springer, 2015,
pp. 470–478.
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[155] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in International Con-
ference on Computer Aided Verification. New York, NY, USA: Springer, 2001, pp. 53–65.

[156] M. L. Bolton, X. Zheng, K. Molinaro, A. Houser, and M. Li, “Improving the scalability of
formal human–automation interaction verification analyses that use task-analytic models,”
Innovations in Systems and Software Engineering, pp. 1–17, 2016.

[157] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability modulo theories.”
Handbook of Satisfiability, vol. 185, pp. 825–885, 2009.

[158] J. Clark and M. Murata, “Relax NG specification,” Committee Specification, Organization
for the Advancement of Structured Information Standards, 2001. [Online]. Available:
http://relaxng.org/spec-20011203.html

[159] C. Sperberg-McQueen and H. Thompson, “The W3C XML Schema 1.0,” 2001, http://www.
w3.org/{XML}/Schema.

[160] A. J. Abbate and E. J. Bass, “Using computational tree logic methods to analyze reachability
in user documentation,” in Proceedings of the 2015 Annual Meeting of the Human Factors and
Ergonomics Society. Los Angeles, CA, USA: SAGE Publications, 2015, pp. 1481–1485.

[161] U.S. FAA, “Aviation Safety Reporting System,” U.S. Department of Transportation, Federal
Aviation Administration, Washington, DC, Advisory Circular 00-46E, 2011.

[162] S. Bly and C. C. Marshall, “Turning the page on navigation,” in Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries. New York, NY, USA: ACM, 2005,
pp. 225–234.

[163] J. Alexander and A. Cockburn, “An empirical characterisation of electronic document navi-
gation,” in Proceedings of Graphics Interface 2008, ser. GI ’08. New York, NY, USA: ACM,
2008, pp. 123–130.

[164] V. Liesaputra and I. H. Witten, “Seeking information in realistic books: a user study,” in
Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital libraries. New York, NY,
USA: ACM, 2008, pp. 29–38.

[165] N. Shankar and M. Sorea, “Counterexample-driven model checking,” Computer Science Lab-
oratory, SRI International, Menlo Park, Tech. Rep. SRI-CSL-03-04, 2003.

[166] M. L. Bolton and E. J. Bass, “Formally verifying human-automation interaction as part of a
system model: Limitations and tradeoffs,” Innovations in Systems and Software Engineering:
A NASA Journal, vol. 6, no. 3, pp. 219–231, 2010.

http://relaxng.org/spec-20011203.html
http://www.w3.org/{XML}/Schema
http://www.w3.org/{XML}/Schema


368

[167] ——, “Building a formal model of a human-interactive system: Insights into the integration
of formal methods and human factors engineering,” in Proceedings of the 1st NASA Formal
Methods Symposium, 2009, pp. 6–15.

[168] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state concurrent
systems using temporal logic specifications,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 8, no. 2, pp. 244–263, 1986.
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Appendix A: List of Symbols

Name Description Symbol Page(s)

Always Specifies that one or more logical axioms

must always be valued true for a temporal

logic specification

G 29, 30,

87, 88,

153,

154,

168,

196–199,

225,

244,

260–273

Delta Uppercase Greek letter delta specifying a

change in variable values for a Z schema

identified on the right-hand side

∆ 44, 63,

193

Empty set Represents a set containing no elements ∅ 187,

188,

194,

195,

211

Existential path quantifier Specifies that a temporal logic proposition

must be satisfied along at least one path

for a computational tree logic specification

E 29, 30,

66, 70,

71, 75
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Name Description Symbol Page(s)

Existential variable quantifier Specifies that a predicate must be true for

at least one value of a variable identified

on the right-hand side

∃ 29,

186–188,

260

Finite, nonempty set Represents a nonempty set containing a

finite number of elements

F1 xxi,

192,

206

Future-state Specifies that a logical proposition must

eventually be true for a temporal logic

specification

F 29, 30,

66, 70,

71, 75,

153,

154

Generalized intersection Set operator specifying the intersection of

common elements in n sets

⋂n
i=1 187,

188

Generalized union Set operator specifying the union of all

elements in n sets

⋃n
i=1 63, 194

Greater than Arithmetic inequality sign specifying that

a variable on the left-hand side is greater

than the variable on the right-hand side

> 44, 244

Greater than/equal to Arithmetic inequality sign specifying that

a variable on the left-hand side is greater

than or equal to the variable on the

right-hand side

≥ 62, 193



375

Name Description Symbol Page(s)

Hide Specifies a set of variables on the

right-hand side that are removed from a Z

schema on the left-have side

\ 188,

207

In the set Set operator specifying a variable on the

left-hand side that is in a set on the

right-hand side

∈ 63, 187,

188,

194,

195,

211

Initial states The set of initial states in the Kripke

structure representation of a formal model

S0 42

Integers The set of all integers Z 62, 63

Labels State labels in the Kripke structure

representation of a formal model

L 42

Less than Arithmetic inequality sign specifying that

a variable on the left-hand side is less

than the variable on the right-hand side

< 43, 193

Less than/equal to Arithmetic inequality sign specifying that

a variable on the left-hand side is less

than or equal to the variable on the

right-hand side

≤ 62, 75
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Name Description Symbol Page(s)

Logical conjunction Boolean operator specifying that

predicates on the left- and right-hand

sides must be true

∧ 29, 66,

71, 75,

153,

154,

168,

194–199,

211,

244,

261–273

Logical disjunction Boolean operator specifying that one or

both predicates on the left- and

right-hand sides must be true

∨ 29, 190,

191,

194,

225,

263,

264,

267
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Name Description Symbol Page(s)

Logical implication Logical connective specifying that

predicates on the left-hand side valued

true imply that predicates are the

right-and side are also true

⇒ 29, 32,

87, 88,

120,

150,

153,

154,

193–195,

199,

211,

244,

261–272

Logical negation Boolean operator specifying that a

predicate on the right-hand side must be

false

¬ 29, 153,

154,

168,

199,

262–265,

267–273

Mapping Injective function specifying a mapping of

inputs to outputs in a one-to-one way

7→ 63

Model Represents a formal model in the Kripke

structure representation

M 42
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Name Description Symbol Page(s)

Multiplication Arithmetic multiplication operator when

there are numbers or variables

representing numbers on the left- and

right-hand sides; tuple operator when

there are variables representing sets on the

left- and right-hand sides

× 125,

166,

169,

170,

245–247

Naturals The set of all natural numbers N 43

Next-state Specifies that a logical proposition must

be true in the next-state for a temporal

logic specification

X 29, 30,

66, 71,

260,

262,

265,

266,

268,

270–272

Not equal to Arithmetic non-equality sign specifying

that a variable on the left-hand side is not

equal to a variable on the right-hand side

6= 29, 190

Phi Lowercase Greek letter phi representing a

formal model variable or a logical

proposition

φ xvi, 29,

30
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Name Description Symbol Page(s)

Psi Lowercase Greek letter psi representing a

formal model variable or a logical

proposition

ψ xvi, 29,

30

SAL conjunction Logical conjunction operator in the syntax

of Symbolic Analysis Laboratory (SAL)

AND 88, 89,

99, 101,

103,

107,

110,

112,

165,

220,

221,

243,

328,

336

SAL disjunction Logical disjunction operator in the syntax

of SAL

OR 112,

235,

237,

246,

247

SAL function Specifies an input/output function in the

syntax of SAL

-> 49
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Name Description Symbol Page(s)

SAL guard closing Specifies the end of a guard command in

the syntax of SAL

--> 36–38,

46, 50,

65, 236,

237,

242,

243

SAL guard opening Specifies the beginning of a guard

command in the syntax of SAL when

utilizing the initialization or transition

constructs. Specifies the asynchronous

composition of SAL modules when

utilized outside the initialization or

transition constructs

[] 36–38,

46, 50,

51, 65,

85, 236,

237,

242,

243,

330

SAL implication Logical implication operator in the syntax

of SAL

=> 51, 52,

88, 89,

111,

112,

165,

220,

221,

246,

247
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Name Description Symbol Page(s)

SAL in set Specifies that the value of a variable listed

on the left-hand side must be in the set of

values specified on the right-hand side

IN 47–49,

88, 89,

105–108,

112,

242,

243,

245–247

SAL let definition Specifies a “let” expression in the syntax

of SAL. See [68] for more information

LET 89

SAL negation Logical negation operator in the syntax of

SAL

NOT 165,

166,

221

SAL not equals Non-equality symbol in the syntax of SAL /= 220

SAL turnstile Utilized in the SAL theorem construct to

specify a temporal logic specification on

the right-hand side and the SAL modules

being checked on the left-hand side

|- 45, 51,

52, 88,

89, 112,

165,

166,

246,

247

Set comprehension Separates a variable on the left-hand side

and one predicate on the right-hand side

specifying its allowed values

| 63, 65
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Name Description Symbol Page(s)

Set formation Separates a local variable on the left-hand

side and a set of predicates on the

right-hand side specifying its allowed

values

• 63, 65,

187,

190,

194,

209,

260,

268,

269,

271,

272

Set union Set operator specifying the union of all

elements in two sets on the left- and

right-hand sides

∪ 63

States States in the Kripke structure

representation of a formal model

S 42

Synchronous composition Specifies the synchronous composition of

SAL modules

|| 51, 52,

145,

330

Transition Transitions in the Kripke structure

representation of a formal model

→ 42

Universal path quantifier Specifies that a temporal logic proposition

must be satisfied along all paths for a

computational tree logic specification

A 30
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Name Description Symbol Page(s)

Universal variable quantifier Specifies that a predicate must be true for

all values of a variable identified on the

right-hand side

∀ 29, 63,

187,

188,

190,

191,

194,

209,

210
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Appendix B: Tool Support Listing

Little-JIL [132] is a graphical description language and accompanying encoding environment [230]
for representing hierarchical-heterarchical, normative human task behavior as a stepwise processes
involving one or more agents and resources at each step. Processes can be physical or cognitive,
agents can be human or computer, and resources can be physical or environmental. The analyst can
specify temporal and cardinal ordering of steps as well as logical expressions controlling pre- and
post-requisite step conditions. Little-JIL representations are not amenable to formal verification, but
researchers have developed an automated tool that parses instantiated descriptions and generates
formal task models [231]. Little-JIL processes have been employed in a number of complex human-
interactive applications incorporating multiple human agents and verbal communications among
them [232, 233].

ConcurTaskTrees (CTT) [66] is a diagrammatic notation for representing hierarchical, goal-
oriented human task behavior. The notation includes a taxonomy of tasks, such as user-processing
tasks involving cognitive processing of inputs from a visual display. Its formal semantics enable
the analyst to specify temporal and cardinal ordering of cognitive and motor user tasks as well
as other tasks that involve a device or software application (called application tasks). To support
model checking analyses of CTT representations, researchers have developed ways of transforming
task analytic diagrams to FSMs [141, 138]. One such approach translates an instantiated CTT to
an intermediate abstraction called a Presentation Task Set (PTS), which is then converted to an
FSM [234, 235]. This technique has been employed to support model checking analyses of recently
evolving technologies such as pervasive computing environments [236] and adaptive user interfaces
[237].

The HAMSTERS diagrammatic notation [238] extends CTT with semantics for representing
discrete device control logic. A graphical encoding and analysis environment [142] enables translation
of HAMSTERS diagrams to FSM representations of human-system interaction and analyses using a
built-in model checking suite. The HAMSTERS notation has been extended to incorporate concept
maps that represent the end user’s declarative knowledge of a target system, as well as how it evolves
during human-system interaction [134, 239].
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Appendix C: Listing of Additional Encoding Techniques

C.1 HES Module Syntax for Spatial Relation Transitions Using Stoffre-
gen’s Formalism

The syntax below differs from what was shown in Chapter 6, Section 6.3.12 by replacing Boolean
type values with Boolean tuples, since the translator generates SAL types [BOOLEAN, BOOLEAN] for
Stoffregen’s formalism.

TRANSITION [

affordance 1 = [TRUE, TRUE] -->

entity 1’ = ...

...

entity n’ = ...

affordance m = [TRUE, TRUE] -->

entity 1’ = ...

...

entity n’ = ...

...

[]ELSE -->

];

C.2 HES Module Syntax for Initializing Human Capabilities

As mentioned in Chapter 6, Section 6.3.12, there are many ways to initialize human capabilities in a
formal human-environment system model. Two examples are derived here from the “door openable”
(Section 6.3 and “book placeable” affordances (Section 6.3.11).

In the “door openable” example, the analyst should reason about whether the human operator’s
hand is wide enough to grip the knob and whether she is strong enough to turn it. The analyst can
optionally specify whether the human operator can successfully execute other 6DoF movements on
the knob, such as pitching it up or down, which could be possible if, for example, the knob is poorly
secured within the door. If it is only possible for her to rotate the knob, one way to specify this
capability is shown below.

INITIALIZATION

(FORALL x: translate): pHuman sKnob.translatable[x] = false;

(FORALL x: position): pHuman sKnob.positionable[x] = false;

(FORALL x: orient): pHuman sKnob.orientable[x] =

IF x = roll right OR x = roll left THEN true ELSE false ENDIF;

This code specifies that the human operator cannot translate or position the knob in any direction,
can roll it leftward or rightward, and each movement exists independently of others.

For the “book placeable” example, the analyst should reason about whether the human operator’s
physical characteristics are sufficient for gripping and moving the book about its origin in any
situation that is possible in the HES, Consider the book placed flat on the floor, front cover facing
up. The floor does not need to be not modeled as a variable, but the analyst should reason about
its texture and material to aid in determining what movements are possible. Suppose the human
operator has two hands that are large enough to grip the book, but he is not strong enough to lift
more than two corners off any flat surface at the same time. Friction between the floor/book and
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tabletop surface/book do not restrict the human operator from pushing it in any direction in the
x-y plane. One way to specify such a capability is shown below.

INITIALIZATION [

(pHuman aoBook.orientable[pitch up] XOR pHuman aoBook.orientable[pitch back]

XOR

pHuman aoBook.orientable[roll left] XOR pHuman aoBook.orientable[roll right])

AND

(pHuman aoBook.positionable[up] OR pHuman aoBook.positionable[down] -->

pHuman aoBook.positionable[down] = false;

pHuman aoBook.positionable[back] = true;

pHuman aoBook.positionable[forth] = true;

pHuman aoBook.translatable[right] = true;

pHuman aoBook.translatable[left] = true;

pHuman aoBook.orientable[yaw right] = true;

pHuman aoBook.orientable[yaw left] = true;

pHuman aoBook.orientable[yaw left] = true;

];

This code specifies that the human operator can position the book up or down in the z axis and
orient it in exactly one of three ways (denoted by the SAL keyword XOR):

1. pitch upward

2. pitch backward

3. roll leftward

4. roll rightward

In other words, it is not possible for the human operator to position the book upward or downward
without also orienting it in exactly one way, since he is not strong enough to lift more than two
corners off a flat surface at once. If the book is on the floor, the upward movement(s) are possible.
If the book is on the table, either upward or downward movements are possible.

C.3 Abstracting Learned Documentation Content in the Integrated Frame-
work

In the case study of Chapter 9, the page number output of the documentation navigation model
was utilized as an input to signifier and task models. The other technique mentioned in Section 9.1
requires an additional set of output variables to abstract learned content based on what pages
have been visited. The SAL syntax for employing such a technique is encoded generally below
(annotations added in italic text) and explained in the following paragraph.
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documentation: CONTEXT =

BEGIN

keepPage(page: INTEGER): INTEGER = page;

turnPage(page: INTEGER): INTEGER = page + 1;

crossRef(ref : INTEGER): INTEGER = ref;

pages: TYPE = {x: INTEGER | x >= 0 AND x <= n}; where “n” is the last page

navigation: MODULE =

BEGIN

LOCAL page: pages Page number is now a local variable.
OUTPUT iSeenPage: ARRAY pages OF BOOLEAN Each element of this array represents

whether the page has been seen.

INITIALIZATION Initially, no page has been seen;
FORALL(x: pages): iSeenPage[x] = FALSE; thus, all elements of iSeenPage are false

TRANSITION [

page = 0 --> From the table of contents (page-0),
page’ IN {crossRef(i),..., crossRef(j)}; the user can navigate to pages i–j
iSeenPage’[0] = TRUE; and the end user has seen page-0.

page = i --> From page-i, the user can stay
page’ IN {keepPage(page), turnPage(page)}; or turn to the next page
iSeenPage’[i] = TRUE; and the end user has seen page-i.
...

page = n --> From page-n, the user can stay
page’ IN {keepPage(page), crossRef(i)}; or navigate to page-i
iSeenPage’[i] = TRUE; and the end user has seen page-n.

END;

END

Instead of encoding the output variable “iPage” (as in Chapter 9), the analyst should represent
page number as a local variable, since its value is now only relevant to the documentation navigation
model. The array of Boolean variables iSeenPage is a new output representing whether the end
user has navigated to each page. As shown in the transition construct, each element of iSeenPage
transitions permanently to true once the page has been navigated to. The element of iSeenPage
corresponding to a page number can be leveraged in the same way as iPage was leveraged in the
case study of Chapter 9 (as an input to task and signifier models). As an input to a task model, the
page-number element of iSeenPage must be valued true for procedural steps to execute, indicating
that the end user has seen the page containing those steps and has learned them. As an input to
the signifier model, the page-number element of iSeenPage must be valued true for a function or
meaning explained on that page to be signified through the documentation channel, indicating that
the end user has seen the page containing that explanation and has learned it.



388

Appendix D: Chapter 4 Code Listing

D.1 SAL Model of User Manual Navigation (Section 4.3.1)

1 documentation: CONTEXT =
2 BEGIN
3 keepPage(page: INTEGER): INTEGER = page;
4 turnPage(page: INTEGER): INTEGER = page + 1;
5 crossRef(ref: INTEGER): INTEGER = ref;
6 navigation: MODULE =
7 BEGIN
8 OUTPUT page: {x: INTEGER | x >= 0 AND x <= 263}
9 INITIALIZATION

10 page = 0;
11 TRANSITION
12 [
13 page = 0 -->
14 page ’ IN {crossRef (11), crossRef (66), crossRef (101) ,
15 crossRef (178) , crossRef (200), crossRef (202) , crossRef (206),
16 crossRef (214) , crossRef (225)};
17 []page = 11 -->
18 page ’ IN {crossRef (22), crossRef (140)};
19 []page = 66 -->
20 page ’ IN {keepPage(page), crossRef (93), crossRef (99)};
21 []page = 70 -->
22 page ’ IN {crossRef (88), crossRef (263), crossRef (22)};
23 []page = 75 -->
24 page ’ IN {keepPage(page), turnPage(page)};
25 []page = 101 -->
26 page ’ IN {crossRef (93), crossRef (99)};
27 []page = 200 -->
28 page ’ IN {keepPage (200), crossRef (210) };
29 []page = 202 -->
30 page ’ IN {keepPage(page), turnPage(page), crossRef (203) , crossRef (121)};
31 []page = 203 -->
32 page ’ IN {keepPage(page), crossRef (121)};
33 []page = 206 -->
34 page ’ IN {keepPage(page), turnPage(page)};
35 []page = 207 -->
36 page ’ IN {keepPage(page), turnPage(page), crossRef (210) };
37 []page = 210 -->
38 page ’ IN {keepPage(page), crossRef (121), crossRef (214)};
39 []page = 225 -->
40 page ’ IN {crossRef (75), crossRef (140)};
41 ];
42 END;
43 END
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Appendix E: Chapter 5 Code Listing

E.1 EOFM-XML Formal Task Model (Section 5.3.3)

The ord model is shown. The or seq model was encoded by replacing the decomposition node on
line-98 with <decomposition operator="or seq">.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <eofms xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
3 xsi:noNamespaceSchemaLocation="../../../../ Research/git/schema/OFMr8.xsd">
4 <humanoperator name="pPatient">
5 <inputvariable name="iOldComponentTags" basictype="device!PartTag"/>
6 <inputvariable name="iYCableToOldController" basictype="device!Connection"/>
7 <inputvariable name="iNewLiBattCableToNewLiBatt" basictype="device!Connection"/>
8 <inputvariable name="iNewLiBattCableToOldLiBatt" basictype="device!Connection"/>
9 <inputvariable name="iNewLiBattCableToNewController" basictype="device!Connection"/>

10 <inputvariable name="iOldLiBattCableToOldLiBatt" basictype="device!Connection"/>
11 <inputvariable name="iOldLiBattCableToYCable" basictype="device!Connection"/>
12 <inputvariable name="iOldLiBattCableToOldController" basictype="device!Connection"/>
13 <inputvariable name="iPumpCableToOldAbCable" basictype="device!Connection"/>
14 <inputvariable name="iPumpCableToNewController" basictype="device!Connection"/>
15 <inputvariable name="iAbCableToOldController" basictype="device!Connection"/>
16 <inputvariable name="iLeadBattToNewController" basictype="device!Connection"/>
17 <inputvariable name="iOldLiBatteryLights" basictype="device!LiBatteryLights"/>
18 <inputvariable name="iNewLiBatteryLights" basictype="device!LiBatteryLights"/>
19 <inputvariable name="iPermanentlyAttachedConnector" basictype="device!

PermAttachedConnectorStatus"/>
20 <inputvariable name="iRotationCounter" basictype="device!RotationCounter"/>
21 <inputvariable name="iNewControllerAlarmBatteryCap" basictype="device!AlarmBatteryCap"/>
22 <inputvariable name="iOldControllerAlarmBatteryCap" basictype="device!AlarmBatteryCap"/>
23 <inputvariable name="iOldComponents" basictype="device!OldComponentsLocation"/>
24 <inputvariable name="iAlarm" basictype="device!Alarm"/>
25 <humanaction name="hContactEmergency" behavior="autoreset"/>
26 <humanaction name="hRedTagOldComponents" behavior="autoreset"/>
27 <humanaction name="hSetAsideOldComponents" behavior="autoreset"/>
28 <humanaction name="hDisassembleConnector" behavior="autoreset"/>
29 <humanaction name="hRotateConnectorParts" behavior="autoreset"/>
30 <humanaction name="hReassembleBrokenConnector" behavior="autoreset"/>
31 <humanaction name="hLoosenOldControllerABCap" behavior="autoreset"/>
32 <humanaction name="hTightenNewControllerABCap" behavior="autoreset"/>
33 <humanaction name="hLoosenNewControllerABCap" behavior="autoreset"/>
34 <humanaction name="hDiscPumpCableFromAbCable" behavior="autoreset"/>
35 <humanaction name="hDiscOldAbCableFromOldController" behavior="autoreset"/>
36 <humanaction name="hConNewLiBattCableToNewController" behavior="autoreset"/>
37 <humanaction name="hConNewLiBattCableToNewLiBatt" behavior="autoreset"/>
38 <humanaction name="hConNewLiBattCableToOldLiBatt" behavior="autoreset"/>
39 <humanaction name="hDiscOldLiBattCableFromOldController" behavior="autoreset"/>
40 <humanaction name="hDiscOldLiBattCableFromYCable" behavior="autoreset"/>
41 <humanaction name="hDiscOldLiBattCableFromOldLiBatt" behavior="autoreset"/>
42 <humanaction name="hDiscNewLiBattCableFromOldLiBatt" behavior="autoreset"/>
43 <humanaction name="hConPumpCableToNewController" behavior="autoreset"/>
44 <humanaction name="hDiscNewLiBattCableFromNewLiBatt" behavior="autoreset"/>
45 <humanaction name="hConLeadBattToNewController" behavior="autoreset"/>
46 <humanaction name="hDiscLeadBattFromNewController" behavior="autoreset"/>
47 <humanaction name="hDiscNewLiBattCableFromNewController" behavior="autoreset"/>
48 <humanaction name="hDepressBlackButtonOnNewLiBatt" behavior="autoreset"/>
49 <humanaction name="hDepressBlackButtonOnOldLiBatt" behavior="autoreset"/>
50 <eofm> <!-- follows page 14 of patient handbook -->
51 <activity name="aRespondToPumpStoppedAlarm">
52 <precondition >iAlarm = device!PumpStopped </precondition >
53 <completioncondition >iAlarm /= device!PumpStopped </completioncondition >
54 <decomposition operator="ord">
55 <!-- begin step 1 -->
56 <activity name="aStep1aDiscOldParts">
57 <decomposition operator="ord">
58 <activity name="aDiscPumpCableFromAbCable">
59 <precondition >iPumpCableToOldAbCable = device!Connected </precondition >
60 <completioncondition >iPumpCableToOldAbCable = device!Disconnected </completioncondition >
61 <decomposition operator="ord">
62 <action humanaction="hDiscPumpCableFromAbCable"/>
63 </decomposition >
64 </activity >
65 <activity name="aSetAsideOldComponents">
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66 <precondition >iOldComponents = device!AtHand </precondition >
67 <completioncondition >iOldComponents = device!SetAside </completioncondition >
68 <decomposition operator="ord">
69 <action humanaction="hSetAsideOldComponents"/>
70 </decomposition >
71 </activity >
72 <activity name="aDiscOldLiBattery">
73 <decomposition operator="xor">
74 <activity name="aDiscOldBattCableFromYCable">
75 <precondition >iOldLiBattCableToYCable = device!Connected </precondition >
76 <decomposition operator="or_seq">
77 <activity name="aDiscOldLiBattFromOldBattCable">
78 <precondition >iOldLiBattCableToOldLiBatt = device!Connected </precondition >
79 <completioncondition >iOldLiBattCableToOldLiBatt = device!Disconnected </

completioncondition >
80 <decomposition operator="ord">
81 <action humanaction="hDiscOldLiBattCableFromOldLiBatt"/>
82 </decomposition >
83 </activity >
84 <activity name="aDiscBattCableFromYCable">
85 <completioncondition >iOldLiBattCableToYCable = device!Disconnected </

completioncondition >
86 <decomposition operator="ord">
87 <action humanaction="hDiscOldLiBattCableFromYCable"/>
88 </decomposition >
89 </activity >
90 </decomposition >
91 </activity >
92 <activity name="aDiscOldBattCableFromOldController">
93 <precondition >iOldLiBattCableToOldController = device!Connected </precondition >
94 <decomposition operator="or_seq">
95 <activitylink link="aDiscOldLiBattFromOldBattCable"/>
96 <activity name="aDiscBattCableFromController">
97 <completioncondition >iOldLiBattCableToOldController = device!Disconnected </

completioncondition >
98 <decomposition operator="ord">
99 <action humanaction="hDiscOldLiBattCableFromOldController"/>

100 </decomposition >
101 </activity >
102 </decomposition >
103 </activity >
104 </decomposition >
105 </activity >
106 <activity name="aSilenceAlarmOnOldController">
107 <precondition >iOldControllerAlarmBatteryCap = device!Tightened </precondition >
108 <completioncondition >iOldControllerAlarmBatteryCap = device!Loosened </completioncondition

>
109 <decomposition operator="ord">
110 <action humanaction="hLoosenOldControllerABCap"/>
111 </decomposition >
112 </activity >
113 </decomposition >
114 </activity >
115 <activity name="aStep1bConNewController">
116 <decomposition operator="ord">
117 <activity name="aConPumptoNewController">
118 <precondition >iPumpCableToNewController = device!Disconnected and iPumpCableToOldAbCable

= device!Disconnected </precondition >
119 <completioncondition >iPumpCableToNewController = device!Connected </completioncondition >
120 <decomposition operator="ord">
121 <action humanaction="hConPumpCableToNewController"/>
122 </decomposition >
123 </activity >
124 <activity name="aActivateAlarmOnNewController">
125 <precondition >iNewControllerAlarmBatteryCap = device!Loosened </precondition >
126 <completioncondition >iNewControllerAlarmBatteryCap = device!Tightened </

completioncondition >
127 <decomposition operator="ord">
128 <action humanaction="hTightenNewControllerABCap"/>
129 </decomposition >
130 </activity >
131 </decomposition >
132 </activity >
133 <activity name="aStep1cFullyChargedLiBatt">
134 <decomposition operator="ord">
135 <activity name="aConNewBattCable">
136 <precondition >iNewLiBattCableToNewController = device!Disconnected </precondition >
137 <completioncondition >iNewLiBattCableToNewController = device!Connected </

completioncondition >
138 <decomposition operator="ord">
139 <action humanaction="hConNewLiBattCableToNewController"/>
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140 </decomposition >
141 </activity >
142 <activity name="aConnectFullyChargedLiBattery">
143 <precondition >iNewLiBattCableToNewController = device!Connected </precondition >
144 <decomposition operator="xor">
145 <activity name="aConnectNewLiBattToNewLiBattCable">
146 <completioncondition >iNewLiBattCableToNewLiBatt = device!Connected </completioncondition

>
147 <decomposition operator="ord">
148 <action humanaction="hConNewLiBattCableToNewLiBatt"/>
149 </decomposition >
150 </activity >
151 <activity name="aConnectOldLiBattToNewLiBattCable">
152 <completioncondition >iNewLiBattCableToOldLiBatt = device!Connected </completioncondition

>
153 <decomposition operator="ord">
154 <action humanaction="hConNewLiBattCableToOldLiBatt"/>
155 </decomposition >
156 </activity >
157 </decomposition >
158 </activity >
159 </decomposition >
160 </activity >
161 <!-- end step 1 -->
162 <!-- begin step 2 -->
163 <activity name="aStep2CallEmergencyNumber">
164 <decomposition operator="ord">
165 <action humanaction="hContactEmergency"/>
166 </decomposition >
167 </activity >
168 <!-- end step 2 -->
169 <!-- begin step 3 -->
170 <activity name="aStep3RedTagOldComponents">
171 <precondition >iOldComponentTags = device!notRedTagged </precondition >
172 <completioncondition >iOldComponentTags = device!redTagged </completioncondition >
173 <decomposition operator="ord">
174 <action humanaction="hRedTagOldComponents"/>
175 </decomposition >
176 </activity >
177 <!-- end step 3 -->
178 <!-- begin step 4 -->
179 <activity name="aStep4FixConnector">
180 <precondition >iPermanentlyAttachedConnector = device!Broken </precondition >
181 <decomposition operator="ord">
182 <activity name="aReassembleConnector">
183 <completioncondition >iPermanentlyAttachedConnector = device!Assembled </

completioncondition >
184 <decomposition operator="ord">
185 <action humanaction="hReassembleBrokenConnector"/>
186 </decomposition >
187 </activity >
188 <activity name="aTryRotatingParts">
189 <precondition >iRotationCounter = 0</precondition >
190 <repeatcondition >iRotationCounter &lt; 3</repeatcondition >
191 <completioncondition >iRotationCounter = 3</completioncondition >
192 <decomposition operator="ord">
193 <action humanaction="hDisassembleConnector"/>
194 <action humanaction="hRotateConnectorParts"/>
195 <action humanaction="hReassembleBrokenConnector"/>
196 </decomposition >
197 </activity >
198 </decomposition >
199 </activity >
200 <!-- end step 4 -->
201 <!-- begin step 5i-->
202 <activity name="aStep5aChangeBatts">
203 <decomposition operator="ord">
204 <activity name="aSwitchLiBatteries">
205 <decomposition operator="xor">
206 <activity name="aSwitchFromOldToNew">
207 <precondition >iNewLiBattCableToOldLiBatt = device!Connected </precondition >
208 <completioncondition >iNewLiBattCableToNewLiBatt = device!Connected </completioncondition

>
209 <decomposition operator="ord">
210 <action humanaction="hDiscNewLiBattCableFromOldLiBatt"/>
211 <action humanaction="hConNewLiBattCableToNewLiBatt"/>
212 </decomposition >
213 </activity >
214 <activity name="aSwitchFromNewToOld">
215 <precondition >iNewLiBattCableToOldLiBatt = device!Connected </precondition >
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216 <completioncondition >iNewLiBattCableToNewLiBatt = device!Connected </completioncondition
>

217 <decomposition operator="ord">
218 <action humanaction="hDiscNewLiBattCableFromNewLiBatt"/>
219 <action humanaction="hConNewLiBattCableToOldLiBatt"/>
220 </decomposition >
221 </activity >
222 </decomposition >
223 </activity >
224 </decomposition >
225 </activity >
226 <!-- end step 5i -->
227 <activity name="aStep5bCheckAndSwitchToLead">
228 <decomposition operator="ord">
229 <activity name="aCheckLiBatteryLevels">
230 <decomposition operator="and_seq">
231 <action humanaction="hDepressBlackButtonOnNewLiBatt"/>
232 <action humanaction="hDepressBlackButtonOnOldLiBatt"/>
233 </decomposition >
234 </activity >
235 <activity name="aSwitchToLeadOrKeepLiBatt">
236 <decomposition operator="ord">
237 <activity name="aSwitchToLeadBatt">
238 <precondition >iNewLiBatteryLights = 0 AND iOldLiBatteryLights = 0</precondition >
239 <completioncondition >iLeadBattToNewController = device!Connected </completioncondition >
240 <decomposition operator="ord">
241 <action humanaction="hDiscNewLiBattCableFromNewController"/>
242 <action humanaction="hConLeadBattToNewController"/>
243 </decomposition >
244 </activity >
245 </decomposition >
246 </activity >
247 </decomposition >
248 </activity >
249 <!-- end step 5 -->
250 <!-- begin step 6i -->
251 <activity name="aStep6aBreakCircuit">
252 <decomposition operator="xor">
253 <activity name="aDiscLeadBatt">
254 <precondition >iLeadBattToNewController = device!Connected </precondition >
255 <completioncondition >iLeadBattToNewController = device!Disconnected </completioncondition >
256 <decomposition operator="ord">
257 <action humanaction="hDiscLeadBattFromNewController"/>
258 </decomposition >
259 </activity >
260 <activity name="aDiscLiBatt">
261 <precondition >iNewLiBattCableToNewController = device!Connected </precondition >
262 <completioncondition >iLeadBattToNewController = device!Disconnected </completioncondition >
263 <decomposition operator="ord">
264 <action humanaction="hDiscNewLiBattCableFromNewController"/>
265 </decomposition >
266 </activity >
267 </decomposition >
268 </activity >
269 <!-- end step 6i -->
270 <!-- begin step 6ii -->
271 <activity name="aStep6bSilenceNewController">
272 <precondition >iNewControllerAlarmBatteryCap = device!Tightened </precondition >
273 <completioncondition >iNewControllerAlarmBatteryCap = device!Loosened </completioncondition >
274 <decomposition operator="ord">
275 <action humanaction="hLoosenNewControllerABCap"/>
276 </decomposition >
277 </activity >
278 <!-- end step 6 -->
279 </decomposition >
280 </activity >
281 </eofm>
282 </humanoperator >
283 </eofms>

E.2 SAL Model of Human-Device Interaction (Section 5.3.5)

1 device: CONTEXT =
2 BEGIN
3 RotationCounter: TYPE = [0..3];
4 OldComponentsLocation: TYPE = {AtHand , SetAside };
5 Connection: TYPE = {Connected , Disconnected };
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6 PartTag: TYPE = {redTagged , notRedTagged };
7 PermAttachedConnectorStatus: TYPE = {Broken , Assembled };
8 AlarmBatteryCap: TYPE = {Loosened , Tightened };
9 Alarm: TYPE = {PumpStopped , NoAlarm };

10 LiBatteryLights: TYPE = [0..5];
11 LeadBattLight: TYPE = [0..1];
12 HDI: MODULE =
13 BEGIN
14 INPUT hRedTagOldComponents: BOOLEAN
15 INPUT hSetAsideOldComponents: BOOLEAN
16 INPUT hRotateConnectorParts: BOOLEAN
17 INPUT hDisassembleConnector: BOOLEAN
18 INPUT hReassembleBrokenConnector: BOOLEAN
19 INPUT hLoosenOldControllerABCap: BOOLEAN
20 INPUT hTightenNewControllerABCap: BOOLEAN
21 INPUT hLoosenNewControllerABCap: BOOLEAN
22 INPUT hDiscPumpCableFromAbCable: BOOLEAN
23 INPUT hConNewLiBattCableToNewController: BOOLEAN
24 INPUT hConNewLiBattCableToNewLiBatt: BOOLEAN
25 INPUT hConNewLiBattCableToOldLiBatt: BOOLEAN
26 INPUT hDiscOldLiBattCableFromOldController: BOOLEAN
27 INPUT hDiscOldLiBattCableFromYCable: BOOLEAN
28 INPUT hDiscOldLiBattCableFromOldLiBatt: BOOLEAN
29 INPUT hConOldLiBattToNewLiBattCable: BOOLEAN
30 INPUT hConPumpCableToNewController: BOOLEAN
31 INPUT hDiscNewLiBattCableFromNewLiBatt: BOOLEAN
32 INPUT hDiscNewLiBattCableFromOldLiBatt: BOOLEAN
33 INPUT hConLeadBattToNewController: BOOLEAN
34 INPUT hDiscNewLiBattCableFromNewController: BOOLEAN
35 INPUT hDiscLeadBattFromNewController: BOOLEAN
36 INPUT hDepressBlackButtonOnNewLiBatt: BOOLEAN
37 INPUT hDepressBlackButtonOnOldLiBatt: BOOLEAN
38 INPUT submitted: BOOLEAN
39 OUTPUT iOldLiBatteryLights: LiBatteryLights
40 OUTPUT iNewLiBatteryLights: LiBatteryLights
41 OUTPUT iOldComponentTags: PartTag
42 OUTPUT iYCableToOldController: Connection
43 OUTPUT iNewLiBattCableToNewLiBatt: Connection
44 OUTPUT iNewLiBattCableToOldLiBatt: Connection
45 OUTPUT iNewLiBattCableToNewController: Connection
46 OUTPUT iOldLiBattCableToOldLiBatt: Connection
47 OUTPUT iOldLiBattCableToYCable: Connection
48 OUTPUT iOldLiBattCableToOldController: Connection
49 OUTPUT iLeadBattToYCable: Connection
50 OUTPUT iLeadBattToOldController: Connection
51 OUTPUT iPumpCableToOldAbCable: Connection
52 OUTPUT iPumpCableToOldController: Connection
53 OUTPUT iPumpCableToNewController: Connection
54 OUTPUT iAbCableToOldController: Connection
55 OUTPUT iLeadBatteryLight: LeadBattLight
56 OUTPUT iLeadBattToNewController: Connection
57 OUTPUT iPermanentlyAttachedConnector: PermAttachedConnectorStatus
58 OUTPUT iRotationCounter: RotationCounter
59 OUTPUT iNewControllerAlarmBatteryCap: AlarmBatteryCap
60 OUTPUT iOldControllerAlarmBatteryCap: AlarmBatteryCap
61 OUTPUT iOldComponents: OldComponentsLocation
62 OUTPUT functional: BOOLEAN
63 OUTPUT ready: BOOLEAN
64
65 INITIALIZATION
66 ready = FALSE;
67 iYCableToOldController IN {Connected , Disconnected };
68 iOldLiBattCableToOldController IN IF iYCableToOldController = Connected
69 THEN {Disconnected}
70 ELSE {Connected , Disconnected}
71 ENDIF;
72 iLeadBattToOldController = IF iYCableToOldController = Connected
73 THEN Disconnected
74 ELSIF iOldLiBattCableToOldController = Connected
75 THEN Disconnected
76 ELSE Connected
77 ENDIF;
78 iLeadBattToYCable = IF (iOldLiBattCableToYCable = Disconnected AND

iYCableToOldController = Connected)
79 THEN Connected
80 ELSE Disconnected
81 ENDIF;
82 iOldLiBattCableToYCable IN IF iYCableToOldController = Connected
83 THEN {Connected , Disconnected}
84 ELSE {Disconnected}
85 ENDIF;
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86 iOldLiBattCableToOldLiBatt = IF iOldLiBattCableToOldController = Connected OR (
iYCableToOldController = Connected AND not(iLeadBattToYCable = Connected))

87 THEN Connected
88 ELSE Disconnected
89 ENDIF;
90
91 iPumpCableToOldAbCable IN {Connected , Disconnected };
92 iPumpCableToOldController = IF iPumpCableToOldAbCable = Connected
93 THEN Disconnected
94 ELSE Connected
95 ENDIF;
96 iAbCableToOldController = IF iPumpCableToOldController = Connected
97 THEN Disconnected
98 ELSE Connected
99 ENDIF;

100
101 iPermanentlyAttachedConnector IN {Broken , Assembled };
102 iOldComponents = AtHand;
103 iRotationCounter = 0;
104 iNewLiBattCableToNewLiBatt = Disconnected;
105 iNewLiBattCableToNewController = Disconnected;
106 iLeadBattToNewController = Disconnected;
107 iPumpCableToNewController = Disconnected;
108
109 %% Red tags
110 iOldComponentTags = notRedTagged;
111
112 %% Alarm battery caps
113 iNewControllerAlarmBatteryCap = Loosened;
114 iOldControllerAlarmBatteryCap = Tightened;
115
116 %% Battery lights
117 iOldLiBatteryLights = 0;
118 iNewLiBatteryLights = 0;
119 iLeadBatteryLight IN IF iLeadBattToOldController = Connected THEN {0, 1} ELSE {0} ENDIF;
120
121 DEFINITION
122 functional =
123 IF (( iPumpCableToOldAbCable = Connected AND iAbCableToOldController = Connected) OR
124 (iPumpCableToOldController = Connected)) AND
125 (( iLeadBattToYCable = Connected AND iYCableToOldController = Connected AND

iLeadBatteryLight = 1) OR
126 (iOldLiBattCableToYCable = Connected AND iYCableToOldController = Connected AND

iLeadBatteryLight = 1) OR
127 (iLeadBattToOldController = Connected AND iLeadBatteryLight = 1) OR
128 (iOldLiBattCableToOldController = Connected AND iOldLiBattCableToOldLiBatt =

Connected)) AND
129 iPermanentlyAttachedConnector = Assembled
130 THEN TRUE
131 ELSIF
132 iPumpCableToNewController = Connected AND
133 iPermanentlyAttachedConnector = Assembled AND
134 (iLeadBattToNewController = Connected OR
135 (iNewLiBattCableToNewLiBatt = Connected AND iNewLiBattCableToNewController =

Connected AND iNewLiBatteryLights > 0))
136 THEN TRUE
137 ELSE FALSE ENDIF;
138
139 TRANSITION [
140 NOT (ready OR submitted) -->
141 ready ’ = TRUE;
142
143 [] hDiscPumpCableFromAbCable and ready AND submitted -->
144 iPumpCableToOldAbCable ’ = Disconnected;
145 ready ’ = FALSE;
146
147 [] hSetAsideOldComponents and ready AND submitted -->
148 iOldComponents ’ = SetAside;
149 ready ’ = FALSE;
150
151 [] hDiscOldLiBattCableFromYCable and ready AND submitted -->
152 iOldLiBattCableToYCable ’ = Disconnected;
153 ready ’ = FALSE;
154
155 [] hDiscOldLiBattCableFromOldController and ready AND submitted -->
156 iOldLiBattCableToOldController ’ = Disconnected;
157 ready ’ = FALSE;
158
159 [] hLoosenOldControllerABCap and ready AND submitted -->
160 iOldControllerAlarmBatteryCap ’ = Loosened;
161 ready ’ = FALSE;
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162
163 [] hConPumpCableToNewController and ready AND submitted -->
164 iPumpCableToNewController ’ = Connected;
165 ready ’ = FALSE;
166
167 [] hTightenNewControllerABCap and ready AND submitted -->
168 iNewControllerAlarmBatteryCap ’ = Tightened;
169 ready ’ = FALSE;
170
171 [] hConNewLiBattCableToNewController and ready AND submitted -->
172 iNewLiBattCableToNewController ’ = Connected;
173 ready ’ = FALSE;
174
175 [] hConNewLiBattCableToNewLiBatt and ready AND submitted -->
176 iNewLiBattCableToNewLiBatt ’ = Connected;
177 ready ’ = FALSE;
178
179 [] hConNewLiBattCableToOldLiBatt and ready AND submitted -->
180 iNewLiBattCableToNewLiBatt ’ = Connected;
181 ready ’ = FALSE;
182
183 [] hRedTagOldComponents and ready AND submitted -->
184 iOldComponentTags ’ = redTagged;
185 ready ’ = FALSE;
186
187 [] hReassembleBrokenConnector and ready AND submitted -->
188 iPermanentlyAttachedConnector ’ = Assembled;
189 ready ’ = FALSE;
190
191 [] hDisassembleConnector and ready AND submitted -->
192 iPermanentlyAttachedConnector ’ = Broken;
193 ready ’ = FALSE;
194 [] hRotateConnectorParts and iRotationCounter < 3 and ready AND submitted -->
195 iRotationCounter ’ = iRotationCounter + 1;
196 ready ’ = FALSE;
197
198 [] hDiscNewLiBattCableFromNewLiBatt and ready AND submitted -->
199 iNewLiBattCableToNewLiBatt ’ = Disconnected;
200 ready ’ = FALSE;
201
202 [] hDiscOldLiBattCableFromOldLiBatt and ready AND submitted -->
203 iOldLiBattCableToOldLiBatt ’ = Disconnected;
204 ready ’ = FALSE;
205
206 [] hDiscNewLiBattCableFromOldLiBatt and ready AND submitted -->
207 iNewLiBattCableToOldLiBatt ’ = Disconnected;
208 ready ’ = FALSE;
209
210 [] hConNewLiBattCableToOldLiBatt and ready AND submitted -->
211 iNewLiBattCableToOldLiBatt ’ = Connected;
212 ready ’ = FALSE;
213
214 [] hDepressBlackButtonOnNewLiBatt and ready AND submitted -->
215 iNewLiBatteryLights ’ IN {0, 1, 2, 3, 4, 5};
216 ready ’ = FALSE;
217 [] hDepressBlackButtonOnOldLiBatt and ready AND submitted -->
218 iOldLiBatteryLights ’ IN {0, 1, 2, 3, 4, 5};
219 ready ’ = FALSE;
220
221 [] hDiscNewLiBattCableFromNewController and ready AND submitted -->
222 iNewLiBattCableToNewController ’ = Disconnected;
223 ready ’ = FALSE;
224
225 [] hConLeadBattToNewController and ready AND submitted -->
226 iLeadBattToNewController ’ = Connected;
227 iLeadBatteryLight ’ IN {0, 1};
228 ready ’ = FALSE;
229
230 [] hDiscLeadBattFromNewController and ready AND submitted -->
231 iLeadBattToNewController ’ = Disconnected;
232 iLeadBatteryLight ’ = 0;
233 ready ’ = FALSE;
234
235 [] hLoosenNewControllerABCap and ready and submitted -->
236 iNewControllerAlarmBatteryCap ’ = Loosened;
237 ready ’ = FALSE;
238
239 []ELSE -->
240 ready ’ = IF (ready AND submitted)
241 THEN FALSE
242 ELSE ready
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243 ENDIF;
244 ];
245 END;
246 END
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Appendix F: Chapter 6 Code Listing

F.1 XML Code

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <hes xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
3 xsi:noNamespaceSchemaLocation="../../ schema/cavemen.xsd">
4 <modelobject name="mPulseGenerator">
5 <atomicobject name="aoLVPort"/>
6 <atomicobject name="aoRAPort"/>
7 <atomicobject name="aoRVPort"/>
8 <atomicobject name="aoLVSetScrew"/>
9 <atomicobject name="aoRASetScrew"/>

10 <atomicobject name="aoRVSetScrew"/>
11 </modelobject >
12 <atomicobject name="aoLVLeadProximalTip"/>
13 <atomicobject name="aoRALeadProximalTip"/>
14 <atomicobject name="aoRVLeadProximalTip"/>
15 <affordance name="LVLeadConnectableToRVPort" formalism="greeno">
16 <humanoperator name="pSurgeon">
17 <relation topology="disjoint_to" direction="front_of"
18 associate="aoRVPort"/>
19 <relation topology="disjoint_to" associate="aoLVLeadProximalTip"/>
20 <component name="mPulseGenerator">
21 <ability name="MovePulseGenerator">
22 <orientable pitch_back="true" pitch_forth="true"
23 yaw_left="true" yaw_right="true"/>
24 <translatable left="true" right="true"/>
25 <positionable back="true" forth="true"
26 up="true" down="true"/>
27 </ability >
28 </component >
29 <atomcomponent name="aoLVLeadProximalTip">
30 <relation condition="not" topology="covering"
31 direction="back_of" associate="aoLVPort"/>
32 <relation condition="not" topology="covering"
33 direction="back_of" associate="aoRVPort"/>
34 <relation condition="not" topology="covering"
35 direction="back_of" associate="aoRAPort"/>
36 <ability name="MoveLVProximalTip">
37 <orientable pitch_back="true" pitch_forth="true"
38 yaw_left="true" yaw_right="true"/>
39 <translatable left="true" right="true"/>
40 <positionable back="true" forth="true"
41 up="true" down="true"/>
42 </ability >
43 </atomcomponent >
44 <atomcomponent name="aoRVSetScrew">
45 <relation topology="touching" direction="right_of"
46 associate="mPulseGenerator"/>
47 </atomcomponent >
48 <atomcomponent name="aoRALeadProximalTip">
49 <relation topology="disjoint_to" associate="aoRVPort"/>
50 </atomcomponent >
51 <atomcomponent name="aoRVLeadProximalTip">
52 <relation topology="disjoint_to" associate="aoRVPort"/>
53 </atomcomponent >
54 </humanoperator >
55 </affordance >
56 <affordance name="LVLeadConnectableToLVPort" formalism="greeno">
57 <humanoperator name="pSurgeon">
58 <relation topology="disjoint_to" direction="front_of"
59 associate="aoLVPort"/>
60 <relation topology="disjoint_to" associate="aoLVLeadProximalTip"/>
61 <component name="mPulseGenerator">
62 <ability name="MovePulseGenerator">
63 <orientable pitch_back="true" pitch_forth="true"
64 yaw_left="true" yaw_right="true"/>
65 <translatable left="true" right="true"/>
66 <positionable back="true" forth="true"
67 up="true" down="true"/>
68 </ability >
69 </component >



398

70 <atomcomponent name="aoLVLeadProximalTip">
71 <relation condition="not" topology="covering"
72 direction="back_of" associate="aoLVPort"/>
73 <relation condition="not" topology="covering"
74 direction="back_of" associate="aoRVPort"/>
75 <relation condition="not" topology="covering"
76 direction="back_of" associate="aoRAPort"/>
77 <ability name="MoveLVProximalTip">
78 <orientable pitch_back="true" pitch_forth="true"
79 yaw_left="true" yaw_right="true"/>
80 <translatable left="true" right="true"/>
81 <positionable back="true" forth="true"
82 up="true" down="true"/>
83 </ability >
84 </atomcomponent >
85 <atomcomponent name="aoLVSetScrew">
86 <relation topology="touching" direction="right_of"
87 associate="mPulseGenerator"/>
88 </atomcomponent >
89 <atomcomponent name="aoRALeadProximalTip">
90 <relation topology="disjoint_to" associate="aoLVPort"/>
91 </atomcomponent >
92 <atomcomponent name="aoRVLeadProximalTip">
93 <relation topology="disjoint_to" associate="aoLVPort"/>
94 </atomcomponent >
95 </humanoperator >
96 </affordance >
97 <affordance name="RVLeadConnectableToRVPort" formalism="greeno">
98 <humanoperator name="pSurgeon">
99 <relation topology="disjoint_to" direction="front_of"

100 associate="aoRVPort"/>
101 <relation topology="disjoint_to" associate="aoRVLeadProximalTip"/>
102 <component name="mPulseGenerator">
103 <ability name="MovePulseGenerator">
104 <orientable pitch_back="true" pitch_forth="true"
105 yaw_left="true" yaw_right="true"/>
106 <translatable left="true" right="true"/>
107 <positionable back="true" forth="true"
108 up="true" down="true"/>
109 </ability >
110 </component >
111 <atomcomponent name="aoRVLeadProximalTip">
112 <relation condition="not" topology="covering"
113 direction="back_of" associate="aoLVPort"/>
114 <relation condition="not" topology="covering"
115 direction="back_of" associate="aoRVPort"/>
116 <relation condition="not" topology="covering"
117 direction="back_of" associate="aoRAPort"/>
118 <ability name="MoveRVProximalTip">
119 <orientable pitch_back="true" pitch_forth="true"
120 yaw_left="true" yaw_right="true"/>
121 <translatable left="true" right="true"/>
122 <positionable back="true" forth="true"
123 up="true" down="true"/>
124 </ability >
125 </atomcomponent >
126 <atomcomponent name="aoRVSetScrew">
127 <relation topology="touching" direction="right_of"
128 associate="mPulseGenerator"/>
129 </atomcomponent >
130 <atomcomponent name="aoRALeadProximalTip">
131 <relation topology="disjoint_to" associate="aoRVPort"/>
132 </atomcomponent >
133 <atomcomponent name="aoLVLeadProximalTip">
134 <relation topology="disjoint_to" associate="aoRVPort"/>
135 </atomcomponent >
136 </humanoperator >
137 </affordance >
138 </hes>

F.2 SAL Code

1 cavemen: CONTEXT =
2 BEGIN
3 position: TYPE = {up, down , back , forth};
4 translate: TYPE = {left , right};
5 orient: TYPE = {pitch_back , pitch_forth , yaw_left , yaw_right , roll_left , roll_right };
6 abilities: TYPE = [# positionable: ARRAY position OF BOOLEAN , translatable: ARRAY translate OF

BOOLEAN , orientable: ARRAY orient OF BOOLEAN #];
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7 topological: TYPE = {disjoint_to , touching , covering , overlapping };
8 directional: TYPE = {left_of , right_of , top_of , bottom_of , front_of , back_of };
9 relations: TYPE = ARRAY directional OF topological;

10 pSurgeon_rels: TYPE = [# aoLVPort: relations , aoLVLeadProximalTip: relations , aoRVPort: relations ,
aoRVLeadProximalTip: relations #];

11 aoLVLeadProximalTip_rels: TYPE = [# aoLVPort: relations , aoRVPort: relations , aoRAPort: relations
#];

12 aoLVSetScrew_rels: TYPE = [# mPulseGenerator: relations #];
13 aoRALeadProximalTip_rels: TYPE = [# aoRVPort: relations , aoLVPort: relations #];
14 aoRVLeadProximalTip_rels: TYPE = [# aoRVPort: relations , aoLVPort: relations , aoRAPort: relations

#];
15 aoRVSetScrew_rels: TYPE = [# mPulseGenerator: relations #];
16 % action by pSurgeon => good effects in situation (for LVLeadConnectableToRVPort )
17 % action by pSurgeon => good effects in situation (for LVLeadConnectableToLVPort )
18 % action by pSurgeon => good effects in situation (for RVLeadConnectableToRVPort )
19 affordance: MODULE =
20 BEGIN
21 INPUT pSurgeon: pSurgeon_rels
22 INPUT aoLVLeadProximalTip: aoLVLeadProximalTip_rels
23 INPUT aoLVSetScrew: aoLVSetScrew_rels
24 INPUT aoRALeadProximalTip: aoRALeadProximalTip_rels
25 INPUT aoRVLeadProximalTip: aoRVLeadProximalTip_rels
26 INPUT aoRVSetScrew: aoRVSetScrew_rels
27 INPUT pSurgeon_mPulseGenerator: abilities
28 INPUT pSurgeon_aoLVLeadProximalTip: abilities
29 INPUT pSurgeon_aoRVLeadProximalTip: abilities
30 OUTPUT LVLeadConnectableToRVPort: BOOLEAN
31 OUTPUT LVLeadConnectableToLVPort: BOOLEAN
32 OUTPUT RVLeadConnectableToRVPort: BOOLEAN
33 DEFINITION
34 LVLeadConnectableToRVPort =
35 pSurgeon.aoLVPort[front_of] = disjoint_to AND
36 FORALL(x: directional): pSurgeon.aoLVLeadProximalTip[x] = disjoint_to AND
37 aoLVLeadProximalTip.aoLVPort[back_of] /= covering AND
38 aoLVLeadProximalTip.aoRVPort[back_of] /= covering AND
39 aoLVLeadProximalTip.aoRAPort[back_of] /= covering AND
40 aoLVSetScrew.mPulseGenerator[right_of] = touching AND
41 FORALL(x: directional): aoRALeadProximalTip.aoRVPort[x] = disjoint_to AND
42 FORALL(x: directional): aoRVLeadProximalTip.aoRVPort[x] = disjoint_to AND
43 pSurgeon_mPulseGenerator.orientable[pitch_back] = TRUE AND
44 pSurgeon_mPulseGenerator.orientable[pitch_forth] = TRUE AND
45 pSurgeon_mPulseGenerator.orientable[yaw_left] = TRUE AND
46 pSurgeon_mPulseGenerator.orientable[yaw_right] = TRUE AND
47 FORALL(x: translate): pSurgeon_mPulseGenerator.translatable[x] = TRUE AND
48 FORALL(x: position): pSurgeon_mPulseGenerator.positionable[x] = TRUE AND
49 pSurgeon_aoLVLeadProximalTip.orientable[pitch_back] = TRUE AND
50 pSurgeon_aoLVLeadProximalTip.orientable[pitch_forth] = TRUE AND
51 pSurgeon_aoLVLeadProximalTip.orientable[yaw_left] = TRUE AND
52 pSurgeon_aoLVLeadProximalTip.orientable[yaw_right] = TRUE AND
53 FORALL(x: translate): pSurgeon_aoLVLeadProximalTip.translatable[x] = TRUE AND
54 FORALL(x: position): pSurgeon_aoLVLeadProximalTip.positionable[x] = TRUE;
55 LVLeadConnectableToLVPort =
56 pSurgeon.aoLVPort[front_of] = disjoint_to AND
57 FORALL(x: directional): pSurgeon.aoLVLeadProximalTip[x] = disjoint_to AND
58 aoLVLeadProximalTip.aoLVPort[back_of] /= covering AND
59 aoLVLeadProximalTip.aoRVPort[back_of] /= covering AND
60 aoLVLeadProximalTip.aoRAPort[back_of] /= covering AND
61 aoLVSetScrew.mPulseGenerator[right_of] = touching AND
62 FORALL(x: directional): aoRALeadProximalTip.aoLVPort[x] = disjoint_to AND
63 FORALL(x: directional): aoRVLeadProximalTip.aoLVPort[x] = disjoint_to AND
64 pSurgeon_mPulseGenerator.orientable[pitch_back] = TRUE AND
65 pSurgeon_mPulseGenerator.orientable[pitch_forth] = TRUE AND
66 pSurgeon_mPulseGenerator.orientable[yaw_left] = TRUE AND
67 pSurgeon_mPulseGenerator.orientable[yaw_right] = TRUE AND
68 FORALL(x: translate): pSurgeon_mPulseGenerator.translatable[x] = TRUE AND
69 FORALL(x: position): pSurgeon_mPulseGenerator.positionable[x] = TRUE AND
70 pSurgeon_aoLVLeadProximalTip.orientable[pitch_back] = TRUE AND
71 pSurgeon_aoLVLeadProximalTip.orientable[pitch_forth] = TRUE AND
72 pSurgeon_aoLVLeadProximalTip.orientable[yaw_left] = TRUE AND
73 pSurgeon_aoLVLeadProximalTip.orientable[yaw_right] = TRUE AND
74 FORALL(x: translate): pSurgeon_aoLVLeadProximalTip.translatable[x] = TRUE AND
75 FORALL(x: position): pSurgeon_aoLVLeadProximalTip.positionable[x] = TRUE;
76 RVLeadConnectableToRVPort =
77 pSurgeon.aoRVPort[front_of] = disjoint_to AND
78 FORALL(x: directional): pSurgeon.aoRVLeadProximalTip[x] = disjoint_to AND
79 aoRVLeadProximalTip.aoLVPort[back_of] /= covering AND
80 aoRVLeadProximalTip.aoRVPort[back_of] /= covering AND
81 aoRVLeadProximalTip.aoRAPort[back_of] /= covering AND
82 aoRVSetScrew.mPulseGenerator[right_of] = touching AND
83 FORALL(x: directional): aoRALeadProximalTip.aoRVPort[x] = disjoint_to AND
84 FORALL(x: directional): aoLVLeadProximalTip.aoRVPort[x] = disjoint_to AND
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85 pSurgeon_mPulseGenerator.orientable[pitch_back] = TRUE AND
86 pSurgeon_mPulseGenerator.orientable[pitch_forth] = TRUE AND
87 pSurgeon_mPulseGenerator.orientable[yaw_left] = TRUE AND
88 pSurgeon_mPulseGenerator.orientable[yaw_right] = TRUE AND
89 FORALL(x: translate): pSurgeon_mPulseGenerator.translatable[x] = TRUE AND
90 FORALL(x: position): pSurgeon_mPulseGenerator.positionable[x] = TRUE AND
91 pSurgeon_aoRVLeadProximalTip.orientable[pitch_back] = TRUE AND
92 pSurgeon_aoRVLeadProximalTip.orientable[pitch_forth] = TRUE AND
93 pSurgeon_aoRVLeadProximalTip.orientable[yaw_left] = TRUE AND
94 pSurgeon_aoRVLeadProximalTip.orientable[yaw_right] = TRUE AND
95 FORALL(x: translate): pSurgeon_aoRVLeadProximalTip.translatable[x] = TRUE AND
96 FORALL(x: position): pSurgeon_aoRVLeadProximalTip.positionable[x] = TRUE;
97
98 END;
99

100 HES: MODULE =
101 BEGIN
102 OUTPUT pSurgeon: pSurgeon_rels
103 OUTPUT aoLVLeadProximalTip: aoLVLeadProximalTip_rels
104 OUTPUT aoRVSetScrew: aoRVSetScrew_rels
105 OUTPUT aoLVSetScrew: aoLVSetScrew_rels
106 OUTPUT aoRALeadProximalTip: aoRALeadProximalTip_rels
107 OUTPUT aoRVLeadProximalTip: aoRVLeadProximalTip_rels
108 OUTPUT pSurgeon_mPulseGenerator: abilities
109 OUTPUT pSurgeon_aoLVLeadProximalTip: abilities
110 OUTPUT pSurgeon_aoRVLeadProximalTip: abilities
111 INPUT LVLeadConnectableToRVPort: BOOLEAN
112 INPUT LVLeadConnectableToLVPort: BOOLEAN
113 INPUT RVLeadConnectableToRVPort: BOOLEAN
114
115 INITIALIZATION
116 (FORALL(x: orient): pSurgeon_mPulseGenerator.orientable[x] = TRUE
117 AND pSurgeon_aoLVLeadProximalTip.orientable[x] = TRUE
118 AND pSurgeon_aoRVLeadProximalTip.orientable[x] = TRUE);
119 (FORALL(x: position): pSurgeon_mPulseGenerator.positionable[x] = TRUE
120 AND pSurgeon_aoLVLeadProximalTip.positionable[x] = TRUE
121 AND pSurgeon_aoRVLeadProximalTip.positionable[x] = TRUE);
122 (FORALL(x: translate): pSurgeon_mPulseGenerator.translatable[x] = TRUE
123 AND pSurgeon_aoLVLeadProximalTip.translatable[x] = TRUE
124 AND pSurgeon_aoRVLeadProximalTip.translatable[x] = TRUE);
125
126 pSurgeon IN {x: pSurgeon_rels |
127 (FORALL(y: directional , z: topological): x.aoRVPort[y] = z => (y /= front_of => z =

disjoint_to)) AND
128 (FORALL(y: directional , z: topological): x.aoLVPort[y] = z => (y /= front_of => z =

disjoint_to))};
129
130 aoLVLeadProximalTip IN {x: aoLVLeadProximalTip_rels |
131 (FORALL(q: directional , r: topological):
132 (q /= front_of AND r = overlapping) OR (q /= back_of AND r = covering) =>
133 not(x.aoRAPort[q] = r OR x.aoRVPort[q] = r OR x.aoLVPort[q] = r)) AND
134 not(EXISTS(y, z: topological , s, t: directional):
135 ((y = touching AND z = touching) OR (y = overlapping AND z = overlapping))
136 AND ((s = top_of AND t = bottom_of) OR (s = left_of AND t = right_of) OR (s =

back_of OR t = back_of))
137 AND ((x.aoRVPort[s] = y AND x.aoRVPort[t] = z)
138 OR (x.aoLVPort[s] = y AND x.aoLVPort[t] = z)
139 OR (x.aoRAPort[s] = y AND x.aoRAPort[t] = z)))
140 AND (( EXISTS(y: directional): x.aoRVPort[y] /= disjoint_to) =>
141 (FORALL(z: directional): x.aoLVPort[z] = disjoint_to AND x.aoRAPort[z] =

disjoint_to))
142 AND (( EXISTS(y: directional): x.aoLVPort[y] /= disjoint_to) =>
143 (FORALL(z: directional): x.aoRVPort[z] = disjoint_to AND x.aoRAPort[z] =

disjoint_to))
144 AND (( EXISTS(y: directional): x.aoRAPort[y] /= disjoint_to) =>
145 (FORALL(z: directional): x.aoLVPort[z] = disjoint_to AND x.aoRVPort[z] =

disjoint_to))};
146
147 aoRVLeadProximalTip IN {x: aoRVLeadProximalTip_rels |
148 (FORALL(q: directional , r: topological):
149 (q /= front_of AND r = overlapping) OR (q /= back_of AND r = covering) =>
150 not(x.aoRAPort[q] = r OR x.aoRVPort[q] = r OR x.aoLVPort[q] = r)) AND
151 not(EXISTS(y, z: topological , s, t: directional):
152 ((y = touching AND z = touching) OR (y = overlapping AND z = overlapping))
153 AND ((s = top_of AND t = bottom_of) OR (s = left_of AND t = right_of) OR (s =

back_of OR t = back_of))
154 AND ((x.aoRVPort[s] = y AND x.aoRVPort[t] = z)
155 OR (x.aoLVPort[s] = y AND x.aoLVPort[t] = z)
156 OR (x.aoRAPort[s] = y AND x.aoRAPort[t] = z)))
157 AND (( EXISTS(y: directional): x.aoRVPort[y] /= disjoint_to) =>
158 (FORALL(z: directional): x.aoLVPort[z] = disjoint_to AND x.aoRAPort[z] =
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disjoint_to))
159 AND (( EXISTS(y: directional): x.aoLVPort[y] /= disjoint_to) =>
160 (FORALL(z: directional): x.aoRVPort[z] = disjoint_to AND x.aoRAPort[z] =

disjoint_to))
161 AND (( EXISTS(y: directional): x.aoRAPort[y] /= disjoint_to) =>
162 (FORALL(z: directional): x.aoLVPort[z] = disjoint_to AND x.aoRVPort[z] =

disjoint_to))};
163
164 aoRALeadProximalTip IN {x: aoRALeadProximalTip_rels |
165 (FORALL(q: directional , r: topological):
166 (q /= front_of AND r = overlapping) OR (q /= back_of AND r = covering) =>
167 not(x.aoRVPort[q] = r OR x.aoLVPort[q] = r)) AND
168 not(EXISTS(y, z: topological , s, t: directional):
169 ((y = touching AND z = touching) OR (y = overlapping AND z = overlapping)) AND
170 ((s = top_of AND t = bottom_of) OR (s = left_of AND t = right_of) OR (s = back_of

OR t = back_of))
171 AND ((x.aoRVPort[s] = y AND x.aoRVPort[t] = z)
172 OR (x.aoLVPort[s] = y AND x.aoLVPort[t] = z)))
173 AND (( EXISTS(y: directional): x.aoRVPort[y] /= disjoint_to) =>
174 (FORALL(z: directional): x.aoLVPort[z] = disjoint_to))
175 AND (( EXISTS(y: directional): x.aoLVPort[y] /= disjoint_to) =>
176 (FORALL(z: directional): x.aoRVPort[z] = disjoint_to))};
177
178 aoRVSetScrew IN {x: aoRVSetScrew_rels |
179 (FORALL(y: directional): (y = right_of => x.mPulseGenerator[y] = touching OR x.

mPulseGenerator[y] = disjoint_to) AND
180 (y /= right_of => x.mPulseGenerator[y] = disjoint_to))};
181 aoLVSetScrew IN {x: aoLVSetScrew_rels |
182 (FORALL(y: directional): (y = right_of => x.mPulseGenerator[y] = touching OR x.

mPulseGenerator[y] = disjoint_to) AND
183 (y /= right_of => x.mPulseGenerator[y] = disjoint_to))};
184
185 TRANSITION [
186 LVLeadConnectableToRVPort -->
187 (FORALL(d: directional):
188 aoLVLeadProximalTip ’. aoRVPort[d] = covering;
189 aoLVLeadProximalTip ’. aoLVPort[d] = disjoint_to;
190 aoLVLeadProximalTip ’. aoRAPort[d] = disjoint_to);
191
192 [] LVLeadConnectableToLVPort -->
193 (FORALL(d: directional):
194 aoLVLeadProximalTip ’. aoLVPort[d] = covering;
195 aoLVLeadProximalTip ’. aoRVPort[d] = disjoint_to;
196 aoLVLeadProximalTip ’. aoRAPort[d] = disjoint_to);
197 [] RVLeadConnectableToRVPort -->
198 (FORALL(d: directional):
199 aoRVLeadProximalTip ’. aoRVPort[d] = covering;
200 aoRVLeadProximalTip ’. aoLVPort[d] = disjoint_to;
201 aoRVLeadProximalTip ’. aoRAPort[d] = disjoint_to);
202 []ELSE -->
203 ];
204 END;
205 affordances: MODULE = affordance || HES;
206 END
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Appendix G: Chapter 7 Code Listing

G.1 XML Code

1 <bigsis xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
2 xsi:noNamespaceSchemaLocation="../../ schema/bigsis -2.0. xsd">
3 <signified -meanings name="PumpSpeed">Stopped , Low , Lowest , Medium , High , Highest ,

BelowFiveThousandRPM , AboveFiveThousandRPM , EightThousandRPM ,
4 NineThousandRPM , TenThousandRPM , ElevenThousandRPM , TwelveThousandRPM </signified -meanings

>
5 <signified -meanings name="PowerSupplied">ThreeToFourUnits , FourToFiveUnits , FiveToSixUnits ,

SixToSevenUnits ,
6 SevenToEightUnits , EightToNineUnits , NineToTenUnits , TenToElevenUnits ,

ElevenToTwelveUnits ,
7 ThreeToFourWatts , FourToFiveWatts , FiveToSixWatts , SixToSevenWatts , SevenToEightWatts ,
8 EightToNineWatts , NineToTenWatts , TenToElevenWatts , ElevenToTwelveWatts ,
9 FiveToSevenWatts , SevenToNineWatts , EightToTenWatts , ThirteenUnits ,

ThirteenWattsOrGreater </signified -meanings >
10 <signifier -properties of="PowerIndicators">
11 <Color signifies="PowerSupplied" when -colored="Green">PowerIndicators.Label.PowerSupplied

</Color>
12 <Color signifies="PowerSupplied" when -colored="Amber">ThirteenUnits </Color>
13 <Label signifies="PowerSupplied" when -labeled="ThreeAndFour">ThreeToFourUnits </Label>
14 <Label signifies="PowerSupplied" when -labeled="FourAndFive">FourToFiveUnits </Label >
15 <Label signifies="PowerSupplied" when -labeled="FiveAndSix">FiveToSixUnits </Label>
16 <Label signifies="PowerSupplied" when -labeled="SixAndSeven">SixToSevenUnits </Label >
17 <Label signifies="PowerSupplied" when -labeled="SevenAndEight">SevenToEightUnits </Label>
18 <Label signifies="PowerSupplied" when -labeled="EightAndNine">EightToNineUnits </Label>
19 <Label signifies="PowerSupplied" when -labeled="NineAndTen">NineToTenUnits </Label>
20 <Label signifies="PowerSupplied" when -labeled="TenAndEleven">TenToElevenUnits </Label>
21 <Label signifies="PowerSupplied" when -labeled="ElevenAndTwelve">ElevenToTwelveUnits </

Label>
22 <Label signifies="PowerSupplied" when -labeled="Thirteen">ThirteenUnits </Label>
23 <aPattern signifies="PowerSupplied" when -pattern="Continuous">ThirteenUnits </aPattern >
24 <Volume signifies="PowerSupplied" when -level="Loud">ThirteenUnits </Volume >
25 </signifier -properties >
26 <signifier -properties of="PumpStoppedAlarm">
27 <Color signifies="PumpSpeed" when -colored="Red">Stopped </Color>
28 <Color signifies="PumpSpeed" when -colored="noColor">SpeedSettingKnob.Label.PumpSpeed </

Color>
29 <aPattern signifies="PumpSpeed" when -pattern="Continuous">Stopped </aPattern >
30 <Volume signifies="PumpSpeed" when -level="Loud">Stopped </Volume >
31 </signifier -properties >
32 <signifier -properties of="SpeedSettingKnob">
33 <Label signifies="PumpSpeed" when -labeled="One">Lowest </Label>
34 <Label signifies="PumpSpeed" when -labeled="Two">Low</Label>
35 <Label signifies="PumpSpeed" when -labeled="Three">Medium </Label>
36 <Label signifies="PumpSpeed" when -labeled="Four">High</Label>
37 <Label signifies="PumpSpeed" when -labeled="Five">Highest </Label>
38 </signifier -properties >
39 <property -documentation of="PowerIndicators">
40 <Color signifies="PumpSpeed" when -colored="Green">PowerIndicators.Label.PumpSpeed </Color>
41 <Color signifies="PowerSupplied" when -colored="Green">PowerIndicators.Label.PowerSupplied

</Color>
42 <Color signifies="PowerSupplied" when -colored="Amber">ThirteenWattsOrGreater </Color>
43 <Label signifies="PowerSupplied" when -labeled="ThreeAndFour">ThreeToFourWatts </Label>
44 <Label signifies="PowerSupplied" when -labeled="FourAndFive">FourToFiveWatts </Label >
45 <Label signifies="PowerSupplied" when -labeled="FiveAndSix">FiveToSixWatts </Label>
46 <Label signifies="PowerSupplied" when -labeled="SixAndSeven">SixToSevenWatts </Label >
47 <Label signifies="PowerSupplied" when -labeled="SevenAndEight">SevenToEightWatts </Label>
48 <Label signifies="PowerSupplied" when -labeled="EightAndNine">EightToNineWatts </Label>
49 <Label signifies="PowerSupplied" when -labeled="NineAndTen">NineToTenWatts </Label>
50 <Label signifies="PowerSupplied" when -labeled="TenAndEleven">TenToElevenWatts </Label>
51 <Label signifies="PowerSupplied" when -labeled="ElevenAndTwelve">ElevenToTwelveWatts </

Label>
52 <Label signifies="PowerSupplied" when -labeled="Thirteen">ThirteenWattsOrGreater </Label>
53 <Label signifies="PumpSpeed" when -labeled="ThreeAndFour">EightThousandRPM </Label>
54 <Label signifies="PumpSpeed" when -labeled="FourAndFive">NineThousandRPM </Label>
55 <Label signifies="PumpSpeed" when -labeled="FiveAndSix">TenThousandRPM </Label>
56 <Label signifies="PumpSpeed" when -labeled="SixAndSeven">TenThousandRPM </Label>
57 <Label signifies="PumpSpeed" when -labeled="SevenAndEight">ElevenThousandRPM </Label >
58 <Label signifies="PumpSpeed" when -labeled="NineAndTen">TwelveThousandRPM </Label>
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59 <aPattern signifies="PowerSupplied" when -pattern="Continuous">ThirteenWattsOrGreater </
aPattern >

60 <Volume signifies="PowerSupplied" when -level="Loud">ThirteenWattsOrGreater </Volume >
61 </property -documentation >
62 <property -documentation of="PumpStoppedAlarm">
63 <Color signifies="PumpSpeed" when -colored="Red">BelowFiveThousandRPM </Color>
64 <aPattern signifies="PumpSpeed" when -pattern="Continuous">BelowFiveThousandRPM </aPattern >
65 <Volume signifies="PumpSpeed" when -level="Loud">BelowFiveThousandRPM </Volume >
66 </property -documentation >
67 <property -documentation of="SpeedSettingKnob">
68 <Label signifies="PumpSpeed" when -labeled="One">EightThousandRPM </Label>
69 <Label signifies="PumpSpeed" when -labeled="Two">NineThousandRPM </Label>
70 <Label signifies="PumpSpeed" when -labeled="Three">TenThousandRPM </Label>
71 <Label signifies="PumpSpeed" when -labeled="Four">ElevenThousandRPM </Label>
72 <Label signifies="PumpSpeed" when -labeled="Five">TwelveThousandRPM </Label>
73 <Label signifies="PowerSupplied" when -labeled="One">ThreeToFourWatts </Label>
74 <Label signifies="PowerSupplied" when -labeled="Two">FourToFiveWatts </Label>
75 <Label signifies="PowerSupplied" when -labeled="Three">FiveToSevenWatts </Label>
76 <Label signifies="PowerSupplied" when -labeled="Four">SevenToNineWatts </Label>
77 <Label signifies="PowerSupplied" when -labeled="Five">EightToTenWatts </Label>
78 </property -documentation >
79 </bigsis >

G.2 SAL Code

G.2.1 BIGSIS-SAL Model

1 bigsis: CONTEXT =
2 BEGIN
3 PumpSpeed: TYPE = {PumpSpeedNotSignified , Stopped , Low , Lowest , Medium , High , Highest ,

BelowFiveThousandRPM , AboveFiveThousandRPM , EightThousandRPM ,
4 NineThousandRPM , TenThousandRPM , ElevenThousandRPM , TwelveThousandRPM };
5 PowerSupplied: TYPE = {PowerSuppliedNotSignified , ThreeToFourUnits , FourToFiveUnits ,

FiveToSixUnits , SixToSevenUnits ,
6 SevenToEightUnits , EightToNineUnits , NineToTenUnits , TenToElevenUnits ,

ElevenToTwelveUnits ,
7 ThreeToFourWatts , FourToFiveWatts , FiveToSixWatts , SixToSevenWatts , SevenToEightWatts ,
8 EightToNineWatts , NineToTenWatts , TenToElevenWatts , ElevenToTwelveWatts ,
9 FiveToSevenWatts , SevenToNineWatts , EightToTenWatts , ThirteenUnits ,

ThirteenWattsOrGreater };
10 COLORS: TYPE = {Green ,Amber ,Red ,noColor };
11 colorSwitch(x: [BOOLEAN ->COLORS ]): COLORS;
12 LABELS: TYPE = {ThreeAndFour ,FourAndFive ,FiveAndSix ,SixAndSeven ,SevenAndEight ,EightAndNine ,

NineAndTen ,TenAndEleven ,ElevenAndTwelve ,Thirteen ,One ,Two ,Three ,Four ,Five ,noLabel };
13 PTRN: TYPE = {Continuous ,noPattern };
14 VOL: TYPE = {Loud ,noVolume };
15 ORNT: TYPE = {noOrientation , up, down , left , right , away , toward };
16 Colors_signify: TYPE = [# Colored: COLORS , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed #];
17 Labels_signify: TYPE = [# Labeled: LABELS , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed #];
18 aPatterns_signify: TYPE = [# Pattern: PTRN , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed

#];
19 Volumes_signify: TYPE = [#Level: VOL , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed #];
20 PowerIndicators_signifiers: TYPE = [# Color: Colors_signify , Label: Labels_signify , aPattern:

aPatterns_signify , Volume: Volumes_signify #];
21 PumpStoppedAlarm_signifiers: TYPE = [# Color: Colors_signify , aPattern: aPatterns_signify ,

Volume: Volumes_signify #];
22 SpeedSettingKnob_signifiers: TYPE = [# Label: Labels_signify #];
23 Doc_PowerIndicators_signifiers: TYPE = [#Color: Colors_signify , Label: Labels_signify , aPattern

: aPatterns_signify , Volume: Volumes_signify #];
24 Doc_PumpStoppedAlarm_signifiers: TYPE = [#Color: Colors_signify , aPattern: aPatterns_signify ,

Volume: Volumes_signify #];
25 Doc_SpeedSettingKnob_signifiers: TYPE = [#Label: Labels_signify #];
26 signifiers: MODULE =
27 BEGIN
28 LOCAL PowerIndicators: PowerIndicators_signifiers
29 LOCAL PumpStoppedAlarm: PumpStoppedAlarm_signifiers
30 LOCAL SpeedSettingKnob: SpeedSettingKnob_signifiers
31 LOCAL Doc_PowerIndicators: Doc_PowerIndicators_signifiers
32 LOCAL Doc_PumpStoppedAlarm: Doc_PumpStoppedAlarm_signifiers
33 LOCAL Doc_SpeedSettingKnob: Doc_SpeedSettingKnob_signifiers
34 INPUT action: bigsisDeviceModel!rotations
35 INPUT alarm: bigsisDeviceModel!alarms
36 LOCAL PowerLabel: LABELS
37 DEFINITION
38 PowerLabel IN {ThreeAndFour ,FourAndFive ,FiveAndSix ,SixAndSeven ,SevenAndEight ,EightAndNine ,

NineAndTen ,TenAndEleven ,ElevenAndTwelve };
39 INITIALIZATION
40 PowerIndicators.Color.Colored = Green;
41 PowerIndicators.Volume.Level = Loud;



404

42 PowerIndicators.aPattern.Pattern = Continuous;
43 PumpStoppedAlarm.Color.Colored = Red;
44 PumpStoppedAlarm.Volume.Level = Loud;
45 PumpStoppedAlarm.aPattern.Pattern = Continuous;
46 SpeedSettingKnob.Label.Labeled = Four;
47 PowerIndicators.Label.Labeled = EightAndNine;
48 TRANSITION
49 [
50 alarm ’ = bigsisDeviceModel!HighPower -->
51 PowerIndicators ’.Color.Colored = Amber;
52 PowerIndicators ’.Label.Labeled = Thirteen;
53 PowerIndicators ’. Volume.Level = Loud;
54 PowerIndicators ’. aPattern.Pattern = Continuous;
55 PumpStoppedAlarm ’.Color.Colored = noColor;
56 PumpStoppedAlarm ’. Volume.Level = Loud;
57 PumpStoppedAlarm ’. aPattern.Pattern = Continuous;
58 []alarm ’ = bigsisDeviceModel!PumpStopped -->
59 PowerIndicators ’.Color.Colored = Green;
60 PowerIndicators ’.Label.Labeled = PowerLabel;
61 PowerIndicators ’. Volume.Level = Loud;
62 PowerIndicators ’. aPattern.Pattern = Continuous;
63 PumpStoppedAlarm ’.Color.Colored = Red;
64 PumpStoppedAlarm ’. Volume.Level = Loud;
65 PumpStoppedAlarm ’. aPattern.Pattern = Continuous;
66 []alarm ’ = bigsisDeviceModel!NoAlarm -->
67 PowerIndicators ’.Color.Colored = Green;
68 PowerIndicators ’.Label.Labeled = PowerLabel;
69 PowerIndicators ’. Volume.Level = noVolume;
70 PowerIndicators ’. aPattern.Pattern = noPattern;
71 PumpStoppedAlarm ’.Color.Colored = noColor;
72 PumpStoppedAlarm ’. Volume.Level = noVolume;
73 PumpStoppedAlarm ’. aPattern.Pattern = noPattern;
74 []action ’ = bigsisDeviceModel!increaseSpeed -->
75 SpeedSettingKnob ’.Label.Labeled = IF SpeedSettingKnob.Label.Labeled = One THEN Two
76 ELSIF SpeedSettingKnob.Label.Labeled = Two THEN Three
77 ELSIF SpeedSettingKnob.Label.Labeled = Three THEN Four
78 ELSE Five
79 ENDIF;
80 []action ’ = bigsisDeviceModel!decreaseSpeed -->
81 SpeedSettingKnob ’.Label.Labeled = IF SpeedSettingKnob.Label.Labeled = Two THEN One
82 ELSIF SpeedSettingKnob.Label.Labeled = Three THEN Two
83 ELSIF SpeedSettingKnob.Label.Labeled = Four THEN Three
84 ELSE Four
85 ENDIF;
86 []ELSE -->
87 ];
88
89 INITIALIZATION
90 PowerIndicators.Color.PowerSupplied = IF PowerIndicators.Color.Colored = Green THEN

PowerIndicators.Label.PowerSupplied ELSIF PowerIndicators.Color.Colored = Amber THEN
ThirteenUnits ELSE PowerSuppliedNotSignified ENDIF;

91 PowerIndicators.Label.PowerSupplied = IF PowerIndicators.Label.Labeled = ThreeAndFour THEN
ThreeToFourUnits ELSIF PowerIndicators.Label.Labeled = FourAndFive THEN FourToFiveUnits
ELSIF PowerIndicators.Label.Labeled = FiveAndSix THEN FiveToSixUnits ELSIF
PowerIndicators.Label.Labeled = SixAndSeven THEN SixToSevenUnits ELSIF PowerIndicators.
Label.Labeled = SevenAndEight THEN SevenToEightUnits ELSIF PowerIndicators.Label.Labeled
= EightAndNine THEN EightToNineUnits ELSIF PowerIndicators.Label.Labeled = NineAndTen

THEN NineToTenUnits ELSIF PowerIndicators.Label.Labeled = TenAndEleven THEN
TenToElevenUnits ELSIF PowerIndicators.Label.Labeled = ElevenAndTwelve THEN
ElevenToTwelveUnits ELSIF PowerIndicators.Label.Labeled = Thirteen THEN ThirteenUnits
ELSE PowerSuppliedNotSignified ENDIF;

92 PowerIndicators.aPattern.PowerSupplied = IF PowerIndicators.aPattern.Pattern = Continuous
THEN ThirteenUnits ELSE PowerSuppliedNotSignified ENDIF;

93 PowerIndicators.Volume.PowerSupplied = IF PowerIndicators.Volume.Level = Loud THEN
ThirteenUnits ELSE PowerSuppliedNotSignified ENDIF;

94 PumpStoppedAlarm.Color.PumpSpeed = IF PumpStoppedAlarm.Color.Colored = Red THEN Stopped ELSIF
PumpStoppedAlarm.Color.Colored = noColor THEN SpeedSettingKnob.Label.PumpSpeed ELSE

PumpSpeedNotSignified ENDIF;
95 PumpStoppedAlarm.aPattern.PumpSpeed = IF PumpStoppedAlarm.aPattern.Pattern = Continuous THEN

Stopped ELSE PumpSpeedNotSignified ENDIF;
96 PumpStoppedAlarm.Volume.PumpSpeed = IF PumpStoppedAlarm.Volume.Level = Loud THEN Stopped ELSE

PumpSpeedNotSignified ENDIF;
97 SpeedSettingKnob.Label.PumpSpeed = IF SpeedSettingKnob.Label.Labeled = One THEN Lowest ELSIF

SpeedSettingKnob.Label.Labeled = Two THEN Low ELSIF SpeedSettingKnob.Label.Labeled =
Three THEN Medium ELSIF SpeedSettingKnob.Label.Labeled = Four THEN High ELSIF
SpeedSettingKnob.Label.Labeled = Five THEN Highest ELSE PumpSpeedNotSignified ENDIF;

98 Doc_PowerIndicators.Color.PumpSpeed = IF PowerIndicators.Color.Colored = Green THEN
Doc_PowerIndicators.Label.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

99 Doc_PowerIndicators.Color.PowerSupplied = IF PowerIndicators.Color.Colored = Green THEN
Doc_PowerIndicators.Label.PowerSupplied ELSIF PowerIndicators.Color.Colored = Amber THEN
ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;
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100 Doc_PowerIndicators.Label.PowerSupplied = IF PowerIndicators.Label.Labeled = ThreeAndFour
THEN ThreeToFourWatts ELSIF PowerIndicators.Label.Labeled = FourAndFive THEN
FourToFiveWatts ELSIF PowerIndicators.Label.Labeled = FiveAndSix THEN FiveToSixWatts
ELSIF PowerIndicators.Label.Labeled = SixAndSeven THEN SixToSevenWatts ELSIF
PowerIndicators.Label.Labeled = SevenAndEight THEN SevenToEightWatts ELSIF
PowerIndicators.Label.Labeled = EightAndNine THEN EightToNineWatts ELSIF PowerIndicators
.Label.Labeled = NineAndTen THEN NineToTenWatts ELSIF PowerIndicators.Label.Labeled =
TenAndEleven THEN TenToElevenWatts ELSIF PowerIndicators.Label.Labeled = ElevenAndTwelve
THEN ElevenToTwelveWatts ELSIF PowerIndicators.Label.Labeled = Thirteen THEN

ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;
101 Doc_PowerIndicators.Label.PumpSpeed = IF PowerIndicators.Label.Labeled = ThreeAndFour THEN

EightThousandRPM ELSIF PowerIndicators.Label.Labeled = FourAndFive THEN NineThousandRPM
ELSIF PowerIndicators.Label.Labeled = FiveAndSix THEN TenThousandRPM ELSIF
PowerIndicators.Label.Labeled = SixAndSeven THEN TenThousandRPM ELSIF PowerIndicators.
Label.Labeled = SevenAndEight THEN ElevenThousandRPM ELSIF PowerIndicators.Label.Labeled
= NineAndTen THEN TwelveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

102 Doc_PowerIndicators.aPattern.PowerSupplied = IF PowerIndicators.aPattern.Pattern = Continuous
THEN ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;

103 Doc_PowerIndicators.Volume.PowerSupplied = IF PowerIndicators.Volume.Level = Loud THEN
ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;

104 Doc_PumpStoppedAlarm.Color.PumpSpeed = IF PumpStoppedAlarm.Color.Colored = Red THEN
BelowFiveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

105 Doc_PumpStoppedAlarm.aPattern.PumpSpeed = IF PumpStoppedAlarm.aPattern.Pattern = Continuous
THEN BelowFiveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

106 Doc_PumpStoppedAlarm.Volume.PumpSpeed = IF PumpStoppedAlarm.Volume.Level = Loud THEN
BelowFiveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

107 Doc_SpeedSettingKnob.Label.PumpSpeed = IF SpeedSettingKnob.Label.Labeled = One THEN
EightThousandRPM ELSIF SpeedSettingKnob.Label.Labeled = Two THEN NineThousandRPM ELSIF
SpeedSettingKnob.Label.Labeled = Three THEN TenThousandRPM ELSIF SpeedSettingKnob.Label.
Labeled = Four THEN ElevenThousandRPM ELSIF SpeedSettingKnob.Label.Labeled = Five THEN
TwelveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

108 Doc_SpeedSettingKnob.Label.PowerSupplied = IF SpeedSettingKnob.Label.Labeled = One THEN
ThreeToFourWatts ELSIF SpeedSettingKnob.Label.Labeled = Two THEN FourToFiveWatts ELSIF
SpeedSettingKnob.Label.Labeled = Three THEN FiveToSevenWatts ELSIF SpeedSettingKnob.
Label.Labeled = Four THEN SevenToNineWatts ELSIF SpeedSettingKnob.Label.Labeled = Five
THEN EightToTenWatts ELSE PowerSuppliedNotSignified ENDIF;

109
110 TRANSITION
111 PowerIndicators ’.Color.PowerSupplied = IF PowerIndicators ’. Color.Colored = Green THEN

PowerIndicators ’.Label.PowerSupplied ELSIF PowerIndicators ’. Color.Colored = Amber THEN
ThirteenUnits ELSE PowerSuppliedNotSignified ENDIF;

112 PowerIndicators ’.Label.PowerSupplied = IF PowerIndicators ’. Label.Labeled = ThreeAndFour THEN
ThreeToFourUnits ELSIF PowerIndicators ’.Label.Labeled = FourAndFive THEN FourToFiveUnits
ELSIF PowerIndicators ’. Label.Labeled = FiveAndSix THEN FiveToSixUnits ELSIF

PowerIndicators ’.Label.Labeled = SixAndSeven THEN SixToSevenUnits ELSIF PowerIndicators
’. Label.Labeled = SevenAndEight THEN SevenToEightUnits ELSIF PowerIndicators ’. Label.
Labeled = EightAndNine THEN EightToNineUnits ELSIF PowerIndicators ’. Label.Labeled =
NineAndTen THEN NineToTenUnits ELSIF PowerIndicators ’.Label.Labeled = TenAndEleven THEN
TenToElevenUnits ELSIF PowerIndicators ’.Label.Labeled = ElevenAndTwelve THEN
ElevenToTwelveUnits ELSIF PowerIndicators ’.Label.Labeled = Thirteen THEN ThirteenUnits
ELSE PowerSuppliedNotSignified ENDIF;

113 PowerIndicators ’. aPattern.PowerSupplied = IF PowerIndicators ’. aPattern.Pattern = Continuous
THEN ThirteenUnits ELSE PowerSuppliedNotSignified ENDIF;

114 PowerIndicators ’. Volume.PowerSupplied = IF PowerIndicators ’. Volume.Level = Loud THEN
ThirteenUnits ELSE PowerSuppliedNotSignified ENDIF;

115 PumpStoppedAlarm ’. Color.PumpSpeed = IF PumpStoppedAlarm ’. Color.Colored = Red THEN Stopped
ELSIF PumpStoppedAlarm ’.Color.Colored = noColor THEN SpeedSettingKnob ’.Label.PumpSpeed
ELSE PumpSpeedNotSignified ENDIF;

116 PumpStoppedAlarm ’. aPattern.PumpSpeed = IF PumpStoppedAlarm ’. aPattern.Pattern = Continuous
THEN Stopped ELSE PumpSpeedNotSignified ENDIF;

117 PumpStoppedAlarm ’. Volume.PumpSpeed = IF PumpStoppedAlarm ’. Volume.Level = Loud THEN Stopped
ELSE PumpSpeedNotSignified ENDIF;

118 SpeedSettingKnob ’. Label.PumpSpeed = IF SpeedSettingKnob ’. Label.Labeled = One THEN Lowest
ELSIF SpeedSettingKnob ’.Label.Labeled = Two THEN Low ELSIF SpeedSettingKnob ’.Label.
Labeled = Three THEN Medium ELSIF SpeedSettingKnob ’.Label.Labeled = Four THEN High ELSIF
SpeedSettingKnob ’.Label.Labeled = Five THEN Highest ELSE PumpSpeedNotSignified ENDIF;

119 Doc_PowerIndicators ’.Color.PumpSpeed = IF PowerIndicators ’. Color.Colored = Green THEN
Doc_PowerIndicators ’. Label.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

120 Doc_PowerIndicators ’.Color.PowerSupplied = IF PowerIndicators ’.Color.Colored = Green THEN
Doc_PowerIndicators ’. Label.PowerSupplied ELSIF PowerIndicators ’.Color.Colored = Amber
THEN ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;

121 Doc_PowerIndicators ’.Label.PowerSupplied = IF PowerIndicators ’.Label.Labeled = ThreeAndFour
THEN ThreeToFourWatts ELSIF PowerIndicators ’. Label.Labeled = FourAndFive THEN
FourToFiveWatts ELSIF PowerIndicators ’.Label.Labeled = FiveAndSix THEN FiveToSixWatts
ELSIF PowerIndicators ’. Label.Labeled = SixAndSeven THEN SixToSevenWatts ELSIF
PowerIndicators ’.Label.Labeled = SevenAndEight THEN SevenToEightWatts ELSIF
PowerIndicators ’.Label.Labeled = EightAndNine THEN EightToNineWatts ELSIF
PowerIndicators ’.Label.Labeled = NineAndTen THEN NineToTenWatts ELSIF PowerIndicators ’.
Label.Labeled = TenAndEleven THEN TenToElevenWatts ELSIF PowerIndicators ’.Label.Labeled
= ElevenAndTwelve THEN ElevenToTwelveWatts ELSIF PowerIndicators ’. Label.Labeled =
Thirteen THEN ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;
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122 Doc_PowerIndicators ’.Label.PumpSpeed = IF PowerIndicators ’. Label.Labeled = ThreeAndFour THEN
EightThousandRPM ELSIF PowerIndicators ’.Label.Labeled = FourAndFive THEN NineThousandRPM
ELSIF PowerIndicators ’. Label.Labeled = FiveAndSix THEN TenThousandRPM ELSIF

PowerIndicators ’.Label.Labeled = SixAndSeven THEN TenThousandRPM ELSIF PowerIndicators ’.
Label.Labeled = SevenAndEight THEN ElevenThousandRPM ELSIF PowerIndicators ’. Label.
Labeled = NineAndTen THEN TwelveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

123 Doc_PowerIndicators ’. aPattern.PowerSupplied = IF PowerIndicators ’. aPattern.Pattern =
Continuous THEN ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;

124 Doc_PowerIndicators ’. Volume.PowerSupplied = IF PowerIndicators ’. Volume.Level = Loud THEN
ThirteenWattsOrGreater ELSE PowerSuppliedNotSignified ENDIF;

125 Doc_PumpStoppedAlarm ’.Color.PumpSpeed = IF PumpStoppedAlarm ’. Color.Colored = Red THEN
BelowFiveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

126 Doc_PumpStoppedAlarm ’. aPattern.PumpSpeed = IF PumpStoppedAlarm ’. aPattern.Pattern = Continuous
THEN BelowFiveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

127 Doc_PumpStoppedAlarm ’. Volume.PumpSpeed = IF PumpStoppedAlarm ’. Volume.Level = Loud THEN
BelowFiveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

128 Doc_SpeedSettingKnob ’.Label.PumpSpeed = IF SpeedSettingKnob ’. Label.Labeled = One THEN
EightThousandRPM ELSIF SpeedSettingKnob ’. Label.Labeled = Two THEN NineThousandRPM ELSIF
SpeedSettingKnob ’.Label.Labeled = Three THEN TenThousandRPM ELSIF SpeedSettingKnob ’.
Label.Labeled = Four THEN ElevenThousandRPM ELSIF SpeedSettingKnob ’.Label.Labeled = Five
THEN TwelveThousandRPM ELSE PumpSpeedNotSignified ENDIF;

129 Doc_SpeedSettingKnob ’.Label.PowerSupplied = IF SpeedSettingKnob ’.Label.Labeled = One THEN
ThreeToFourWatts ELSIF SpeedSettingKnob ’. Label.Labeled = Two THEN FourToFiveWatts ELSIF
SpeedSettingKnob ’.Label.Labeled = Three THEN FiveToSevenWatts ELSIF SpeedSettingKnob ’.
Label.Labeled = Four THEN SevenToNineWatts ELSIF SpeedSettingKnob ’. Label.Labeled = Five
THEN EightToTenWatts ELSE PowerSuppliedNotSignified ENDIF;

130
131 OUTPUT Visually_Signified_PumpSpeed: PumpSpeed
132 OUTPUT Audibly_Signified_PumpSpeed: PumpSpeed
133 OUTPUT Documented_PumpSpeed: PumpSpeed
134 OUTPUT Visually_Signified_PowerSupplied: PowerSupplied
135 OUTPUT Audibly_Signified_PowerSupplied: PowerSupplied
136 OUTPUT Documented_PowerSupplied: PowerSupplied
137
138 DEFINITION
139 Visually_Signified_PumpSpeed IN {PumpStoppedAlarm.Color.PumpSpeed , SpeedSettingKnob.Label.

PumpSpeed };
140 Visually_Signified_PowerSupplied IN {PowerIndicators.Color.PowerSupplied , PowerIndicators.

Label.PowerSupplied };
141 Audibly_Signified_PumpSpeed IN {PumpStoppedAlarm.aPattern.PumpSpeed , PumpStoppedAlarm.Volume

.PumpSpeed };
142 Audibly_Signified_PowerSupplied IN {PowerIndicators.aPattern.PowerSupplied , PowerIndicators.

Volume.PowerSupplied };
143 Documented_PumpSpeed IN {Doc_PowerIndicators.Color.PumpSpeed , Doc_PowerIndicators.Label.

PumpSpeed , Doc_PumpStoppedAlarm.Color.PumpSpeed , Doc_PumpStoppedAlarm.aPattern.
PumpSpeed , Doc_PumpStoppedAlarm.Volume.PumpSpeed , Doc_SpeedSettingKnob.Label.PumpSpeed
};

144 Documented_PowerSupplied IN {Doc_PowerIndicators.Color.PowerSupplied , Doc_PowerIndicators.
Label.PowerSupplied , Doc_PowerIndicators.aPattern.PowerSupplied , Doc_PowerIndicators.
Volume.PowerSupplied , Doc_SpeedSettingKnob.Label.PowerSupplied };

145 END;
146
147 END

G.2.2 Device Model

1 bigsisDeviceModel: CONTEXT =
2 BEGIN
3 alarms : TYPE = {NoAlarm , UnderSpeed , PumpStopped , HighPower };
4 rotations: TYPE = {increaseSpeed , decreaseSpeed , none};
5
6 device: MODULE =
7 BEGIN
8 OUTPUT action: rotations
9 OUTPUT alarm: alarms

10
11 INITIALIZATION
12 alarm = PumpStopped;
13 action = none;
14
15 TRANSITION
16 alarm ’ IN
17 IF alarm = NoAlarm
18 THEN {PumpStopped , HighPower , NoAlarm}
19 ELSIF alarm = PumpStopped
20 THEN {NoAlarm , HighPower}
21 ELSE {NoAlarm , PumpStopped}
22 ENDIF;
23 [
24 action = none -->
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25 action ’ IN {increaseSpeed , decreaseSpeed };
26 [] action = increaseSpeed -->
27 action ’ IN {decreaseSpeed , none};
28 [] action = decreaseSpeed -->
29 action ’ IN {increaseSpeed , none};
30 []ELSE -->
31 ];
32 END;
33 END
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Appendix H: Chapter 9 Code Listing

H.1 XML Code

H.1.1 Task Models

In the EOFM-XML code shown below, variable declarations are on lines 4–60. The EOFM task
model representing the pump speed adjustment procedure is on lines 61–82. The EOFM task model
representing the pump stopped alarm troubleshooting procedure is on lines 83–240.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <eofms xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
3 xsi:noNamespaceSchemaLocation="../../../../ Research/git/schema/OFMr8.xsd">
4 <userdefinedtype name="tSpeed">[BOOLEAN -> INTEGER]</userdefinedtype >
5 <userdefinedtype name="tRotationCounter">[0..3] </userdefinedtype >
6 <userdefinedtype name="tOldComponentsLocation">{AtHand , SetAside}</userdefinedtype >
7 <userdefinedtype name="tConnection">{Connected , Disconnected}</userdefinedtype >
8 <userdefinedtype name="tPartTag">{redTagged , notRedTagged}</userdefinedtype >
9 <userdefinedtype name="tPermAttachedConnectorStatus">{Broken , Assembled}</userdefinedtype >

10 <userdefinedtype name="tAlarmBatteryCap">{Loosened , Tightened}</userdefinedtype >
11 <humanoperator name="pPumpOperator">
12 <inputvariable name="iPage" basictype="{x: INTEGER | x &gt;= 0 AND x &lt;= 29}"/>
13 <inputvariable name="iAlarm" basictype="discreteDevice!Alarms"/>
14 <inputvariable name="iSpeedSetting" basictype="discreteDevice!SpeedSettings"/>
15 <inputvariable name="iPowerLight" basictype="discreteDevice!PowerLights"/>
16 <inputvariable name="iSpeedSettingKnobLight" basictype="discreteDevice!KnobLight"/>
17 <inputvariable name="iOldComponentTags" userdefinedtype="tPartTag"/>
18 <inputvariable name="iLeadBattToOldController" userdefinedtype="tConnection"/>
19 <inputvariable name="iLeadBattToNewController" userdefinedtype="tConnection"/>
20 <inputvariable name="iLeadBattToYCable" userdefinedtype="tConnection"/>
21 <inputvariable name="iYCableToOldController" userdefinedtype="tConnection"/>
22 <inputvariable name="iOldLiBattCableToYCable" userdefinedtype="tConnection"/>
23 <inputvariable name="iOldLiBattCableToOldController" userdefinedtype="tConnection"/>
24 <inputvariable name="iOldLiBattCableToOldLiBatt" userdefinedtype="tConnection"/>
25 <inputvariable name="iPumpCableToOldController" userdefinedtype="tConnection"/>
26 <inputvariable name="iAbCableToOldController" userdefinedtype="tConnection"/>
27 <inputvariable name="iNewLiBattCableToNewLiBatt" userdefinedtype="tConnection"/>
28 <inputvariable name="iNewLiBattCableToNewController" userdefinedtype="tConnection"/>
29 <inputvariable name="iPumpCableToOldAbCable" userdefinedtype="tConnection"/>
30 <inputvariable name="iPumpCableToNewController" userdefinedtype="tConnection"/>
31 <inputvariable name="iNewLiBatteryLights" basictype="discreteDevice!BatteryLights"/>
32 <inputvariable name="iPermanentlyAttachedConnector" userdefinedtype="

tPermAttachedConnectorStatus"/>
33 <inputvariable name="iRotationCounter" userdefinedtype="tRotationCounter"/>
34 <inputvariable name="iNewControllerAlarmBatteryCap" userdefinedtype="tAlarmBatteryCap"/>
35 <inputvariable name="iOldControllerAlarmBatteryCap" userdefinedtype="tAlarmBatteryCap"/>
36 <inputvariable name="iOldComponents" userdefinedtype="tOldComponentsLocation"/>
37 <localvariable name="lDesiredSpeed" basictype="discreteDevice!SpeedSettings">
38 <initialvalue >IN {1, 2, 3, 4, 5}</initialvalue >
39 </localvariable >
40 <humanaction name="hCallEmergencyNumber" behavior="autoreset"/>
41 <humanaction name="hRedTagOldComponents" behavior="autoreset"/>
42 <humanaction name="hSetAsideOldComponents" behavior="autoreset"/>
43 <humanaction name="hRotateConnectorParts" behavior="autoreset"/>
44 <humanaction name="hDisassembleConnector" behavior="autoreset"/>
45 <humanaction name="hReassembleBrokenConnector" behavior="autoreset"/>
46 <humanaction name="hDiscPumpCableFromAbCable" behavior="autoreset"/>
47 <humanaction name="hDiscPumpCableFromOldController" behavior="autoreset"/>
48 <humanaction name="hDiscLeadBattFromNewController" behavior="autoreset"/>
49 <humanaction name="hDiscNewLiBattCableFromNewController" behavior="autoreset"/>
50 <humanaction name="hConNewLiBattCableToNewController" behavior="autoreset"/>
51 <humanaction name="hConNewLiBattCableToNewLiBatt" behavior="autoreset"/>
52 <humanaction name="hConLeadBattToNewController" behavior="autoreset"/>
53 <humanaction name="hConPumpCableToNewController" behavior="autoreset"/>
54 <humanaction name="hDepressBlackButtonOnNewLiBatt" behavior="autoreset"/>
55 <humanaction name="hRotateKnobClockwise" behavior="autoreset"/>
56 <humanaction name="hRotateKnobCounterclockwise" behavior="autoreset"/>
57 <humanaction name="hTightenNewControllerABCap" behavior="autoreset"/>
58 <humanaction name="hLoosenOldControllerABCap" behavior="autoreset"/>
59 <humanaction name="hLoosenNewControllerABCap" behavior="autoreset"/>
60 <eofm>
61 <activity name="aAdjustSpeed">
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62 <precondition >iSpeedSetting /= lDesiredSpeed AND iAlarm = discreteDevice!NoAlarm <
/precondition >

63 <completioncondition >iSpeedSetting = lDesiredSpeed </completioncondition >
64 <decomposition operator="xor">
65 <activity name="aIncreaseSetting">
66 <precondition >iSpeedSetting &lt; lDesiredSpeed AND iPage = 8</

precondition >
67 <repeatcondition >iSpeedSetting &lt; lDesiredSpeed </repeatcondition >
68 <decomposition operator="ord">
69 <action humanaction="hRotateKnobCounterclockwise"/>
70 </decomposition >
71 </activity >
72 <activity name="aDecreaseSetting">
73 <precondition >iSpeedSetting &gt; lDesiredSpeed AND iPage = 8</

precondition >
74 <repeatcondition >iSpeedSetting &gt; lDesiredSpeed </repeatcondition >
75 <decomposition operator="ord">
76 <action humanaction="hRotateKnobClockwise"/>
77 </decomposition >
78 </activity >
79 </decomposition >
80 </activity >
81 </eofm>
82 <eofm>
83 <activity name="aRespondToPumpStoppedAlarm">
84 <precondition >iAlarm = discreteDevice!PumpStopped </precondition >
85 <completioncondition >iAlarm /= discreteDevice!PumpStopped </completioncondition >
86 <decomposition operator="ord">
87 <activity name="aStep1FixBrokenConnector">
88 <precondition >iPermanentlyAttachedConnector = Broken AND iPage = 13</

precondition >
89 <decomposition operator="ord">
90 <activity name="aReassembleConnector">
91 <completioncondition >iPermanentlyAttachedConnector = Assembled </

completioncondition >
92 <decomposition operator="ord">
93 <action humanaction="hReassembleBrokenConnector"/>
94 </decomposition >
95 </activity >
96 <activity name="aTryRotatingParts">
97 <precondition >iRotationCounter = 0</precondition >
98 <repeatcondition >iRotationCounter &lt; 3</repeatcondition >
99 <completioncondition >iRotationCounter = 3 AND

iPermanentlyAttachedConnector = Assembled </
completioncondition >

100 <decomposition operator="ord">
101 <action humanaction="hDisassembleConnector"/>
102 <action humanaction="hRotateConnectorParts"/>
103 <action humanaction="hReassembleBrokenConnector"/>
104 </decomposition >
105 </activity >
106 </decomposition >
107 </activity >
108 <activity name="aStep2DisconnectOldParts">
109 <precondition >iPage = 13</precondition >
110 <decomposition operator="ord">
111 <activity name="aDiscPumpFromOldController">
112 <decomposition operator="xor">
113 <activity name="aDiscPumpCableFromAbCable">
114 <precondition >iPumpCableToOldAbCable = Connected AND

iAbCableToOldController = Connected </precondition >
115 <decomposition operator="ord">
116 <action humanaction="hDiscPumpCableFromAbCable"/>
117 </decomposition >
118 </activity >
119 <activity name="aDiscPumpCableFromOldController">
120 <precondition >iPumpCableToOldController = Connected AND

iAbCableToOldController = Disconnected </precondition
>

121 <decomposition operator="ord">
122 <action humanaction="hDiscPumpCableFromOldController"

/>
123 </decomposition >
124 </activity >
125 </decomposition >
126 </activity >
127 <activity name="aSilenceAlarmOnOldController">
128 <precondition >iOldControllerAlarmBatteryCap = Tightened </

precondition >
129 <completioncondition >iOldControllerAlarmBatteryCap = Loosened </

completioncondition >
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130 <decomposition operator="ord">
131 <action humanaction="hLoosenOldControllerABCap"/>
132 </decomposition >
133 </activity >
134 <activity name="aSetAsideOldComponents">
135 <precondition >iOldComponents = AtHand </precondition >
136 <completioncondition >iOldComponents = SetAside </

completioncondition >
137 <decomposition operator="ord">
138 <action humanaction="hSetAsideOldComponents"/>
139 </decomposition >
140 </activity >
141 </decomposition >
142 </activity >
143 <activity name="aStep3ConnectNewController">
144 <precondition >iPumpCableToOldController = Disconnected AND

iPumpCableToOldAbCable = Disconnected AND iPage = 13</precondition >
145 <completioncondition >iPumpCableToNewController = Connected AND

iNewControllerAlarmBatteryCap = Tightened </completioncondition >
146 <decomposition operator="ord">
147 <activity name="aConPumpCableToNewController">
148 <decomposition operator="ord">
149 <action humanaction="hConPumpCableToNewController"/>
150 </decomposition >
151 </activity >
152 <activity name="aActivateAlarmOnNewController">
153 <precondition >iNewControllerAlarmBatteryCap = Loosened </

precondition >
154 <completioncondition >iNewControllerAlarmBatteryCap = Tightened </

completioncondition >
155 <decomposition operator="ord">
156 <action humanaction="hTightenNewControllerABCap"/>
157 </decomposition >
158 </activity >
159 </decomposition >
160 </activity >
161 <activity name="aStep4TryLeadBattery">
162 <precondition >iPage = 13 AND iLeadBattToOldController = Disconnected AND
163 NOT(iLeadBattToYCable = Connected AND iYCableToOldController =

Connected)</precondition >
164 <decomposition operator="ord">
165 <activity name="aConLeadBattToNewController">
166 <precondition >iLeadBattToNewController = Disconnected </

precondition >
167 <completioncondition >iLeadBattToNewController = Connected </

completioncondition >
168 <decomposition operator="ord">
169 <action humanaction="hConLeadBattToNewController"/>
170 </decomposition >
171 </activity >
172 <activity name="aDiscLeadBattFromNewController">
173 <precondition >iLeadBattToNewController = Connected </precondition >
174 <completioncondition >iLeadBattToNewController = Disconnected </

completioncondition >
175 <decomposition operator="ord">
176 <action humanaction="hDiscLeadBattFromNewController"/>
177 </decomposition >
178 </activity >
179 </decomposition >
180 </activity >
181 <activity name="aStep5TryLiIonBattery">
182 <precondition >iPage = 14</precondition >
183 <decomposition operator="ord">
184 <activity name="aCheckLiBatteryLevel">
185 <decomposition operator="ord">
186 <action humanaction="hDepressBlackButtonOnNewLiBatt"/>
187 </decomposition >
188 </activity >
189 <activity name="aConnectBattOrCallEmergencyNumber">
190 <decomposition operator="xor">
191 <activity name="aCallEmergencyNumber">
192 <precondition >iNewLiBatteryLights &lt; 5</precondition >
193 <decomposition operator="ord">
194 <action humanaction="hCallEmergencyNumber"/>
195 </decomposition >
196 </activity >
197 <activity name="aConnectFullyChargedLiBatt">
198 <precondition >iNewLiBatteryLights = 5</precondition >
199 <decomposition operator="ord">
200 <activity name="aConNewLiBattCableToNewController">
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201 <precondition >iNewLiBattCableToNewController =
Disconnected </precondition >

202 <completioncondition >
iNewLiBattCableToNewController = Connected </
completioncondition >

203 <decomposition operator="ord">
204 <action humanaction="

hConNewLiBattCableToNewController"/>
205 </decomposition >
206 </activity >
207 <activity name="aConNewLiBattCableToNewLiBatt">
208 <precondition >iNewLiBattCableToNewLiBatt =

Disconnected </precondition >
209 <completioncondition >iNewLiBattCableToNewLiBatt =

Connected </completioncondition >
210 <decomposition operator="ord">
211 <action humanaction="

hConNewLiBattCableToNewLiBatt"/>
212 </decomposition >
213 </activity >
214 <activity name="aBreakCircuit">
215 <completioncondition >iPowerLight = 0</

completioncondition >
216 <decomposition operator="ord">
217 <action humanaction="

hDiscNewLiBattCableFromNewController"/>
218 </decomposition >
219 </activity >
220 <activity name="aCallEmergency">
221 <decomposition operator="ord">
222 <action humanaction="hCallEmergencyNumber"/>
223 </decomposition >
224 </activity >
225 </decomposition >
226 </activity >
227 </decomposition >
228 </activity >
229 </decomposition >
230 </activity >
231 <activity name="aStep6TagOldComponents">
232 <precondition >iPage = 14 AND iOldComponentTags = notRedTagged </

precondition >
233 <completioncondition >iOldComponentTags = redTagged </completioncondition >
234 <decomposition operator="ord">
235 <action humanaction="hRedTagOldComponents"/>
236 </decomposition >
237 </activity >
238 </decomposition >
239 </activity >
240 </eofm>
241 </humanoperator >
242 </eofms>

H.1.2 Affordance Model

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <hes xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
3 xsi:noNamespaceSchemaLocation="../../ schema/cavemen.xsd">
4 <modelobject name="mOldController">
5 <atomicobject name="aoOCPumpInput"/>
6 <atomicobject name="aoOCBatteryInput"/>
7 </modelobject >
8 <modelobject name="mOldLiIonBattery">
9 <atomicobject name="aoOBBattCableInput"/>

10 </modelobject >
11 <modelobject name="mOldLiBattCable">
12 <atomicobject name="aoOBCBatteryOutput"/>
13 <atomicobject name="aoOBCControllerOutput"/>
14 </modelobject >
15 <modelobject name="mNewController">
16 <atomicobject name="aoNCPumpInput"/>
17 <atomicobject name="aoNCBatteryInput"/>
18 </modelobject >
19 <modelobject name="mNewLiIonBattery">
20 <atomicobject name="aoNBBattCableInput"/>
21 </modelobject >
22 <modelobject name="mNewLiBattCable">
23 <atomicobject name="aoNBCBatteryOutput"/>
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24 <atomicobject name="aoNBCControllerOutput"/>
25 </modelobject >
26 <modelobject name="mLeadBattery">
27 <subobject name="sLeadBattCable">
28 <atomicobject name="aoLeadBattControllerOutput"/>
29 </subobject >
30 </modelobject >
31 <modelobject name="mPumpCable">
32 <subobject name="sConnector">
33 <atomicobject name="aoConnectorPart1"/>
34 <atomicobject name="aoConnectorPart2"/>
35 </subobject >
36 <atomicobject name="aoPCControllerOutput"/>
37 </modelobject >
38 <modelobject name="mAbdominalCable">
39 <atomicobject name="aoACControllerOutput"/>
40 <atomicobject name="aoACPumpInput"/>
41 </modelobject >
42 <modelobject name="mYCable">
43 <atomicobject name="aoYCControllerOutput"/>
44 <atomicobject name="aoYCableBatteryInput1"/>
45 <atomicobject name="aoYCableBatteryInput2"/>
46 </modelobject >
47
48 <affordance name="ConnectorPartsAssemblable" formalism="chemero">
49 <humanoperator name="pPumpOperator">
50 <atomcomponent name="aoConnectorPart1">
51 <relation condition="not" topology="covering"
52 direction="front_of" associate="aoConnectorPart2"/>
53 <ability name="AssemblePart1">
54 <positionable back="true"/>
55 </ability >
56 </atomcomponent >
57 <atomcomponent name="aoConnectorPart2">
58 <ability name="AssemblePart2">
59 <positionable forth="true"/>
60 </ability >
61 </atomcomponent >
62 </humanoperator >
63 </affordance >
64 <affordance name="ConnectorPartsDisassemblable" formalism="chemero">
65 <humanoperator name="pPumpOperator">
66 <atomcomponent name="aoConnectorPart1">
67 <relation topology="covering" direction="front_of"
68 associate="aoConnectorPart2"/>
69 <ability name="DisassemblePart1">
70 <positionable forth="true"/>
71 </ability >
72 </atomcomponent >
73 <atomcomponent name="aoConnectorPart2">
74 <ability name="DisassemblePart2">
75 <positionable back="true"/>
76 </ability >
77 </atomcomponent >
78 </humanoperator >
79 </affordance >
80 <affordance name="ConnectorPartsRotatable" formalism="chemero">
81 <humanoperator name="pPumpOperator">
82 <atomcomponent name="aoConnectorPart1">
83 <relation topology="disjoint_to" direction="front_of"
84 associate="aoConnectorPart2"/>
85 <ability name="RotatePart1">
86 <orientable roll_right="true" roll_left="true"/>
87 </ability >
88 </atomcomponent >
89 <atomcomponent name="aoConnectorPart2">
90 <relation topology="disjoint_to" direction="back_of"
91 associate="aoConnectorPart1"/>
92 <ability name="RotatePart2">
93 <orientable roll_right="true" roll_left="true"/>
94 </ability >
95 </atomcomponent >
96 </humanoperator >
97 </affordance >
98 <affordance name="PumpCableDisconnectableFromAbCable" formalism="chemero">
99 <humanoperator name="pPumpOperator">

100 <atomcomponent name="aoACPumpInput">
101 <relation topology="covering" associate="aoPCControllerOutput"/>
102 <ability name="MoveAbCablePumpInputBack">
103 <positionable back="true"/>
104 </ability >
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105 </atomcomponent >
106 <atomcomponent name="aoPCControllerOutput">
107 <ability name="MovePumpCableControllerOutputBack">
108 <positionable back="true"/>
109 </ability >
110 </atomcomponent >
111 </humanoperator >
112 </affordance >
113 <affordance name="PumpCableDisconnectableFromOldController" formalism="chemero">
114 <humanoperator name="pPumpOperator">
115 <component name="mOldController">
116 <ability name="MoveOldControllerBack">
117 <positionable back="true"/>
118 </ability >
119 </component >
120 <atomcomponent name="aoOCPumpInput">
121 <relation topology="covering" associate="aoPCControllerOutput"/>
122 </atomcomponent >
123 <atomcomponent name="aoPCControllerOutput">
124 <ability name="MovePumpCableControllerOutputBack">
125 <positionable back="true"/>
126 </ability >
127 </atomcomponent >
128 </humanoperator >
129 </affordance >
130 <affordance name="LeadBattDisconnectableFromNewController" formalism="chemero">
131 <humanoperator name="pPumpOperator">
132 <component name="mNewController">
133 <ability name="MoveNewControllerBack">
134 <positionable back="true"/>
135 </ability >
136 </component >
137 <atomcomponent name="aoNCBatteryInput">
138 <relation topology="covering" associate="aoLeadBattControllerOutput"/>
139 </atomcomponent >
140 <atomcomponent name="aoLeadBattControllerOutput">
141 <ability name="MoveLeadBattCableControllerOutputBack">
142 <positionable back="true"/>
143 </ability >
144 </atomcomponent >
145 </humanoperator >
146 </affordance >
147 <affordance name="NewLiBattCableDisconnectableFromNewController" formalism="chemero">
148 <humanoperator name="pPumpOperator">
149 <component name="mNewController">
150 <ability name="MoveNewControllerBack">
151 <positionable back="true"/>
152 </ability >
153 </component >
154 <atomcomponent name="aoNCBatteryInput">
155 <relation topology="covering" associate="aoNBCControllerOutput"/>
156 </atomcomponent >
157 <atomcomponent name="aoNBCControllerOutput">
158 <ability name="MoveNewLiBattCableControllerOutputBack">
159 <positionable back="true"/>
160 </ability >
161 </atomcomponent >
162 </humanoperator >
163 </affordance >
164 <affordance name="PumpCableConnectableToNewController" formalism="chemero">
165 <humanoperator name="pPumpOperator">
166 <component name="mNewController">
167 <ability name="MoveNewController">
168 <orientable roll_left="true" roll_right="true"
169 pitch_back="true" pitch_forth="true"
170 yaw_left="true" yaw_right="true"/>
171 <translatable left="true" right="true"/>
172 <positionable back="true" forth="true"
173 up="true" down="true"/>
174 </ability >
175 </component >
176 <atomcomponent name="aoOCPumpInput">
177 <relation condition="not" topology="covering"
178 associate="aoPCControllerOutput"/>
179 </atomcomponent >
180 <atomcomponent name="aoNCPumpInput">
181 <relation condition="not" topology="covering"
182 associate="aoPCControllerOutput"/>
183 </atomcomponent >
184 <atomcomponent name="aoACPumpInput">
185 <relation condition="not" topology="covering"



414

186 associate="aoPCControllerOutput"/>
187 </atomcomponent >
188 <atomcomponent name="aoPCControllerOutput">
189 <ability name="MovePumpCableOutput">
190 <orientable pitch_back="true" pitch_forth="true"
191 yaw_left="true" yaw_right="true"/>
192 <translatable left="true" right="true"/>
193 <positionable back="true" forth="true"
194 up="true" down="true"/>
195 </ability >
196 </atomcomponent >
197 </humanoperator >
198 </affordance >
199 <affordance name="LeadBattConnectableToNewController" formalism="chemero">
200 <humanoperator name="pPumpOperator">
201 <component name="mNewController">
202 <ability name="MoveNewController">
203 <orientable roll_left="true" roll_right="true"
204 pitch_back="true" pitch_forth="true"
205 yaw_left="true" yaw_right="true"/>
206 <translatable left="true" right="true"/>
207 <positionable back="true" forth="true"
208 up="true" down="true"/>
209 </ability >
210 </component >
211 <atomcomponent name="aoNCBatteryInput">
212 <relation condition="not" topology="covering"
213 associate="aoLeadBattControllerOutput"/>
214 <relation condition="not" topology="covering"
215 associate="aoOBCControllerOutput"/>
216 <relation condition="not" topology="covering"
217 associate="aoNBCControllerOutput"/>
218 <relation condition="not" topology="covering"
219 associate="aoYCControllerOutput"/>
220 </atomcomponent >
221 <atomcomponent name="aoOCBatteryInput">
222 <relation condition="not" topology="covering"
223 associate="aoLeadBattControllerOutput"/>
224 </atomcomponent >
225 <atomcomponent name="aoYCableBatteryInput1">
226 <relation condition="not" topology="covering"
227 associate="aoLeadBattControllerOutput"/>
228 </atomcomponent >
229 <atomcomponent name="aoYCableBatteryInput2">
230 <relation condition="not" topology="covering"
231 associate="aoLeadBattControllerOutput"/>
232 </atomcomponent >
233 <atomcomponent name="aoLeadBattControllerOutput">
234 <ability name="MoveLeadBattControllerOutput">
235 <orientable pitch_back="true" pitch_forth="true"
236 yaw_left="true" yaw_right="true"/>
237 <translatable left="true" right="true"/>
238 <positionable back="true" forth="true"
239 up="true" down="true"/>
240 </ability >
241 </atomcomponent >
242 </humanoperator >
243 </affordance >
244 <affordance name="NewLiBattCableConnectableToNewController" formalism="chemero">
245 <humanoperator name="pPumpOperator">
246 <component name="mNewController">
247 <ability name="MoveNewController">
248 <orientable roll_left="true" roll_right="true"
249 pitch_back="true" pitch_forth="true"
250 yaw_left="true" yaw_right="true"/>
251 <translatable left="true" right="true"/>
252 <positionable back="true" forth="true"
253 up="true" down="true"/>
254 </ability >
255 </component >
256 <atomcomponent name="aoNCBatteryInput">
257 <relation condition="not" topology="covering"
258 associate="aoOBCControllerOutput"/>
259 <relation condition="not" topology="covering"
260 associate="aoNBCControllerOutput"/>
261 <relation condition="not" topology="covering"
262 associate="aoYCControllerOutput"/>
263 <relation condition="not" topology="covering"
264 associate="aoLeadBattControllerOutput"/>
265 </atomcomponent >
266 <atomcomponent name="aoOCBatteryInput">
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267 <relation condition="not" topology="covering"
268 associate="aoNBCControllerOutput"/>
269 </atomcomponent >
270 <atomcomponent name="aoYCableBatteryInput1">
271 <relation condition="not" topology="covering"
272 associate="aoNBCControllerOutput"/>
273 </atomcomponent >
274 <atomcomponent name="aoYCableBatteryInput2">
275 <relation condition="not" topology="covering"
276 associate="aoNBCControllerOutput"/>
277 </atomcomponent >
278 <atomcomponent name="aoNBCControllerOutput">
279 <ability name="MoveNewBattCableControllerOutput">
280 <orientable pitch_back="true" pitch_forth="true"
281 yaw_left="true" yaw_right="true"/>
282 <translatable left="true" right="true"/>
283 <positionable back="true" forth="true"
284 up="true" down="true"/>
285 </ability >
286 </atomcomponent >
287 </humanoperator >
288 </affordance >
289 <affordance name="OldLiBattCableConnectableToNewController" formalism="chemero">
290 <humanoperator name="pPumpOperator">
291 <component name="mNewController">
292 <ability name="MoveNewController">
293 <orientable roll_left="true" roll_right="true"
294 pitch_back="true" pitch_forth="true"
295 yaw_left="true" yaw_right="true"/>
296 <translatable left="true" right="true"/>
297 <positionable back="true" forth="true"
298 up="true" down="true"/>
299 </ability >
300 </component >
301 <atomcomponent name="aoNCBatteryInput">
302 <relation condition="not" topology="covering"
303 associate="aoOBCControllerOutput"/>
304 <relation condition="not" topology="covering"
305 associate="aoNBCControllerOutput"/>
306 <relation condition="not" topology="covering"
307 associate="aoYCControllerOutput"/>
308 <relation condition="not" topology="covering"
309 associate="aoLeadBattControllerOutput"/>
310 </atomcomponent >
311 <atomcomponent name="aoYCableBatteryInput1">
312 <relation condition="not" topology="covering"
313 associate="aoOBCControllerOutput"/>
314 </atomcomponent >
315 <atomcomponent name="aoYCableBatteryInput2">
316 <relation condition="not" topology="covering"
317 associate="aoOBCControllerOutput"/>
318 </atomcomponent >
319 <atomcomponent name="aoOCBatteryInput">
320 <relation condition="not" topology="covering"
321 associate="aoOBCControllerOutput"/>
322 </atomcomponent >
323 <atomcomponent name="aoOBCControllerOutput">
324 <ability name="MoveOldBattCableControllerOutput">
325 <orientable pitch_back="true" pitch_forth="true"
326 yaw_left="true" yaw_right="true"/>
327 <translatable left="true" right="true"/>
328 <positionable back="true" forth="true"
329 up="true" down="true"/>
330 </ability >
331 </atomcomponent >
332 </humanoperator >
333 </affordance >
334 <affordance name="NewLiBattCableConnectableToNewLiBatt" formalism="chemero">
335 <humanoperator name="pPumpOperator">
336 <component name="mNewLiIonBattery">
337 <ability name="MoveNewLiBattery">
338 <orientable pitch_back="true" pitch_forth="true"
339 yaw_left="true" yaw_right="true"/>
340 <translatable left="true" right="true"/>
341 <positionable back="true" forth="true"
342 up="true" down="true"/>
343 </ability >
344 </component >
345 <atomcomponent name="aoOBBattCableInput">
346 <relation condition="not" topology="covering"
347 associate="aoNBCBatteryOutput"/>
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348 </atomcomponent >
349 <atomcomponent name="aoNBBattCableInput">
350 <relation condition="not" topology="covering"
351 associate="aoNBCBatteryOutput"/>
352 <relation condition="not" topology="covering"
353 associate="aoOBCBatteryOutput"/>
354 </atomcomponent >
355 <atomcomponent name="aoNBCBatteryOutput">
356 <ability name="MoveNewBattCableBatteryOutput">
357 <orientable pitch_back="true" pitch_forth="true"
358 yaw_left="true" yaw_right="true"/>
359 <translatable left="true" right="true"/>
360 <positionable back="true" forth="true"
361 up="true" down="true"/>
362 </ability >
363 </atomcomponent >
364 </humanoperator >
365 </affordance >
366 <affordance name="NewLiBattCableConnectableToOldLiBatt" formalism="chemero">
367 <humanoperator name="pPumpOperator">
368 <component name="mOldLiIonBattery">
369 <ability name="MoveOldLiBattery">
370 <orientable pitch_back="true" pitch_forth="true"
371 yaw_left="true" yaw_right="true"/>
372 <translatable left="true" right="true"/>
373 <positionable back="true" forth="true"
374 up="true" down="true"/>
375 </ability >
376 </component >
377 <atomcomponent name="aoOBBattCableInput">
378 <relation condition="not" topology="covering"
379 associate="aoNBCBatteryOutput"/>
380 <relation condition="not" topology="covering"
381 associate="aoOBCBatteryOutput"/>
382 </atomcomponent >
383 <atomcomponent name="aoNBBattCableInput">
384 <relation condition="not" topology="covering"
385 associate="aoNBCBatteryOutput"/>
386 </atomcomponent >
387 <atomcomponent name="aoNBCBatteryOutput">
388 <ability name="MoveNewBattCableBatteryOutput">
389 <orientable pitch_back="true" pitch_forth="true"
390 yaw_left="true" yaw_right="true"/>
391 <translatable left="true" right="true"/>
392 <positionable back="true" forth="true"
393 up="true" down="true"/>
394 </ability >
395 </atomcomponent >
396 </humanoperator >
397 </affordance >
398 </hes>

H.1.3 Signifier Model

1 <bigsis xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
2 xsi:noNamespaceSchemaLocation="../../ schema/bigsis -2.0. xsd">
3 <signified -meanings name="PumpSpeed">Stopped , Low , Lowest , Medium , High , Highest </signified -

meanings >
4 <signified -meanings name="PowerSupplied">ZeroUnits , OneUnit , TwoUnits , ThreeUnits , FourUnits ,
5 FiveUnits , SixUnits , SevenUnits , EightUnits , NineUnits , TenUnits , TooHigh </signified -

meanings >
6 <signifier -properties of="PowerIndicators">
7 <Color signifies="PowerSupplied" when -colored="green">PowerIndicators.Label.PowerSupplied

</Color>
8 <Color signifies="PowerSupplied" when -colored="amber">TooHigh </Color >
9 <Label signifies="PowerSupplied" when -labeled="one">OneUnit </Label>

10 <Label signifies="PowerSupplied" when -labeled="two">TwoUnits </Label >
11 <Label signifies="PowerSupplied" when -labeled="three">ThreeUnits </Label>
12 <Label signifies="PowerSupplied" when -labeled="four">FourUnits </Label>
13 <Label signifies="PowerSupplied" when -labeled="five">FiveUnits </Label>
14 <Label signifies="PowerSupplied" when -labeled="six">SixUnits </Label >
15 <Label signifies="PowerSupplied" when -labeled="seven">SevenUnits </Label>
16 <Label signifies="PowerSupplied" when -labeled="eight">EightUnits </Label>
17 <Label signifies="PowerSupplied" when -labeled="nine">NineUnits </Label>
18 <Label signifies="PowerSupplied" when -labeled="ten">TenUnits </Label >
19 <Label signifies="PowerSupplied" when -labeled="HIGH">TooHigh </Label >
20 <Volume signifies="PowerSupplied" when -level="loud">PowerIndicators.aPattern.

PowerSupplied </Volume >
21 <aPattern signifies="PowerSupplied" when -pattern="POWER_TOO_HIGH">TooHigh </aPattern >
22 </signifier -properties >
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23 <signifier -properties of="PumpStoppedAlarm">
24 <Color signifies="PumpSpeed" when -colored="red">Stopped </Color>
25 <Color signifies="PumpSpeed" when -colored="noColor">SpeedSettingKnob.Label.PumpSpeed </

Color>
26 <Volume signifies="PumpSpeed" when -level="loud">PumpStoppedAlarm.aPattern.PumpSpeed </

Volume >
27 <aPattern signifies="PumpSpeed" when -pattern="PUMP_STOPPED">Stopped </aPattern >
28 </signifier -properties >
29 <signifier -properties of="SpeedSettingKnob">
30 <Color signifies="PumpSpeed" when -colored="white">SpeedSettingKnob.Label.PumpSpeed </Color

>
31 <Color signifies="PumpSpeed" when -colored="noColor">PumpStoppedAlarm.Color.PumpSpeed </

Color>
32 <Label signifies="PumpSpeed" when -labeled="noLabel">PumpStoppedAlarm.Color.PumpSpeed </

Label>
33 <Label signifies="PumpSpeed" when -labeled="one">Lowest </Label>
34 <Label signifies="PumpSpeed" when -labeled="two">Low</Label>
35 <Label signifies="PumpSpeed" when -labeled="three">Medium </Label>
36 <Label signifies="PumpSpeed" when -labeled="four">High</Label>
37 <Label signifies="PumpSpeed" when -labeled="five">Highest </Label>
38 </signifier -properties >
39 <property -documentation of="PowerIndicators">
40 <Color signifies="PowerSupplied" when -colored="green">PowerIndicators.Label.PowerSupplied

</Color>
41 <Color signifies="PowerSupplied" when -colored="noColor">ZeroUnits </Color>
42 <Color signifies="PumpSpeed" when -colored="noColor">Stopped </Color>
43 <Color signifies="PowerSupplied" when -colored="noColor">ZeroUnits </Color>
44 <Label signifies="PowerSupplied" when -labeled="noLabel">PowerIndicators.Color.

PowerSupplied </Label>
45 <Label signifies="PowerSupplied" when -labeled="HIGH">TooHigh </Label >
46 <Label signifies="PowerSupplied" when -labeled="one">OneUnit </Label>
47 <Label signifies="PowerSupplied" when -labeled="two">TwoUnits </Label >
48 <Label signifies="PowerSupplied" when -labeled="three">ThreeUnits </Label>
49 <Label signifies="PowerSupplied" when -labeled="four">FourUnits </Label>
50 <Label signifies="PowerSupplied" when -labeled="five">FiveUnits </Label>
51 <Label signifies="PowerSupplied" when -labeled="six">SixUnits </Label >
52 <Label signifies="PowerSupplied" when -labeled="seven">SevenUnits </Label>
53 <Label signifies="PowerSupplied" when -labeled="eight">EightUnits </Label>
54 <Label signifies="PowerSupplied" when -labeled="nine">NineUnits </Label>
55 <Label signifies="PowerSupplied" when -labeled="ten">TenUnits </Label >
56 <Color signifies="PowerSupplied" when -colored="amber">TooHigh </Color >
57 <Volume signifies="PowerSupplied" when -level="loud">PowerIndicators.aPattern.

PowerSupplied </Volume >
58 <aPattern signifies="PowerSupplied" when -pattern="POWER_TOO_HIGH">TooHigh </aPattern >
59 </property -documentation >
60 <property -documentation of="PumpStoppedAlarm">
61 <Color signifies="PumpSpeed" when -colored="red">Stopped </Color>
62 <Color signifies="PumpSpeed" when -colored="noColor">SpeedSettingKnob.Label.PumpSpeed </

Color>
63 <Volume signifies="PumpSpeed" when -level="loud">PumpStoppedAlarm.aPattern.PumpSpeed </

Volume >
64 <aPattern signifies="PumpSpeed" when -pattern="PUMP_STOPPED">Stopped </aPattern >
65 </property -documentation >
66 <property -documentation of="SpeedSettingKnob">
67 <Color signifies="PumpSpeed" when -colored="white">SpeedSettingKnob.Label.PumpSpeed </Color

>
68 <Color signifies="PumpSpeed" when -colored="noColor">PumpStoppedAlarm.Color.PumpSpeed </

Color>
69 <Label signifies="PumpSpeed" when -labeled="noLabel">Stopped </Label>
70 <Label signifies="PumpSpeed" when -labeled="one">Lowest </Label>
71 <Label signifies="PumpSpeed" when -labeled="two">Low</Label>
72 <Label signifies="PumpSpeed" when -labeled="three">Medium </Label>
73 <Label signifies="PumpSpeed" when -labeled="four">High</Label>
74 <Label signifies="PumpSpeed" when -labeled="five">Highest </Label>
75 </property -documentation >
76 </bigsis >

H.2 SAL Code

H.2.1 Documentation Navigation

1 documentation: CONTEXT =
2 BEGIN
3 keepPage(iPage: INTEGER): INTEGER = iPage;
4 turnPage(iPage: INTEGER): INTEGER = iPage + 1;
5 crossRef(ref: INTEGER): INTEGER = ref;
6 navigation: MODULE =
7 BEGIN
8 OUTPUT iPage: {x: INTEGER | x >= 0 AND x <= 29}
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9 INITIALIZATION
10 iPage = 2;
11 TRANSITION
12 [
13 iPage = 2 -->
14 iPage ’ IN {crossRef (8), crossRef (10), crossRef (13), crossRef (15)};
15 [] iPage = 8 -->
16 iPage ’ IN {keepPage(iPage), crossRef (2), crossRef (10)};
17 [] iPage = 10 -->
18 iPage ’ IN {keepPage(iPage), crossRef (2), crossRef (8), crossRef (13), crossRef (15)};
19 [] iPage = 13 -->
20 iPage ’ IN {keepPage(iPage), turnPage(iPage), crossRef (2), crossRef (10)};
21 [] iPage = 14 -->
22 iPage ’ IN {keepPage(iPage), crossRef (2)};
23 [] iPage = 15 -->
24 iPage ’ IN {keepPage(iPage), crossRef (2)};
25 ]
26 END;
27 END

H.2.2 Task Model

1 userManual : CONTEXT =
2 BEGIN
3
4 tActivityState: TYPE = {actReady , actExecuting , actDone };
5 tRotationCounter: TYPE = [0..3];
6 tOldComponentsLocation: TYPE = {AtHand , SetAside };
7 tConnection: TYPE = {Connected , Disconnected };
8 tPartTag: TYPE = {redTagged , notRedTagged };
9 tPermAttachedConnectorStatus: TYPE = {Broken , Assembled };

10 tAlarmBatteryCap: TYPE = {Loosened , Tightened };
11
12 system: MODULE =
13 BEGIN
14 OUTPUT ready: BOOLEAN
15 INPUT submitted: BOOLEAN
16
17 INITIALIZATION
18 ready = FALSE;
19
20 TRANSITION
21 [
22 NOT (ready OR submitted) -->
23 ready ’ = TRUE;
24 [] ready AND submitted -->
25 ready ’ = FALSE;
26 ];
27 END;
28
29 humanOperators: MODULE =
30 BEGIN
31 %% Variables for pPumpOperator
32 INPUT iPage: {x: INTEGER | x >= 0 AND x <= 29}
33 INPUT iAlarm: discreteDevice!Alarms
34 INPUT iSpeedSetting: discreteDevice!SpeedSettings
35 INPUT iPowerLight: discreteDevice!PowerLights
36 INPUT iOldComponentTags: tPartTag
37 INPUT iLeadBattToOldController: tConnection
38 INPUT iLeadBattToNewController: tConnection
39 INPUT iLeadBattToYCable: tConnection
40 INPUT iYCableToOldController: tConnection
41 INPUT iOldLiBattCableToYCable: tConnection
42 INPUT iOldLiBattCableToOldController: tConnection
43 INPUT iOldLiBattCableToOldLiBatt: tConnection
44 INPUT iPumpCableToOldController: tConnection
45 INPUT iAbCableToOldController: tConnection
46 INPUT iNewLiBattCableToNewLiBatt: tConnection
47 INPUT iNewLiBattCableToNewController: tConnection
48 INPUT iPumpCableToOldAbCable: tConnection
49 INPUT iPumpCableToNewController: tConnection
50 INPUT iNewLiBatteryLights: discreteDevice!BatteryLights
51 INPUT iPermanentlyAttachedConnector: tPermAttachedConnectorStatus
52 INPUT iRotationCounter: tRotationCounter
53 INPUT iNewControllerABCap: tAlarmBatteryCap
54 INPUT iOldControllerABCap: tAlarmBatteryCap
55 INPUT iOldComponents: tOldComponentsLocation
56 OUTPUT hCallEmergencyNumber: BOOLEAN
57 OUTPUT hRedTagOldComponents: BOOLEAN
58 OUTPUT hSetAsideOldComponents: BOOLEAN
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59 OUTPUT hRotateConnectorParts: BOOLEAN
60 OUTPUT hDisassembleConnector: BOOLEAN
61 OUTPUT hReassembleBrokenConnector: BOOLEAN
62 OUTPUT hDiscPumpCableFromAbCable: BOOLEAN
63 OUTPUT hDiscPumpCableFromOldController: BOOLEAN
64 OUTPUT hDiscLeadBattFromNewController: BOOLEAN
65 OUTPUT hDiscNewLiBattCableFromNewController: BOOLEAN
66 OUTPUT hConNewLiBattCableToNewController: BOOLEAN
67 OUTPUT hConNewLiBattCableToNewLiBatt: BOOLEAN
68 OUTPUT hDiscNewLiBattCableFromNewLiBatt: BOOLEAN
69 OUTPUT hConLeadBattToNewController: BOOLEAN
70 OUTPUT hConPumpCableToNewController: BOOLEAN
71 OUTPUT hConNewLeadBattToNewController: BOOLEAN
72 OUTPUT hDepressBlackButtonOnNewLiBatt: BOOLEAN
73 OUTPUT hRotateKnobClockwise: BOOLEAN
74 OUTPUT hRotateKnobCounterclockwise: BOOLEAN
75 OUTPUT hTightenNewControllerABCap: BOOLEAN
76 OUTPUT hLoosenOldControllerABCap: BOOLEAN
77 OUTPUT hLoosenNewControllerABCap: BOOLEAN
78 LOCAL lDesiredSpeed: discreteDevice!SpeedSettings
79 LOCAL aAdjustSpeed_Ready: BOOLEAN
80 LOCAL aAdjustSpeed_Executing: BOOLEAN
81 LOCAL aAdjustSpeed_Done: BOOLEAN
82 LOCAL aIncreaseSetting_Ready: BOOLEAN
83 LOCAL aIncreaseSetting_Executing: BOOLEAN
84 LOCAL aIncreaseSetting_Done: BOOLEAN
85 LOCAL aIncreaseSetting_Repeating: BOOLEAN
86 LOCAL hRotateKnobCounterclockwise_1: tActivityState
87 LOCAL aDecreaseSetting_Ready: BOOLEAN
88 LOCAL aDecreaseSetting_Executing: BOOLEAN
89 LOCAL aDecreaseSetting_Done: BOOLEAN
90 LOCAL aDecreaseSetting_Repeating: BOOLEAN
91 LOCAL hRotateKnobClockwise_2: tActivityState
92 LOCAL aRespondToPumpStoppedAlarm_Ready: BOOLEAN
93 LOCAL aRespondToPumpStoppedAlarm_Executing: BOOLEAN
94 LOCAL aRespondToPumpStoppedAlarm_Done: BOOLEAN
95 LOCAL aStep1FixBrokenConnector_Ready: BOOLEAN
96 LOCAL aStep1FixBrokenConnector_Executing: BOOLEAN
97 LOCAL aStep1FixBrokenConnector_Done: BOOLEAN
98 LOCAL aReassembleConnector_Ready: BOOLEAN
99 LOCAL aReassembleConnector_Executing: BOOLEAN

100 LOCAL aReassembleConnector_Done: BOOLEAN
101 LOCAL hReassembleBrokenConnector_3: tActivityState
102 LOCAL aTryRotatingParts_Ready: BOOLEAN
103 LOCAL aTryRotatingParts_Executing: BOOLEAN
104 LOCAL aTryRotatingParts_Done: BOOLEAN
105 LOCAL aTryRotatingParts_Repeating: BOOLEAN
106 LOCAL hDisassembleConnector_4: tActivityState
107 LOCAL hRotateConnectorParts_5: tActivityState
108 LOCAL hReassembleBrokenConnector_6: tActivityState
109 LOCAL aStep2DisconnectOldParts_Ready: BOOLEAN
110 LOCAL aStep2DisconnectOldParts_Executing: BOOLEAN
111 LOCAL aStep2DisconnectOldParts_Done: BOOLEAN
112 LOCAL aDiscPumpFromOldController_Ready: BOOLEAN
113 LOCAL aDiscPumpFromOldController_Executing: BOOLEAN
114 LOCAL aDiscPumpFromOldController_Done: BOOLEAN
115 LOCAL aDiscPumpCableFromAbCable_Ready: BOOLEAN
116 LOCAL aDiscPumpCableFromAbCable_Executing: BOOLEAN
117 LOCAL aDiscPumpCableFromAbCable_Done: BOOLEAN
118 LOCAL hDiscPumpCableFromAbCable_7: tActivityState
119 LOCAL aDiscPumpCableFromOldController_Ready: BOOLEAN
120 LOCAL aDiscPumpCableFromOldController_Executing: BOOLEAN
121 LOCAL aDiscPumpCableFromOldController_Done: BOOLEAN
122 LOCAL hDiscPumpCableFromOldController_8: tActivityState
123 LOCAL aSilenceAlarmOnOldController_Ready: BOOLEAN
124 LOCAL aSilenceAlarmOnOldController_Executing: BOOLEAN
125 LOCAL aSilenceAlarmOnOldController_Done: BOOLEAN
126 LOCAL hLoosenOldControllerABCap_9: tActivityState
127 LOCAL aSetAsideOldComponents_Ready: BOOLEAN
128 LOCAL aSetAsideOldComponents_Executing: BOOLEAN
129 LOCAL aSetAsideOldComponents_Done: BOOLEAN
130 LOCAL hSetAsideOldComponents_10: tActivityState
131 LOCAL aStep3ConnectNewController_Ready: BOOLEAN
132 LOCAL aStep3ConnectNewController_Executing: BOOLEAN
133 LOCAL aStep3ConnectNewController_Done: BOOLEAN
134 LOCAL aConPumpCableToNewController_Ready: BOOLEAN
135 LOCAL aConPumpCableToNewController_Executing: BOOLEAN
136 LOCAL aConPumpCableToNewController_Done: BOOLEAN
137 LOCAL hConPumpCableToNewController_11: tActivityState
138 LOCAL aActivateAlarmOnNewController_Ready: BOOLEAN
139 LOCAL aActivateAlarmOnNewController_Executing: BOOLEAN



420

140 LOCAL aActivateAlarmOnNewController_Done: BOOLEAN
141 LOCAL hTightenNewControllerABCap_12: tActivityState
142 LOCAL aStep4TryLeadBattery_Ready: BOOLEAN
143 LOCAL aStep4TryLeadBattery_Executing: BOOLEAN
144 LOCAL aStep4TryLeadBattery_Done: BOOLEAN
145 LOCAL aConLeadBattToNewController_Ready: BOOLEAN
146 LOCAL aConLeadBattToNewController_Executing: BOOLEAN
147 LOCAL aConLeadBattToNewController_Done: BOOLEAN
148 LOCAL hConLeadBattToNewController_13: tActivityState
149 LOCAL aDiscLeadBattFromNewController_Ready: BOOLEAN
150 LOCAL aDiscLeadBattFromNewController_Executing: BOOLEAN
151 LOCAL aDiscLeadBattFromNewController_Done: BOOLEAN
152 LOCAL hDiscLeadBattFromNewController_14: tActivityState
153 LOCAL aStep5TryLiIonBattery_Ready: BOOLEAN
154 LOCAL aStep5TryLiIonBattery_Executing: BOOLEAN
155 LOCAL aStep5TryLiIonBattery_Done: BOOLEAN
156 LOCAL aCheckLiBatteryLevel_Ready: BOOLEAN
157 LOCAL aCheckLiBatteryLevel_Executing: BOOLEAN
158 LOCAL aCheckLiBatteryLevel_Done: BOOLEAN
159 LOCAL hDepressBlackButtonOnNewLiBatt_15: tActivityState
160 LOCAL aConnectBattOrCallEmergencyNumber_Ready: BOOLEAN
161 LOCAL aConnectBattOrCallEmergencyNumber_Executing: BOOLEAN
162 LOCAL aConnectBattOrCallEmergencyNumber_Done: BOOLEAN
163 LOCAL aCallEmergencyNumber_Ready: BOOLEAN
164 LOCAL aCallEmergencyNumber_Executing: BOOLEAN
165 LOCAL aCallEmergencyNumber_Done: BOOLEAN
166 LOCAL hCallEmergencyNumber_16: tActivityState
167 LOCAL aConnectFullyChargedLiBatt_Ready: BOOLEAN
168 LOCAL aConnectFullyChargedLiBatt_Executing: BOOLEAN
169 LOCAL aConnectFullyChargedLiBatt_Done: BOOLEAN
170 LOCAL aConNewLiBattCableToNewController_Ready: BOOLEAN
171 LOCAL aConNewLiBattCableToNewController_Executing: BOOLEAN
172 LOCAL aConNewLiBattCableToNewController_Done: BOOLEAN
173 LOCAL hConNewLiBattCableToNewController_17: tActivityState
174 LOCAL aConNewLiBattCableToNewLiBatt_Ready: BOOLEAN
175 LOCAL aConNewLiBattCableToNewLiBatt_Executing: BOOLEAN
176 LOCAL aConNewLiBattCableToNewLiBatt_Done: BOOLEAN
177 LOCAL hConNewLiBattCableToNewLiBatt_18: tActivityState
178 LOCAL aBreakCircuit_Ready: BOOLEAN
179 LOCAL aBreakCircuit_Executing: BOOLEAN
180 LOCAL aBreakCircuit_Done: BOOLEAN
181 LOCAL hDiscNewLiBattCableFromNewController_19: tActivityState
182 LOCAL aCallEmergency_Ready: BOOLEAN
183 LOCAL aCallEmergency_Executing: BOOLEAN
184 LOCAL aCallEmergency_Done: BOOLEAN
185 LOCAL hCallEmergencyNumber_20: tActivityState
186 LOCAL aStep6TagOldComponents_Ready: BOOLEAN
187 LOCAL aStep6TagOldComponents_Executing: BOOLEAN
188 LOCAL aStep6TagOldComponents_Done: BOOLEAN
189 LOCAL hRedTagOldComponents_21: tActivityState
190
191 INITIALIZATION
192 hCallEmergencyNumber = FALSE;
193 hRedTagOldComponents = FALSE;
194 hSetAsideOldComponents = FALSE;
195 hRotateConnectorParts = FALSE;
196 hDisassembleConnector = FALSE;
197 hReassembleBrokenConnector = FALSE;
198 hDiscPumpCableFromAbCable = FALSE;
199 hDiscPumpCableFromOldController = FALSE;
200 hDiscLeadBattFromNewController = FALSE;
201 hDiscNewLiBattCableFromNewController = FALSE;
202 hConNewLiBattCableToNewController = FALSE;
203 hConNewLiBattCableToNewLiBatt = FALSE;
204 hDiscNewLiBattCableFromNewLiBatt = FALSE;
205 hConLeadBattToNewController = FALSE;
206 hConPumpCableToNewController = FALSE;
207 hConNewLeadBattToNewController = FALSE;
208 hDepressBlackButtonOnNewLiBatt = FALSE;
209 hRotateKnobClockwise = FALSE;
210 hRotateKnobCounterclockwise = FALSE;
211 hTightenNewControllerABCap = FALSE;
212 hLoosenOldControllerABCap = FALSE;
213 hLoosenNewControllerABCap = FALSE;
214 lDesiredSpeed IN {1, 2, 3, 4, 5};
215 aIncreaseSetting_Done = FALSE;
216 aIncreaseSetting_Repeating = FALSE;
217 hRotateKnobCounterclockwise_1 = actReady;
218 aDecreaseSetting_Done = FALSE;
219 aDecreaseSetting_Repeating = FALSE;
220 hRotateKnobClockwise_2 = actReady;
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221 hReassembleBrokenConnector_3 = actReady;
222 aTryRotatingParts_Done = FALSE;
223 aTryRotatingParts_Repeating = FALSE;
224 hDisassembleConnector_4 = actReady;
225 hRotateConnectorParts_5 = actReady;
226 hReassembleBrokenConnector_6 = actReady;
227 hDiscPumpCableFromAbCable_7 = actReady;
228 hDiscPumpCableFromOldController_8 = actReady;
229 hLoosenOldControllerABCap_9 = actReady;
230 hSetAsideOldComponents_10 = actReady;
231 hConPumpCableToNewController_11 = actReady;
232 hTightenNewControllerABCap_12 = actReady;
233 hConLeadBattToNewController_13 = actReady;
234 hDiscLeadBattFromNewController_14 = actReady;
235 hDepressBlackButtonOnNewLiBatt_15 = actReady;
236 hCallEmergencyNumber_16 = actReady;
237 hConNewLiBattCableToNewController_17 = actReady;
238 hConNewLiBattCableToNewLiBatt_18 = actReady;
239 hDiscNewLiBattCableFromNewController_19 = actReady;
240 hCallEmergencyNumber_20 = actReady;
241 hRedTagOldComponents_21 = actReady;
242
243 %% Handshake variables
244 INPUT ready: BOOLEAN
245 OUTPUT submitted: BOOLEAN
246 INITIALIZATION
247 submitted = FALSE;
248
249
250 DEFINITION
251 aAdjustSpeed_Ready = (aIncreaseSetting_Ready) AND (aDecreaseSetting_Ready);
252 aAdjustSpeed_Executing = NOT (aAdjustSpeed_Ready) AND NOT (aAdjustSpeed_Done);
253 aAdjustSpeed_Done = (aIncreaseSetting_Done) AND (aDecreaseSetting_Done);
254 aIncreaseSetting_Ready = (hRotateKnobCounterclockwise_1 = actReady) AND (NOT

aIncreaseSetting_Repeating);
255 aIncreaseSetting_Executing = NOT (aIncreaseSetting_Ready) AND NOT (aIncreaseSetting_Done);
256 aDecreaseSetting_Ready = (hRotateKnobClockwise_2 = actReady) AND (NOT

aDecreaseSetting_Repeating);
257 aDecreaseSetting_Executing = NOT (aDecreaseSetting_Ready) AND NOT (aDecreaseSetting_Done);
258 aRespondToPumpStoppedAlarm_Ready = (aStep1FixBrokenConnector_Ready) AND (

aStep2DisconnectOldParts_Ready) AND (aStep3ConnectNewController_Ready) AND (
aStep4TryLeadBattery_Ready) AND (aStep5TryLiIonBattery_Ready) AND (
aStep6TagOldComponents_Ready);

259 aRespondToPumpStoppedAlarm_Executing = NOT (aRespondToPumpStoppedAlarm_Ready) AND NOT (
aRespondToPumpStoppedAlarm_Done);

260 aRespondToPumpStoppedAlarm_Done = (aStep1FixBrokenConnector_Done) AND (
aStep2DisconnectOldParts_Done) AND (aStep3ConnectNewController_Done) AND (
aStep4TryLeadBattery_Done) AND (aStep5TryLiIonBattery_Done) AND (
aStep6TagOldComponents_Done);

261 aStep1FixBrokenConnector_Ready = (aReassembleConnector_Ready) AND (aTryRotatingParts_Ready)
;

262 aStep1FixBrokenConnector_Executing = NOT (aStep1FixBrokenConnector_Ready) AND NOT (
aStep1FixBrokenConnector_Done);

263 aStep1FixBrokenConnector_Done = (aReassembleConnector_Done) AND (aTryRotatingParts_Done);
264 aReassembleConnector_Ready = (hReassembleBrokenConnector_3 = actReady);
265 aReassembleConnector_Executing = NOT (aReassembleConnector_Ready) AND NOT (

aReassembleConnector_Done);
266 aReassembleConnector_Done = (hReassembleBrokenConnector_3 = actDone);
267 aTryRotatingParts_Ready = (hDisassembleConnector_4 = actReady) AND (hRotateConnectorParts_5

= actReady) AND (hReassembleBrokenConnector_6 = actReady) AND (NOT
aTryRotatingParts_Repeating);

268 aTryRotatingParts_Executing = NOT (aTryRotatingParts_Ready) AND NOT (aTryRotatingParts_Done
);

269 aStep2DisconnectOldParts_Ready = (aDiscPumpFromOldController_Ready) AND (
aSilenceAlarmOnOldController_Ready) AND (aSetAsideOldComponents_Ready);

270 aStep2DisconnectOldParts_Executing = NOT (aStep2DisconnectOldParts_Ready) AND NOT (
aStep2DisconnectOldParts_Done);

271 aStep2DisconnectOldParts_Done = (aDiscPumpFromOldController_Done) AND (
aSilenceAlarmOnOldController_Done) AND (aSetAsideOldComponents_Done);

272 aDiscPumpFromOldController_Ready = (aDiscPumpCableFromAbCable_Ready) AND (
aDiscPumpCableFromOldController_Ready);

273 aDiscPumpFromOldController_Executing = NOT (aDiscPumpFromOldController_Ready) AND NOT (
aDiscPumpFromOldController_Done);

274 aDiscPumpFromOldController_Done = (aDiscPumpCableFromAbCable_Done) AND (
aDiscPumpCableFromOldController_Done);

275 aDiscPumpCableFromAbCable_Ready = (hDiscPumpCableFromAbCable_7 = actReady);
276 aDiscPumpCableFromAbCable_Executing = NOT (aDiscPumpCableFromAbCable_Ready) AND NOT (

aDiscPumpCableFromAbCable_Done);
277 aDiscPumpCableFromAbCable_Done = (hDiscPumpCableFromAbCable_7 = actDone);
278 aDiscPumpCableFromOldController_Ready = (hDiscPumpCableFromOldController_8 = actReady);
279 aDiscPumpCableFromOldController_Executing = NOT (aDiscPumpCableFromOldController_Ready) AND
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NOT (aDiscPumpCableFromOldController_Done);
280 aDiscPumpCableFromOldController_Done = (hDiscPumpCableFromOldController_8 = actDone);
281 aSilenceAlarmOnOldController_Ready = (hLoosenOldControllerABCap_9 = actReady);
282 aSilenceAlarmOnOldController_Executing = NOT (aSilenceAlarmOnOldController_Ready) AND NOT (

aSilenceAlarmOnOldController_Done);
283 aSilenceAlarmOnOldController_Done = (hLoosenOldControllerABCap_9 = actDone);
284 aSetAsideOldComponents_Ready = (hSetAsideOldComponents_10 = actReady);
285 aSetAsideOldComponents_Executing = NOT (aSetAsideOldComponents_Ready) AND NOT (

aSetAsideOldComponents_Done);
286 aSetAsideOldComponents_Done = (hSetAsideOldComponents_10 = actDone);
287 aStep3ConnectNewController_Ready = (aConPumpCableToNewController_Ready) AND (

aActivateAlarmOnNewController_Ready);
288 aStep3ConnectNewController_Executing = NOT (aStep3ConnectNewController_Ready) AND NOT (

aStep3ConnectNewController_Done);
289 aStep3ConnectNewController_Done = (aConPumpCableToNewController_Done) AND (

aActivateAlarmOnNewController_Done);
290 aConPumpCableToNewController_Ready = (hConPumpCableToNewController_11 = actReady);
291 aConPumpCableToNewController_Executing = NOT (aConPumpCableToNewController_Ready) AND NOT (

aConPumpCableToNewController_Done);
292 aConPumpCableToNewController_Done = (hConPumpCableToNewController_11 = actDone);
293 aActivateAlarmOnNewController_Ready = (hTightenNewControllerABCap_12 = actReady);
294 aActivateAlarmOnNewController_Executing = NOT (aActivateAlarmOnNewController_Ready) AND NOT

(aActivateAlarmOnNewController_Done);
295 aActivateAlarmOnNewController_Done = (hTightenNewControllerABCap_12 = actDone);
296 aStep4TryLeadBattery_Ready = (aConLeadBattToNewController_Ready) AND (

aDiscLeadBattFromNewController_Ready);
297 aStep4TryLeadBattery_Executing = NOT (aStep4TryLeadBattery_Ready) AND NOT (

aStep4TryLeadBattery_Done);
298 aStep4TryLeadBattery_Done = (aConLeadBattToNewController_Done) AND (

aDiscLeadBattFromNewController_Done);
299 aConLeadBattToNewController_Ready = (hConLeadBattToNewController_13 = actReady);
300 aConLeadBattToNewController_Executing = NOT (aConLeadBattToNewController_Ready) AND NOT (

aConLeadBattToNewController_Done);
301 aConLeadBattToNewController_Done = (hConLeadBattToNewController_13 = actDone);
302 aDiscLeadBattFromNewController_Ready = (hDiscLeadBattFromNewController_14 = actReady);
303 aDiscLeadBattFromNewController_Executing = NOT (aDiscLeadBattFromNewController_Ready) AND

NOT (aDiscLeadBattFromNewController_Done);
304 aDiscLeadBattFromNewController_Done = (hDiscLeadBattFromNewController_14 = actDone);
305 aStep5TryLiIonBattery_Ready = (aCheckLiBatteryLevel_Ready) AND (

aConnectBattOrCallEmergencyNumber_Ready);
306 aStep5TryLiIonBattery_Executing = NOT (aStep5TryLiIonBattery_Ready) AND NOT (

aStep5TryLiIonBattery_Done);
307 aStep5TryLiIonBattery_Done = (aCheckLiBatteryLevel_Done) AND (

aConnectBattOrCallEmergencyNumber_Done);
308 aCheckLiBatteryLevel_Ready = (hDepressBlackButtonOnNewLiBatt_15 = actReady);
309 aCheckLiBatteryLevel_Executing = NOT (aCheckLiBatteryLevel_Ready) AND NOT (

aCheckLiBatteryLevel_Done);
310 aCheckLiBatteryLevel_Done = (hDepressBlackButtonOnNewLiBatt_15 = actDone);
311 aConnectBattOrCallEmergencyNumber_Ready = (aCallEmergencyNumber_Ready) AND (

aConnectFullyChargedLiBatt_Ready);
312 aConnectBattOrCallEmergencyNumber_Executing = NOT (aConnectBattOrCallEmergencyNumber_Ready)

AND NOT (aConnectBattOrCallEmergencyNumber_Done);
313 aConnectBattOrCallEmergencyNumber_Done = (aCallEmergencyNumber_Done) AND (

aConnectFullyChargedLiBatt_Done);
314 aCallEmergencyNumber_Ready = (hCallEmergencyNumber_16 = actReady);
315 aCallEmergencyNumber_Executing = NOT (aCallEmergencyNumber_Ready) AND NOT (

aCallEmergencyNumber_Done);
316 aCallEmergencyNumber_Done = (hCallEmergencyNumber_16 = actDone);
317 aConnectFullyChargedLiBatt_Ready = (aConNewLiBattCableToNewController_Ready) AND (

aConNewLiBattCableToNewLiBatt_Ready) AND (aBreakCircuit_Ready) AND (
aCallEmergency_Ready);

318 aConnectFullyChargedLiBatt_Executing = NOT (aConnectFullyChargedLiBatt_Ready) AND NOT (
aConnectFullyChargedLiBatt_Done);

319 aConnectFullyChargedLiBatt_Done = (aConNewLiBattCableToNewController_Done) AND (
aConNewLiBattCableToNewLiBatt_Done) AND (aBreakCircuit_Done) AND (aCallEmergency_Done)
;

320 aConNewLiBattCableToNewController_Ready = (hConNewLiBattCableToNewController_17 = actReady)
;

321 aConNewLiBattCableToNewController_Executing = NOT (aConNewLiBattCableToNewController_Ready)
AND NOT (aConNewLiBattCableToNewController_Done);

322 aConNewLiBattCableToNewController_Done = (hConNewLiBattCableToNewController_17 = actDone);
323 aConNewLiBattCableToNewLiBatt_Ready = (hConNewLiBattCableToNewLiBatt_18 = actReady);
324 aConNewLiBattCableToNewLiBatt_Executing = NOT (aConNewLiBattCableToNewLiBatt_Ready) AND NOT

(aConNewLiBattCableToNewLiBatt_Done);
325 aConNewLiBattCableToNewLiBatt_Done = (hConNewLiBattCableToNewLiBatt_18 = actDone);
326 aBreakCircuit_Ready = (hDiscNewLiBattCableFromNewController_19 = actReady);
327 aBreakCircuit_Executing = NOT (aBreakCircuit_Ready) AND NOT (aBreakCircuit_Done);
328 aBreakCircuit_Done = (hDiscNewLiBattCableFromNewController_19 = actDone);
329 aCallEmergency_Ready = (hCallEmergencyNumber_20 = actReady);
330 aCallEmergency_Executing = NOT (aCallEmergency_Ready) AND NOT (aCallEmergency_Done);
331 aCallEmergency_Done = (hCallEmergencyNumber_20 = actDone);
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332 aStep6TagOldComponents_Ready = (hRedTagOldComponents_21 = actReady);
333 aStep6TagOldComponents_Executing = NOT (aStep6TagOldComponents_Ready) AND NOT (

aStep6TagOldComponents_Done);
334 aStep6TagOldComponents_Done = (hRedTagOldComponents_21 = actDone);
335 TRANSITION
336 [
337 (iSpeedSetting = lDesiredSpeed) AND (( aAdjustSpeed_Executing) AND (NOT(

aIncreaseSetting_Executing) AND NOT(aDecreaseSetting_Executing) AND ((
aIncreaseSetting_Done) OR (aDecreaseSetting_Done)))) -->

338 aIncreaseSetting_Repeating ’ = FALSE;
339 aIncreaseSetting_Done ’ = TRUE;
340 hRotateKnobCounterclockwise_1 ’ = actDone;
341 aDecreaseSetting_Repeating ’ = FALSE;
342 aDecreaseSetting_Done ’ = TRUE;
343 hRotateKnobClockwise_2 ’ = actDone;
344 [] aAdjustSpeed_Done -->
345 aIncreaseSetting_Repeating ’ = FALSE;
346 aIncreaseSetting_Done ’ = FALSE;
347 hRotateKnobCounterclockwise_1 ’ = actReady;
348 aDecreaseSetting_Repeating ’ = FALSE;
349 aDecreaseSetting_Done ’ = FALSE;
350 hRotateKnobClockwise_2 ’ = actReady;
351 [](( aIncreaseSetting_Executing) AND (NOT(hRotateKnobCounterclockwise_1 = actExecuting) AND

(( hRotateKnobCounterclockwise_1 = actDone)))) AND NOT (( iSpeedSetting < lDesiredSpeed)
AND (NOT(hRotateKnobCounterclockwise_1 = actExecuting) AND ((

hRotateKnobCounterclockwise_1 = actDone)))) -->
352 aIncreaseSetting_Repeating ’ = FALSE;
353 aIncreaseSetting_Done ’ = TRUE;
354 hRotateKnobCounterclockwise_1 ’ = actDone;
355 []( aIncreaseSetting_Executing) AND (( iSpeedSetting < lDesiredSpeed) AND (NOT(

hRotateKnobCounterclockwise_1 = actExecuting) AND (( hRotateKnobCounterclockwise_1 =
actDone)))) AND ((( aAdjustSpeed_Executing) OR (( aAdjustSpeed_Ready) AND (NOT (
aRespondToPumpStoppedAlarm_Executing)) AND (iSpeedSetting /= lDesiredSpeed AND iAlarm
= discreteDevice!NoAlarm) AND NOT (iSpeedSetting = lDesiredSpeed))) AND (
aDecreaseSetting_Ready)) -->

356 aIncreaseSetting_Repeating ’ = TRUE;
357 aIncreaseSetting_Done ’ = FALSE;
358 hRotateKnobCounterclockwise_1 ’ = actReady;
359 [](( hRotateKnobCounterclockwise_1 = actReady) AND (( aIncreaseSetting_Executing) OR ((

aIncreaseSetting_Ready) AND ((( aAdjustSpeed_Executing) OR (( aAdjustSpeed_Ready) AND (
NOT (aRespondToPumpStoppedAlarm_Executing)) AND (iSpeedSetting /= lDesiredSpeed AND
iAlarm = discreteDevice!NoAlarm) AND NOT (iSpeedSetting = lDesiredSpeed))) AND (
aDecreaseSetting_Ready)) AND (iSpeedSetting < lDesiredSpeed AND iPage = 8)))) AND
ready -->

360 hRotateKnobCounterclockwise_1 ’ = actExecuting;
361 hRotateKnobCounterclockwise ’ = TRUE;
362 submitted ’ = TRUE;
363 [](( aDecreaseSetting_Executing) AND (NOT(hRotateKnobClockwise_2 = actExecuting) AND ((

hRotateKnobClockwise_2 = actDone)))) AND NOT (( iSpeedSetting > lDesiredSpeed) AND (NOT
(hRotateKnobClockwise_2 = actExecuting) AND (( hRotateKnobClockwise_2 = actDone)))) -->

364 aDecreaseSetting_Repeating ’ = FALSE;
365 aDecreaseSetting_Done ’ = TRUE;
366 hRotateKnobClockwise_2 ’ = actDone;
367 []( aDecreaseSetting_Executing) AND (( iSpeedSetting > lDesiredSpeed) AND (NOT(

hRotateKnobClockwise_2 = actExecuting) AND (( hRotateKnobClockwise_2 = actDone)))) AND
((( aAdjustSpeed_Executing) OR (( aAdjustSpeed_Ready) AND (NOT (
aRespondToPumpStoppedAlarm_Executing)) AND (iSpeedSetting /= lDesiredSpeed AND iAlarm
= discreteDevice!NoAlarm) AND NOT (iSpeedSetting = lDesiredSpeed))) AND (
aIncreaseSetting_Ready)) -->

368 aDecreaseSetting_Repeating ’ = TRUE;
369 aDecreaseSetting_Done ’ = FALSE;
370 hRotateKnobClockwise_2 ’ = actReady;
371 [](( hRotateKnobClockwise_2 = actReady) AND (( aDecreaseSetting_Executing) OR ((

aDecreaseSetting_Ready) AND ((( aAdjustSpeed_Executing) OR (( aAdjustSpeed_Ready) AND (
NOT (aRespondToPumpStoppedAlarm_Executing)) AND (iSpeedSetting /= lDesiredSpeed AND
iAlarm = discreteDevice!NoAlarm) AND NOT (iSpeedSetting = lDesiredSpeed))) AND (
aIncreaseSetting_Ready)) AND (iSpeedSetting > lDesiredSpeed AND iPage = 8)))) AND
ready -->

372 hRotateKnobClockwise_2 ’ = actExecuting;
373 hRotateKnobClockwise ’ = TRUE;
374 submitted ’ = TRUE;
375 []( iAlarm /= discreteDevice!PumpStopped) AND (( aRespondToPumpStoppedAlarm_Executing) AND (

NOT(aStep1FixBrokenConnector_Executing) AND NOT(aStep2DisconnectOldParts_Executing)
AND NOT(aStep3ConnectNewController_Executing) AND NOT(aStep4TryLeadBattery_Executing)
AND NOT(aStep5TryLiIonBattery_Executing) AND NOT(aStep6TagOldComponents_Executing) AND
(( aStep1FixBrokenConnector_Done) AND (aStep2DisconnectOldParts_Done) AND (

aStep3ConnectNewController_Done) AND (aStep4TryLeadBattery_Done) AND (
aStep5TryLiIonBattery_Done) AND (aStep6TagOldComponents_Done)))) -->

376 hReassembleBrokenConnector_3 ’ = actDone;
377 aTryRotatingParts_Repeating ’ = FALSE;
378 aTryRotatingParts_Done ’ = TRUE;



424

379 hDisassembleConnector_4 ’ = actDone;
380 hRotateConnectorParts_5 ’ = actDone;
381 hReassembleBrokenConnector_6 ’ = actDone;
382 hDiscPumpCableFromAbCable_7 ’ = actDone;
383 hDiscPumpCableFromOldController_8 ’ = actDone;
384 hLoosenOldControllerABCap_9 ’ = actDone;
385 hSetAsideOldComponents_10 ’ = actDone;
386 hConPumpCableToNewController_11 ’ = actDone;
387 hTightenNewControllerABCap_12 ’ = actDone;
388 hConLeadBattToNewController_13 ’ = actDone;
389 hDiscLeadBattFromNewController_14 ’ = actDone;
390 hDepressBlackButtonOnNewLiBatt_15 ’ = actDone;
391 hCallEmergencyNumber_16 ’ = actDone;
392 hConNewLiBattCableToNewController_17 ’ = actDone;
393 hConNewLiBattCableToNewLiBatt_18 ’ = actDone;
394 hDiscNewLiBattCableFromNewController_19 ’ = actDone;
395 hCallEmergencyNumber_20 ’ = actDone;
396 hRedTagOldComponents_21 ’ = actDone;
397 [] aRespondToPumpStoppedAlarm_Done -->
398 hReassembleBrokenConnector_3 ’ = actReady;
399 aTryRotatingParts_Repeating ’ = FALSE;
400 aTryRotatingParts_Done ’ = FALSE;
401 hDisassembleConnector_4 ’ = actReady;
402 hRotateConnectorParts_5 ’ = actReady;
403 hReassembleBrokenConnector_6 ’ = actReady;
404 hDiscPumpCableFromAbCable_7 ’ = actReady;
405 hDiscPumpCableFromOldController_8 ’ = actReady;
406 hLoosenOldControllerABCap_9 ’ = actReady;
407 hSetAsideOldComponents_10 ’ = actReady;
408 hConPumpCableToNewController_11 ’ = actReady;
409 hTightenNewControllerABCap_12 ’ = actReady;
410 hConLeadBattToNewController_13 ’ = actReady;
411 hDiscLeadBattFromNewController_14 ’ = actReady;
412 hDepressBlackButtonOnNewLiBatt_15 ’ = actReady;
413 hCallEmergencyNumber_16 ’ = actReady;
414 hConNewLiBattCableToNewController_17 ’ = actReady;
415 hConNewLiBattCableToNewLiBatt_18 ’ = actReady;
416 hDiscNewLiBattCableFromNewController_19 ’ = actReady;
417 hCallEmergencyNumber_20 ’ = actReady;
418 hRedTagOldComponents_21 ’ = actReady;
419 []( aStep1FixBrokenConnector_Executing) AND (NOT(aReassembleConnector_Executing) AND NOT(

aTryRotatingParts_Executing) AND (( aReassembleConnector_Done) AND (
aTryRotatingParts_Done))) -->

420 hReassembleBrokenConnector_3 ’ = actDone;
421 aTryRotatingParts_Repeating ’ = FALSE;
422 aTryRotatingParts_Done ’ = TRUE;
423 hDisassembleConnector_4 ’ = actDone;
424 hRotateConnectorParts_5 ’ = actDone;
425 hReassembleBrokenConnector_6 ’ = actDone;
426 []( iPermanentlyAttachedConnector = Assembled) AND (( aReassembleConnector_Executing) AND (

NOT(hReassembleBrokenConnector_3 = actExecuting) AND (( hReassembleBrokenConnector_3 =
actDone)))OR (( aReassembleConnector_Ready) AND ((( aStep1FixBrokenConnector_Executing)
OR (( aStep1FixBrokenConnector_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR
(( aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped)))) AND (
iPermanentlyAttachedConnector = Broken AND iPage = 13)))))) -->

427 hReassembleBrokenConnector_3 ’ = actDone;
428 [](( hReassembleBrokenConnector_3 = actReady) AND (( aReassembleConnector_Executing) OR ((

aReassembleConnector_Ready) AND ((( aStep1FixBrokenConnector_Executing) OR ((
aStep1FixBrokenConnector_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped)))) AND (
iPermanentlyAttachedConnector = Broken AND iPage = 13)))) AND NOT (
iPermanentlyAttachedConnector = Assembled)))) AND ready -->

429 hReassembleBrokenConnector_3 ’ = actExecuting;
430 hReassembleBrokenConnector ’ = TRUE;
431 submitted ’ = TRUE;
432 [](( iRotationCounter = 3 AND iPermanentlyAttachedConnector = Assembled) AND ((

aTryRotatingParts_Executing) AND (NOT(hDisassembleConnector_4 = actExecuting) AND NOT(
hRotateConnectorParts_5 = actExecuting) AND NOT(hReassembleBrokenConnector_6 =
actExecuting) AND (( hDisassembleConnector_4 = actDone) AND (hRotateConnectorParts_5 =
actDone) AND (hReassembleBrokenConnector_6 = actDone)))OR (( aTryRotatingParts_Ready)
AND ((( aStep1FixBrokenConnector_Executing) OR (( aStep1FixBrokenConnector_Ready) AND
((( aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (
NOT (aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (
iAlarm /= discreteDevice!PumpStopped)))) AND (iPermanentlyAttachedConnector = Broken
AND iPage = 13))) AND (aReassembleConnector_Done))))) AND NOT (( iRotationCounter < 3)
AND (NOT(hDisassembleConnector_4 = actExecuting) AND NOT(hRotateConnectorParts_5 =
actExecuting) AND NOT(hReassembleBrokenConnector_6 = actExecuting) AND ((
hDisassembleConnector_4 = actDone) AND (hRotateConnectorParts_5 = actDone) AND (
hReassembleBrokenConnector_6 = actDone))) AND NOT (iRotationCounter = 3 AND



425

iPermanentlyAttachedConnector = Assembled)) -->
433 aTryRotatingParts_Repeating ’ = FALSE;
434 aTryRotatingParts_Done ’ = TRUE;
435 hDisassembleConnector_4 ’ = actDone;
436 hRotateConnectorParts_5 ’ = actDone;
437 hReassembleBrokenConnector_6 ’ = actDone;
438 []( aTryRotatingParts_Executing) AND (( iRotationCounter < 3) AND (NOT(

hDisassembleConnector_4 = actExecuting) AND NOT(hRotateConnectorParts_5 = actExecuting
) AND NOT(hReassembleBrokenConnector_6 = actExecuting) AND (( hDisassembleConnector_4 =
actDone) AND (hRotateConnectorParts_5 = actDone) AND (hReassembleBrokenConnector_6 =

actDone))) AND NOT (iRotationCounter = 3 AND iPermanentlyAttachedConnector = Assembled
)) AND ((( aStep1FixBrokenConnector_Executing) OR (( aStep1FixBrokenConnector_Ready) AND
((( aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (

NOT (aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (
iAlarm /= discreteDevice!PumpStopped)))) AND (iPermanentlyAttachedConnector = Broken
AND iPage = 13))) AND (aReassembleConnector_Done)) -->

439 aTryRotatingParts_Repeating ’ = TRUE;
440 aTryRotatingParts_Done ’ = FALSE;
441 hDisassembleConnector_4 ’ = actReady;
442 hRotateConnectorParts_5 ’ = actReady;
443 hReassembleBrokenConnector_6 ’ = actReady;
444 [](( hDisassembleConnector_4 = actReady) AND (( aTryRotatingParts_Executing) OR ((

aTryRotatingParts_Ready) AND ((( aStep1FixBrokenConnector_Executing) OR ((
aStep1FixBrokenConnector_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped)))) AND (
iPermanentlyAttachedConnector = Broken AND iPage = 13))) AND (
aReassembleConnector_Done)) AND (iRotationCounter = 0) AND NOT (iRotationCounter = 3
AND iPermanentlyAttachedConnector = Assembled)))) AND ready -->

445 hDisassembleConnector_4 ’ = actExecuting;
446 hDisassembleConnector ’ = TRUE;
447 submitted ’ = TRUE;
448 [](( hRotateConnectorParts_5 = actReady) AND (( aTryRotatingParts_Executing) OR ((

aTryRotatingParts_Ready) AND ((( aStep1FixBrokenConnector_Executing) OR ((
aStep1FixBrokenConnector_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped)))) AND (
iPermanentlyAttachedConnector = Broken AND iPage = 13))) AND (
aReassembleConnector_Done)) AND (iRotationCounter = 0) AND NOT (iRotationCounter = 3
AND iPermanentlyAttachedConnector = Assembled))) AND (hDisassembleConnector_4 =
actDone)) AND ready -->

449 hRotateConnectorParts_5 ’ = actExecuting;
450 hRotateConnectorParts ’ = TRUE;
451 submitted ’ = TRUE;
452 [](( hReassembleBrokenConnector_6 = actReady) AND (( aTryRotatingParts_Executing) OR ((

aTryRotatingParts_Ready) AND ((( aStep1FixBrokenConnector_Executing) OR ((
aStep1FixBrokenConnector_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped)))) AND (
iPermanentlyAttachedConnector = Broken AND iPage = 13))) AND (
aReassembleConnector_Done)) AND (iRotationCounter = 0) AND NOT (iRotationCounter = 3
AND iPermanentlyAttachedConnector = Assembled))) AND (hRotateConnectorParts_5 =
actDone)) AND ready -->

453 hReassembleBrokenConnector_6 ’ = actExecuting;
454 hReassembleBrokenConnector ’ = TRUE;
455 submitted ’ = TRUE;
456 []( aStep2DisconnectOldParts_Executing) AND (NOT(aDiscPumpFromOldController_Executing) AND

NOT(aSilenceAlarmOnOldController_Executing) AND NOT(aSetAsideOldComponents_Executing)
AND (( aDiscPumpFromOldController_Done) AND (aSilenceAlarmOnOldController_Done) AND (
aSetAsideOldComponents_Done))) -->

457 hDiscPumpCableFromAbCable_7 ’ = actDone;
458 hDiscPumpCableFromOldController_8 ’ = actDone;
459 hLoosenOldControllerABCap_9 ’ = actDone;
460 hSetAsideOldComponents_10 ’ = actDone;
461 []( aDiscPumpFromOldController_Executing) AND (NOT(aDiscPumpCableFromAbCable_Executing) AND

NOT(aDiscPumpCableFromOldController_Executing) AND (( aDiscPumpCableFromAbCable_Done)
OR (aDiscPumpCableFromOldController_Done))) -->

462 hDiscPumpCableFromAbCable_7 ’ = actDone;
463 hDiscPumpCableFromOldController_8 ’ = actDone;
464 []( aDiscPumpCableFromAbCable_Executing) AND (NOT(hDiscPumpCableFromAbCable_7 = actExecuting

) AND (( hDiscPumpCableFromAbCable_7 = actDone))) -->
465 hDiscPumpCableFromAbCable_7 ’ = actDone;
466 [](( hDiscPumpCableFromAbCable_7 = actReady) AND (( aDiscPumpCableFromAbCable_Executing) OR

(( aDiscPumpCableFromAbCable_Ready) AND ((( aDiscPumpFromOldController_Executing) OR ((
aDiscPumpFromOldController_Ready) AND ((( aStep2DisconnectOldParts_Executing) OR ((
aStep2DisconnectOldParts_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep1FixBrokenConnector_Done)) AND (iPage = 13)))))) AND (
aDiscPumpCableFromOldController_Ready)) AND (iPumpCableToOldAbCable = Connected AND
iAbCableToOldController = Connected)))) AND ready -->
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467 hDiscPumpCableFromAbCable_7 ’ = actExecuting;
468 hDiscPumpCableFromAbCable ’ = TRUE;
469 submitted ’ = TRUE;
470 []( aDiscPumpCableFromOldController_Executing) AND (NOT(hDiscPumpCableFromOldController_8 =

actExecuting) AND (( hDiscPumpCableFromOldController_8 = actDone))) -->
471 hDiscPumpCableFromOldController_8 ’ = actDone;
472 [](( hDiscPumpCableFromOldController_8 = actReady) AND ((

aDiscPumpCableFromOldController_Executing) OR (( aDiscPumpCableFromOldController_Ready)
AND ((( aDiscPumpFromOldController_Executing) OR (( aDiscPumpFromOldController_Ready)

AND ((( aStep2DisconnectOldParts_Executing) OR (( aStep2DisconnectOldParts_Ready) AND
((( aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (
NOT (aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (
iAlarm /= discreteDevice!PumpStopped))) AND (aStep1FixBrokenConnector_Done)) AND (
iPage = 13)))))) AND (aDiscPumpCableFromAbCable_Ready)) AND (iPumpCableToOldController
= Connected AND iAbCableToOldController = Disconnected)))) AND ready -->

473 hDiscPumpCableFromOldController_8 ’ = actExecuting;
474 hDiscPumpCableFromOldController ’ = TRUE;
475 submitted ’ = TRUE;
476 []( iOldControllerABCap = Loosened) AND (( aSilenceAlarmOnOldController_Executing) AND (NOT(

hLoosenOldControllerABCap_9 = actExecuting) AND (( hLoosenOldControllerABCap_9 =
actDone)))OR (( aSilenceAlarmOnOldController_Ready) AND (((
aStep2DisconnectOldParts_Executing) OR (( aStep2DisconnectOldParts_Ready) AND (((
aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (NOT
(aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (iAlarm /=
discreteDevice!PumpStopped))) AND (aStep1FixBrokenConnector_Done)) AND (iPage = 13)))
AND (aDiscPumpFromOldController_Done)))) -->

477 hLoosenOldControllerABCap_9 ’ = actDone;
478 [](( hLoosenOldControllerABCap_9 = actReady) AND (( aSilenceAlarmOnOldController_Executing)

OR (( aSilenceAlarmOnOldController_Ready) AND ((( aStep2DisconnectOldParts_Executing) OR
(( aStep2DisconnectOldParts_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((

aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep1FixBrokenConnector_Done)) AND (iPage = 13))) AND (
aDiscPumpFromOldController_Done)) AND (iOldControllerABCap = Tightened) AND NOT (
iOldControllerABCap = Loosened)))) AND ready -->

479 hLoosenOldControllerABCap_9 ’ = actExecuting;
480 hLoosenOldControllerABCap ’ = TRUE;
481 submitted ’ = TRUE;
482 []( iOldComponents = SetAside) AND (( aSetAsideOldComponents_Executing) AND (NOT(

hSetAsideOldComponents_10 = actExecuting) AND (( hSetAsideOldComponents_10 = actDone)))
OR (( aSetAsideOldComponents_Ready) AND ((( aStep2DisconnectOldParts_Executing) OR ((
aStep2DisconnectOldParts_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep1FixBrokenConnector_Done)) AND (iPage = 13))) AND (
aSilenceAlarmOnOldController_Done)))) -->

483 hSetAsideOldComponents_10 ’ = actDone;
484 [](( hSetAsideOldComponents_10 = actReady) AND (( aSetAsideOldComponents_Executing) OR ((

aSetAsideOldComponents_Ready) AND ((( aStep2DisconnectOldParts_Executing) OR ((
aStep2DisconnectOldParts_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep1FixBrokenConnector_Done)) AND (iPage = 13))) AND (
aSilenceAlarmOnOldController_Done)) AND (iOldComponents = AtHand) AND NOT (
iOldComponents = SetAside)))) AND ready -->

485 hSetAsideOldComponents_10 ’ = actExecuting;
486 hSetAsideOldComponents ’ = TRUE;
487 submitted ’ = TRUE;
488 []( iPumpCableToNewController = Connected AND iNewControllerABCap = Tightened) AND ((

aStep3ConnectNewController_Executing) AND (NOT(aConPumpCableToNewController_Executing)
AND NOT(aActivateAlarmOnNewController_Executing) AND ((

aConPumpCableToNewController_Done) AND (aActivateAlarmOnNewController_Done)))OR ((
aStep3ConnectNewController_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep2DisconnectOldParts_Done)))) -->

489 hConPumpCableToNewController_11 ’ = actDone;
490 hTightenNewControllerABCap_12 ’ = actDone;
491 []( aConPumpCableToNewController_Executing) AND (NOT(hConPumpCableToNewController_11 =

actExecuting) AND (( hConPumpCableToNewController_11 = actDone))) -->
492 hConPumpCableToNewController_11 ’ = actDone;
493 [](( hConPumpCableToNewController_11 = actReady) AND ((

aConPumpCableToNewController_Executing) OR (( aConPumpCableToNewController_Ready) AND
((( aStep3ConnectNewController_Executing) OR (( aStep3ConnectNewController_Ready) AND
((( aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (
NOT (aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (
iAlarm /= discreteDevice!PumpStopped))) AND (aStep2DisconnectOldParts_Done)) AND (
iPumpCableToOldController = Disconnected AND iPumpCableToOldAbCable = Disconnected AND
iPage = 13) AND NOT (iPumpCableToNewController = Connected AND iNewControllerABCap =

Tightened))))))) AND ready -->
494 hConPumpCableToNewController_11 ’ = actExecuting;
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495 hConPumpCableToNewController ’ = TRUE;
496 submitted ’ = TRUE;
497 []( iNewControllerABCap = Tightened) AND (( aActivateAlarmOnNewController_Executing) AND (NOT

(hTightenNewControllerABCap_12 = actExecuting) AND (( hTightenNewControllerABCap_12 =
actDone)))OR (( aActivateAlarmOnNewController_Ready) AND (((
aStep3ConnectNewController_Executing) OR (( aStep3ConnectNewController_Ready) AND (((
aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (NOT
(aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (iAlarm /=
discreteDevice!PumpStopped))) AND (aStep2DisconnectOldParts_Done)) AND (

iPumpCableToOldController = Disconnected AND iPumpCableToOldAbCable = Disconnected AND
iPage = 13) AND NOT (iPumpCableToNewController = Connected AND iNewControllerABCap =

Tightened))) AND (aConPumpCableToNewController_Done)))) -->
498 hTightenNewControllerABCap_12 ’ = actDone;
499 [](( hTightenNewControllerABCap_12 = actReady) AND (( aActivateAlarmOnNewController_Executing

) OR (( aActivateAlarmOnNewController_Ready) AND (((
aStep3ConnectNewController_Executing) OR (( aStep3ConnectNewController_Ready) AND (((
aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (NOT
(aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (iAlarm /=
discreteDevice!PumpStopped))) AND (aStep2DisconnectOldParts_Done)) AND (

iPumpCableToOldController = Disconnected AND iPumpCableToOldAbCable = Disconnected AND
iPage = 13) AND NOT (iPumpCableToNewController = Connected AND iNewControllerABCap =

Tightened))) AND (aConPumpCableToNewController_Done)) AND (iNewControllerABCap =
Loosened) AND NOT (iNewControllerABCap = Tightened)))) AND ready -->

500 hTightenNewControllerABCap_12 ’ = actExecuting;
501 hTightenNewControllerABCap ’ = TRUE;
502 submitted ’ = TRUE;
503 []( aStep4TryLeadBattery_Executing) AND (NOT(aConLeadBattToNewController_Executing) AND NOT(

aDiscLeadBattFromNewController_Executing) AND (( aConLeadBattToNewController_Done) AND
(aDiscLeadBattFromNewController_Done))) -->

504 hConLeadBattToNewController_13 ’ = actDone;
505 hDiscLeadBattFromNewController_14 ’ = actDone;
506 []( iLeadBattToNewController = Connected) AND (( aConLeadBattToNewController_Executing) AND (

NOT(hConLeadBattToNewController_13 = actExecuting) AND ((
hConLeadBattToNewController_13 = actDone)))OR (( aConLeadBattToNewController_Ready) AND
((( aStep4TryLeadBattery_Executing) OR (( aStep4TryLeadBattery_Ready) AND (((

aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (NOT
(aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (iAlarm /=
discreteDevice!PumpStopped))) AND (aStep3ConnectNewController_Done)) AND (iPage = 13

AND iLeadBattToOldController = Disconnected AND
507 NOT(iLeadBattToYCable = Connected AND iYCableToOldController =

Connected))))))) -->
508 hConLeadBattToNewController_13 ’ = actDone;
509 [](( hConLeadBattToNewController_13 = actReady) AND (( aConLeadBattToNewController_Executing)

OR (( aConLeadBattToNewController_Ready) AND ((( aStep4TryLeadBattery_Executing) OR ((
aStep4TryLeadBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep3ConnectNewController_Done)) AND (iPage = 13 AND iLeadBattToOldController =
Disconnected AND

510 NOT(iLeadBattToYCable = Connected AND iYCableToOldController =
Connected))))) AND (iLeadBattToNewController = Disconnected) AND
NOT (iLeadBattToNewController = Connected)))) AND ready -->

511 hConLeadBattToNewController_13 ’ = actExecuting;
512 hConLeadBattToNewController ’ = TRUE;
513 submitted ’ = TRUE;
514 []( iLeadBattToNewController = Disconnected) AND (( aDiscLeadBattFromNewController_Executing)

AND (NOT(hDiscLeadBattFromNewController_14 = actExecuting) AND ((
hDiscLeadBattFromNewController_14 = actDone)))OR ((
aDiscLeadBattFromNewController_Ready) AND ((( aStep4TryLeadBattery_Executing) OR ((
aStep4TryLeadBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep3ConnectNewController_Done)) AND (iPage = 13 AND iLeadBattToOldController =
Disconnected AND

515 NOT(iLeadBattToYCable = Connected AND iYCableToOldController =
Connected)))) AND (aConLeadBattToNewController_Done)))) -->

516 hDiscLeadBattFromNewController_14 ’ = actDone;
517 [](( hDiscLeadBattFromNewController_14 = actReady) AND ((

aDiscLeadBattFromNewController_Executing) OR (( aDiscLeadBattFromNewController_Ready)
AND ((( aStep4TryLeadBattery_Executing) OR (( aStep4TryLeadBattery_Ready) AND (((
aRespondToPumpStoppedAlarm_Executing) OR (( aRespondToPumpStoppedAlarm_Ready) AND (NOT
(aAdjustSpeed_Executing)) AND (iAlarm = discreteDevice!PumpStopped) AND NOT (iAlarm /=
discreteDevice!PumpStopped))) AND (aStep3ConnectNewController_Done)) AND (iPage = 13

AND iLeadBattToOldController = Disconnected AND
518 NOT(iLeadBattToYCable = Connected AND iYCableToOldController =

Connected)))) AND (aConLeadBattToNewController_Done)) AND (
iLeadBattToNewController = Connected) AND NOT (
iLeadBattToNewController = Disconnected)))) AND ready -->

519 hDiscLeadBattFromNewController_14 ’ = actExecuting;
520 hDiscLeadBattFromNewController ’ = TRUE;
521 submitted ’ = TRUE;
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522 []( aStep5TryLiIonBattery_Executing) AND (NOT(aCheckLiBatteryLevel_Executing) AND NOT(
aConnectBattOrCallEmergencyNumber_Executing) AND (( aCheckLiBatteryLevel_Done) AND (
aConnectBattOrCallEmergencyNumber_Done))) -->

523 hDepressBlackButtonOnNewLiBatt_15 ’ = actDone;
524 hCallEmergencyNumber_16 ’ = actDone;
525 hConNewLiBattCableToNewController_17 ’ = actDone;
526 hConNewLiBattCableToNewLiBatt_18 ’ = actDone;
527 hDiscNewLiBattCableFromNewController_19 ’ = actDone;
528 hCallEmergencyNumber_20 ’ = actDone;
529 []( aCheckLiBatteryLevel_Executing) AND (NOT(hDepressBlackButtonOnNewLiBatt_15 =

actExecuting) AND (( hDepressBlackButtonOnNewLiBatt_15 = actDone))) -->
530 hDepressBlackButtonOnNewLiBatt_15 ’ = actDone;
531 [](( hDepressBlackButtonOnNewLiBatt_15 = actReady) AND (( aCheckLiBatteryLevel_Executing) OR

(( aCheckLiBatteryLevel_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))))))) AND ready -->

532 hDepressBlackButtonOnNewLiBatt_15 ’ = actExecuting;
533 hDepressBlackButtonOnNewLiBatt ’ = TRUE;
534 submitted ’ = TRUE;
535 []( aConnectBattOrCallEmergencyNumber_Executing) AND (NOT(aCallEmergencyNumber_Executing)

AND NOT(aConnectFullyChargedLiBatt_Executing) AND (( aCallEmergencyNumber_Done) OR (
aConnectFullyChargedLiBatt_Done))) -->

536 hCallEmergencyNumber_16 ’ = actDone;
537 hConNewLiBattCableToNewController_17 ’ = actDone;
538 hConNewLiBattCableToNewLiBatt_18 ’ = actDone;
539 hDiscNewLiBattCableFromNewController_19 ’ = actDone;
540 hCallEmergencyNumber_20 ’ = actDone;
541 []( aCallEmergencyNumber_Executing) AND (NOT(hCallEmergencyNumber_16 = actExecuting) AND ((

hCallEmergencyNumber_16 = actDone))) -->
542 hCallEmergencyNumber_16 ’ = actDone;
543 [](( hCallEmergencyNumber_16 = actReady) AND (( aCallEmergencyNumber_Executing) OR ((

aCallEmergencyNumber_Ready) AND ((( aConnectBattOrCallEmergencyNumber_Executing) OR ((
aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aConnectFullyChargedLiBatt_Ready)) AND (iNewLiBatteryLights < 5)))) AND ready -->

544 hCallEmergencyNumber_16 ’ = actExecuting;
545 hCallEmergencyNumber ’ = TRUE;
546 submitted ’ = TRUE;
547 []( aConnectFullyChargedLiBatt_Executing) AND (NOT(

aConNewLiBattCableToNewController_Executing) AND NOT(
aConNewLiBattCableToNewLiBatt_Executing) AND NOT(aBreakCircuit_Executing) AND NOT(
aCallEmergency_Executing) AND (( aConNewLiBattCableToNewController_Done) AND (
aConNewLiBattCableToNewLiBatt_Done) AND (aBreakCircuit_Done) AND (aCallEmergency_Done)
)) -->

548 hConNewLiBattCableToNewController_17 ’ = actDone;
549 hConNewLiBattCableToNewLiBatt_18 ’ = actDone;
550 hDiscNewLiBattCableFromNewController_19 ’ = actDone;
551 hCallEmergencyNumber_20 ’ = actDone;
552 []( iNewLiBattCableToNewController = Connected) AND ((

aConNewLiBattCableToNewController_Executing) AND (NOT(
hConNewLiBattCableToNewController_17 = actExecuting) AND ((
hConNewLiBattCableToNewController_17 = actDone)))OR ((
aConNewLiBattCableToNewController_Ready) AND ((( aConnectFullyChargedLiBatt_Executing)
OR (( aConnectFullyChargedLiBatt_Ready) AND (((
aConnectBattOrCallEmergencyNumber_Executing) OR ((
aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5)))))) -->

553 hConNewLiBattCableToNewController_17 ’ = actDone;
554 [](( hConNewLiBattCableToNewController_17 = actReady) AND ((

aConNewLiBattCableToNewController_Executing) OR ((
aConNewLiBattCableToNewController_Ready) AND ((( aConnectFullyChargedLiBatt_Executing)
OR (( aConnectFullyChargedLiBatt_Ready) AND (((
aConnectBattOrCallEmergencyNumber_Executing) OR ((
aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5)))) AND (
iNewLiBattCableToNewController = Disconnected) AND NOT (iNewLiBattCableToNewController
= Connected)))) AND ready -->

555 hConNewLiBattCableToNewController_17 ’ = actExecuting;
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556 hConNewLiBattCableToNewController ’ = TRUE;
557 submitted ’ = TRUE;
558 []( iNewLiBattCableToNewLiBatt = Connected) AND (( aConNewLiBattCableToNewLiBatt_Executing)

AND (NOT(hConNewLiBattCableToNewLiBatt_18 = actExecuting) AND ((
hConNewLiBattCableToNewLiBatt_18 = actDone)))OR (( aConNewLiBattCableToNewLiBatt_Ready)
AND ((( aConnectFullyChargedLiBatt_Executing) OR (( aConnectFullyChargedLiBatt_Ready)

AND ((( aConnectBattOrCallEmergencyNumber_Executing) OR ((
aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5))) AND (
aConNewLiBattCableToNewController_Done)))) -->

559 hConNewLiBattCableToNewLiBatt_18 ’ = actDone;
560 [](( hConNewLiBattCableToNewLiBatt_18 = actReady) AND ((

aConNewLiBattCableToNewLiBatt_Executing) OR (( aConNewLiBattCableToNewLiBatt_Ready) AND
((( aConnectFullyChargedLiBatt_Executing) OR (( aConnectFullyChargedLiBatt_Ready) AND

((( aConnectBattOrCallEmergencyNumber_Executing) OR ((
aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5))) AND (
aConNewLiBattCableToNewController_Done)) AND (iNewLiBattCableToNewLiBatt =
Disconnected) AND NOT (iNewLiBattCableToNewLiBatt = Connected)))) AND ready -->

561 hConNewLiBattCableToNewLiBatt_18 ’ = actExecuting;
562 hConNewLiBattCableToNewLiBatt ’ = TRUE;
563 submitted ’ = TRUE;
564 []( iPowerLight = 0) AND (( aBreakCircuit_Executing) AND (NOT(

hDiscNewLiBattCableFromNewController_19 = actExecuting) AND ((
hDiscNewLiBattCableFromNewController_19 = actDone)))OR (( aBreakCircuit_Ready) AND (((
aConnectFullyChargedLiBatt_Executing) OR (( aConnectFullyChargedLiBatt_Ready) AND (((
aConnectBattOrCallEmergencyNumber_Executing) OR ((
aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing) OR ((
aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5))) AND (
aConNewLiBattCableToNewLiBatt_Done)))) -->

565 hDiscNewLiBattCableFromNewController_19 ’ = actDone;
566 [](( hDiscNewLiBattCableFromNewController_19 = actReady) AND (( aBreakCircuit_Executing) OR

(( aBreakCircuit_Ready) AND ((( aConnectFullyChargedLiBatt_Executing) OR ((
aConnectFullyChargedLiBatt_Ready) AND ((( aConnectBattOrCallEmergencyNumber_Executing)
OR (( aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing)
OR (( aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5))) AND (
aConNewLiBattCableToNewLiBatt_Done)) AND NOT (iPowerLight = 0)))) AND ready -->

567 hDiscNewLiBattCableFromNewController_19 ’ = actExecuting;
568 hDiscNewLiBattCableFromNewController ’ = TRUE;
569 submitted ’ = TRUE;
570 []( aCallEmergency_Executing) AND (NOT(hCallEmergencyNumber_20 = actExecuting) AND ((

hCallEmergencyNumber_20 = actDone))) -->
571 hCallEmergencyNumber_20 ’ = actDone;
572 [](( hCallEmergencyNumber_20 = actReady) AND (( aCallEmergency_Executing) OR ((

aCallEmergency_Ready) AND ((( aConnectFullyChargedLiBatt_Executing) OR ((
aConnectFullyChargedLiBatt_Ready) AND ((( aConnectBattOrCallEmergencyNumber_Executing)
OR (( aConnectBattOrCallEmergencyNumber_Ready) AND ((( aStep5TryLiIonBattery_Executing)
OR (( aStep5TryLiIonBattery_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep4TryLeadBattery_Done)) AND (iPage = 14))) AND (aCheckLiBatteryLevel_Done)))) AND
(aCallEmergencyNumber_Ready)) AND (iNewLiBatteryLights = 5))) AND (aBreakCircuit_Done)
)))) AND ready -->

573 hCallEmergencyNumber_20 ’ = actExecuting;
574 hCallEmergencyNumber ’ = TRUE;
575 submitted ’ = TRUE;
576 []( iOldComponentTags = redTagged) AND (( aStep6TagOldComponents_Executing) AND (NOT(

hRedTagOldComponents_21 = actExecuting) AND (( hRedTagOldComponents_21 = actDone)))OR
(( aStep6TagOldComponents_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep5TryLiIonBattery_Done)))) -->

577 hRedTagOldComponents_21 ’ = actDone;
578 [](( hRedTagOldComponents_21 = actReady) AND (( aStep6TagOldComponents_Executing) OR ((

aStep6TagOldComponents_Ready) AND ((( aRespondToPumpStoppedAlarm_Executing) OR ((
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aRespondToPumpStoppedAlarm_Ready) AND (NOT (aAdjustSpeed_Executing)) AND (iAlarm =
discreteDevice!PumpStopped) AND NOT (iAlarm /= discreteDevice!PumpStopped))) AND (
aStep5TryLiIonBattery_Done)) AND (iPage = 14 AND iOldComponentTags = notRedTagged) AND
NOT (iOldComponentTags = redTagged)))) AND ready -->

579 hRedTagOldComponents_21 ’ = actExecuting;
580 hRedTagOldComponents ’ = TRUE;
581 submitted ’ = TRUE;
582 [] submitted AND NOT ready -->
583 submitted ’ = FALSE;
584 hRotateKnobCounterclockwise_1 ’ = IF hRotateKnobCounterclockwise_1 = actExecuting THEN

actDone ELSE hRotateKnobCounterclockwise_1 ENDIF;
585 hRotateKnobClockwise_2 ’ = IF hRotateKnobClockwise_2 = actExecuting THEN actDone ELSE

hRotateKnobClockwise_2 ENDIF;
586 hReassembleBrokenConnector_3 ’ = IF hReassembleBrokenConnector_3 = actExecuting THEN

actDone ELSE hReassembleBrokenConnector_3 ENDIF;
587 hDisassembleConnector_4 ’ = IF hDisassembleConnector_4 = actExecuting THEN actDone ELSE

hDisassembleConnector_4 ENDIF;
588 hRotateConnectorParts_5 ’ = IF hRotateConnectorParts_5 = actExecuting THEN actDone ELSE

hRotateConnectorParts_5 ENDIF;
589 hReassembleBrokenConnector_6 ’ = IF hReassembleBrokenConnector_6 = actExecuting THEN

actDone ELSE hReassembleBrokenConnector_6 ENDIF;
590 hDiscPumpCableFromAbCable_7 ’ = IF hDiscPumpCableFromAbCable_7 = actExecuting THEN actDone

ELSE hDiscPumpCableFromAbCable_7 ENDIF;
591 hDiscPumpCableFromOldController_8 ’ = IF hDiscPumpCableFromOldController_8 = actExecuting

THEN actDone ELSE hDiscPumpCableFromOldController_8 ENDIF;
592 hLoosenOldControllerABCap_9 ’ = IF hLoosenOldControllerABCap_9 = actExecuting THEN actDone

ELSE hLoosenOldControllerABCap_9 ENDIF;
593 hSetAsideOldComponents_10 ’ = IF hSetAsideOldComponents_10 = actExecuting THEN actDone

ELSE hSetAsideOldComponents_10 ENDIF;
594 hConPumpCableToNewController_11 ’ = IF hConPumpCableToNewController_11 = actExecuting THEN

actDone ELSE hConPumpCableToNewController_11 ENDIF;
595 hTightenNewControllerABCap_12 ’ = IF hTightenNewControllerABCap_12 = actExecuting THEN

actDone ELSE hTightenNewControllerABCap_12 ENDIF;
596 hConLeadBattToNewController_13 ’ = IF hConLeadBattToNewController_13 = actExecuting THEN

actDone ELSE hConLeadBattToNewController_13 ENDIF;
597 hDiscLeadBattFromNewController_14 ’ = IF hDiscLeadBattFromNewController_14 = actExecuting

THEN actDone ELSE hDiscLeadBattFromNewController_14 ENDIF;
598 hDepressBlackButtonOnNewLiBatt_15 ’ = IF hDepressBlackButtonOnNewLiBatt_15 = actExecuting

THEN actDone ELSE hDepressBlackButtonOnNewLiBatt_15 ENDIF;
599 hCallEmergencyNumber_16 ’ = IF hCallEmergencyNumber_16 = actExecuting THEN actDone ELSE

hCallEmergencyNumber_16 ENDIF;
600 hConNewLiBattCableToNewController_17 ’ = IF hConNewLiBattCableToNewController_17 =

actExecuting THEN actDone ELSE hConNewLiBattCableToNewController_17 ENDIF;
601 hConNewLiBattCableToNewLiBatt_18 ’ = IF hConNewLiBattCableToNewLiBatt_18 = actExecuting

THEN actDone ELSE hConNewLiBattCableToNewLiBatt_18 ENDIF;
602 hDiscNewLiBattCableFromNewController_19 ’ = IF hDiscNewLiBattCableFromNewController_19 =

actExecuting THEN actDone ELSE hDiscNewLiBattCableFromNewController_19 ENDIF;
603 hCallEmergencyNumber_20 ’ = IF hCallEmergencyNumber_20 = actExecuting THEN actDone ELSE

hCallEmergencyNumber_20 ENDIF;
604 hRedTagOldComponents_21 ’ = IF hRedTagOldComponents_21 = actExecuting THEN actDone ELSE

hRedTagOldComponents_21 ENDIF;
605 hCallEmergencyNumber ’ = FALSE;
606 hRedTagOldComponents ’ = FALSE;
607 hSetAsideOldComponents ’ = FALSE;
608 hRotateConnectorParts ’ = FALSE;
609 hDisassembleConnector ’ = FALSE;
610 hReassembleBrokenConnector ’ = FALSE;
611 hDiscPumpCableFromAbCable ’ = FALSE;
612 hDiscPumpCableFromOldController ’ = FALSE;
613 hDiscLeadBattFromNewController ’ = FALSE;
614 hDiscNewLiBattCableFromNewController ’ = FALSE;
615 hConNewLiBattCableToNewController ’ = FALSE;
616 hConNewLiBattCableToNewLiBatt ’ = FALSE;
617 hDiscNewLiBattCableFromNewLiBatt ’ = FALSE;
618 hConLeadBattToNewController ’ = FALSE;
619 hConPumpCableToNewController ’ = FALSE;
620 hConNewLeadBattToNewController ’ = FALSE;
621 hDepressBlackButtonOnNewLiBatt ’ = FALSE;
622 hRotateKnobClockwise ’ = FALSE;
623 hRotateKnobCounterclockwise ’ = FALSE;
624 hTightenNewControllerABCap ’ = FALSE;
625 hLoosenOldControllerABCap ’ = FALSE;
626 hLoosenNewControllerABCap ’ = FALSE;
627 ];
628 END;
629 END

H.2.3 Affordance Model

1 cavemen: CONTEXT =
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2 BEGIN
3 position: TYPE = {up, down , back , forth};
4 translate: TYPE = {left , right};
5 orient: TYPE = {pitch_back , pitch_forth , yaw_left , yaw_right , roll_left , roll_right };
6 abilities: TYPE = [# positionable: ARRAY position OF BOOLEAN , translatable: ARRAY translate OF

BOOLEAN , orientable: ARRAY orient OF BOOLEAN #];
7 topological: TYPE = {disjoint_to , touching , covering , overlapping };
8 directional: TYPE = {left_of , right_of , top_of , bottom_of , front_of , back_of };
9 relations: TYPE = ARRAY directional OF topological;

10 aoConnectorPart1_rels: TYPE = [# aoConnectorPart2: relations #];
11 aoConnectorPart2_rels: TYPE = [# aoConnectorPart1: relations #];
12 aoNCBatteryInput_rels: TYPE = [# aoNBCControllerOutput: relations , aoLeadBattControllerOutput:

relations , aoOBCControllerOutput: relations , aoYCControllerOutput: relations #];
13 aoOCBatteryInput_rels: TYPE = [# aoLeadBattControllerOutput: relations , aoNBCControllerOutput:

relations , aoOBCControllerOutput: relations #];
14 aoYCableBatteryInput1_rels: TYPE = [# aoLeadBattControllerOutput: relations , aoNBCControllerOutput

: relations , aoOBCControllerOutput: relations #];
15 aoYCableBatteryInput2_rels: TYPE = [# aoLeadBattControllerOutput: relations , aoNBCControllerOutput

: relations , aoOBCControllerOutput: relations #];
16 aoOBBattCableInput_rels: TYPE = [# aoNBCBatteryOutput: relations , aoOBCBatteryOutput: relations #];
17 aoNBBattCableInput_rels: TYPE = [# aoNBCBatteryOutput: relations , aoOBCBatteryOutput: relations #];
18 aoOCPumpInput_rels: TYPE = [# aoPCControllerOutput: relations #];
19 aoNCPumpInput_rels: TYPE = [# aoPCControllerOutput: relations #];
20 aoACPumpInput_rels: TYPE = [# aoPCControllerOutput: relations #];
21 affords(feature: BOOLEAN , ability: BOOLEAN): BOOLEAN = IF feature AND ability THEN TRUE ELSE

FALSE ENDIF;
22 affordance: MODULE =
23 BEGIN
24 INPUT aoConnectorPart1: aoConnectorPart1_rels
25 INPUT aoConnectorPart2: aoConnectorPart2_rels
26 INPUT aoNCBatteryInput: aoNCBatteryInput_rels
27 INPUT aoOCBatteryInput: aoOCBatteryInput_rels
28 INPUT aoYCableBatteryInput1: aoYCableBatteryInput1_rels
29 INPUT aoYCableBatteryInput2: aoYCableBatteryInput2_rels
30 INPUT aoOBBattCableInput: aoOBBattCableInput_rels
31 INPUT aoNBBattCableInput: aoNBBattCableInput_rels
32 INPUT aoOCPumpInput: aoOCPumpInput_rels
33 INPUT aoNCPumpInput: aoNCPumpInput_rels
34 INPUT aoACPumpInput: aoACPumpInput_rels
35 INPUT pPumpOperator_aoConnectorPart1: abilities
36 INPUT pPumpOperator_aoConnectorPart2: abilities
37 INPUT pPumpOperator_mNewController: abilities
38 INPUT pPumpOperator_aoNBCControllerOutput: abilities
39 INPUT pPumpOperator_aoLeadBattControllerOutput: abilities
40 INPUT pPumpOperator_mOldLiIonBattery: abilities
41 INPUT pPumpOperator_aoNBCBatteryOutput: abilities
42 INPUT pPumpOperator_mNewLiIonBattery: abilities
43 INPUT pPumpOperator_aoOBCControllerOutput: abilities
44 INPUT pPumpOperator_aoPCControllerOutput: abilities
45 INPUT pPumpOperator_mOldController: abilities
46 INPUT pPumpOperator_aoACPumpInput: abilities
47 LOCAL ability_RotatePart1: BOOLEAN
48 LOCAL ability_RotatePart2: BOOLEAN
49 LOCAL ability_AssemblePart1: BOOLEAN
50 LOCAL ability_AssemblePart2: BOOLEAN
51 LOCAL ability_DisassemblePart1: BOOLEAN
52 LOCAL ability_DisassemblePart2: BOOLEAN
53 LOCAL ability_MoveNewControllerBack: BOOLEAN
54 LOCAL ability_MoveNewLiBattCableControllerOutputBack: BOOLEAN
55 LOCAL ability_MoveLeadBattCableControllerOutputBack: BOOLEAN
56 LOCAL ability_MoveNewController: BOOLEAN
57 LOCAL ability_MoveLeadBattControllerOutput: BOOLEAN
58 LOCAL ability_MoveOldLiBattery: BOOLEAN
59 LOCAL ability_MoveNewBattCableBatteryOutput: BOOLEAN
60 LOCAL ability_MoveNewLiBattery: BOOLEAN
61 LOCAL ability_MoveNewBattCableControllerOutput: BOOLEAN
62 LOCAL ability_MoveOldBattCableControllerOutput: BOOLEAN
63 LOCAL ability_MovePumpCableOutput: BOOLEAN
64 LOCAL ability_MoveOldControllerBack: BOOLEAN
65 LOCAL ability_MovePumpCableControllerOutputBack: BOOLEAN
66 LOCAL ability_MoveAbCablePumpInputBack: BOOLEAN
67 LOCAL feature_ConnectorPartsRotatable: BOOLEAN
68 LOCAL feature_ConnectorPartsAssemblable: BOOLEAN
69 LOCAL feature_ConnectorPartsDisassemblable: BOOLEAN
70 LOCAL feature_NewLiBattCableDisconnectableFromNewController: BOOLEAN
71 LOCAL feature_LeadBattDisconnectableFromNewController: BOOLEAN
72 LOCAL feature_LeadBattConnectableToNewController: BOOLEAN
73 LOCAL feature_NewLiBattCableConnectableToOldLiBatt: BOOLEAN
74 LOCAL feature_NewLiBattCableConnectableToNewLiBatt: BOOLEAN
75 LOCAL feature_NewLiBattCableConnectableToNewController: BOOLEAN
76 LOCAL feature_OldLiBattCableConnectableToNewController: BOOLEAN
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77 LOCAL feature_PumpCableConnectableToNewController: BOOLEAN
78 LOCAL feature_PumpCableDisconnectableFromOldController: BOOLEAN
79 LOCAL feature_PumpCableDisconnectableFromAbCable: BOOLEAN
80 OUTPUT ConnectorPartsRotatable: BOOLEAN
81 OUTPUT ConnectorPartsAssemblable: BOOLEAN
82 OUTPUT ConnectorPartsDisassemblable: BOOLEAN
83 OUTPUT NewLiBattCableDisconnectableFromNewController: BOOLEAN
84 OUTPUT LeadBattDisconnectableFromNewController: BOOLEAN
85 OUTPUT LeadBattConnectableToNewController: BOOLEAN
86 OUTPUT NewLiBattCableConnectableToOldLiBatt: BOOLEAN
87 OUTPUT NewLiBattCableConnectableToNewLiBatt: BOOLEAN
88 OUTPUT NewLiBattCableConnectableToNewController: BOOLEAN
89 OUTPUT OldLiBattCableConnectableToNewController: BOOLEAN
90 OUTPUT PumpCableConnectableToNewController: BOOLEAN
91 OUTPUT PumpCableDisconnectableFromOldController: BOOLEAN
92 OUTPUT PumpCableDisconnectableFromAbCable: BOOLEAN
93 DEFINITION
94 ability_RotatePart1 =
95 pPumpOperator_aoConnectorPart1.orientable[roll_right] = TRUE AND
96 pPumpOperator_aoConnectorPart1.orientable[roll_left] = TRUE;
97 ability_RotatePart2 =
98 pPumpOperator_aoConnectorPart2.orientable[roll_right] = TRUE AND
99 pPumpOperator_aoConnectorPart2.orientable[roll_left] = TRUE;

100 feature_ConnectorPartsRotatable =
101 aoConnectorPart1.aoConnectorPart2[front_of] = disjoint_to AND
102 aoConnectorPart2.aoConnectorPart1[back_of] = disjoint_to;
103 ConnectorPartsRotatable = affords(feature_ConnectorPartsRotatable , ability_RotatePart1 AND

ability_RotatePart2);
104 ability_AssemblePart1 =
105 pPumpOperator_aoConnectorPart1.positionable[back] = TRUE;
106 ability_AssemblePart2 =
107 pPumpOperator_aoConnectorPart2.positionable[forth] = TRUE;
108 feature_ConnectorPartsAssemblable =
109 aoConnectorPart1.aoConnectorPart2[front_of] /= covering;
110 ConnectorPartsAssemblable = affords(feature_ConnectorPartsAssemblable , ability_AssemblePart1 AND

ability_AssemblePart2);
111 ability_DisassemblePart1 =
112 pPumpOperator_aoConnectorPart1.positionable[forth] = TRUE;
113 ability_DisassemblePart2 =
114 pPumpOperator_aoConnectorPart2.positionable[back] = TRUE;
115 feature_ConnectorPartsDisassemblable =
116 aoConnectorPart1.aoConnectorPart2[front_of] = covering;
117 ConnectorPartsDisassemblable = affords(feature_ConnectorPartsDisassemblable ,

ability_DisassemblePart1 AND ability_DisassemblePart2);
118 ability_MoveNewControllerBack =
119 pPumpOperator_mNewController.positionable[back] = TRUE;
120 ability_MoveNewLiBattCableControllerOutputBack =
121 pPumpOperator_aoNBCControllerOutput.positionable[back] = TRUE;
122 feature_NewLiBattCableDisconnectableFromNewController =
123 FORALL(x: directional): aoNCBatteryInput.aoNBCControllerOutput[x] = covering;
124 NewLiBattCableDisconnectableFromNewController = affords(

feature_NewLiBattCableDisconnectableFromNewController , ability_MoveNewControllerBack AND
ability_MoveNewLiBattCableControllerOutputBack);

125 ability_MoveLeadBattCableControllerOutputBack =
126 pPumpOperator_aoLeadBattControllerOutput.positionable[back] = TRUE;
127 feature_LeadBattDisconnectableFromNewController =
128 FORALL(x: directional): aoNCBatteryInput.aoLeadBattControllerOutput[x] = covering;
129 LeadBattDisconnectableFromNewController = affords(feature_LeadBattDisconnectableFromNewController

, ability_MoveNewControllerBack AND ability_MoveLeadBattCableControllerOutputBack);
130 ability_MoveNewController =
131 FORALL(x: orient): pPumpOperator_mNewController.orientable[x] = TRUE AND
132 FORALL(x: translate): pPumpOperator_mNewController.translatable[x] = TRUE AND
133 FORALL(x: position): pPumpOperator_mNewController.positionable[x] = TRUE;
134 ability_MoveLeadBattControllerOutput =
135 pPumpOperator_aoLeadBattControllerOutput.orientable[pitch_back] = TRUE AND
136 pPumpOperator_aoLeadBattControllerOutput.orientable[pitch_forth] = TRUE AND
137 pPumpOperator_aoLeadBattControllerOutput.orientable[yaw_left] = TRUE AND
138 pPumpOperator_aoLeadBattControllerOutput.orientable[yaw_right] = TRUE AND
139 FORALL(x: translate): pPumpOperator_aoLeadBattControllerOutput.translatable[x] = TRUE AND
140 FORALL(x: position): pPumpOperator_aoLeadBattControllerOutput.positionable[x] = TRUE;
141 feature_LeadBattConnectableToNewController =
142 FORALL(x: directional): aoNCBatteryInput.aoLeadBattControllerOutput[x] /= covering AND
143 FORALL(x: directional): aoNCBatteryInput.aoOBCControllerOutput[x] /= covering AND
144 FORALL(x: directional): aoNCBatteryInput.aoNBCControllerOutput[x] /= covering AND
145 FORALL(x: directional): aoNCBatteryInput.aoYCControllerOutput[x] /= covering AND
146 FORALL(x: directional): aoOCBatteryInput.aoLeadBattControllerOutput[x] /= covering AND
147 FORALL(x: directional): aoYCableBatteryInput1.aoLeadBattControllerOutput[x] /= covering AND
148 FORALL(x: directional): aoYCableBatteryInput2.aoLeadBattControllerOutput[x] /= covering;
149 LeadBattConnectableToNewController = affords(feature_LeadBattConnectableToNewController ,

ability_MoveNewController AND ability_MoveLeadBattControllerOutput);
150 ability_MoveOldLiBattery =
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151 pPumpOperator_mOldLiIonBattery.orientable[pitch_back] = TRUE AND
152 pPumpOperator_mOldLiIonBattery.orientable[pitch_forth] = TRUE AND
153 pPumpOperator_mOldLiIonBattery.orientable[yaw_left] = TRUE AND
154 pPumpOperator_mOldLiIonBattery.orientable[yaw_right] = TRUE AND
155 FORALL(x: translate): pPumpOperator_mOldLiIonBattery.translatable[x] = TRUE AND
156 FORALL(x: position): pPumpOperator_mOldLiIonBattery.positionable[x] = TRUE;
157 ability_MoveNewBattCableBatteryOutput =
158 pPumpOperator_aoNBCBatteryOutput.orientable[pitch_back] = TRUE AND
159 pPumpOperator_aoNBCBatteryOutput.orientable[pitch_forth] = TRUE AND
160 pPumpOperator_aoNBCBatteryOutput.orientable[yaw_left] = TRUE AND
161 pPumpOperator_aoNBCBatteryOutput.orientable[yaw_right] = TRUE AND
162 FORALL(x: translate): pPumpOperator_aoNBCBatteryOutput.translatable[x] = TRUE AND
163 FORALL(x: position): pPumpOperator_aoNBCBatteryOutput.positionable[x] = TRUE;
164 feature_NewLiBattCableConnectableToOldLiBatt =
165 FORALL(x: directional): aoOBBattCableInput.aoNBCBatteryOutput[x] /= covering AND
166 FORALL(x: directional): aoOBBattCableInput.aoOBCBatteryOutput[x] /= covering AND
167 FORALL(x: directional): aoNBBattCableInput.aoNBCBatteryOutput[x] /= covering;
168 NewLiBattCableConnectableToOldLiBatt = affords(feature_NewLiBattCableConnectableToOldLiBatt ,

ability_MoveOldLiBattery AND ability_MoveNewBattCableBatteryOutput);
169 ability_MoveNewLiBattery =
170 pPumpOperator_mNewLiIonBattery.orientable[pitch_back] = TRUE AND
171 pPumpOperator_mNewLiIonBattery.orientable[pitch_forth] = TRUE AND
172 pPumpOperator_mNewLiIonBattery.orientable[yaw_left] = TRUE AND
173 pPumpOperator_mNewLiIonBattery.orientable[yaw_right] = TRUE AND
174 FORALL(x: translate): pPumpOperator_mNewLiIonBattery.translatable[x] = TRUE AND
175 FORALL(x: position): pPumpOperator_mNewLiIonBattery.positionable[x] = TRUE;
176 feature_NewLiBattCableConnectableToNewLiBatt =
177 FORALL(x: directional): aoOBBattCableInput.aoNBCBatteryOutput[x] /= covering AND
178 FORALL(x: directional): aoNBBattCableInput.aoNBCBatteryOutput[x] /= covering AND
179 FORALL(x: directional): aoNBBattCableInput.aoOBCBatteryOutput[x] /= covering;
180 NewLiBattCableConnectableToNewLiBatt = affords(feature_NewLiBattCableConnectableToNewLiBatt ,

ability_MoveNewLiBattery AND ability_MoveNewBattCableBatteryOutput);
181 ability_MoveNewBattCableControllerOutput =
182 pPumpOperator_aoNBCControllerOutput.orientable[pitch_back] = TRUE AND
183 pPumpOperator_aoNBCControllerOutput.orientable[pitch_forth] = TRUE AND
184 pPumpOperator_aoNBCControllerOutput.orientable[yaw_left] = TRUE AND
185 pPumpOperator_aoNBCControllerOutput.orientable[yaw_right] = TRUE AND
186 FORALL(x: translate): pPumpOperator_aoNBCControllerOutput.translatable[x] = TRUE AND
187 FORALL(x: position): pPumpOperator_aoNBCControllerOutput.positionable[x] = TRUE;
188 feature_NewLiBattCableConnectableToNewController =
189 FORALL(x: directional): aoNCBatteryInput.aoOBCControllerOutput[x] /= covering AND
190 FORALL(x: directional): aoNCBatteryInput.aoNBCControllerOutput[x] /= covering AND
191 FORALL(x: directional): aoNCBatteryInput.aoYCControllerOutput[x] /= covering AND
192 FORALL(x: directional): aoNCBatteryInput.aoLeadBattControllerOutput[x] /= covering AND
193 FORALL(x: directional): aoOCBatteryInput.aoNBCControllerOutput[x] /= covering AND
194 FORALL(x: directional): aoYCableBatteryInput1.aoNBCControllerOutput[x] /= covering AND
195 FORALL(x: directional): aoYCableBatteryInput2.aoNBCControllerOutput[x] /= covering;
196 NewLiBattCableConnectableToNewController = affords(

feature_NewLiBattCableConnectableToNewController , ability_MoveNewController AND
ability_MoveNewBattCableControllerOutput);

197 ability_MoveOldBattCableControllerOutput =
198 pPumpOperator_aoOBCControllerOutput.orientable[pitch_back] = TRUE AND
199 pPumpOperator_aoOBCControllerOutput.orientable[pitch_forth] = TRUE AND
200 pPumpOperator_aoOBCControllerOutput.orientable[yaw_left] = TRUE AND
201 pPumpOperator_aoOBCControllerOutput.orientable[yaw_right] = TRUE AND
202 FORALL(x: translate): pPumpOperator_aoOBCControllerOutput.translatable[x] = TRUE AND
203 FORALL(x: position): pPumpOperator_aoOBCControllerOutput.positionable[x] = TRUE;
204 feature_OldLiBattCableConnectableToNewController =
205 FORALL(x: directional): aoNCBatteryInput.aoOBCControllerOutput[x] /= covering AND
206 FORALL(x: directional): aoNCBatteryInput.aoNBCControllerOutput[x] /= covering AND
207 FORALL(x: directional): aoNCBatteryInput.aoYCControllerOutput[x] /= covering AND
208 FORALL(x: directional): aoNCBatteryInput.aoLeadBattControllerOutput[x] /= covering AND
209 FORALL(x: directional): aoYCableBatteryInput1.aoOBCControllerOutput[x] /= covering AND
210 FORALL(x: directional): aoYCableBatteryInput2.aoOBCControllerOutput[x] /= covering AND
211 FORALL(x: directional): aoOCBatteryInput.aoOBCControllerOutput[x] /= covering;
212 OldLiBattCableConnectableToNewController = affords(

feature_OldLiBattCableConnectableToNewController , ability_MoveNewController AND
ability_MoveOldBattCableControllerOutput);

213 ability_MovePumpCableOutput =
214 pPumpOperator_aoPCControllerOutput.orientable[pitch_back] = TRUE AND
215 pPumpOperator_aoPCControllerOutput.orientable[pitch_forth] = TRUE AND
216 pPumpOperator_aoPCControllerOutput.orientable[yaw_left] = TRUE AND
217 pPumpOperator_aoPCControllerOutput.orientable[yaw_right] = TRUE AND
218 FORALL(x: translate): pPumpOperator_aoPCControllerOutput.translatable[x] = TRUE AND
219 FORALL(x: position): pPumpOperator_aoPCControllerOutput.positionable[x] = TRUE;
220 feature_PumpCableConnectableToNewController =
221 FORALL(x: directional): aoOCPumpInput.aoPCControllerOutput[x] /= covering AND
222 FORALL(x: directional): aoNCPumpInput.aoPCControllerOutput[x] /= covering AND
223 FORALL(x: directional): aoACPumpInput.aoPCControllerOutput[x] /= covering;
224 PumpCableConnectableToNewController = affords(feature_PumpCableConnectableToNewController ,

ability_MoveNewController AND ability_MovePumpCableOutput);
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225 ability_MoveOldControllerBack =
226 pPumpOperator_mOldController.positionable[back] = TRUE;
227 ability_MovePumpCableControllerOutputBack =
228 pPumpOperator_aoPCControllerOutput.positionable[back] = TRUE;
229 feature_PumpCableDisconnectableFromOldController =
230 FORALL(x: directional): aoOCPumpInput.aoPCControllerOutput[x] = covering;
231 PumpCableDisconnectableFromOldController = affords(

feature_PumpCableDisconnectableFromOldController , ability_MoveOldControllerBack AND
ability_MovePumpCableControllerOutputBack);

232 ability_MoveAbCablePumpInputBack =
233 pPumpOperator_aoACPumpInput.positionable[back] = TRUE;
234 feature_PumpCableDisconnectableFromAbCable =
235 FORALL(x: directional): aoACPumpInput.aoPCControllerOutput[x] = covering;
236 PumpCableDisconnectableFromAbCable = affords(feature_PumpCableDisconnectableFromAbCable ,

ability_MoveAbCablePumpInputBack AND ability_MovePumpCableControllerOutputBack);
237
238 END;
239
240 HES: MODULE =
241 BEGIN
242
243 INPUT iLeadBattToOldController: userManual!tConnection
244 INPUT iLeadBattToNewController: userManual!tConnection
245 INPUT iLeadBattToYCable: userManual!tConnection
246 INPUT iYCableToOldController: userManual!tConnection
247 INPUT iOldLiBattCableToYCable: userManual!tConnection
248 INPUT iOldLiBattCableToOldController: userManual!tConnection
249 INPUT iOldLiBattCableToOldLiBatt: userManual!tConnection
250 INPUT iPumpCableToOldController: userManual!tConnection
251 INPUT iAbCableToOldController: userManual!tConnection
252 INPUT iNewLiBattCableToNewLiBatt: userManual!tConnection
253 INPUT iNewLiBattCableToNewController: userManual!tConnection
254 INPUT iPumpCableToOldAbCable: userManual!tConnection
255 INPUT iPumpCableToNewController: userManual!tConnection
256 INPUT iPermanentlyAttachedConnector: userManual!tPermAttachedConnectorStatus
257
258 OUTPUT aoConnectorPart1: aoConnectorPart1_rels
259 OUTPUT aoConnectorPart2: aoConnectorPart2_rels
260 OUTPUT aoNCBatteryInput: aoNCBatteryInput_rels
261 OUTPUT aoOCBatteryInput: aoOCBatteryInput_rels
262 OUTPUT aoOBBattCableInput: aoOBBattCableInput_rels
263 OUTPUT aoNBBattCableInput: aoNBBattCableInput_rels
264 OUTPUT aoYCableBatteryInput1: aoYCableBatteryInput1_rels
265 OUTPUT aoYCableBatteryInput2: aoYCableBatteryInput2_rels
266 OUTPUT aoOCPumpInput: aoOCPumpInput_rels
267 OUTPUT aoNCPumpInput: aoNCPumpInput_rels
268 OUTPUT aoACPumpInput: aoACPumpInput_rels
269
270 OUTPUT pPumpOperator_aoConnectorPart1: abilities
271 OUTPUT pPumpOperator_aoConnectorPart2: abilities
272 OUTPUT pPumpOperator_mNewController: abilities
273 OUTPUT pPumpOperator_aoNBCControllerOutput: abilities
274 OUTPUT pPumpOperator_aoLeadBattControllerOutput: abilities
275 OUTPUT pPumpOperator_mOldLiIonBattery: abilities
276 OUTPUT pPumpOperator_aoNBCBatteryOutput: abilities
277 OUTPUT pPumpOperator_mNewLiIonBattery: abilities
278 OUTPUT pPumpOperator_aoPCControllerOutput: abilities
279 OUTPUT pPumpOperator_mOldController: abilities
280 OUTPUT pPumpOperator_aoOBCControllerOutput: abilities
281
282 INITIALIZATION
283 (FORALL(y: position): pPumpOperator_aoConnectorPart1.positionable[y] = TRUE);
284 (FORALL(y: translate): pPumpOperator_aoConnectorPart1.translatable[y] = TRUE);
285 (FORALL(y: orient): pPumpOperator_aoConnectorPart1.orientable[y] = TRUE);
286
287 (FORALL(y: position): pPumpOperator_aoConnectorPart2.positionable[y] = TRUE);
288 (FORALL(y: translate): pPumpOperator_aoConnectorPart2 .translatable[y] = TRUE);
289 (FORALL(y: orient): pPumpOperator_aoConnectorPart2.orientable[y] = TRUE);
290
291 (FORALL(y: position): pPumpOperator_mNewController.positionable[y] = TRUE);
292 (FORALL(y: translate): pPumpOperator_mNewController.translatable[y] = TRUE);
293 (FORALL(y: orient): pPumpOperator_mNewController.orientable[y] = TRUE);
294
295 (FORALL(y: position): pPumpOperator_aoNBCControllerOutput.positionable[y] = TRUE);
296 (FORALL(y: translate): pPumpOperator_aoNBCControllerOutput.translatable[y] = TRUE);
297 (FORALL(y: orient): pPumpOperator_aoNBCControllerOutput.orientable[y] = TRUE);
298
299 (FORALL(y: position): pPumpOperator_aoLeadBattControllerOutput.positionable[y] = TRUE);
300 (FORALL(y: translate): pPumpOperator_aoLeadBattControllerOutput.translatable[y] = TRUE);
301 (FORALL(y: orient): pPumpOperator_aoLeadBattControllerOutput.orientable[y] = TRUE);
302
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303 (FORALL(y: position): pPumpOperator_mOldLiIonBattery.positionable[y] = TRUE);
304 (FORALL(y: translate): pPumpOperator_mOldLiIonBattery.translatable[y] = TRUE);
305 (FORALL(y: orient): pPumpOperator_mOldLiIonBattery.orientable[y] = TRUE);
306
307 (FORALL(y: position): pPumpOperator_aoNBCBatteryOutput.positionable[y] = TRUE);
308 (FORALL(y: translate): pPumpOperator_aoNBCBatteryOutput.translatable[y] = TRUE);
309 (FORALL(y: orient): pPumpOperator_aoNBCBatteryOutput.orientable[y] = TRUE);
310
311 (FORALL(y: position): pPumpOperator_mNewLiIonBattery.positionable[y] = TRUE);
312 (FORALL(y: translate): pPumpOperator_mNewLiIonBattery.translatable[y] = TRUE);
313 (FORALL(y: orient): pPumpOperator_mNewLiIonBattery.orientable[y] = TRUE);
314
315 (FORALL(y: position): pPumpOperator_aoOBCControllerOutput.positionable[y] = TRUE);
316 (FORALL(y: translate): pPumpOperator_aoOBCControllerOutput.translatable[y] = TRUE);
317 (FORALL(y: orient): pPumpOperator_aoOBCControllerOutput.orientable[y] = TRUE);
318
319 (FORALL(y: position): pPumpOperator_aoPCControllerOutput.positionable[y] = TRUE);
320 (FORALL(y: translate): pPumpOperator_aoPCControllerOutput.translatable[y] = TRUE);
321 (FORALL(y: orient): pPumpOperator_aoPCControllerOutput.orientable[y] = TRUE);
322
323 (FORALL(y: position): pPumpOperator_mOldController.positionable[y] = TRUE);
324 (FORALL(y: translate): pPumpOperator_mOldController.translatable[y] = TRUE);
325 (FORALL(y: orient): pPumpOperator_mOldController.orientable[y] = TRUE);
326
327 LOCAL rels: relations
328 DEFINITION
329 aoOCPumpInput =
330 IF iPumpCableToOldController = userManual!Connected THEN
331 (# aoPCControllerOutput := [[x: directional]covering ]#)
332 ELSE
333 (# aoPCControllerOutput := [[x: directional]disjoint_to ]#)
334 ENDIF;
335
336 aoACPumpInput =
337 IF iPumpCableToOldAbCable = userManual!Connected THEN
338 (# aoPCControllerOutput := [[x: directional]covering ]#)
339 ELSE
340 (# aoPCControllerOutput := [[x: directional]disjoint_to ]#)
341 ENDIF;
342
343 aoNCPumpInput =
344 IF iPumpCableToNewController = userManual!Connected THEN
345 (# aoPCControllerOutput := [[x: directional]covering ]#)
346 ELSE
347 (# aoPCControllerOutput := [[x: directional]disjoint_to ]#)
348 ENDIF;
349
350 aoNCBatteryInput =
351 IF iLeadBattToNewController = userManual!Connected THEN
352 (# aoNBCControllerOutput := [[x: directional]disjoint_to],
353 aoLeadBattControllerOutput := [[x: directional]covering],
354 aoOBCControllerOutput := [[x: directional]disjoint_to],
355 aoYCControllerOutput := [[x: directional]disjoint_to ]#)
356
357 ELSIF iNewLiBattCableToNewController = userManual!Connected THEN
358 (# aoNBCControllerOutput := [[x: directional]covering],
359 aoLeadBattControllerOutput := [[x: directional]disjoint_to],
360 aoOBCControllerOutput := [[x: directional]disjoint_to],
361 aoYCControllerOutput := [[x: directional]disjoint_to ]#)
362
363 ELSE
364 (# aoNBCControllerOutput := [[x: directional]disjoint_to],
365 aoLeadBattControllerOutput := [[x: directional]disjoint_to],
366 aoOBCControllerOutput := [[x: directional]disjoint_to],
367 aoYCControllerOutput := [[x: directional]disjoint_to ]#)
368 ENDIF;
369
370 aoOCBatteryInput =
371 IF iLeadBattToOldController = userManual!Connected THEN
372 (# aoNBCControllerOutput := [[x: directional]disjoint_to],
373 aoLeadBattControllerOutput := [[x: directional]covering],
374 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)
375
376 ELSIF iOldLiBattCableToOldController = userManual!Connected THEN
377 (# aoNBCControllerOutput := [[x: directional]disjoint_to],
378 aoLeadBattControllerOutput := [[x: directional]disjoint_to],
379 aoOBCControllerOutput := [[x: directional]covering ]#)
380
381 ELSE
382 (# aoNBCControllerOutput := [[x: directional]disjoint_to],
383 aoLeadBattControllerOutput := [[x: directional]disjoint_to],
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384 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)
385 ENDIF;
386
387 aoYCableBatteryInput1 IN
388 IF iOldLiBattCableToYCable = userManual!Connected THEN
389 {(# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
390 aoNBCControllerOutput := [[x: directional]disjoint_to],
391 aoOBCControllerOutput := [[x: directional]covering ]#),
392
393 (# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
394 aoNBCControllerOutput := [[x: directional]disjoint_to],
395 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)}
396
397 ELSIF iLeadBattToYCable = userManual!Connected THEN
398 {(# aoLeadBattControllerOutput := [[x: directional]covering],
399 aoNBCControllerOutput := [[x: directional]disjoint_to],
400 aoOBCControllerOutput := [[x: directional]disjoint_to ]#),
401
402 (# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
403 aoNBCControllerOutput := [[x: directional]disjoint_to],
404 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)}
405
406 ELSE
407 {(# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
408 aoNBCControllerOutput := [[x: directional]disjoint_to],
409 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)}
410 ENDIF;
411
412 aoYCableBatteryInput2 =
413 IF iOldLiBattCableToYCable = userManual!Connected AND
414 FORALL(x: directional): aoYCableBatteryInput1.aoOBCControllerOutput[x] = disjoint_to
415 THEN
416 (# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
417 aoNBCControllerOutput := [[x: directional]disjoint_to],
418 aoOBCControllerOutput := [[x: directional]covering ]#)
419
420 ELSIF iOldLiBattCableToYCable = userManual!Connected AND
421 FORALL(x: directional): aoYCableBatteryInput1.aoOBCControllerOutput[x] = covering
422 THEN
423 (# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
424 aoNBCControllerOutput := [[x: directional]disjoint_to],
425 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)
426
427 ELSIF iLeadBattToYCable = userManual!Connected AND
428 FORALL(x: directional): aoYCableBatteryInput1.aoLeadBattControllerOutput[x] =

disjoint_to
429 THEN
430 (# aoLeadBattControllerOutput := [[x: directional]covering],
431 aoNBCControllerOutput := [[x: directional]disjoint_to],
432 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)
433
434 ELSIF iLeadBattToYCable = userManual!Connected AND
435 FORALL(x: directional): aoYCableBatteryInput1.aoLeadBattControllerOutput[x] =

covering
436 THEN
437 (# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
438 aoNBCControllerOutput := [[x: directional]disjoint_to],
439 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)
440
441 ELSE
442 (# aoLeadBattControllerOutput := [[x: directional]disjoint_to],
443 aoNBCControllerOutput := [[x: directional]disjoint_to],
444 aoOBCControllerOutput := [[x: directional]disjoint_to ]#)
445 ENDIF;
446
447 aoNBBattCableInput =
448 IF iNewLiBattCableToNewLiBatt = userManual!Connected THEN
449 (# aoNBCBatteryOutput := [[x: directional]covering],
450 aoOBCBatteryOutput := [[x: directional]disjoint_to ]#)
451 ELSE
452 (# aoNBCBatteryOutput := [[x: directional]disjoint_to],
453 aoOBCBatteryOutput := [[x: directional]disjoint_to ]#)
454 ENDIF;
455
456 aoOBBattCableInput =
457 IF iOldLiBattCableToOldLiBatt = userManual!Connected THEN
458 (# aoNBCBatteryOutput := [[x: directional]disjoint_to],
459 aoOBCBatteryOutput := [[x: directional]covering ]#)
460 ELSE
461 (# aoNBCBatteryOutput := [[x: directional]disjoint_to],
462 aoOBCBatteryOutput := [[x: directional]disjoint_to ]#)
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463 ENDIF;
464
465 aoConnectorPart1 =
466 IF iPermanentlyAttachedConnector = userManual!Assembled THEN
467 (# aoConnectorPart2 := rels
468 WITH [left_of] := disjoint_to WITH [right_of] := disjoint_to
469 WITH [top_of] := disjoint_to WITH [bottom_of] := disjoint_to
470 WITH [front_of] := covering WITH [back_of] := disjoint_to #)
471 ELSE
472 (# aoConnectorPart2 := [[x: directional]disjoint_to ]#)
473 ENDIF;
474
475 aoConnectorPart2 =
476 IF iPermanentlyAttachedConnector = userManual!Assembled THEN
477 (# aoConnectorPart1 := rels
478 WITH [left_of] := disjoint_to WITH [right_of] := disjoint_to
479 WITH [top_of] := disjoint_to WITH [bottom_of] := disjoint_to
480 WITH [front_of] := disjoint_to WITH [back_of] := covering #)
481 ELSE
482 (# aoConnectorPart1 := [[x: directional]disjoint_to ]#)
483 ENDIF;
484 END;
485 hes: MODULE = affordance || HES;
486 END

H.2.4 Signifier Model

1 bigsis: CONTEXT =
2 BEGIN
3 PumpSpeed: TYPE = {PumpSpeedNotSignified , Stopped , Low , Lowest , Medium , High , Highest };
4 PowerSupplied: TYPE = {PowerSuppliedNotSignified , ZeroUnits , OneUnit , TwoUnits , ThreeUnits ,

FourUnits ,
5 FiveUnits , SixUnits , SevenUnits , EightUnits , NineUnits , TenUnits , TooHigh };
6 COLORS: TYPE = {green ,amber ,red ,noColor ,white};
7 LABELS: TYPE = {one ,two ,three ,four ,five ,six ,seven ,eight ,nine ,ten ,HIGH ,noLabel };
8 PATTERNS: TYPE = {POWER_TOO_HIGH ,PUMP_STOPPED ,noPattern };
9 LEVELS: TYPE = {loud ,noLevel };

10 Colors_signify: TYPE = [# Colored: COLORS , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed #];
11 Labels_signify: TYPE = [# Labeled: LABELS , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed #];
12 Volumes_signify: TYPE = [#Level: LEVELS , PowerSupplied: PowerSupplied , PumpSpeed: PumpSpeed #];
13 aPatterns_signify: TYPE = [# Pattern: PATTERNS , PowerSupplied: PowerSupplied , PumpSpeed:

PumpSpeed #];
14 PowerIndicators_signifiers: TYPE = [# Color: Colors_signify , Label: Labels_signify , Volume:

Volumes_signify , aPattern: aPatterns_signify #];
15 PumpStoppedAlarm_signifiers: TYPE = [# Color: Colors_signify , Volume: Volumes_signify , aPattern:

aPatterns_signify #];
16 SpeedSettingKnob_signifiers: TYPE = [# Color: Colors_signify , Label: Labels_signify #];
17 Doc_PowerIndicators_signifiers: TYPE = [#Color: Colors_signify , Label: Labels_signify , Volume:

Volumes_signify , aPattern: aPatterns_signify #];
18 Doc_PumpStoppedAlarm_signifiers: TYPE = [#Color: Colors_signify , Volume: Volumes_signify ,

aPattern: aPatterns_signify #];
19 Doc_SpeedSettingKnob_signifiers: TYPE = [#Color: Colors_signify , Label: Labels_signify #];
20 signifiers: MODULE =
21 BEGIN
22 LOCAL PowerIndicators: PowerIndicators_signifiers
23 LOCAL PumpStoppedAlarm: PumpStoppedAlarm_signifiers
24 LOCAL SpeedSettingKnob: SpeedSettingKnob_signifiers
25 LOCAL Doc_PowerIndicators: Doc_PowerIndicators_signifiers
26 LOCAL Doc_PumpStoppedAlarm: Doc_PumpStoppedAlarm_signifiers
27 LOCAL Doc_SpeedSettingKnob: Doc_SpeedSettingKnob_signifiers
28 INPUT iPage: {x: INTEGER | x >= 0 AND x <= 29}
29 INPUT iNewControllerAlarmBatteryCap: userManual!tAlarmBatteryCap
30 INPUT iOldControllerAlarmBatteryCap: userManual!tAlarmBatteryCap
31 INPUT iAlarm: discreteDevice!Alarms
32 INPUT iPowerLight: discreteDevice!PowerLights
33 INPUT iSpeedSetting: discreteDevice!SpeedSettings
34
35 INITIALIZATION [
36 iAlarm = discreteDevice!NoAlarm -->
37 PowerIndicators.Color.Colored = green;
38 PumpStoppedAlarm.Color.Colored = noColor;
39 PumpStoppedAlarm.Volume.Level = noLevel;
40 PowerIndicators.Volume.Level = noLevel;
41 PumpStoppedAlarm.aPattern.Pattern = noPattern;
42 PowerIndicators.aPattern.Pattern = noPattern;
43 SpeedSettingKnob.Color.Colored = white;
44 SpeedSettingKnob.Label.Labeled =
45 IF iSpeedSetting = 1 THEN one
46 ELSIF iSpeedSetting = 2 THEN two
47 ELSIF iSpeedSetting = 3 THEN three
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48 ELSIF iSpeedSetting = 4 THEN four
49 ELSIF iSpeedSetting = 5 THEN five
50 ELSE noLabel ENDIF;
51 PowerIndicators.Label.Labeled =
52 IF iPowerLight = 0 THEN noLabel
53 ELSIF iPowerLight = 1 THEN one
54 ELSIF iPowerLight = 2 THEN two
55 ELSIF iPowerLight = 3 THEN three
56 ELSIF iPowerLight = 4 THEN four
57 ELSIF iPowerLight = 5 THEN five
58 ELSIF iPowerLight = 6 THEN six
59 ELSIF iPowerLight = 7 THEN seven
60 ELSIF iPowerLight = 8 THEN eight
61 ELSIF iPowerLight = 9 THEN nine
62 ELSIF iPowerLight = 10 THEN ten
63 ELSE HIGH ENDIF;
64 [] iAlarm = discreteDevice!PumpStopped -->
65 PowerIndicators.Color.Colored = IF iPowerLight = 0 THEN noColor ELSE green ENDIF;
66 PumpStoppedAlarm.Color.Colored = red;
67 PumpStoppedAlarm.Volume.Level = IF (iNewControllerAlarmBatteryCap = userManual!Tightened

OR iOldControllerAlarmBatteryCap = userManual!Tightened) THEN loud ELSE noLevel
ENDIF;

68 PowerIndicators.Volume.Level = noLevel;
69 PumpStoppedAlarm.aPattern.Pattern = IF (iNewControllerAlarmBatteryCap = userManual!

Tightened XOR iOldControllerAlarmBatteryCap = userManual!Tightened) THEN
PUMP_STOPPED ELSE noPattern ENDIF;

70 PowerIndicators.aPattern.Pattern = noPattern;
71 SpeedSettingKnob.Color.Colored = noColor;
72 SpeedSettingKnob.Label.Labeled = noLabel;
73 PowerIndicators.Label.Labeled =
74 IF iPowerLight = 0 THEN noLabel
75 ELSIF iPowerLight = 1 THEN one
76 ELSIF iPowerLight = 2 THEN two
77 ELSIF iPowerLight = 3 THEN three
78 ELSIF iPowerLight = 4 THEN four
79 ELSIF iPowerLight = 5 THEN five
80 ELSIF iPowerLight = 6 THEN six
81 ELSIF iPowerLight = 7 THEN seven
82 ELSIF iPowerLight = 8 THEN eight
83 ELSIF iPowerLight = 9 THEN nine
84 ELSIF iPowerLight = 10 THEN ten
85 ELSE HIGH ENDIF;
86 [] iAlarm = discreteDevice!HighPower -->
87 PowerIndicators.Color.Colored = amber;
88 PumpStoppedAlarm.Color.Colored = noColor;
89 PowerIndicators.Volume.Level = IF (iNewControllerAlarmBatteryCap = userManual!

Tightened OR iOldControllerAlarmBatteryCap = userManual!Tightened) THEN loud ELSE
noLevel ENDIF;

90 PumpStoppedAlarm.Volume.Level = noLevel;
91 PumpStoppedAlarm.aPattern.Pattern = noPattern;
92 PowerIndicators.aPattern.Pattern = IF (iNewControllerAlarmBatteryCap = userManual!

Tightened XOR iOldControllerAlarmBatteryCap = userManual!Tightened) THEN
POWER_TOO_HIGH ELSE noPattern ENDIF;

93 SpeedSettingKnob.Color.Colored = white;
94 SpeedSettingKnob.Label.Labeled =
95 IF iSpeedSetting = 1 THEN one
96 ELSIF iSpeedSetting = 2 THEN two
97 ELSIF iSpeedSetting = 3 THEN three
98 ELSIF iSpeedSetting = 4 THEN four
99 ELSIF iSpeedSetting = 5 THEN five

100 ELSE noLabel ENDIF;
101 PowerIndicators.Label.Labeled = HIGH;
102 ];
103 PowerIndicators.Color.PowerSupplied = IF PowerIndicators.Color.Colored = green THEN

PowerIndicators.Label.PowerSupplied ELSIF PowerIndicators.Color.Colored = amber THEN
TooHigh ELSE PowerSuppliedNotSignified ENDIF;

104 PowerIndicators.Label.PowerSupplied = IF PowerIndicators.Label.Labeled = one THEN OneUnit
ELSIF PowerIndicators.Label.Labeled = two THEN TwoUnits ELSIF PowerIndicators.Label.
Labeled = three THEN ThreeUnits ELSIF PowerIndicators.Label.Labeled = four THEN
FourUnits ELSIF PowerIndicators.Label.Labeled = five THEN FiveUnits ELSIF
PowerIndicators.Label.Labeled = six THEN SixUnits ELSIF PowerIndicators.Label.Labeled =
seven THEN SevenUnits ELSIF PowerIndicators.Label.Labeled = eight THEN EightUnits ELSIF
PowerIndicators.Label.Labeled = nine THEN NineUnits ELSIF PowerIndicators.Label.Labeled
= ten THEN TenUnits ELSIF PowerIndicators.Label.Labeled = HIGH THEN TooHigh ELSE
PowerSuppliedNotSignified ENDIF;

105 PowerIndicators.Volume.PowerSupplied = IF PowerIndicators.Volume.Level = loud THEN
PowerIndicators.aPattern.PowerSupplied ELSE PowerSuppliedNotSignified ENDIF;

106 PowerIndicators.aPattern.PowerSupplied = IF PowerIndicators.aPattern.Pattern = POWER_TOO_HIGH
THEN TooHigh ELSE PowerSuppliedNotSignified ENDIF;

107 PumpStoppedAlarm.Color.PumpSpeed = IF PumpStoppedAlarm.Color.Colored = red THEN Stopped ELSIF
PumpStoppedAlarm.Color.Colored = noColor THEN SpeedSettingKnob.Label.PumpSpeed ELSE
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PumpSpeedNotSignified ENDIF;
108 PumpStoppedAlarm.Volume.PumpSpeed = IF PumpStoppedAlarm.Volume.Level = loud THEN

PumpStoppedAlarm.aPattern.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;
109 PumpStoppedAlarm.aPattern.PumpSpeed = IF PumpStoppedAlarm.aPattern.Pattern = PUMP_STOPPED

THEN Stopped ELSE PumpSpeedNotSignified ENDIF;
110 SpeedSettingKnob.Color.PumpSpeed = IF SpeedSettingKnob.Color.Colored = white THEN

SpeedSettingKnob.Label.PumpSpeed ELSIF SpeedSettingKnob.Color.Colored = noColor THEN
PumpStoppedAlarm.Color.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

111 SpeedSettingKnob.Label.PumpSpeed = IF SpeedSettingKnob.Label.Labeled = noLabel THEN
PumpStoppedAlarm.Color.PumpSpeed ELSIF SpeedSettingKnob.Label.Labeled = one THEN Lowest
ELSIF SpeedSettingKnob.Label.Labeled = two THEN Low ELSIF SpeedSettingKnob.Label.Labeled
= three THEN Medium ELSIF SpeedSettingKnob.Label.Labeled = four THEN High ELSIF

SpeedSettingKnob.Label.Labeled = five THEN Highest ELSE PumpSpeedNotSignified ENDIF;
112 Doc_PowerIndicators.Color.PowerSupplied = IF PowerIndicators.Color.Colored = green AND iPage

= 8 THEN Doc_PowerIndicators.Label.PowerSupplied ELSIF PowerIndicators.Color.Colored =
noColor AND iPage = 10 THEN ZeroUnits ELSIF PowerIndicators.Color.Colored = amber AND
iPage = 10 THEN TooHigh ELSE PowerSuppliedNotSignified ENDIF;

113 Doc_PowerIndicators.Color.PumpSpeed = IF PowerIndicators.Color.Colored = noColor THEN Stopped
ELSE PumpSpeedNotSignified ENDIF;

114 Doc_PowerIndicators.Label.PowerSupplied = IF PowerIndicators.Label.Labeled = noLabel AND
iPage = 10 THEN Doc_PowerIndicators.Color.PowerSupplied ELSIF PowerIndicators.Label.
Labeled = HIGH AND iPage = 10 THEN TooHigh ELSIF PowerIndicators.Label.Labeled = one AND
iPage = 8 THEN OneUnit ELSIF PowerIndicators.Label.Labeled = two AND iPage = 8 THEN

TwoUnits ELSIF PowerIndicators.Label.Labeled = three AND iPage = 8 THEN ThreeUnits ELSIF
PowerIndicators.Label.Labeled = four AND iPage = 8 THEN FourUnits ELSIF PowerIndicators

.Label.Labeled = five AND iPage = 8 THEN FiveUnits ELSIF PowerIndicators.Label.Labeled =
six AND iPage = 8 THEN SixUnits ELSIF PowerIndicators.Label.Labeled = seven AND iPage =
8 THEN SevenUnits ELSIF PowerIndicators.Label.Labeled = eight AND iPage = 8 THEN

EightUnits ELSIF PowerIndicators.Label.Labeled = nine AND iPage = 8 THEN NineUnits ELSIF
PowerIndicators.Label.Labeled = ten AND iPage = 8 THEN TenUnits ELSE

PowerSuppliedNotSignified ENDIF;
115 Doc_PowerIndicators.Volume.PowerSupplied = IF PowerIndicators.Volume.Level = loud THEN

Doc_PowerIndicators.aPattern.PowerSupplied ELSE PowerSuppliedNotSignified ENDIF;
116 Doc_PowerIndicators.aPattern.PowerSupplied = IF PowerIndicators.aPattern.Pattern =

POWER_TOO_HIGH AND iPage = 10 THEN TooHigh ELSE PowerSuppliedNotSignified ENDIF;
117 Doc_PumpStoppedAlarm.Color.PumpSpeed = IF PumpStoppedAlarm.Color.Colored = red AND iPage = 10

THEN Stopped ELSIF PumpStoppedAlarm.Color.Colored = noColor THEN Doc_SpeedSettingKnob.
Label.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

118 Doc_PumpStoppedAlarm.Volume.PumpSpeed = IF PumpStoppedAlarm.Volume.Level = loud AND iPage =
10 THEN Doc_PumpStoppedAlarm.aPattern.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

119 Doc_PumpStoppedAlarm.aPattern.PumpSpeed = IF PumpStoppedAlarm.aPattern.Pattern = PUMP_STOPPED
AND iPage = 10 THEN Stopped ELSE PumpSpeedNotSignified ENDIF;

120 Doc_SpeedSettingKnob.Color.PumpSpeed = IF SpeedSettingKnob.Color.Colored = white THEN
Doc_SpeedSettingKnob.Label.PumpSpeed ELSIF SpeedSettingKnob.Color.Colored = noColor THEN
Doc_PumpStoppedAlarm.Color.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

121 Doc_SpeedSettingKnob.Label.PumpSpeed = IF SpeedSettingKnob.Label.Labeled = noLabel AND iPage
= 10 THEN Stopped ELSIF SpeedSettingKnob.Label.Labeled = one AND iPage = 8 THEN Lowest
ELSIF SpeedSettingKnob.Label.Labeled = two AND iPage = 8 THEN Low ELSIF SpeedSettingKnob
.Label.Labeled = three AND iPage = 8 THEN Medium ELSIF SpeedSettingKnob.Label.Labeled =
four AND iPage = 8 THEN High ELSIF SpeedSettingKnob.Label.Labeled = five AND iPage = 8
THEN Highest ELSE PumpSpeedNotSignified ENDIF;

122
123 TRANSITION
124 [
125 iAlarm ’ = discreteDevice!NoAlarm -->
126 PowerIndicators ’.Color.Colored = green;
127 PumpStoppedAlarm ’. Color.Colored = noColor;
128 PumpStoppedAlarm ’. Volume.Level = noLevel;
129 PowerIndicators ’. Volume.Level = noLevel;
130 PumpStoppedAlarm ’. aPattern.Pattern = noPattern;
131 PowerIndicators ’. aPattern.Pattern = noPattern;
132 SpeedSettingKnob ’. Color.Colored = white;
133 SpeedSettingKnob ’. Label.Labeled =
134 IF iSpeedSetting ’ = 1 THEN one
135 ELSIF iSpeedSetting ’ = 2 THEN two
136 ELSIF iSpeedSetting ’ = 3 THEN three
137 ELSIF iSpeedSetting ’ = 4 THEN four
138 ELSIF iSpeedSetting ’ = 5 THEN five
139 ELSE noLabel ENDIF;
140 PowerIndicators ’.Label.Labeled =
141 IF iPowerLight ’ = 0 THEN noLabel
142 ELSIF iPowerLight ’ = 1 THEN one
143 ELSIF iPowerLight ’ = 2 THEN two
144 ELSIF iPowerLight ’ = 3 THEN three
145 ELSIF iPowerLight ’ = 4 THEN four
146 ELSIF iPowerLight ’ = 5 THEN five
147 ELSIF iPowerLight ’ = 6 THEN six
148 ELSIF iPowerLight ’ = 7 THEN seven
149 ELSIF iPowerLight ’ = 8 THEN eight
150 ELSIF iPowerLight ’ = 9 THEN nine
151 ELSIF iPowerLight ’ = 10 THEN ten
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152 ELSE HIGH ENDIF;
153 []iAlarm ’ = discreteDevice!PumpStopped -->
154 PowerIndicators ’.Color.Colored = IF iPowerLight ’ = 0 THEN noColor ELSE green ENDIF;
155 PumpStoppedAlarm ’. Color.Colored = red;
156 PumpStoppedAlarm ’. Volume.Level = IF (iNewControllerAlarmBatteryCap ’ = userManual!Tightened

OR iOldControllerAlarmBatteryCap ’ = userManual!Tightened) THEN loud ELSE noLevel
ENDIF;

157 PowerIndicators ’. Volume.Level = noLevel;
158 PumpStoppedAlarm ’. aPattern.Pattern = IF (iNewControllerAlarmBatteryCap ’ = userManual!

Tightened XOR iOldControllerAlarmBatteryCap ’ = userManual!Tightened) THEN
PUMP_STOPPED ELSE noPattern ENDIF;

159 PowerIndicators ’. aPattern.Pattern = noPattern;
160 SpeedSettingKnob ’. Color.Colored = noColor;
161 SpeedSettingKnob ’. Label.Labeled = noLabel;
162 PowerIndicators ’.Label.Labeled =
163 IF iPowerLight ’ = 0 THEN noLabel
164 ELSIF iPowerLight ’ = 1 THEN one
165 ELSIF iPowerLight ’ = 2 THEN two
166 ELSIF iPowerLight ’ = 3 THEN three
167 ELSIF iPowerLight ’ = 4 THEN four
168 ELSIF iPowerLight ’ = 5 THEN five
169 ELSIF iPowerLight ’ = 6 THEN six
170 ELSIF iPowerLight ’ = 7 THEN seven
171 ELSIF iPowerLight ’ = 8 THEN eight
172 ELSIF iPowerLight ’ = 9 THEN nine
173 ELSIF iPowerLight ’ = 10 THEN ten
174 ELSE HIGH ENDIF;
175 []iAlarm ’ = discreteDevice!HighPower -->
176 PowerIndicators ’.Color.Colored = amber;
177 PumpStoppedAlarm ’. Color.Colored = noColor;
178 PowerIndicators ’. Volume.Level = IF (iNewControllerAlarmBatteryCap = userManual!Tightened

OR iOldControllerAlarmBatteryCap = userManual!Tightened) THEN loud ELSE noLevel
ENDIF;

179 PumpStoppedAlarm ’. Volume.Level = noLevel;
180 PumpStoppedAlarm ’. aPattern.Pattern = noPattern;
181 PowerIndicators ’. aPattern.Pattern = IF (iNewControllerAlarmBatteryCap = userManual!

Tightened XOR iOldControllerAlarmBatteryCap = userManual!Tightened) THEN
POWER_TOO_HIGH ELSE noPattern ENDIF;

182 SpeedSettingKnob ’. Color.Colored = white;
183 SpeedSettingKnob ’. Label.Labeled =
184 IF iSpeedSetting ’ = 1 THEN one
185 ELSIF iSpeedSetting ’ = 2 THEN two
186 ELSIF iSpeedSetting ’ = 3 THEN three
187 ELSIF iSpeedSetting ’ = 4 THEN four
188 ELSIF iSpeedSetting ’ = 5 THEN five
189 ELSE noLabel ENDIF;
190 PowerIndicators ’.Label.Labeled = HIGH;
191 ];
192 PowerIndicators ’.Color.PowerSupplied = IF PowerIndicators ’. Color.Colored = green THEN

PowerIndicators ’.Label.PowerSupplied ELSIF PowerIndicators ’. Color.Colored = amber THEN
TooHigh ELSE PowerSuppliedNotSignified ENDIF;

193 PowerIndicators ’.Label.PowerSupplied = IF PowerIndicators ’. Label.Labeled = one THEN OneUnit
ELSIF PowerIndicators ’. Label.Labeled = two THEN TwoUnits ELSIF PowerIndicators ’. Label.
Labeled = three THEN ThreeUnits ELSIF PowerIndicators ’. Label.Labeled = four THEN
FourUnits ELSIF PowerIndicators ’.Label.Labeled = five THEN FiveUnits ELSIF
PowerIndicators ’.Label.Labeled = six THEN SixUnits ELSIF PowerIndicators ’.Label.Labeled
= seven THEN SevenUnits ELSIF PowerIndicators ’. Label.Labeled = eight THEN EightUnits
ELSIF PowerIndicators ’. Label.Labeled = nine THEN NineUnits ELSIF PowerIndicators ’.Label.
Labeled = ten THEN TenUnits ELSIF PowerIndicators ’.Label.Labeled = HIGH THEN TooHigh
ELSE PowerSuppliedNotSignified ENDIF;

194 PowerIndicators ’. Volume.PowerSupplied = IF PowerIndicators ’. Volume.Level = loud THEN
PowerIndicators ’. aPattern.PowerSupplied ELSE PowerSuppliedNotSignified ENDIF;

195 PowerIndicators ’. aPattern.PowerSupplied = IF PowerIndicators ’. aPattern.Pattern =
POWER_TOO_HIGH THEN TooHigh ELSE PowerSuppliedNotSignified ENDIF;

196 PumpStoppedAlarm ’. Color.PumpSpeed = IF PumpStoppedAlarm ’. Color.Colored = red THEN Stopped
ELSIF PumpStoppedAlarm ’.Color.Colored = noColor THEN SpeedSettingKnob ’.Label.PumpSpeed
ELSE PumpSpeedNotSignified ENDIF;

197 PumpStoppedAlarm ’. Volume.PumpSpeed = IF PumpStoppedAlarm ’. Volume.Level = loud THEN
PumpStoppedAlarm ’. aPattern.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

198 PumpStoppedAlarm ’. aPattern.PumpSpeed = IF PumpStoppedAlarm ’. aPattern.Pattern = PUMP_STOPPED
THEN Stopped ELSE PumpSpeedNotSignified ENDIF;

199 SpeedSettingKnob ’. Color.PumpSpeed = IF SpeedSettingKnob ’. Color.Colored = white THEN
SpeedSettingKnob ’.Label.PumpSpeed ELSIF SpeedSettingKnob ’. Color.Colored = noColor THEN
PumpStoppedAlarm ’.Color.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

200 SpeedSettingKnob ’. Label.PumpSpeed = IF SpeedSettingKnob ’. Label.Labeled = noLabel THEN
PumpStoppedAlarm ’.Color.PumpSpeed ELSIF SpeedSettingKnob ’. Label.Labeled = one THEN
Lowest ELSIF SpeedSettingKnob ’.Label.Labeled = two THEN Low ELSIF SpeedSettingKnob ’.
Label.Labeled = three THEN Medium ELSIF SpeedSettingKnob ’. Label.Labeled = four THEN High
ELSIF SpeedSettingKnob ’.Label.Labeled = five THEN Highest ELSE PumpSpeedNotSignified

ENDIF;
201 Doc_PowerIndicators ’.Color.PowerSupplied = IF PowerIndicators ’.Color.Colored = green AND
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iPage = 8 THEN Doc_PowerIndicators ’.Label.PowerSupplied ELSIF PowerIndicators ’.Color.
Colored = noColor AND iPage = 10 THEN ZeroUnits ELSIF PowerIndicators ’.Color.Colored =
amber AND iPage = 10 THEN TooHigh ELSE PowerSuppliedNotSignified ENDIF;

202 Doc_PowerIndicators ’.Color.PumpSpeed = IF PowerIndicators ’. Color.Colored = noColor THEN
Stopped ELSE PumpSpeedNotSignified ENDIF;

203 Doc_PowerIndicators ’.Label.PowerSupplied = IF PowerIndicators ’.Label.Labeled = noLabel AND
iPage = 10 THEN Doc_PowerIndicators ’. Color.PowerSupplied ELSIF PowerIndicators ’.Label.
Labeled = HIGH AND iPage = 10 THEN TooHigh ELSIF PowerIndicators ’.Label.Labeled = one
AND iPage = 8 THEN OneUnit ELSIF PowerIndicators ’.Label.Labeled = two AND iPage = 8 THEN
TwoUnits ELSIF PowerIndicators ’.Label.Labeled = three AND iPage = 8 THEN ThreeUnits

ELSIF PowerIndicators ’. Label.Labeled = four AND iPage = 8 THEN FourUnits ELSIF
PowerIndicators ’.Label.Labeled = five AND iPage = 8 THEN FiveUnits ELSIF PowerIndicators
’. Label.Labeled = six AND iPage = 8 THEN SixUnits ELSIF PowerIndicators ’.Label.Labeled =
seven AND iPage = 8 THEN SevenUnits ELSIF PowerIndicators ’. Label.Labeled = eight AND

iPage = 8 THEN EightUnits ELSIF PowerIndicators ’. Label.Labeled = nine AND iPage = 8 THEN
NineUnits ELSIF PowerIndicators ’.Label.Labeled = ten AND iPage = 8 THEN TenUnits ELSE

PowerSuppliedNotSignified ENDIF;
204 Doc_PowerIndicators ’. Volume.PowerSupplied = IF PowerIndicators ’. Volume.Level = loud THEN

Doc_PowerIndicators ’. aPattern.PowerSupplied ELSE PowerSuppliedNotSignified ENDIF;
205 Doc_PowerIndicators ’. aPattern.PowerSupplied = IF PowerIndicators ’. aPattern.Pattern =

POWER_TOO_HIGH AND iPage = 10 THEN TooHigh ELSE PowerSuppliedNotSignified ENDIF;
206 Doc_PumpStoppedAlarm ’.Color.PumpSpeed = IF PumpStoppedAlarm ’. Color.Colored = red AND iPage =

10 THEN Stopped ELSIF PumpStoppedAlarm ’.Color.Colored = noColor AND iPage = 10 THEN
Doc_SpeedSettingKnob ’.Label.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

207 Doc_PumpStoppedAlarm ’. Volume.PumpSpeed = IF PumpStoppedAlarm ’. Volume.Level = loud AND iPage =
10 THEN Doc_PumpStoppedAlarm ’. aPattern.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

208 Doc_PumpStoppedAlarm ’. aPattern.PumpSpeed = IF PumpStoppedAlarm ’. aPattern.Pattern =
PUMP_STOPPED AND iPage = 10 THEN Stopped ELSE PumpSpeedNotSignified ENDIF;

209 Doc_SpeedSettingKnob ’.Color.PumpSpeed = IF SpeedSettingKnob ’. Color.Colored = white THEN
Doc_SpeedSettingKnob ’.Label.PumpSpeed ELSIF SpeedSettingKnob ’.Color.Colored = noColor
THEN Doc_PumpStoppedAlarm ’.Color.PumpSpeed ELSE PumpSpeedNotSignified ENDIF;

210 Doc_SpeedSettingKnob ’.Label.PumpSpeed = IF SpeedSettingKnob ’. Label.Labeled = noLabel AND
iPage = 10 THEN Stopped ELSIF SpeedSettingKnob ’. Label.Labeled = one AND iPage = 8 THEN
Lowest ELSIF SpeedSettingKnob ’.Label.Labeled = two AND iPage = 8 THEN Low ELSIF
SpeedSettingKnob ’.Label.Labeled = three AND iPage = 8 THEN Medium ELSIF SpeedSettingKnob
’. Label.Labeled = four AND iPage = 8 THEN High ELSIF SpeedSettingKnob ’.Label.Labeled =
five AND iPage = 8 THEN Highest ELSE PumpSpeedNotSignified ENDIF;

211
212 OUTPUT Visually_Signified_PumpSpeed: PumpSpeed
213 OUTPUT Audibly_Signified_PumpSpeed: PumpSpeed
214 OUTPUT Documented_PumpSpeed: PumpSpeed
215 OUTPUT Visually_Signified_PowerSupplied: PowerSupplied
216 OUTPUT Audibly_Signified_PowerSupplied: PowerSupplied
217 OUTPUT Documented_PowerSupplied: PowerSupplied
218
219 DEFINITION
220 Visually_Signified_PumpSpeed IN {PumpStoppedAlarm.Color.PumpSpeed , SpeedSettingKnob.Color.

PumpSpeed , SpeedSettingKnob.Label.PumpSpeed };
221 Visually_Signified_PowerSupplied IN {PowerIndicators.Color.PowerSupplied , PowerIndicators.

Label.PowerSupplied };
222 Audibly_Signified_PumpSpeed IN {PumpStoppedAlarm.Volume.PumpSpeed , PumpStoppedAlarm.aPattern

.PumpSpeed };
223 Audibly_Signified_PowerSupplied IN {PowerIndicators.Volume.PowerSupplied , PowerIndicators.

aPattern.PowerSupplied };
224 Documented_PumpSpeed IN {Doc_PowerIndicators.Color.PumpSpeed , Doc_PumpStoppedAlarm.Color.

PumpSpeed , Doc_PumpStoppedAlarm.Volume.PumpSpeed , Doc_PumpStoppedAlarm.aPattern.
PumpSpeed , Doc_SpeedSettingKnob.Color.PumpSpeed , Doc_SpeedSettingKnob.Label.PumpSpeed };

225 Documented_PowerSupplied IN {Doc_PowerIndicators.Color.PowerSupplied , Doc_PowerIndicators.
Label.PowerSupplied , Doc_PowerIndicators.Volume.PowerSupplied , Doc_PowerIndicators.
aPattern.PowerSupplied };

226 END;
227 END

H.2.5 Discrete Device

1 discreteDevice: CONTEXT =
2 BEGIN
3 BatteryLights: TYPE = [0..5];
4 PowerLights: TYPE = [0..11];
5 SpeedSettings: TYPE = [1..5];
6 Alarms: TYPE = {PumpStopped , HighPower , NoAlarm };
7
8 system: MODULE = % EOFM handshake module
9 BEGIN

10 OUTPUT ready: BOOLEAN
11 INPUT submitted: BOOLEAN
12
13 INITIALIZATION
14 ready = FALSE;
15
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16 TRANSITION
17 [
18 NOT (ready OR submitted) -->
19 ready ’ = TRUE;
20 [] ready AND submitted -->
21 ready ’ = FALSE;
22 ];
23 END;
24
25 HDI: MODULE = system || % synchronously composed with EOFM handshake module
26 BEGIN
27 INPUT hLoosenOldControllerABCap: BOOLEAN
28 INPUT hTightenNewControllerABCap: BOOLEAN
29 INPUT hRedTagOldComponents: BOOLEAN
30 INPUT hSetAsideOldComponents: BOOLEAN
31 INPUT hRotateConnectorParts: BOOLEAN
32 INPUT hDisassembleConnector: BOOLEAN
33 INPUT hReassembleBrokenConnector: BOOLEAN
34 INPUT hDiscPumpCableFromAbCable: BOOLEAN
35 INPUT hDiscPumpCableFromOldController: BOOLEAN
36 INPUT hDiscLeadBattFromNewController: BOOLEAN
37 INPUT hDiscNewLiBattCableFromNewController: BOOLEAN
38 INPUT hConNewLiBattCableToNewController: BOOLEAN
39 INPUT hConLeadBattToNewController: BOOLEAN
40 INPUT hConPumpCableToNewController: BOOLEAN
41 INPUT hConNewLeadBattToNewController: BOOLEAN
42 INPUT hConNewLiBattCableToNewLiBatt: BOOLEAN
43 INPUT hDepressBlackButtonOnNewLiBatt: BOOLEAN
44 INPUT hRotateKnobClockwise: BOOLEAN
45 INPUT hRotateKnobCounterclockwise: BOOLEAN
46
47 INPUT ConnectorPartsRotatable: BOOLEAN
48 INPUT ConnectorPartsAssemblable: BOOLEAN
49 INPUT ConnectorPartsDisassemblable: BOOLEAN
50 INPUT NewLiBattCableDisconnectableFromNewController: BOOLEAN
51 INPUT LeadBattDisconnectableFromNewController: BOOLEAN
52 INPUT LeadBattConnectableToNewController: BOOLEAN
53 INPUT NewLiBattCableConnectableToNewLiBatt: BOOLEAN
54 INPUT NewLiBattCableConnectableToNewController: BOOLEAN
55 INPUT PumpCableConnectableToNewController: BOOLEAN
56 INPUT OldLiBattCableDisconnectableFromOldController: BOOLEAN
57 INPUT PumpCableDisconnectableFromOldController: BOOLEAN
58 INPUT PumpCableDisconnectableFromAbCable: BOOLEAN
59
60 OUTPUT iSpeedSetting: SpeedSettings
61 OUTPUT iOldComponentTags: userManual!tPartTag
62 OUTPUT iLeadBattToOldController: userManual!tConnection
63 OUTPUT iLeadBattToNewController: userManual!tConnection
64 OUTPUT iLeadBattToYCable: userManual!tConnection
65 OUTPUT iYCableToOldController: userManual!tConnection
66 OUTPUT iOldLiBattCableToYCable: userManual!tConnection
67 OUTPUT iOldLiBattCableToOldController: userManual!tConnection
68 OUTPUT iOldLiBattCableToOldLiBatt: userManual!tConnection
69 OUTPUT iPumpCableToOldController: userManual!tConnection
70 OUTPUT iAbCableToOldController: userManual!tConnection
71 OUTPUT iNewLiBattCableToNewLiBatt: userManual!tConnection
72 OUTPUT iNewLiBattCableToNewController: userManual!tConnection
73 OUTPUT iPumpCableToOldAbCable: userManual!tConnection
74 OUTPUT iPumpCableToNewController: userManual!tConnection
75 OUTPUT iNewLiBatteryLights: BatteryLights
76 OUTPUT iPermanentlyAttachedConnector: userManual!tPermAttachedConnectorStatus
77 OUTPUT iRotationCounter: userManual!tRotationCounter
78 OUTPUT iOldComponents: userManual!tOldComponentsLocation
79 OUTPUT iNewControllerABCap: userManual!tAlarmBatteryCap
80 OUTPUT iOldControllerABCap: userManual!tAlarmBatteryCap
81
82 INITIALIZATION
83 iPermanentlyAttachedConnector IN {userManual!Broken , userManual!Assembled };
84 iSpeedSetting IN {1, 2, 3, 4, 5};
85 iOldComponents = userManual!AtHand;
86 iRotationCounter = 0;
87 iNewLiBatteryLights = 0;
88 iOldComponentTags = userManual!notRedTagged;
89 iNewLiBattCableToNewLiBatt = userManual!Disconnected;
90 iNewLiBattCableToNewController = userManual!Disconnected;
91 iLeadBattToNewController = userManual!Disconnected;
92 iPumpCableToNewController = userManual!Disconnected;
93 iOldControllerABCap = userManual!Tightened;
94 iNewControllerABCap = userManual!Loosened;
95 iYCableToOldController IN {userManual!Connected , userManual!Disconnected };
96 iOldLiBattCableToOldController IN IF iYCableToOldController = userManual!Connected
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97 THEN {userManual!Disconnected}
98 ELSE {userManual!Connected , userManual!Disconnected}
99 ENDIF;

100 iLeadBattToOldController = IF iYCableToOldController = userManual!Connected
101 THEN userManual!Disconnected
102 ELSIF iOldLiBattCableToOldController = userManual!

Connected
103 THEN userManual!Disconnected
104 ELSE userManual!Connected
105 ENDIF;
106 iLeadBattToYCable = IF (iOldLiBattCableToYCable = userManual!Disconnected AND

iYCableToOldController = userManual!Connected)
107 THEN userManual!Connected
108 ELSE userManual!Disconnected
109 ENDIF;
110 iOldLiBattCableToYCable IN IF iYCableToOldController = userManual!Connected
111 THEN {userManual!Connected , userManual!Disconnected}
112 ELSE {userManual!Disconnected}
113 ENDIF;
114 iOldLiBattCableToOldLiBatt = IF iOldLiBattCableToOldController = userManual!Connected

OR (iYCableToOldController = userManual!Connected AND not(iLeadBattToYCable =
userManual!Connected))

115 THEN userManual!Connected
116 ELSE userManual!Disconnected
117 ENDIF;
118
119 iPumpCableToOldAbCable IN {userManual!Connected , userManual!Disconnected };
120 iPumpCableToOldController = IF iPumpCableToOldAbCable = userManual!Connected
121 THEN userManual!Disconnected
122 ELSE userManual!Connected
123 ENDIF;
124 iAbCableToOldController = IF iPumpCableToOldController = userManual!Connected
125 THEN userManual!Disconnected
126 ELSE userManual!Connected
127 ENDIF;
128 TRANSITION
129 [
130 hSetAsideOldComponents -->
131 iOldComponents ’ = userManual!SetAside;
132 [] hRotateConnectorParts -->
133 iRotationCounter ’ = IF ConnectorPartsRotatable THEN iRotationCounter + 1 ELSE

iRotationCounter ENDIF;
134 [] hReassembleBrokenConnector -->
135 iPermanentlyAttachedConnector ’ = IF ConnectorPartsAssemblable THEN userManual!

Assembled ELSE iPermanentlyAttachedConnector ENDIF;
136 [] hDisassembleConnector -->
137 iPermanentlyAttachedConnector ’ = IF ConnectorPartsDisassemblable THEN userManual!

Broken ELSE iPermanentlyAttachedConnector ENDIF;
138 [] hDiscPumpCableFromAbCable -->
139 iPumpCableToOldAbCable ’ = IF PumpCableDisconnectableFromAbCable THEN userManual!

Disconnected ELSE iPumpCableToOldAbCable ENDIF;
140 [] hDiscPumpCableFromOldController -->
141 iPumpCableToOldController ’ = IF PumpCableDisconnectableFromOldController THEN

userManual!Disconnected ELSE iPumpCableToOldController ENDIF;
142 [] hConNewLiBattCableToNewController -->
143 iNewLiBattCableToNewController ’ = IF NewLiBattCableConnectableToNewController THEN

userManual!Connected ELSE iNewLiBattCableToNewController ENDIF;
144 [] hConNewLiBattCableToNewLiBatt -->
145 iNewLiBattCableToNewLiBatt ’ = IF NewLiBattCableConnectableToNewLiBatt THEN userManual

!Connected ELSE iNewLiBattCableToNewLiBatt ENDIF;
146 [] hConLeadBattToNewController -->
147 iLeadBattToNewController ’ = IF LeadBattConnectableToNewController THEN userManual!

Connected ELSE iLeadBattToNewController ENDIF;
148 [] hDiscLeadBattFromNewController -->
149 iLeadBattToNewController ’ = IF LeadBattDisconnectableFromNewController THEN

userManual!Disconnected ELSE iLeadBattToNewController ENDIF;
150 [] hConPumpCableToNewController -->
151 iPumpCableToNewController ’ = IF PumpCableConnectableToNewController THEN userManual!

Connected ELSE iPumpCableToNewController ENDIF;
152 [] hDiscNewLiBattCableFromNewController -->
153 iNewLiBattCableToNewController ’ = IF NewLiBattCableDisconnectableFromNewController

THEN userManual!Disconnected ELSE iNewLiBattCableToNewController ENDIF;
154 [] hDepressBlackButtonOnNewLiBatt -->
155 iNewLiBatteryLights ’ IN {0, 1, 2, 3, 4, 5};
156 [] hRotateKnobClockwise -->
157 iSpeedSetting ’ = iSpeedSetting - 1;
158 [] hRotateKnobCounterclockwise -->
159 iSpeedSetting ’ = iSpeedSetting + 1;
160 [] hRedTagOldComponents -->
161 iOldComponentTags ’ = userManual!redTagged;
162 [] hLoosenOldControllerABCap -->
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163 iOldControllerABCap ’ = userManual!Loosened;
164 [] hTightenNewControllerABCap -->
165 iNewControllerABCap ’ = userManual!Tightened;
166 []ELSE -->
167 ];
168 END;
169 powerLightFunction(x: REAL): INTEGER =
170 IF x <= 0.05 THEN 0
171 ELSIF x > 0.05 AND x <= 0.15 THEN 1
172 ELSIF x > 0.15 AND x <= 0.30 THEN 2
173 ELSIF x > 0.30 AND x <= 0.45 THEN 3
174 ELSIF x > 0.45 AND x <= 0.70 THEN 4
175 ELSIF x > 0.70 AND x <= 1.00 THEN 5
176 ELSIF x > 1.00 AND x <= 1.40 THEN 6
177 ELSIF x > 1.40 AND x <= 1.90 THEN 7
178 ELSIF x > 1.90 AND x <= 2.50 THEN 8
179 ELSIF x > 2.50 AND x <= 3.10 THEN 9
180 ELSIF x > 3.10 AND x <= 3.50 THEN 10
181 ELSE 11 ENDIF;
182
183 displayControl: MODULE =
184 BEGIN
185 INPUT iLeadBattToOldController: userManual!tConnection
186 INPUT iLeadBattToNewController: userManual!tConnection
187 INPUT iLeadBattToYCable: userManual!tConnection
188 INPUT iYCableToOldController: userManual!tConnection
189 INPUT iOldLiBattCableToYCable: userManual!tConnection
190 INPUT iOldLiBattCableToOldController: userManual!tConnection
191 INPUT iOldLiBattCableToOldLiBatt: userManual!tConnection
192 INPUT iPumpCableToOldController: userManual!tConnection
193 INPUT iAbCableToOldController: userManual!tConnection
194 INPUT iNewLiBattCableToNewLiBatt: userManual!tConnection
195 INPUT iNewLiBattCableToNewController: userManual!tConnection
196 INPUT iPumpCableToOldAbCable: userManual!tConnection
197 INPUT iPumpCableToNewController: userManual!tConnection
198 INPUT iPermanentlyAttachedConnector: userManual!tPermAttachedConnectorStatus
199 INPUT iNewControllerABCap: userManual!tAlarmBatteryCap
200 INPUT iOldControllerABCap: userManual!tAlarmBatteryCap
201 INPUT speed: simData!speedRange
202 INPUT power: simData!powerRange
203 OUTPUT functional: BOOLEAN
204 OUTPUT iPowerLight: PowerLights
205 OUTPUT iAlarm: Alarms
206 DEFINITION
207 functional IN
208 IF (( iPumpCableToOldAbCable = userManual!Connected AND iAbCableToOldController =

userManual!Connected) OR
209 (iPumpCableToOldController = userManual!Connected)) AND
210 (( iLeadBattToYCable = userManual!Connected AND iYCableToOldController =

userManual!Connected) OR
211 (iOldLiBattCableToYCable = userManual!Connected AND iYCableToOldController =

userManual!Connected) OR
212 (iLeadBattToOldController = userManual!Connected) OR
213 (iOldLiBattCableToOldController = userManual!Connected AND

iOldLiBattCableToOldLiBatt = userManual!Connected) OR
214 (iOldLiBattCableToYCable= userManual!Connected AND iYCableToOldController =

userManual!Connected AND iOldLiBattCableToOldLiBatt = userManual!Connected))
AND

215 iPermanentlyAttachedConnector = userManual!Assembled
216 THEN {TRUE , FALSE}
217 ELSIF
218 iPumpCableToNewController = userManual!Connected AND
219 iPermanentlyAttachedConnector = userManual!Assembled AND
220 (iLeadBattToNewController = userManual!Connected OR
221 (iNewLiBattCableToNewLiBatt = userManual!Connected AND iNewLiBattCableToNewController

= userManual!Connected))
222 THEN {TRUE}
223 ELSE {FALSE} ENDIF;
224
225 INITIALIZATION
226 [
227 speed = 0 -->
228 iAlarm = PumpStopped;
229 iPowerLight = powerLightFunction(power);
230 [] speed > 0 AND power > 3.5 -->
231 iAlarm = HighPower;
232 iPowerLight = powerLightFunction(power);
233 [] speed > 0 AND power <= 3.5 -->
234 iPowerLight = powerLightFunction(power);
235 iAlarm = NoAlarm;
236 []ELSE -->



445

237 ];
238 TRANSITION
239 [
240 speed ’ = 0 -->
241 iAlarm ’ = PumpStopped;
242 iPowerLight ’ = powerLightFunction(power ’);
243 []speed ’ > 0 AND power ’ > 3.5 -->
244 iAlarm ’ = HighPower;
245 iPowerLight ’ = powerLightFunction(power ’);
246 []speed ’ > 0 AND power ’ <= 3.5 -->
247 iAlarm ’ = NoAlarm;
248 iPowerLight ’ = powerLightFunction(power ’);
249 []ELSE -->
250 ];
251 END;
252 END

H.2.6 Continuous Device Model

1 simData: CONTEXT =
2 BEGIN
3 flowRange : TYPE = {x: REAL | x >= 0 AND x <= 7.25};
4 powerRange: TYPE = {x: REAL | x >= 0 AND x <= 5};
5 speedRange: TYPE = {x: REAL | x >= 0 AND x <= 6000};
6 two_k_RPM(flow: flowRange , speed: speedRange): [powerRange -> BOOLEAN ];
7 three_k_RPM(flow: flowRange , speed: speedRange): [powerRange -> BOOLEAN ];
8 four_k_RPM(flow: flowRange , speed: speedRange): [powerRange -> BOOLEAN ];
9 five_k_RPM(flow: flowRange , speed: speedRange): [powerRange -> BOOLEAN ];

10 six_k_RPM(flow: flowRange , speed: speedRange): [powerRange -> BOOLEAN ];
11
12 slice1(inVars: [REAL , REAL]): BOOLEAN =
13 inVars = (1.000000 ,0.132929) OR
14 inVars = (1.250000 ,0.126067) OR
15 inVars = (1.500000 ,0.118702) OR
16 inVars = (1.750000 ,0.110974) OR
17 inVars = (2.000000 ,0.101147) OR
18 inVars = (2.250000 ,0.090146) OR
19 inVars = (2.500000 ,0.078316) OR
20 inVars = (0.000000 ,0.000000);
21 slice2(inVars: [REAL , REAL]): BOOLEAN =
22 inVars = (1.000000 ,0.455320) OR
23 inVars = (1.250000 ,0.444335) OR
24 inVars = (1.500000 ,0.430959) OR
25 inVars = (1.750000 ,0.413479) OR
26 inVars = (2.000000 ,0.393657) OR
27 inVars = (2.250000 ,0.374802) OR
28 inVars = (2.500000 ,0.355139) OR
29 inVars = (2.750000 ,0.333257) OR
30 inVars = (3.000000 ,0.306309) OR
31 inVars = (3.250000 ,0.280449) OR
32 inVars = (3.500000 ,0.252173) OR
33 inVars = (3.750000 ,0.219310) OR
34 inVars = (4.000000 ,0.184870) OR
35 inVars = (4.250000 ,0.146359) OR
36 inVars = (0.000000 ,0.000000);
37 slice3(inVars: [REAL , REAL]): BOOLEAN =
38 inVars = (1.000000 ,1.077672) OR
39 inVars = (1.250000 ,1.057788) OR
40 inVars = (1.500000 ,1.037536) OR
41 inVars = (1.750000 ,1.016654) OR
42 inVars = (2.000000 ,0.992567) OR
43 inVars = (2.250000 ,0.961997) OR
44 inVars = (2.500000 ,0.924922) OR
45 inVars = (2.750000 ,0.887002) OR
46 inVars = (3.000000 ,0.849523) OR
47 inVars = (3.250000 ,0.815588) OR
48 inVars = (3.500000 ,0.776701) OR
49 inVars = (3.750000 ,0.725160) OR
50 inVars = (4.000000 ,0.674518) OR
51 inVars = (4.250000 ,0.626903) OR
52 inVars = (4.500000 ,0.571348) OR
53 inVars = (4.750000 ,0.512964) OR
54 inVars = (5.000000 ,0.453164) OR
55 inVars = (5.250000 ,0.393815) OR
56 inVars = (5.500000 ,0.327378) OR
57 inVars = (5.750000 ,0.255880) OR
58 inVars = (6.000000 ,0.176579) OR
59 inVars = (0.000000 ,0.000000);
60 slice4(inVars: [REAL , REAL]): BOOLEAN =
61 inVars = (1.000000 ,2.087428) OR
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62 inVars = (1.250000 ,2.060755) OR
63 inVars = (1.500000 ,2.031205) OR
64 inVars = (1.750000 ,1.998279) OR
65 inVars = (2.000000 ,1.963199) OR
66 inVars = (2.250000 ,1.930934) OR
67 inVars = (2.500000 ,1.895294) OR
68 inVars = (2.750000 ,1.851050) OR
69 inVars = (3.000000 ,1.789014) OR
70 inVars = (3.250000 ,1.727843) OR
71 inVars = (3.500000 ,1.663063) OR
72 inVars = (3.750000 ,1.605113) OR
73 inVars = (4.000000 ,1.551224) OR
74 inVars = (4.250000 ,1.488895) OR
75 inVars = (4.500000 ,1.412560) OR
76 inVars = (4.750000 ,1.322547) OR
77 inVars = (5.000000 ,1.251706) OR
78 inVars = (5.250000 ,1.168460) OR
79 inVars = (5.500000 ,1.076372) OR
80 inVars = (5.750000 ,0.984535) OR
81 inVars = (6.000000 ,0.890290) OR
82 inVars = (0.000000 ,0.000000);
83 slice5(inVars: [REAL , REAL]): BOOLEAN =
84 inVars = (1.000000 ,3.570688) OR
85 inVars = (1.250000 ,3.534916) OR
86 inVars = (1.500000 ,3.496901) OR
87 inVars = (1.750000 ,3.456682) OR
88 inVars = (2.000000 ,3.411798) OR
89 inVars = (2.250000 ,3.358940) OR
90 inVars = (2.500000 ,3.306075) OR
91 inVars = (2.750000 ,3.263566) OR
92 inVars = (3.000000 ,3.215792) OR
93 inVars = (3.250000 ,3.147522) OR
94 inVars = (3.500000 ,3.064465) OR
95 inVars = (3.750000 ,2.964712) OR
96 inVars = (4.000000 ,2.877546) OR
97 inVars = (4.250000 ,2.782650) OR
98 inVars = (4.500000 ,2.700965) OR
99 inVars = (4.750000 ,2.620880) OR

100 inVars = (5.000000 ,2.529830) OR
101 inVars = (5.250000 ,2.420061) OR
102 inVars = (5.500000 ,2.292861) OR
103 inVars = (5.750000 ,2.184787) OR
104 inVars = (6.000000 ,2.075238) OR
105 inVars = (6.250000 ,1.938593) OR
106 inVars = (6.500000 ,1.799692) OR
107 inVars = (6.750000 ,1.661903) OR
108 inVars = (7.000000 ,1.532875) OR
109 inVars = (7.250000 ,1.398106) OR
110 inVars = (0.000000 ,0.000000);
111 simData_Constraints: MODULE =
112 BEGIN
113 INPUT flow: flowRange
114 INPUT speed: speedRange
115 INPUT power: powerRange
116 LOCAL var_1: REAL
117 LOCAL var_2: REAL
118 OUTPUT fitsData: BOOLEAN
119 DEFINITION
120 var_1 = flow;
121 var_2 = power;
122 INITIALIZATION [
123 slice1(var_1 ,var_2) AND speed = 2000 -->
124 fitsData = true;
125 [] slice2(var_1 ,var_2) AND speed = 3000 -->
126 fitsData = true;
127 [] slice3(var_1 ,var_2) AND speed = 4000 -->
128 fitsData = true;
129 [] slice4(var_1 ,var_2) AND speed = 5000 -->
130 fitsData = true;
131 [] slice5(var_1 ,var_2) AND speed = 6000 -->
132 fitsData = true;
133 [] var_1 = 0 AND var_2 = 0 AND speed = 0 -->
134 fitsData = true;
135 []ELSE -->
136 fitsData = false;
137 ];
138
139 TRANSITION [
140 not(slice1(var_1 ’,var_2 ’)) AND speed ’ = 2000 -->
141 fitsData ’ = false;
142 []not(slice2(var_1 ’,var_2 ’)) AND speed ’ = 3000 -->
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143 fitsData ’ = false;
144 []not(slice3(var_1 ’,var_2 ’)) AND speed ’ = 4000 -->
145 fitsData ’ = false;
146 []not(slice4(var_1 ’,var_2 ’)) AND speed ’ = 5000 -->
147 fitsData ’ = false;
148 []not(slice5(var_1 ’,var_2 ’)) AND speed ’ = 6000 -->
149 fitsData ’ = false;
150 []not(var_1 = 0 AND var_2 = 0 AND speed = 0) -->
151 fitsData ’ = false;
152 []ELSE -->
153 ];
154
155 END;
156
157 device: MODULE =
158 BEGIN
159 INPUT iSpeedSetting: NATURAL
160 INPUT functional: BOOLEAN
161 OUTPUT flow: flowRange
162 OUTPUT speed: speedRange
163 OUTPUT power: powerRange
164 INITIALIZATION
165 [
166 iSpeedSetting = 1 AND functional -->
167 speed = 2000;
168 power = 0.132929;
169 flow = 1;
170 [] iSpeedSetting = 2 AND functional -->
171 speed = 3000;
172 power = 0.455320;
173 flow = 1;
174 [] iSpeedSetting = 3 AND functional -->
175 speed = 4000;
176 power = 1.077672;
177 flow = 1;
178 [] iSpeedSetting = 4 AND functional -->
179 speed = 5000;
180 power = 2.087428;
181 flow = 1;
182 [] iSpeedSetting = 5 AND functional -->
183 speed = 6000;
184 power = 3.570688;
185 flow = 1;
186 []not(functional) -->
187 speed = 0;
188 power = 0;
189 flow = 0;
190 []ELSE -->
191 ];
192 TRANSITION
193 [ iSpeedSetting ’ = 1 AND functional ’ -->
194 speed ’ = 2000;
195 flow ’ IN {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5};
196 power ’ IN two_k_RPM(flow ’, speed ’);
197 [] iSpeedSetting ’ = 2 AND functional ’ -->
198 speed ’ = 3000;
199 flow ’ IN {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4};
200 power ’ IN three_k_RPM(flow ’, speed ’);
201 [] iSpeedSetting ’ = 3 AND functional ’ -->
202 speed ’ = 4000;
203 flow ’ IN {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5,
204 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6};
205 power ’ IN four_k_RPM(flow ’, speed ’);
206 [] iSpeedSetting ’ = 4 AND functional ’ -->
207 speed ’ = 5000;
208 flow ’ IN {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5,
209 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6};
210 power ’ IN five_k_RPM(flow ’, speed ’);
211 [] iSpeedSetting ’ = 5 AND functional ’ -->
212 speed ’ = 6000;
213 flow ’ IN {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5,
214 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6, 6.25,
215 6.5, 6.75, 7, 7.25};
216 power ’ IN six_k_RPM(flow ’, speed ’);
217 []not(functional ’) -->
218 speed ’ = 0;
219 power ’ = 0;
220 flow ’ = 0;
221 []ELSE -->
222 ];
223 END;
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224 actuator: MODULE = simData_Constraints || device;
225 END

H.3 Specifications

H.3.1 Accuracy and Understandability

1 G(fitsData AND iAlarm = discreteDevice!PumpStopped AND aRespondToPumpStoppedAlarm_Executing =>
2 PumpStoppedAlarm.Color.PumpSpeed = SpeedSettingKnob.Color.PumpSpeed
3 AND SpeedSettingKnob.Color.PumpSpeed = SpeedSettingKnob.Label.PumpSpeed
4 AND SpeedSettingKnob.Label.PumpSpeed = Stopped
5 AND Audibly_Signified_PumpSpeed = Visually_Signified_PumpSpeed);

H.3.2 Accuracy and Error Tolerance

1 G(fitsData AND aRespondToPumpStoppedAlarm_Executing
2 AND (iOldLiBattCableToOldLiBatt = Connected OR iOldLiBattCableToOldController = Connected) =>
3 NOT(OldLiBattCableConnectableToNewController OR NewLiBattCableConnectableToOldLiBatt));

H.3.3 Accuracy and Time Efficiency

1 G(fitsData AND aRespondToPumpStoppedAlarm_Executing AND iNewLiBattLights = 0
2 AND X(fitsData AND iNewLiBattLights = 5) =>
3 X(NewLiBattCableConnectableToNewController
4 AND NewLiBattCableConnectableToNewLiBatt));

H.3.4 Accuracy and Completeness

1 G(fitsData AND aAdjustSpeed_Executing AND iAlarm = discreteDevice!NoAlarm =>
2 Visually_Signified_PumpSpeed = Stopped
3 OR Audibly_Signified_PumpSpeed = Stopped
4 OR Documented_PumpSpeed = Stopped));

H.3.5 Understandability and Error Tolerance

1 G(iOldLiBattCableToOldLiBatt = userManual!Connected =>
2 NOT OldLiBattCableConnectableToNewController)
3 AND G(fitsData =>
4 AND PumpStoppedAlarm.Color.PumpSpeed = SpeedSettingKnob.Color.PumpSpeed
5 AND SpeedSettingKnob.Color.PumpSpeed = SpeedSettingKnob.Label.PumpSpeed
6 AND PowerIndicators.Color.PowerSupplied = PowerIndicators.Label.PowerSupplied
7 AND PowerIndicators.Label.PowerSupplied = PowerIndicators.Color.PowerSupplied
8 AND PumpStoppedAlarm.Volume.PumpSpeed = PumpStoppedAlarm.aPattern.PumpSpeed
9 AND PowerIndicators.Volume.PowerSupplied = PowerIndicators.aPattern.PowerSupplied);

H.3.6 Understandability and Time Efficiency

1 G(fitsData AND iAlarm = discreteDevice!PumpStopped
2 AND X(fitsData AND iAlarm = discreteDevice!HighPower) =>
3 X(PumpStoppedAlarm.Color.PumpSpeed = SpeedSettingKnob.Color.PumpSpeed
4 AND SpeedSettingKnob.Color.PumpSpeed = SpeedSettingKnob.Label.PumpSpeed
5 AND PowerIndicators.Color.PowerSupplied = PowerIndicators.Label.PowerSupplied
6 AND PowerIndicators.Label.PowerSupplied = PowerIndicators.Color.PowerSupplied
7 AND PumpStoppedAlarm.Volume.PumpSpeed = PumpStoppedAlarm.aPattern.PumpSpeed
8 AND PowerIndicators.Volume.PowerSupplied = PowerIndicators.aPattern.PowerSupplied
9 Audibly_Signified_PowerSupplied = Visually_Signified_PowerSupplied));

H.3.7 Error Tolerance and Time Efficiency

1 G(iOldLiBattCableToOldController = Connected
2 AND iNewLiBattLights = 0 AND X(iNewLiBattLights = 5) =>
3 X(NOT NewLiBattCableConnectableToOldLiBatt
4 AND NewLiBattCableConnectableToNewLiBatt));

H.3.8 Error Tolerance and Completeness

1 G(iOldLiBattCableToOldController = userManual!Connected =>
2 NOT OldLiBattConnectableToNewLiBattCable)
3 AND G(fitsData =>
4 NOT(Visually_Signified_PumpSpeed = bigsis!PumpSpeedNotSignified
5 AND Audibly_Signified_PumpSpeed = bigsis!PumpSpeedNotSignified
6 AND Documented_PumpSpeed = bigsis!PumpSpeedNotSignified
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7 AND Visually_Signified_PowerSupplied = bigsis!PowerSuppliedNotSignified
8 AND Audibly_Signified_PowerSupplied = bigsis!PowerSuppliedNotSignified
9 AND Documented_PowerSupplied = bigsis!PowerSuppliedNotSignified));

H.3.9 Understandability and Completeness

1 G(fitsData =>
2 NOT(Visually_Signified_PumpSpeed = bigsis!PumpSpeedNotSignified AND
3 Audibly_Signified_PumpSpeed = bigsis!PumpSpeedNotSignified AND
4 Documented_PumpSpeed = bigsis!PumpSpeedNotSignified)
5 AND NOT(Visually_Signified_PowerSupplied = bigsis!PowerSuppliedNotSignified AND
6 Audibly_Signified_PowerSupplied = bigsis!PowerSuppliedNotSignified AND
7 Documented_PowerSupplied = bigsis!PowerSuppliedNotSignified)
8 AND (PumpStoppedAlarm.Color.PumpSpeed = SpeedSettingKnob.Color.PumpSpeed AND
9 SpeedSettingKnob.Color.PumpSpeed = SpeedSettingKnob.Label.PumpSpeed AND

10 PowerIndicators.Color.PowerSupplied = PowerIndicators.Label.PowerSupplied AND
11 PowerIndicators.Label.PowerSupplied = PowerIndicators.Color.PowerSupplied)
12 AND (PumpStoppedAlarm.Volume.PumpSpeed = PumpStoppedAlarm.aPattern.PumpSpeed AND
13 bPowerIndicators.Volume.PowerSupplied = PowerIndicators.aPattern.PowerSupplied));

H.3.10 Time Efficiency and Completeness

1 G(fitsData AND iSpeedSetting /= lDesiredSpeed
2 AND X(fitsData AND iSpeedSetting = lDesiredSpeed) =>
3 X(NOT(Visually_Signified_PumpSpeed = bigsis!PumpSpeedNotSignified
4 AND Audibly_Signified_PumpSpeed = bigsis!PumpSpeedNotSignified
5 AND Documented_PumpSpeed = bigsis!PumpSpeedNotSignified
6 AND Visually_Signified_PowerSupplied = bigsis!PowerSuppliedNotSignified
7 AND Audibly_Signified_PowerSupplied = bigsis!PowerSuppliedNotSignified
8 AND Documented_PowerSupplied = bigsis!PowerSuppliedNotSignified)));
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