246 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    A re-configurable pipeline ADC architecture with built-in self-test techniques

    Get PDF
    High-performance analog and mixed-signal integrated circuits are integral parts of today\u27s and future networking and communication systems. The main challenge facing the semiconductor industry is the ability to economically produce these analog ICs. This translates, in part, into the need to efficiently evaluate the performance of such ICs during manufacturing (production testing) and to come up with dynamic architectures that enable the performance of these ICs to be maximized during manufacturing and later when they\u27re operating in the field. On the performance evaluation side, this dissertation deals with the concept of Built-In-Self-Test (BIST) to allow the efficient and economical evaluation of certain classes of high-performance analog circuits. On the dynamic architecture side, this dissertation deals with pipeline ADCs and the use of BIST to dynamically, during production testing or in the field, re-configure them to produce better performing ICs.;In the BIST system proposed, the analog test signal is generated on-chip by sigma-delta modulation techniques. The performance of the ADC is measured on-chip by a digital narrow-band filter. When this system is used on the wafer level, significant testing time and thus testing cost can be saved.;A re-configurable pipeline ADC architecture to improve the dynamic performance is proposed. Based on dynamic performance measurements, the best performance configuration is chosen from a collection of possible pipeline configurations. This basic algorithm can be applied to many pipeline analog systems. The proposed grouping algorithm cuts down the number of evaluation permutation from thousands to 18 for a 9-bit ADC thus allowing the method to be used in real applications.;To validate the developments of this dissertation, a 40MS/s 9-bit re-configurable pipeline ADC was designed and implemented in TSMC\u27s 0.25mum single-poly CMOS digital process. This includes a fully differential folded-cascode gain-boosting operational amplifier with high gain and high unity-gain bandwidth. The experimental results strongly support the effectiveness of reconfiguration algorithm, which provides an average of 0.5bit ENOB improvement among the set of configurations. For many applications, this is a very significant performance improvement.;The BIST and re-configurability techniques proposed are not limited to pipeline ADCs only. The BIST methodology is applicable to many analog systems and the re-configurability is applicable to any analog pipeline system

    Analysis and design of low-power data converters

    Get PDF
    In a large number of applications the signal processing is done exploiting both analog and digital signal processing techniques. In the past digital and analog circuits were made on separate chip in order to limit the interference and other side effects, but the actual trend is to realize the whole elaboration chain on a single System on Chip (SoC). This choice is driven by different reasons such as the reduction of power consumption, less silicon area occupation on the chip and also reliability and repeatability. Commonly a large area in a SoC is occupied by digital circuits, then, usually a CMOS short-channel technological processes optimized to realize digital circuits is chosen to maximize the performance of the Digital Signal Proccessor (DSP). Opposite, the short-channel technology nodes do not represent the best choice for analog circuits. But in a large number of applications, the signals which are treated have analog nature (microphone, speaker, antenna, accelerometers, biopotential, etc.), then the input and output interfaces of the processing chip are analog/mixed-signal conversion circuits. Therefore in a single integrated circuit (IC) both digital and analog circuits can be found. This gives advantages in term of total size, cost and power consumption of the SoC. The specific characteristics of CMOS short-channel processes such as: • Low breakdown voltage (BV) gives a power supply limit (about 1.2 V). • High threshold voltage VTH (compared with the available voltage supply) fixed in order to limit the leakage power consumption in digital applications (of the order of 0.35 / 0.4V), puts a limit on the voltage dynamic, and creates many problems with the stacked topologies. • Threshold voltage dependent on the channel length VTH = f(L) (short channel effects). • Low value of the output resistance of the MOS (r0) and gm limited by speed saturation, both causes contribute to achieving a low intrinsic gain gmr0 = 20 to 26dB. • Mismatch which brings offset effects on analog circuits. make the design of high performance analog circuits very difficult. Realizing lowpower circuits is fundamental in different contexts, and for different reasons: lowering the power dissipation gives the capability to reduce the batteries size in mobile devices (laptops, smartphones, cameras, measuring instruments, etc.), increase the life of remote sensing devices, satellites, space probes, also allows the reduction of the size and weight of the heat sink. The reduction of power dissipation allows the realization of implantable biomedical devices that do not damage biological tissue. For this reason, the analysis and design of low power and high precision analog circuits is important in order to obtain high performance in technological processes that are not optimized for such applications. Different ways can be taken to reduce the effect of the problems related to the technology: • Circuital level: a circuit-level intervention is possible to solve a specific problem of the circuit (i.e. Techniques for bandwidth expansion, increase the gain, power reduction, etc.). • Digital calibration: it is the highest level to intervene, and generally going to correct the non-ideal structure through a digital processing, these aims are based on models of specific errors of the structure. • Definition of new paradigms. This work has focused the attention on a very useful mixed-signal circuit: the pipeline ADC. The pipeline ADCs are widely used for their energy efficiency in high-precision applications where a resolution of about 10-16 bits and sampling rates above hundreds of Mega-samples per second (telecommunication, radar, etc.) are needed. An introduction on the theory of pipeline ADC, its state of the art and the principal non-idealities that affect the energy efficiency and the accuracy of this kind of data converters are reported in Chapter 1. Special consideration is put on low-voltage low-power ADCs. In particular, for ADCs implemented in deep submicron technology nodes side effects called short channel effects exist opposed to older technology nodes where undesired effects are not present. An overview of the short channel effects and their consequences on design, and also power consuption reduction techniques, with particular emphasis on the specific techniques adopted in pipelined ADC are reported in Chapter 2. Moreover, another way may be undertaken to increase the accuracy and the efficiency of an ADC, this way is the digital calibration. In Chapter 3 an overview on digital calibration techniques, and furthermore a new calibration technique based on Volterra kernels are reported. In some specific applications, such as software defined radios or micropower sensor, some circuits should be reconfigurable to be suitable for different radio standard or process signals with different charateristics. One of this building blocks is the ADC that should be able to reconfigure the resolution and conversion frequency. A reconfigurable voltage-scalable ADC pipeline capable to adapt its voltage supply starting from the required conversion frequency was developed, and the results are reported in Chapter 4. In Chapter 5, a pipeline ADC based on a novel paradigm for the feedback loop and its theory is described

    A 16-b 10Msample/s Split-Interleaved Analog to Digital Converter

    Get PDF
    This work describes the integrated circuit design of a 16-bit, 10Msample/sec, combination ‘split’ interleaved analog to digital converter. Time interleaving of analog to digital converters has been used successfully for many years as a technique to achieve faster speeds using multiple identical converters. However, efforts to achieve higher resolutions with this technique have been difficult due to the precise matching required of the converter channels. The most troublesome errors in these types of converters are gain, offset and timing differences between channels. The ‘split ADC’ is a new concept that allows the use of a deterministic, digital, self calibrating algorithm. In this approach, an ADC is split into two paths, producing two output codes from the same input sample. The difference of these two codes is used as the calibration signal for an LMS error estimation algorithm that drives the difference error to zero. The ADC is calibrated when the codes are equal and the output is taken as the average of the two codes. The ‘split’ ADC concept and interleaved architecture are combined in this IC design to form the core of a high speed, high resolution, and self-calibrating ADC system. The dual outputs are used to drive a digital calibration engine to correct for the channel mismatch errors. This system has the speed benefits of interleaving while maintaining high resolution. The hardware for the algorithm as well as the ADC can be implemented in a standard 0.25um CMOS process, resulting in a relatively inexpensive solution. This work is supported by grants from Analog Devices Incorporated (ADI) and the National Science Foundation (NSF)

    Design techniques for low noise and high speed A/D converters

    Get PDF
    Analog-to-digital (A/D) conversion is a process that bridges the real analog world to digital signal processing. It takes a continuous-time, continuous amplitude signal as its input and outputs a discrete-time, discrete-amplitude signal. The resolution and sampling rate of an A/D converter vary depending on the application. Recently, there has been a growing demand for broadband (>1 MHz), high-resolution (>14bits) A/D converters. Applications that demand such converters include asymmetric digital subscriber line (ADSL) modems, cellular systems, high accuracy instrumentation, and medical imaging systems. This thesis suggests some design techniques for such high resolution and high sampling rate A/D converters. As the A/D converter performance keeps on increasing it becomes increasingly difficult for the input driver to settle to required accuracy within the sampling time. This is because of the use of larger sampling capacitor (increased resolution) and a decrease in sampling time (higher speed). So there is an increasing trend to have a driver integrated onchip along with A/D converter. The first contribution of this thesis is to present a new precharge scheme which enables integrating the input buffer with A/D converter in standard CMOS process. The buffer also uses a novel multi-path common mode feedback scheme to stabilize the common mode loop at high speeds. Another major problem in achieving very high Signal to Noise and Distortion Ratio (SNDR) is the capacitor mismatch in Digital to Analog Converters (DAC) inherent in the A/D converters. The mismatch between the capacitor causes harmonic distortion, which may not be acceptable. The analysis of Dynamic Element Matching (DEM) technique as applicable to broadband data-converters is presented and a novel second order notch-DEM is introduced. In this thesis we present a method to calibrate the DAC. We also show that a combination of digital error correction and dynamic element matching is optimal in terms of test time or calibration time. Even if we are using dynamic element matching techniques, it is still critical to get the best matching of unit elements possible in a given technology. The matching obtained may be limited either by random variations in the unit capacitor or by gradient effects. In this thesis we present layout techniques for capacitor arrays, and the matching results obtained in measurement from a test-chip are presented. Thus we present various design techniques for high speed and low noise A/D converters in this thesis. The techniques described are quite general and can be applied to most of the types of A/D converters

    Circuits and algorithms for pipelined ADCs in scaled CMOS technologies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.MIT Barker Engineering Library copy: printed in pages.Also issued printed in pages.Includes bibliographical references (leaves 179-184).CMOS technology scaling is creating significant issues for analog circuit design. For example, reduced signal swing and device gain make it increasingly difficult to realize high-speed, high-gain feedback loops traditionally used in switched capacitor circuits. This research involves two complementary methods for addressing scaling issues. First is the development of two blind digital calibration techniques. Decision Boundary Gap Estimation (DBGE) removes static non-linearities and Chopper Offset Estimation (COE) nulls offsets in pipelined ADCs. Second is the development of circuits for a new architecture called zero-crossing based circuits (ZCBC) that is more amenable to scaling trends. To demonstrate these circuits and algorithms, two different ADCs were designed: an 8 bit, 200MS/s in TSMC 180nm technology, and a 12 bit, 50 MS/s in IBM 90nm technology. Together these techniques can be enabling technologies for both pipelined ADCs and general mixed signal design in deep sub-micron technologies.by Lane Gearle Brooks.Ph.D
    • …
    corecore