287 research outputs found

    VCare: A Personal Emergency Response System to Promote Safe and Independent Living Among Elders Staying by Themselves in Community or Residential Settings

    Get PDF
    ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. Advisor: Tadeusz Wysock

    A STUDY ON HEALTH MONITORING SYSTEM: RECENT ADVANCEMENTS

    Get PDF
    ABSTRACT: A proliferating interest has been observed over the past years in the development of an accurate system for monitoring continuous human activities in the health care sectors, especially for the elderly. This paper conducts a survey of the various techniques and methods that are proposed to monitor the movements and activities of the elderly people. These techniques promise a useful and dependable detection system to give support and lessen the medical expenses of health care for the elderly. The detection approaches are divided into five main categories: wearable device based, wireless based, ambience device based, vision based and floor sensor / electric field sensors based. These techniques have focused on the pros and cons of the existing methods for recognizing the prospective scope of research in the domain of health monitoring systems. Apart from highlighting and analyzing the features of the existing techniques, perspectives on probable future studies have been detailed. ABSTRAK: Dewasa ini, pembangunan sistem yang tepat untuk memantau aktiviti berterusan terutamanya dalam sektor kesihatan warga tua mula mendapat tempat. Kaji selidik telah dijalankan dengan pelbagai teknik dan kaedah untuk meninjau pergerakan dan aktiviti golongan warga tua. Kaedah-kaedah ini memberikan sistem pengesanan yang berguna dan dipercayai untuk memberikan sokongan serta mengurangkan kos perubatan kesihatan bagi golongan tua. Pendekatan pengesanan dibahagikan kepada lima kategori utama; alatan yang dapat dipakai, alatan tanpa wayar, alatan berdasarkan persekitaran, alatan berasaskan penglihatan dan alatan berdasarkan pengesan pada lantai / medan elektrik.  Teknik-teknik ini memfokuskan kepada pro dan kontra kaedah yang sedia ada untuk mengenalpasti skop prospektif penyelidikan dalam domain sistem pengawasan kesihatan.  Selain daripada mengetengah dan menganalisa ciri-ciri teknik yang sedia ada, perspektif kajian akan datang juga diperincikan. KEYWORDS: health monitoring; elderly; wearable device; wireless device; ambience device, vision analysis; floor sensor

    Occupancy detection for building emergency management using BLE beacons

    Get PDF
    Being able to reliable estimate the occupancy of areas inside a building can prove beneficial for managing an emergency situation, as it allows for more efficient allocation of resources such as emergency personnel. In indoor environments, however, occupancy detection can be a very challenging task. A solution to this can be provided by the use of Bluetooth Low Energy (BLE) beacons installed in the building. In this work we evaluate the performance of a BLE based occupancy detection system geared towards emergency situations that take place inside buildings. The system is composed of BLE beacons installed inside the building, a mobile application installed on occupants' mobile phones and a remote control server. Our approach does not require any processing to take place on the occupants' mobile phones, since the occupancy detection is based on a classifier installed on the remote server. Our real-world experiments indicated that the system can provide high classification accuracy for different numbers of installed beacons and occupant movement patterns

    Bluetooth low energy based occupancy detection for emergency management

    Get PDF
    A reliable estimation of an area’s occupancy can be beneficial to a large variety of applications, and especially in relation to emergency management. For example, it can help detect areas of priority and assign emergency personnel in an efficient manner. However, occupancy detection can be a major challenge in indoor environments. A recent technology that can prove very useful in that respect is Bluetooth Low Energy (BLE), which is able to provide the location of a user using information from beacons installed in a building. Here, we evaluate BLE as the primary means of occupancy estimation in an indoor environment, using a prototype system composed of BLE beacons, a mobile application and a server. We employ three machine learning approaches (k-nearest neighbours, logistic regression and support vector machines) to determine the presence of occupants inside specific areas of an office space and we evaluate our approach in two independent experimental settings. Our experimental results indicate that combining BLE with machine learning is certainly promising as the basis for occupancy estimation

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease

    Comparison and Characterization of Android-Based Fall Detection Systems

    Get PDF
    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones’ potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.Ministerio de Economía y Competitividad TEC2009-13763-C02-0

    Minimal Infrastructure Radio Frequency Home Localisation Systems

    Get PDF
    The ability to track the location of a subject in their home allows the provision of a number of location based services, such as remote activity monitoring, context sensitive prompts and detection of safety critical situations such as falls. Such pervasive monitoring functionality offers the potential for elders to live at home for longer periods of their lives with minimal human supervision. The focus of this thesis is on the investigation and development of a home roomlevel localisation technique which can be readily deployed in a realistic home environment with minimal hardware requirements. A conveniently deployed Bluetooth ® localisation platform is designed and experimentally validated throughout the thesis. The platform adopts the convenience of a mobile phone and the processing power of a remote location calculation computer. The use of Bluetooth ® also ensures the extensibility of the platform to other home health supervision scenarios such as wireless body sensor monitoring. Central contributions of this work include the comparison of probabilistic and nonprobabilistic classifiers for location prediction accuracy and the extension of probabilistic classifiers to a Hidden Markov Model Bayesian filtering framework. New location prediction performance metrics are developed and signicant performance improvements are demonstrated with the novel extension of Hidden Markov Models to higher-order Markov movement models. With the simple probabilistic classifiers, location is correctly predicted 80% of the time. This increases to 86% with the application of the Hidden Markov Models and 88% when high-order Hidden Markov Models are employed. Further novelty is exhibited in the derivation of a real-time Hidden Markov Model Viterbi decoding algorithm which presents all the advantages of the original algorithm, while producing location estimates in real-time. Significant contributions are also made to the field of human gait-recognition by applying Bayesian filtering to the task of motion detection from accelerometers which are already present in many mobile phones. Bayesian filtering is demonstrated to enable a 35% improvement in motion recognition rate and even enables a floor recognition rate of 68% using only accelerometers. The unique application of time-varying Hidden Markov Models demonstrates the effect of integrating these freely available motion predictions on long-term location predictions
    corecore