931 research outputs found

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Rationale for and design of a generic tiled hierarchical phased array beamforming architecture

    Get PDF
    The purpose of the phased array beamforming project is to develop a generic flexible efficient phased array receiver platform, using a mixed signal hardware/software-codesign approach. The results will be applicable to any radio (RF) system, but we will focus on satellite receiver (DVB-S) and radar applications. We will present a preliminary mapping of beamforming processing on a tiled architecture and determine its scalability.\ud \ud The functionality, size and cost constraints imply an integrated mixed signal CMOS solution. For a generic flexible multi-standard solution, a software defined radio approach is taken. Because a scalable and dependable solution is needed, a tiled hierarchical architecture is proposed with reconfigurable hardware to regain flexibility. A mapping is provided of beamforming on the proposed architecture. The advantages and disadvantages of each solution are discussed with respect to applicability and scalability.\ud \ud Different beamforming processing solutions can be mapped on the same proposed tiled hierarchical architecture. This provides a flexible, scalable and reconfigurable solution for a wide application domain. Beamforming is a data-driven streaming process which lends itself well for a regular scalable architecture. Beamsteering on the other hand is much more control-oriented and future work will focus on how to support beamsteering on the proposed architecture as well

    Broadband Direct RF Digitization Receivers

    Full text link

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    CMOS ASIC Design of Multi-frequency Multi-constellation GNSS Front-ends

    Get PDF
    With the emergence of the new global navigation satellite systems (GNSSs) such as Galileo, COMPASS and GLONASS, the US Global Positioning System (GPS) has new competitors. This multiplicity of constellations will offer new services and a much better satellite coverage. Public regulated service (PRS) is one of these new services that Galileo, the first global positioning service under civilian control, will offers. The PRS is a proprietary encrypted navigation designed to be more reliable and robust against jamming and provides premium quality in terms of position and timing and continuity of service, but it requires the use of FEs with extended capabilities. The project that this thesis starts from, aims to develop a dual frequency (E1 and E6) PRS receiver with a focus on a solution for professional applications that combines affordability and robustness. To limit the production cost, the choice of a monolithic design in a multi-purpose 0.18 ”m complementary metal-oxide-semiconductor (CMOS) technology have been selected, and to reduce the susceptibility to interference, the targeted receiver is composed of two independent FEs. The first ASIC described here is such FEs bundle. Each FE is composed of a radio frequency (RF) chain that includes a low-noise amplifier (LNA), a quadrature mixer, a frequency synthesizer (FS), two intermediate frequency (IF) filters, two variable-gain amplifiers (VGAs) and two 6-bit flash analog-to-digital converters (ADCs). Each have an IF bandwidth of 50 MHz to accommodate the wide-band PRS signals. The FE achieves a 30 dB of dynamic gain control at each channel. The complete receivers occupies a die area of 11.5 mm2 while consuming 115 mW from a supply of a 1.8 V. The second ASIC that targets civilian applications, is a reconfigurable single-channel FE that permits to exploit the interoperability among GNSSs. The FE can operate in two modes: a ¿narrow-band mode¿, dedicated to Beidou-B1 with an IF bandwidth of 8 MHz, and a ¿wide-band mode¿ with an IF bandwidth of 23 MHz, which can accommodate simultaneous reception of Beidou-B1/GPS-L1/Galileo-E1. These two modes consumes respectively 22.85 mA and 28.45 mA from a 1.8 V supply. Developed with the best linearity in mind, the FE shows very good linearity with an input-referred 1 dB compression point (IP1dB) of better than -27.6 dBm. The FE gain is stepwise flexible from 39 dB and to a maximum of 58 dB. The complete FE occupies a die area of only 2.6 mm2 in a 0.18 ”m CMOS. To also accommodate the wide-band PRS signals in the IF section of the FE, a highly selective wide-tuning-range 4th-order Gm-C elliptic low-pass filter is used. It features an innovative continuous tuning circuit that adjusts the bias current of the Gm cell¿s input stage to control the cutoff frequency. With this circuit, the power consumption is proportional to the cutoff frequency thus the power efficiency is achieved while keeping the linearity near constant. Thanks to a Gm switching technique, which permit to keep the signal path switchless, the filter shows an extended tuning of the cutoff frequency that covers continuously a range from 7.4 MHz to 27.4 MHz. Moreover the abrupt roll-off of up to 66 dB/octave, can mitigate out-of-band interference. The filter consumes 2.1 mA and 7.5 mA at its lowest and highest cutoff frequencies respectively, and its active area occupies, 0.23 mm2. It achieves a high input-referred third-order intercept point (IIP3) of up to -1.3 dBVRMS

    High frequency of low noise amplifier architecture for WiMAX application: A review

    Get PDF
    The low noise amplifier (LNA) circuit is exceptionally imperative as it promotes and initializes general execution performance and quality of the mobile communication system. LNA's design in radio frequency (R.F.) circuit requires the trade-off numerous imperative features' including gain, noise figure (N.F.), bandwidth, stability, sensitivity, power consumption, and complexity. Improvements to the LNA's overall performance should be made to fulfil the worldwide interoperability for microwave access (WiMAX) specifications' prerequisites. The development of front-end receiver, particularly the LNA, is genuinely pivotal for long-distance communications up to 50 km for a particular system with particular requirements. The LNA architecture has recently been designed to concentrate on a single transistor, cascode, or cascade constrained in gain, bandwidth, and noise figure

    ADVANCED RECEIVER ARCHITECTURES IN RADIOFREQUENCY APPLICATIONS

    Get PDF
    The general principles of several types of receivers fall under the two main headings of TRF (tuned radio frequency)receivers, where the received signal is processed at the incoming frequency right up to the detector stage, and the superhet(supersonic heterodyne) receiver, where the incoming signal is translated (sometimes after some amplification at theincoming frequency) to an intermediate frequency for further processing. There are however, a number of variants of each ofthese two main types. Regeneration (‘reaction’ or ‘tickling’) may be applied in a TRF receiver, to increase both its sensitivityand selectivity. This may be carried to the stage where the RF amplifier actually oscillates – either continuously, so that thereceiver operates as a synchrodyne or homodyne, or intermittently, so that the receiver operates as a super-regenerativereceiver, both of which have been described previously. The synchrodyne or homodyne may be considered alternatively as asuperhet, where the IF (intermediate frequency) is 0 Hz. In this paper we present the new type of receiver architectureswhich work in radiofrequencies.Keywords: supersonic heterodyne, tuned radio frequency
    • 

    corecore