15 research outputs found

    Acorn: An R package for de novo variant analysis

    Get PDF
    BACKGROUND: The study of de novo variation is important for assessing biological characteristics of new variation and for studies related to human phenotypes. Software programs exist to call de novo variants and programs also exist to test the burden of these variants in genomic regions; however, I am unaware of a program that fits in between these two aspects of de novo variant assessment. This intermediate space is important for assessing the quality of de novo variants and to understand the characteristics of the callsets. For this reason, I developed an R package called acorn. RESULTS: Acorn is an R package that examines various features of de novo variants including subsetting the data by individual(s), variant type, or genomic region; calculating features including variant change counts, variant lengths, and presence/absence at CpG sites; and characteristics of parental age in relation to de novo variant counts. CONCLUSIONS: Acorn is an R package that fills a critical gap in assessing de novo variants and will be of benefit to many investigators studying de novo variation

    A framework for the detection of de novo mutations in family-based sequencing data

    Get PDF
    Germline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission (PBT) to identify de novo single nucleotide variants and short insertions and deletions (indels) from sequence data collected in parent-offspring trios. We compute the joint probability of the data given the genotype likelihoods in the individual family members, the known familial relationships and a prior probability for the mutation rate. Candidate de novo mutations (DNMs) are reported along with their posterior probability, providing a systematic way to prioritize them for validation. Our tool is integrated in the Genome Analysis Toolkit and can be used together with the ReadBackedPhasing module to infer the parental origin of DNMs based on phase-informative reads. Using simulated data, we show that PBT outperforms existing tools, especially in low coverage data and on the X chromosome. We further show that PBT displays high validation rates on empirical parent-offspring sequencing data for whole-exome data from 104 trios and X-chromosome data from 249 parent-offspring families. Finally, we demonstrate an association between father's age at conception and the number of DNMs in female offspring's X chromosome, consistent with previous literature reports

    Haploinsufficiency of SF3B2 causes craniofacial microsomia

    Get PDF
    Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10−10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases

    Comparative Analysis for the Performance of Variant Calling Pipelines on Detecting the de novo Mutations in Humans

    Get PDF
    Despite of the low occurrence rate in the entire genomes, de novo mutation is proved to be deleterious and will lead to severe genetic diseases via impacting on the gene function. Considering the fact that the traditional family based linkage approaches and the genome-wide association studies are unsuitable for identifying the de novo mutations, in recent years, several pipelines have been proposed to detect them based on the whole-genome or whole-exome sequencing data and were used for calling them in the rare diseases. However, how the performance of these variant calling pipelines on detecting the de novo mutations is still unexplored. For the purpose of facilitating the appropriate choice of the pipelines and reducing the false positive rate, in this study, we thoroughly evaluated the performance of the commonly used trio calling methods on the detection of the de novo single-nucleotide variants (DNSNVs) by conducting a comparative analysis for the calling results. Our results exhibited that different pipelines have a specific tendency to detect the DNSNVs in the genomic regions with different GC contents. Additionally, to refine the calling results for a single pipeline, our proposed filter achieved satisfied results, indicating that the read coverage at the mutation positions can be used as an effective index to identify the high-confidence DNSNVs. Our findings should be good support for the committees to choose an appropriate way to explore the de novo mutations for the rare diseases

    Exome sequencing implicates impaired GABA signaling and neuronal ion transport in trigeminal neuralgia

    Get PDF
    Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associate

    Finding and Analyzing de novo Mutations in the Exomes of Parent-Offspring Trios of Spontaneous Chiari Malformation Type 1 Patients

    Get PDF
    Chiari Malformation Type 1 (CM1) is a neurodevelopmental disorder that occurs when one of the cerebellar tonsils herniates past the foramen magnum causing headaches, motor or sensory deficits, sleep apnea, and difficulty swallowing. This disorder is estimated to affect 1% of the population but due to the need of neuroimaging for diagnosis and the presence of asymptomatic patients there is still uncertainty about the exact proportion of the population affected. CM1 often presents itself with other neurodevelopmental disorders such as syringomyelia, scoliosis, and known genetic syndromes such as Klippel-Feil and Marfan syndromes. Twin, family, and familial clustering studies have established a genetic component to CM1 etiology, but have failed to ascertain any specific causal gene. The difficulty ascertaining causal genes, its comorbidity with multiple different syndromes, and the complex symptomatology of its patients indicate genetic heterogeneity. Other neurodevelopmental disorders with genetic heterogeneity such as Autism Spectrum Disorder and Epileptic Encephalopathies have had success finding genes of interests by looking for de novo mutants (DNMs) from spontaneous patient trios. With this in mind, we sequenced the exomes of a cohort of 29 offspring-parent trios affected with CM1 in search of candidate causative DNMs. Using previously established methods that predict which variants in the exome are DNMs, we found 44 variants that passed multiple filtering steps for quality, likelihood of being real DNMs, and potential to be causative. Three of these variants were classified as stopgain which made them likelier to be detrimental. These three were validated and analyzed for their potential role in CM1 risk. From thousands of possible variants, we successfully obtained a shortlist of genes to further study in future studies

    Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia

    Get PDF
    Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl− channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis

    Mutations disrupting neuritogenesis genes confer risk for cerebral palsy

    Get PDF
    In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy
    corecore