867 research outputs found

    Rolling Locomotion Control of a Biologically Inspired Quadruped Robot Based on Energy Compensation

    Get PDF
    We have developed a biologically inspired reconfigurable quadruped robot which can perform walking and rolling locomotion and transform between walking and rolling by reconfiguring its legs. This paper presents an approach to control rolling locomotion with the biologically inspired quadruped robot. For controlling rolling locomotion, a controller which can compensate robot’s energy loss during rolling locomotion is designed based on a dynamic model of the quadruped robot. The dynamic model describes planar rolling locomotion based on an assumption that the quadruped robot does not fall down while rolling and the influences of collision and contact with the ground, and it is applied for computing the mechanical energy and a plant in a numerical simulation. The numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller. The simulation results show that the quadruped robot can perform periodic rolling locomotion with the proposed energy-based controller. In conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the flat ground

    Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

    Full text link
    An originally chaotic system can be controlled into various periodic dynamics. When it is implemented into a legged robot's locomotion control as a central pattern generator (CPG), sophisticated gait patterns arise so that the robot can perform various walking behaviors. However, such a single chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs' oscillation frequencies so that the robot adapts its locomotion to deal with the malfunction. As a consequence, the trajectory produced by the multiple chaotic CPGs resembles the original trajectory far better than the one produced by only a single CPG. The performance of the system is evaluated first in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body parts have to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201

    Evolving a Sensory-Motor Interconnection for Dynamic Quadruped Robot Locomotion Behavior

    Get PDF
    In this paper, we present a novel biologically inspired evolving neural oscillator for quadruped robot locomotion to minimize constraints during the locomotion process. The proposed sensory-motor coordination model is formed by the interconnection between motor and sensory neurons. The model utilizes Bacterial Programming to reconstruct the number of joints and neurons in each joint based on environmental conditions. Bacterial Programming is inspired by the evolutionary process of bacteria that includes bacterial mutation and gene transfer process. In this system, either the number of joints, the number of neurons, or the interconnection structure are changing dynamically depending on the sensory information from sensors equipped on the robot. The proposed model is simulated in computer for realizing the optimization process and the optimized structure is then applied to a real quadruped robot for locomotion process. The optimizing process is based on tree structure optimization to simplify the sensory-motor interconnection structure. The proposed model was validated by series of real robot experiments in different environmental conditions

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Stance Control Inspired by Cerebellum Stabilizes Reflex-Based Locomotion on HyQ Robot

    Get PDF
    Advances in legged robotics are strongly rooted in animal observations. A clear illustration of this claim is the generalization of Central Pattern Generators (CPG), first identified in the cat spinal cord, to generate cyclic motion in robotic locomotion. Despite a global endorsement of this model, physiological and functional experiments in mammals have also indicated the presence of descending signals from the cerebellum, and reflex feedback from the lower limb sensory cells, that closely interact with CPGs. To this day, these interactions are not fully understood. In some studies, it was demonstrated that pure reflex-based locomotion in the absence of oscillatory signals could be achieved in realistic musculoskeletal simulation models or small compliant quadruped robots. At the same time, biological evidence has attested the functional role of the cerebellum for predictive control of balance and stance within mammals. In this paper, we promote both approaches and successfully apply reflex-based dynamic locomotion, coupled with a balance and gravity compensation mechanism, on the state-of-art HyQ robot. We discuss the importance of this stability module to ensure a correct foot lift-off and maintain a reliable gait. The robotic platform is further used to test two different architectural hypotheses inspired by the cerebellum. An analysis of experimental results demonstrates that the most biologically plausible alternative also leads to better results for robust locomotion

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/
    • …
    corecore