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Abstract— In this paper, we present a novel biologically
inspired evolving neural oscillator for quadruped robot locomo-
tion to minimize constraints during the locomotion process. The
proposed sensory-motor coordination model is formed by the
interconnection between motor and sensory neurons. The model
utilizes Bacterial Programming to reconstruct the number of
joints and neurons in each joint based on environmental con-
ditions. Bacterial Programming is inspired by the evolutionary
process of bacteria that includes bacterial mutation and gene
transfer process. In this system, either the number of joints,
the number of neurons, or the interconnection structure are
changing dynamically depending on the sensory information
from sensors equipped on the robot. The proposed model is
simulated in computer for realizing the optimization process
and the optimized structure is then applied to a real quadruped
robot for locomotion process. The optimizing process is based
on tree structure optimization to simplify the sensory-motor
interconnection structure. The proposed model was validated
by series of real robot experiments in different environmental
conditions.

I. INTRODUCTION

In recent years, biologically inspired approach in locomo-
tion has been widely researched for realizing the dynamical
system in robot for moving in an unpredictable area or other
environmental conditions such as rocky surface, boggy soil,
and slippery ground. Quadruped robot can be applied as a
multi-purposed robot in these environmental conditions for
performing rescue mission, space exploration and environ-
ment mapping. Conventional locomotion systems have been
applied in sloppy and slippery environments. However, there
are some drawbacks in biologically inspired approach that
impede its performance such as environmental constraint,
neuron constraint, and joint constraint.

Smith et al. [1] proposed a biologically inspired approach
for recognizing the appropriate number of legs of a multi-
legged robot based on different environmental conditions.
In [2], a muscle-based skeletal model has been applied for
controlling the biped robot locomotion. Conventional re-
search works applied two neurons for representing one joint
that generated mutual inhibition between certain neurons
termed as central pattern generator (CPG). Nassour et al. [3]
proposed a neuro-locomotion model based on multi-layered
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neuron structure for robot locomotion which achieved an
adequate and stable walking pattern.

In recent muscle-based locomotion research, most of them
are tested and verified in simulation experiments [4], [2],
[5]. Lee et al. [4] realized the muscle-based locomotion
with more than one hundred Hill-type muscles for humanoid
models actuated. However, the muscle model has limitation
for real robot implementation. The main drawback of muscle
model and adaptive locomotion is the optimization process.
Some researchers applied genetic algorithm for evolving the
configuration of the coupled neural oscillator and optimizing
the locomotion gaits [6]. However, the proposed method
heavily relies on parameters value settings, a small change of
its parameter value can cause a big impact on the generated
locomotion pattern, which may fail to achieve the sensory-
motor coordination.

Therefore, in this paper a joint angle based model is
proposed as the targeted actuator generated by motor neu-
rons. Locomotion models based on a biological approach
were proposed by several researchers [7], [8], [9], [3], [10].
This approach is inspired by the spinal cord system in the
vertebrates. Nassour et al. used CPG in for biped robot
locomotion. He proposed multi-layered neuron structure for
improving the performance of stability [3].

In our previous work [11], [10], [12], we have developed a
fix neural structure and utilized multi-objective evolutionary
algorithm for the synaptic weight optimization for biped
robot locomotion. However, our previous works have con-
straints for real robot implementation. One of the constraint
is that we have to conduct preliminary tests beforehand
for designing the appropriate neural structure. In [11], the
interconnection structure can be optimized, but the number
of neurons were fixed and unable to be optimized.

In this paper, we propose an evolving neural oscillator in
robot locomotion that can optimize not only the interconnec-
tion structure of the neurons but also reconstruct the number
of joints and neurons in each joint based on environmental
conditions. The contribution of this work is that either
the number of joints, or the number of neurons, or the
interconnection structure are dynamically changed depending
on the condition acquired from the sensor equipped on the
robot. In addition, we propose a joint angle-based model
as the targeted actuator generated by motor neurons and
represent the solution of the neural interconnection structure
by tree structure for simplifying the optimization strategy.
The proposed method comprises Bacterial Programming
(BP) [13] for optimizing the unpredictable neural structure.
The optimization approach was inspired by the evolutionary

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8094-0/18/$31.00 ©2018 IEEE 7089



process of bacteria and has been implemented in different
environmental conditions.

The paper is organized as follows. In Section II, we
discuss the neural model that represents the sensory-motor
coordination in quadruped robot locomotion. Section III
presents the tree structured optimization strategy using bac-
terial programming. Simulation and real robot experiments
are presented in Section IV. Finally, Section V concludes the
paper.

II. SENSORY-MOTOR INTERCONNECTION MODEL

We utilize the central pattern generator as locomotion
generator in which the motor neurons serve as the output
signal and sensory neurons serve as the feedback signal.
The internal sensory information collected from tilt sensor
(pitch and roll) and ground touch sensor in all legs are used
as feedback signals. The number of activated joints in the
robot’s legs is depending on the environmental condition.
Unused joints will be deactivated and therefore decreasing
the computational cost and energy consumption.

The proposed locomotion model comprises 3 main ele-
ments: gait generator system, optimization system, and adap-
tive intelligent control system. The role of the gait generator
is to generate the walking pattern signal in joint angle level
based on neural oscillator. Next, the optimization system
optimizes the best neuron structure of gait generator in
different environmental conditions. The adaptive intelligent
control system manipulates the neural structure according to
the change of environmental conditions.

The proposed neural model of joints is illustrated in Fig. 1,
its mathematical model is shown in Eqs. (1), (2), (3) and
mathematical notation definition as tabulated in Table I.
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TABLE I
THE PROPOSED METHOD’S MATHEMATICAL NOTATIONS

Notation Definition
wi j motor neurons interconnection
mil sensory motor neurons interconnection
ui inner state
yi output value
vi variable of self-inhibition effect of neurons
Jk

j operator representing +1, -1, or 0
sl output of the lth sensory neuron
b rate of the adaptation value
u0 external input for coupled neurons

τ and τ ′ time constant of the inner state and the adaptation effect

Fig. 1. Representation of the evolving neural model. The black line
represents the motor–motor interconnection and the red line represents
the sensory–motor interconnection. (a) Neural structure and mechanical
structure of the robot. (b) Neuron structure in joint angle level.

In Eq. (1), wi j represents the strength of the inhibitory
effect between the motor neurons that is optimized offline;
mil represents the strength of the sensory signal effect to
the motor neurons; ∑

n
j=1 wi jy j represents the total of the

signal input from the motor neuron; ∑
n
l=1 milsl represents

the total of the feedback signal from the sensory neurons. In
Eqs. (1) and (2), τ f is used for controlling the frequency of
oscillation. In Eq. (4), Ji

j is the neuron effect of the jth neuron
in the ith joint represented by joint node in the tree structure
of bacterial programming (see Section III) and Nneuron

i is
the number of neurons in the ith joint. Each joint angle is
represented by different number of neurons depending on the
environmental conditions.

Regarding the walking pattern, knee (θ d
2 ) and hip joints

are the main joints (θ d
0 & θ d

1 ) for generating the walking
pattern. Ankle joints (θ d

3 & θ d
4 ) adapt the condition of the

main joint and support the stabilization and landing system
in locomotion. Ankle joints are required for generating the
walking pattern in different conditions. Eqs. (5), (6), (7)
and (8) represent the angle value in every joint; where θ d

k
represents the signal to the robot’s joint at k joint ID on d
side, (l) and (r) represent left and right side; Θk represents
the signal output from the neuron in joint angle level.

θ0 =

{
θ
(l)
1 −θ

(r)
1 if N joint < 3

Θ3 otherwise
(5)
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θ
(l,r)
1 = Θ0 (6)

θ
(l,r)
2 = Θ1 (7)

θ3 =

{
θ
(l,r)
2 −θ

(l,r)
1 if N joint < 4

Θ4 otherwise
(8)

When the environmental condition requires the robot needs
only two joints in each leg (N joint = 2), the system prefers to
choose the hip joint in x-axis position and knee joint to be
activated. When N joint = 3, the system choose the hip joint
x-axis, y-axis position, and knee joint to be activated. When
N joint = 4, the system activates ankle joint as the additional
joint. This condition represents the high complexity of the
environment when the robot needs to activate the ankle joint.
The neural representation of the robot structure and the
neural model in joint angle level are depicted in Fig. 1.

The proposed system is applied in a quadruped robot
which has 4 legs and 4 joints in each leg for real world
implementation. However, only the important joints are gen-
erated by motor neurons.

III. BACTERIAL PROGRAMMING

Bacterial Programming [13] is an evolutionary computa-
tion technique which is based on the combination of Bacterial
Evolutionary Algorithm [14] and Genetic Programming [15].
The algorithm is based on the bacterial operations, however,
it uses tree structures similar to the ones in the GP. The
novelty of our proposed model is inspired by the evolu-
tionary process of bacteria applied for robot locomotion.
Bacteria can transfer genes to other bacteria. The bacterial
mutation performs local optimization whilst the gene transfer
allows the bacteria to directly transfer information to an-
other individuals in the population. Based on these bacterial
operations, we optimize the neural structure of locomotion
by using the tree structures in certain ground condition and
certain slope terrain. In BP, the population is composed of
several individuals that are represented by a tree model. The
evolutionary process of BP is explained in [13].

A. Encoding Model

In order to simplify the complexity of the neural oscillator
model for robot locomotion, one bacterium is represented
by a tree structure, composed of joint and neuron nodes
as shown in Fig. 2a. A joint node can be composed of
operators “+”, “-”, or “0” which represents the addition
operation, reduction operation, or no operation respectively.
These operators are randomly generated and will affect the
motor neuron signal that is calculated in Eq. (1). A neuron
node is composed of the synaptic weight values from other
neurons.

This tree structure, as well as the characteristics of the
nodes, evolves from generation to generation. The tree model
structure is converted to neural oscillator structure which
refers to a symmetric structure as shown in Fig. 2 in order
to reduce the size of the search space. The neural oscillator

(a)

(b)

Fig. 2. a) The tree structure represents the neuro-based locomotion; b)
Symmetric model of the neuron structure as the result of the tree structure
conversion.

structure of a leg is mirrored to another leg. Therefore, in
the robot, the right leg mirrors to the left leg of the robot,
and the front leg mirrors to the backward leg of the robot.

We obtain a tree structure (i.e. a bacterium) from the
evolutionary process, as shown in Fig. 2a, where the red
circle (k, l) represents the synaptic weight value from the
lth neuron of the kth leg to the neuron (m,n), the blue bold
circle with the nth neuron of the mth leg. The parameters
will be generated between pmin and pmax. This information
will be encoded to the synaptic weight parameter wi j, where
i = (k− 1) ·Nneuron

k + l and j = (m− 1) ·Nneuron
m + n, where

Nneuron
k and Nneuron

m represent the number of neurons in
the kth leg and mth leg, respectively. The blue bold circle
represents the inner state of neuron calculated in Eqs. (1),
(2), (3). The green square represents the signal effect in
joint angle level. The red and blue connections in Fig. 2
represent motor neurons interconnection and sensory-motor
interconnection, respectively. In the optimization, number
of joints will be generated from N joint

min until N joint
max , while

number of neurons from Nneuron
min until Nneuron

max .
The tree structure in Fig. 2a has 2 joints which are hip-x

joint and knee joint and it is converted to neural structure
that can be seen in Fig. 2b.

The BP process starts with the initial population generation
in which the algorithm randomly generates Nind individuals
(i.e. bacteria) one by one. After that the two main opera-
tors of the algorithm are repeated in Ngen generations, the
bacterial mutation and the gene transfer operations.

B. Bacterial Mutation

The bacterial mutation is applied to each bacterium one
by one. First, Nclones copies (clones) of the bacterium are
generated. A certain node of the bacterium is then randomly
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Fig. 3. Illustration of bacterial mutation

selected and the subtree is defined by this node that is
randomly changing in each clone (mutation). In our proposed
method, because coding is given by an expression tree for
neural oscillator based robot locomotion, there are two types
of mutation nodes: joint node mutation and neuron node
mutation. Then, all the clones and the original bacterium are
evaluated by a performance criterion (see Section III-D). The
best individual among the clones and the original bacterium
transfers the mutated part into the other individuals. This
cycle is repeated for the remaining nodes until all of the
subtrees of the bacterium have been mutated and evaluated.
At the end, the best bacterium is kept and the remaining
Nclones are discharged. The bacterial mutation operation is
illustrated in Fig. 3 and it shows the example of two substeps
of the bacterial mutation process, where three clones are
applied.

C. Gene Transfer

The gene transfer operation represents the exchange of
genetic information between two bacteria. In this process,
the population of bacteria is ordered according to the perfor-
mance criterion (see Section III-D). Then, a source bacterium
is randomly selected from the superior half of the population
and a destination bacterium is randomly selected from the
inferior half. The source bacterium transfers one of its
subtree to the destination bacterium which overwrites one
of its subtree by the transferred subtree. The above process
(ordering the population, selecting the source and destination
bacteria, and transferring the subtree) is repeated Nin f times.
The gene transfer operation is illustrated in Fig. 4.

D. Evaluation

Two evaluation criteria are calculated in the evaluation
process which are the desired walking length and the body tilt
oscillation in pitch and roll direction ¯̇

β . The desired walking
length, ῡ is represented by the remaining distance to the
target.

Fig. 4. Illustration of gene transfer

The value of tilt body oscillation represents the stability
of movement. If the robot locomotion has low oscillation, it
implies good stabilization. The remaining distance represents
the speed of the robot walking. If the robot has a high value
in the remaining distance, the robot has a low speed in
walking. Another motivation of the proposed method is to
realize a locomotion pattern with maximum possible speed.
Therefore, our objective is to acquire locomotion that has a
good stabilization and a high walking speed.

In Eq. (9), β̇pitch and β̇roll are tilt oscillation in pitch
and roll direction that has absolute value. In Eq. (10),
`(t,wi j) is the resultant value of x(t) and y(t) in each time
sampling. The `(t,wi j), x(t), y(t) notations were defined as
real numbers. Parameter wi j is synaptic weight which has
been explained in Section II. Parameters α1 and α2 represent
the weight factor of fitness. The goal of the optimization
problem is to minimize the fitness described in Eq. (11).

¯̇
β =

1
T

T

∑
t=0

(
βpitch(t)+βroll(t)

)
(9)

ῡ(wi j) = ϒ− 1
T

T

∑
t=0

δ

δ t
`

(
t,wi j,x(t),y(t)

)
(10)

f = ¯̇
βα1 + ῡα2 (11)

This evaluation is conducted in computer simulation by
using the Open Dynamics Engine (ODE) [16]. The evalua-
tion time requires 10 seconds (1000 time samplings), since a
time sampling requires 0.01 second. Thus, the timing process
in the evaluation is the same as the real timing that is applied
in the real robot.

IV. EXPERIMENTAL RESULTS

We validated the proposed method through several com-
puter simulation and real robot implementation. Two exper-
iments were conducted to validate the locomotion optimiza-
tion and its application in the middle size quadruped robot.

A. Locomotion Optimization

The experiment was conducted on a rough terrain with
different slope degrees by using the proposed neural evolving
algorithm, whose parameter values have been tabulated in
Table II. We then evaluate the walking performance based
on the two aspects which are the speed and the stability.

For simulation, we first set the friction to a certain value in
Open Dynamics Engine [16]. The sample walking simulation
can be seen in Fig. 5. The proposed algorithm succeeded
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TABLE II
BACTERIAL PROGRAMMING PARAMETERS

Parameter Value
Nind , Ngen, Nclones, Nin f 100, 50, 10, 30

pmin; pmax 0; 4
N joint

min ; N joint
max 1; 3

Nneuron
min ; Nneuron

max 1; 4
α1; α2 0.75; 0.25

(a)

(b)

(c)

(d)

Fig. 5. Simulation of proposed locomotion on uneven terrain in different
degree of slope (a) slope 0◦ (b) slope 5◦ (c) slope 14◦ (d) slope 20◦

to form the neuron structure for locomotion on the uneven
terrain.

The evolution of joints and neuron numbers in each joint
are shown in Fig. 6. Those numbers are adaptively changed
in some generations. In flat terrain experiment, after several
generations, 3 joints in each leg were not stable enough for
locomotion. Then, the number of joints was decreased and
became 2 joints in each leg. Thus, in the final structure,
there are 2 neurons in the first joint (hip-x joint) and 2
neuron in the second joint (knee joint). In this experiment,
the locomotion model required 16 neurons for 4 legs, where
their signal in joint angle level can be seen in Fig. 7.

The results showed the important joints in the robot
locomotion. Like animal, these joints are required to produce
rhythmic signal for walking; at least 2 neurons are required
for representing extensor and flexor muscle. The hip-x joint
is important for swinging the leg and controlling the walking
phase.

In the rough terrain experiment, we can see the activity of
sensory-motor coordination as shown in Fig. 9. The ground
touch sensor input gave some effects to the motor neurons,
therefore the signal is changing adaptively as shown in Fig. 9.
The figure shows the signal between left part and right part
of the robot legs.

The optimized tree structure and its neuron interconnection
structure can be seen in Fig. 8. In the rough terrain, 2
joints in every leg was not stable enough. Therefore, after
a few generations, the number of joints became 3 joints in
every leg. In this experiments, there are 16 motor neurons

Fig. 6. The number of joints and the number of neurons in each joint in
every generation

Fig. 7. Sample of signal output in joint angle level (Θ(l,r)
i = ∑

Nneuron
i

j=1 Jl,r
j y j)

on the flat terrain. The signal movement pattern tends to the walk-like
movement. Signal in first (P1) and third (P3) leg has the same phase, and
the second (P2) and the fourth (P4) has almost the same phase.

required for performing on the trained terrains, 1 motor
neuron representing hip-x joint and hip-y joint, and 2 motor
neurons representing knee joint.

In order to evaluate the stability level, we recorded the
body tilt sensor information which can be seen in Fig. 10
and analyzed it using Poincare map and Cobweb map which
are illustrated in Fig. 11.

B. Implementation in Real Robot

The proposed method was further validated by real robot
implementation. We utilized the optimized neural structure
and uploaded it to the robot. We built a quadruped robot with
55 cm of height and 6 kg of weight, where the mechanical
structure of the robot is the same as the robot in simulation
experiment. In this experiment we have built 2 middle size
quadruped robots, where the first robot is shown in Fig. 12a
and the second one is shown in Fig. 12b. The proposed model
is successfully applied to the real robots, and both robots are
able to walk on both flat terrain and small uneven obstacles.
The sample figure of the implementation is depicted in
Fig. 13.
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(a)

(b)

(c)

(d)

Fig. 8. (a) Optimized tree structure for flat terrain (b) Optimized neuron
interconnection (c) Optimized tree structure for rough terrain (d) Optimized
neuron interconnection

V. CONCLUSION

This paper proposed a novel biologically inspired neural
based model for evolving the sensory-motor integration for
robot locomotion. Since the sensory-motor neuron inter-
connection is getting more complex, a new tree structure
based model of neuron interconnection structure is proposed.
Bacterial programming is used as the optimization technique.
The proposed tree structure can simplify the process and
successfully generate stable walking for quadruped robots.

During the evolutionary process of neurons, the number
of motor neurons in every joint were successfully optimized.
The evolving model is able to reduce the number of neurons
being involved, depending on the requirement of the robot’s
performance.

In order to represent the sensory-motor coordination, the
proposed model can also generate the sensory-motor neuron
interconnection. There are 6 sensory neurons representing 6

Fig. 9. The signal generated in the experiment on rough terrain. The effect
of sensory input can be seen to the motor neuron signal. Green blocks show
the difference of signal patterns because of the different sensory inputs. The
signal phase in every leg (P1, · · · ,P4) has 0.25 phase difference that makes
the movement slower than on the flat terrain.

(a)

(b)

(c)

(d)

Fig. 10. The signal oscillation of angular velocity and tilt angle in pitch
and roll direction measured from robot’s body. (a) Body tilt signal on flat
terrain. (b) Angular velocity signal on flat terrain. (c) Body tilt signal on
rough terrain (outdoor grass). (d) Angular velocity signal on rough terrain.
The signal on flat terrain is more stable than on rough terrain. Nevertheless,
the signal oscillation is still acceptable for stability.
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(a) (b)

(c) (d)

Fig. 11. Stability analysis diagram (a) Phase diagram of robot tilt
angle and stability analysis on the flat terrain, based on Poincare map (b)
Cobweb diagram representation of Fig. 11a (c) Poincare map during robot’s
performance on the rough terrain (d) Cobweb diagram representation of
Fig. 11c

(a) (b)

Fig. 12. Proposed middle size quadruped robot (a) first prototype (b)
second prototype.

(a)

(b)

(c)

(d)

Fig. 13. Experimental result in a real robot. (a) First prototype of robot on
the grass. (b) First prototype of robot on the grass with slope. (c) Second
prototype of robot on the rough grass (d) Second prototype of robot on the
flat terrain.

pieces of internal sensory information which are tilt sensor in
pitch and roll, 4 ground sensors, one in each leg. According
to the experimental results, signals generated by motor
neurons are adaptively changing depending on the sensory
information about the environment. The proposed model is
able to reduce the computational cost to 67% compared to
conventional models.

All in all, the proposed bacterial programming based tree
structure model can be applied for simplifying the represen-
tation of sensory-motor interconnection in any multi-legged
robots. For future works, we will conduct more experiments
in different kind of walking surface for further validation.
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