7 research outputs found

    A Bidirectional ASIC for Active Microchannel Neural Interfaces

    Get PDF
    Closed-loop neural prostheses have been widely used as a therapeutic strategy for a range of neurological, inflammatory, and cardiac disorders. Vagus nerve stimulation has shown promising results for the monitoring and treatment of post-operation symptoms of heart transplant recipients. A prime candidate for selective control of vagal fibres is the microchannel neural interface (MNI), which provides a suitable environment for neural growth and enables effective control of the neural activity in a bidirectional system. This paper presents the design and simulation of an ASIC in 180-nm high-voltage CMOS technology, capable of concurrent stimulation and neural recording with artifact reduction in a seven-channel MNI. The analog front-end amplifies action potentials with a gain of 40 dB, presenting a common-mode rejection ratio of 81 dB at 1 kHz and a noise efficiency factor of 5.13 over the 300 Hz to 5 kHz recording bandwidth. A 42-V-compliant stimulation module operates concurrently and independently across the seven channels

    A 6.78MHz Adaptive-ZVS Class-D PA with Dynamic Dead-Time for Wireless Power Transfer system

    Get PDF
    Department of Electrical EngineeringIn this thesis, a class-D power amplifier (PA) with adaptive zero-voltage switching (A-ZVS) technique for Low power 6.78 MHz resonant wireless power transfer (R-WPT) system is proposed. In R-WPT operation, the loading impedance of a PA can be varied by the process tolerance of the LC resonant components and WPT environments, such as the resonant topology, coupling coefficient and loading condition of the receiver. The proposed A-ZVS feedback loop of PA calibrates the equivalent resonant capacitance using PWM-controlled switched capacitor in real-time to achieve ZVS by adjusting the loading impedance to be slightly inductive. Furthermore, the proposed PA adjust the dead-time according to variation of WPT environments. The proposed PA was fully integrated except for one switched capacitor used as the tuning element and fabricated in a TSMC 0.18um BCD process. The measurement results demonstrated robust ZVS operation with a peak system efficiency of 52.7% and an enhanced maximum transmitting power of 107%.ope

    Bidirectional Neural Interface Circuits with On-Chip Stimulation Artifact Reduction Schemes

    Full text link
    Bidirectional neural interfaces are tools designed to ā€œcommunicateā€ with the brain via recording and modulation of neuronal activity. The bidirectional interface systems have been adopted for many applications. Neuroscientists employ them to map neuronal circuits through precise stimulation and recording. Medical doctors deploy them as adaptable medical devices which control therapeutic stimulation parameters based on monitoring real-time neural activity. Brain-machine-interface (BMI) researchers use neural interfaces to bypass the nervous system and directly control neuroprosthetics or brain-computer-interface (BCI) spellers. In bidirectional interfaces, the implantable transducers as well as the corresponding electronic circuits and systems face several challenges. A high channel count, low power consumption, and reduced system size are desirable for potential chronic deployment and wider applicability. Moreover, a neural interface designed for robust closed-loop operation requires the mitigation of stimulation artifacts which corrupt the recorded signals. This dissertation introduces several techniques targeting low power consumption, small size, and reduction of stimulation artifacts. These techniques are implemented for extracellular electrophysiological recording and two stimulation modalities: direct current stimulation for closed-loop control of seizure detection/quench and optical stimulation for optogenetic studies. While the two modalities differ in their mechanisms, hardware implementation, and applications, they share many crucial system-level challenges. The first method aims at solving the critical issue of stimulation artifacts saturating the preamplifier in the recording front-end. To prevent saturation, a novel mixed-signal stimulation artifact cancellation circuit is devised to subtract the artifact before amplification and maintain the standard input range of a power-hungry preamplifier. Additional novel techniques have been also implemented to lower the noise and power consumption. A common average referencing (CAR) front-end circuit eliminates the cross-channel common mode noise by averaging and subtracting it in analog domain. A range-adapting SAR ADC saves additional power by eliminating unnecessary conversion cycles when the input signal is small. Measurements of an integrated circuit (IC) prototype demonstrate the attenuation of stimulation artifacts by up to 42 dB and cross-channel noise suppression by up to 39.8 dB. The power consumption per channel is maintained at 330 nW, while the area per channel is only 0.17 mm2. The second system implements a compact headstage for closed-loop optogenetic stimulation and electrophysiological recording. This design targets a miniaturized form factor, high channel count, and high-precision stimulation control suitable for rodent in-vivo optogenetic studies. Monolithically integrated optoelectrodes (which include 12 ĀµLEDs for optical stimulation and 12 electrical recording sites) are combined with an off-the-shelf recording IC and a custom-designed high-precision LED driver. 32 recording and 12 stimulation channels can be individually accessed and controlled on a small headstage with dimensions of 2.16 x 2.38 x 0.35 cm and mass of 1.9 g. A third system prototype improves the optogenetic headstage prototype by furthering system integration and improving power efficiency facilitating wireless operation. The custom application-specific integrated circuit (ASIC) combines recording and stimulation channels with a power management unit, allowing the system to be powered by an ultra-light Li-ion battery. Additionally, the ĀµLED drivers include a high-resolution arbitrary waveform generation mode for shaping of ĀµLED current pulses to preemptively reduce artifacts. A prototype IC occupies 7.66 mm2, consumes 3.04 mW under typical operating conditions, and the optical pulse shaping scheme can attenuate stimulation artifacts by up to 3x with a Gaussian-rise pulse rise time under 1 ms.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147674/1/mendrela_1.pd

    Optimizing electrical brain stimulation for seizure disorders

    Get PDF
    University of Minnesota Ph.D. dissertation. March 2017. Major: Neuroscience. Advisor: Theoden Netoff. 1 computer file (PDF); x, 145 pages.Approximately 1% of the world population is afflicted with Epilepsy. For many patients, antiepileptic drugs do not fully control seizures. Electrical brain stimulation therapies have been effective in reducing seizure rates in some patients. While current neuromodulation devices provide a benefit to patients, efficacy can be improved by optimizing brain stimulation so that the therapy is tuned on a patient by patient basis. One optimization approach is to target deep brain regions that strongly modulate seizure prone regions. I will present data on the effects of stimulation of two different anatomical regions for seizure control, and establish my experimental platform for testing closed-loop algorithms. There are two general methods to implementing closed-loop algorithms to modulate neural activity: 1) Model-free algorithms that require a learning period to establish an optimal mapping between neural states and best therapeutic parameters, and 2) Model-based algorithms that use forward predictions of the neural system to determine the appropriate stimulation therapy to be administered. In this thesis, I will propose and test two closed-loop control schemes to control the brain activity to prevent epileptogenic activity while reducing stimulation energy. I will also present techniques to remove stimulation artifacts so that neural biomarkers can be measured while simultaneously applying stimulation. The methods I will present could potentially be implemented in next generation electrical brain stimulation hardware for seizure disorders and other neurological diseases

    VLSI Circuits for Bidirectional Neural Interfaces

    Get PDF
    Medical devices that deliver electrical stimulation to neural tissue are important clinical tools that can augment or replace pharmacological therapies. The success of such devices has led to an explosion of interest in the field, termed neuromodulation, with a diverse set of disorders being targeted for device-based treatment. Nevertheless, a large degree of uncertainty surrounds how and why these devices are effective. This uncertainty limits the ability to optimize therapy and gives rise to deleterious side effects. An emerging approach to improve neuromodulation efficacy and to better understand its mechanisms is to record bioelectric activity during stimulation. Understanding how stimulation affects electrophysiology can provide insights into disease, and also provides a feedback signal to autonomously tune stimulation parameters to improve efficacy or decrease side-effects. The aims of this work were taken up to advance the state-of-the-art in neuro-interface technology to enable closed-loop neuromodulation therapies. Long term monitoring of neuronal activity in awake and behaving subjects can provide critical insights into brain dynamics that can inform system-level design of closed-loop neuromodulation systems. Thus, first we designed a system that wirelessly telemetered electrocorticography signals from awake-behaving rats. We hypothesized that such a system could be useful for detecting sporadic but clinically relevant electrophysiological events. In an 18-hour, overnight recording, seizure activity was detected in a pre-clinical rodent model of global ischemic brain injury. We subsequently turned to the design of neurostimulation circuits. Three critical features of neurostimulation devices are safety, programmability, and specificity. We conceived and implemented a neurostimulator architecture that utilizes a compact on-chip circuit for charge balancing (safety), digital-to-analog converter calibration (programmability) and current steering (specificity). Charge balancing accuracy was measured at better than 0.3%, the digital-to-analog converters achieved 8-bit resolution, and physiological effects of current steering stimulation were demonstrated in an anesthetized rat. Lastly, to implement a bidirectional neural interface, both the recording and stimulation circuits were fabricated on a single chip. In doing so, we implemented a low noise, ultra-low power recording front end with a high dynamic range. The recording circuits achieved a signal-to-noise ratio of 58 dB and a spurious-free dynamic range of better than 70 dB, while consuming 5.5 Ī¼W per channel. We demonstrated bidirectional operation of the chip by recording cardiac modulation induced through vagus nerve stimulation, and demonstrated closed-loop control of cardiac rhythm

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinsonā€™s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/āˆšHz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 Ɨ 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 ā€“ 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 Āµs). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 ā€“ 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces
    corecore