4 research outputs found

    An Elasticity-aware Governance Platform for Cloud Service Delivery

    Get PDF
    In cloud service provisioning scenarios with a changing demand from consumers, it is appealing for cloud providers to leverage only a limited amount of the virtualized resources required to provide the service. However, it is not easy to determine how much resources are required to satisfy consumers expectations in terms of Quality of Service (QoS). Some existing frameworks provide mechanisms to adapt the required cloud resources in the service delivery, also called an elastic service, but only for consumers with the same QoS expectations. The problem arises when the service provider must deal with several consumers, each demanding a different QoS for the service. In such an scenario, cloud resources provisioning must deal with trade-offs between different QoS, while fulfilling these QoS, within the same service deployment. In this paper we propose an elasticity-aware governance platform for cloud service delivery that reacts to the dynamic service load introduced by consumers demand. Such a reaction consists of provisioning the required amount of cloud resources to satisfy the different QoS that is offered to the consumers by means of several service level agreements. The proposed platform aims to keep under control the QoS experienced by multiple service consumers while maintaining a controlled cost.Junta de Andalucía P12--TIC--1867Ministerio de Economía y Competitividad TIN2012-32273Agencia Estatal de Investigación TIN2014-53986-RED

    Systematic analysis of software development in cloud computing perceptions

    Get PDF
    Cloud computing is characterized as a shared computing and communication infrastructure. It encourages the efficient and effective developmental processes that are carried out in various organizations. Cloud computing offers both possibilities and solutions of problems for outsourcing and management of software developmental operations across distinct geography. Cloud computing is adopted by organizations and application developers for developing quality software. The cloud has the significant impact on utilizing the artificial complexity required in developing and designing quality software. Software developmental organization prefers cloud computing for outsourcing tasks because of its available and scalable nature. Cloud computing is the ideal choice utilized for development modern software as they have provided a completely new way of developing real-time cost-effective, efficient, and quality software. Tenants (providers, developers, and consumers) are provided with platforms, software services, and infrastructure based on pay per use phenomenon. Cloud-based software services are becoming increasingly popular, as observed by their widespread use. Cloud computing approach has drawn the interest of researchers and business because of its ability to provide a flexible and resourceful platform for development and deployment. To determine a cohesive understanding of the analyzed problems and solutions to improve the quality of software, the existing literature resources on cloud-based software development should be analyzed and synthesized systematically. Keyword strings were formulated for analyzing relevant research articles from journals, book chapters, and conference papers. The research articles published in (2011–2021) various scientific databases were extracted and analyzed for retrieval of relevant research articles. A total of 97 research publications are examined in this SLR and are evaluated to be appropriate studies in explaining and discussing the proposed topic. The major emphasis of the presented systematic literature review (SLR) is to identify the participating entities of cloud-based software development, challenges associated with adopting cloud for software developmental processes, and its significance to software industries and developers. This SLR will assist organizations, designers, and developers to develop and deploy user-friendly, efficient, effective, and real time software applications.Qatar University Internal Grant - No. IRCC‐2021‐010

    Contribución a la estimulación del uso de soluciones Cloud Computing: Diseño de un intermediador de servicios Cloud para fomentar el uso de ecosistemas distribuidos digitales confiables, interoperables y de acuerdo a la legalidad. Aplicación en entornos multi-cloud.

    Get PDF
    184 p.El objetivo del trabajo de investigación presentado en esta tesis es facilitar a los desarrolladores y operadores de aplicaciones desplegadas en múltiples Nubes el descubrimiento y la gestión de los diferentes servicios de Computación, soportando su reutilización y combinación, para generar una red de servicios interoperables, que cumplen con las leyes y cuyos acuerdos de nivel de servicio pueden ser evaluados de manera continua. Una de las contribuciones de esta tesis es el diseño y desarrollo de un bróker de servicios de Computación llamado ACSmI (Advanced Cloud Services meta-Intermediator). ACSmI permite evaluar el cumplimiento de los acuerdos de nivel de servicio incluyendo la legislación. ACSmI también proporciona una capa de abstracción intermedia para los servicios de Computación donde los desarrolladores pueden acceder fácilmente a un catálogo de servicios acreditados y compatibles con los requisitos no funcionales establecidos.Además, este trabajo de investigación propone la caracterización de las aplicaciones nativas multiNube y el concepto de "DevOps extendido" especialmente pensado para este tipo de aplicaciones. El concepto "DevOps extendido" pretende resolver algunos de los problemas actuales del diseño, desarrollo, implementación y adaptación de aplicaciones multiNube, proporcionando un enfoque DevOps novedoso y extendido para la adaptación de las prácticas actuales de DevOps al paradigma multiNube

    A Branch-and-Bound Algorithm for Autonomic Adaptation of Multi-Cloud Applications

    No full text
    International audienceAdaptation is an important concern in cloud-based applications composed of services provided by different cloud providers since cloud services can suffer from Quality of Services(QoS) fluctuations. Other conditions that can also trigger an adaptation process at runtime are the unavailability of services or the violation of user-defined policies. Moreover, the detection and reaction on such changes must be done in an autonomic way, without the need of user intervention. This paper presents a dynamic adaptation approach for multi-cloud applications supported by a Branch-and-Bound (B&B) algorithm in order to optimize the adaptation process itself when selecting the services to be deployed within the application. Computational experiments comparing the B&B algorithm with another algorithm that evaluates all possible configurations for adapting an application showed that the B&B algorithm is faster than the previous version. This new algorithm brings benefits to the scalability of the adaptation process, which can deal with large configurations of multi-cloud applications composed by a plethora of cloud services
    corecore