4 research outputs found

    Sparse tree-based clustering of microbiome data to characterize microbiome heterogeneity in pancreatic cancer

    Full text link
    There is a keen interest in characterizing variation in the microbiome across cancer patients, given increasing evidence of its important role in determining treatment outcomes. Here our goal is to discover subgroups of patients with similar microbiome profiles. We propose a novel unsupervised clustering approach in the Bayesian framework that innovates over existing model-based clustering approaches, such as the Dirichlet multinomial mixture model, in three key respects: we incorporate feature selection, learn the appropriate number of clusters from the data, and integrate information on the tree structure relating the observed features. We compare the performance of our proposed method to existing methods on simulated data designed to mimic real microbiome data. We then illustrate results obtained for our motivating data set, a clinical study aimed at characterizing the tumor microbiome of pancreatic cancer patients

    Dataset for: A Bayesian Mixture Model for Clustering and Selection of Feature Occurrence Rates under Mean Constraints

    No full text
    In this paper, we consider the problem of modeling a matrix of count data, where multiple features are observed as counts over a number of samples. Due to the nature of the data generating mechanism, such data are often characterized by a high number of zeros and overdispersion. In order to take into account the skewness and heterogeneity of the data, some type of normalization and regularization is necessary for conducting inference on the occurrences of features across samples. We propose a zero-inflated Poisson mixture modeling framework that incorporates a model-based normalization through prior distributions with mean constraints, as well as a feature section mechanism, which allows us to identify a parsimonious set of discriminatory features, and simultaneously cluster the samples into homogenous groups. We show how our approach improves on the accuracy of the clustering with respect to more standard approaches for the analysis of count data, by means of a simulation study and an application to a bag-of-words benchmark data set, where the features are represented by the frequencies of occurrence of each word
    corecore