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ABSTRACT OF THE THESIS

Finding and Analyzing de novo Mutations in the Exomes of Parent-Offspring Trios of

Spontaneous Chiari Malformation Type 1 Patients

by

Brian X. León-Ricardo

Masters of Arts Degree in Biological Sciences

Computational and Systems Biology

Washington University in St. Louis, 2019

Professor Christina Gurnett

Chiari Malformation Type 1 (CM1) is a neurodevelopmental disorder that occurs when 

one of the cerebellar tonsils herniates past the foramen magnum causing headaches, motor or 

sensory deficits, sleep apnea, and difficulty swallowing.  This disorder is estimated to affect 1% 

of the population but due to the need of neuroimaging for diagnosis and the presence of 

asymptomatic patients there is still uncertainty about the exact proportion of the population 

affected. CM1 often presents itself with other neurodevelopmental disorders such as 

syringomyelia, scoliosis, and known genetic syndromes such as Klippel-Feil and Marfan 

syndromes.  Twin, family, and familial clustering studies have established a genetic component 

to CM1 etiology, but have failed to ascertain any specific causal gene.  The difficulty 

ascertaining causal genes, its comorbidity with multiple different syndromes, and the complex 

symptomatology of its patients indicate genetic heterogeneity.  Other neurodevelopmental 

disorders with genetic heterogeneity such as Autism Spectrum Disorder and Epileptic 

Encephalopathies have had success finding genes of interests by looking for de novo mutants 
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(DNMs) from spontaneous patient trios. With this in mind, we sequenced the exomes of a cohort 

of 29 offspring-parent trios affected with CM1 in search of candidate causative DNMs.  Using 

previously established methods that predict which variants in the exome are DNMs, we found 44

variants that passed multiple filtering steps for quality, likelihood of being real DNMs, and 

potential to be causative.  Three of these variants were classified as stopgain which made them 

likelier to be detrimental.  These three were validated and analyzed for their potential role in 

CM1 risk.  From thousands of possible variants, we successfully obtained a shortlist of genes to 

further study in future studies. 
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Chapter 1: Chiari Malformation Type 1

1.1 Description and Symptoms
Chiari Malformation Type 1(CM1) is a developmental disorder that occurs as a result 

of structural defects where a cerebellar tonsil herniates into the spinal cord from the base of the 

skull.  This herniation can be acquired or be congenital and is highly comorbid with 

syringomyelia, a fluid-filled cyst within the spinal cord, and scoliosis, a sideways curvature of 

the spine.1–5  Normally, the cerebellar tonsils are located inside the skull in an area known as the 

posterior cranial fossa.  In CM1 patients, however, the cerebellar tonsils protrude more than 5 

mm into the spinal canal.1,3,6,7  Many individuals with CM1 are asymptomatic, but symptomatic 

patients report a multitude of complaints.6 The majority experience headaches, affecting 66% to 

87% of patients.  Other symptoms include motor or sensory deficits in extremities, 

oropharyngeal dysfunctions, sleep apnea, nausea, and ataxia.3,7 

The exact cause of CM1 has not been established but a common theory is that due to  

variation in the size of the posterior fossa it can be be too small for the cerebellum causing what 

is called cramping.6,8  Not all cases feature this cerebellar cramping which contributes to the 

theory of CM1 being multifactorial.6,8,9  Although not always predictive, it has also been 

observed that more severe herniation of the cerebellar tonsils increases the likelihood of patients 

showing or developing symptoms.10  Cerebellar tonsils position in the skull can change slightly 

during growth from childhood to young adulthood, which has been suggested as a reason for 

why some CM1 cases resolve with age.9  In cases where symptoms are severe and early onset, 

patients can be treated by decompression surgery which increases space in the skull.  CM1 

primarily diagnosed with neuroimaging (i.e. CT scans or MRI) and it’s detection is often 
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incidental. Otherwise, it is difficult to diagnose due to the non-specific and common nature of its 

symptoms and the high variance of symptoms between patients.7 

1.2 Prevalence of Chiari Malformation Type 1
Since neuroimaging is the only certain method for diagnosis, the exact prevalence of 

CM1 in the population is difficult to calculate.  The prevalence of CM1 is also higher in pediatric

versus adult patients, therefore estimates will vary based on the composition of the sampled 

population.10  Despite these challenges, multiple studies have attempted to ascertain the 

proportion of the population affected by CM1 with current estimates ranging from 0.77%6 to 

3.6%.10 The study with the largest sample size is a retroactive image analysis by Aitken et al. 

(2009), which evaluated 5,248 pediatric scans and found that 1% had CM1 on neuroimaging. 

However, this approach is biased since it only sampled children that were symptomatic or were 

scanned for a separate medical reason, and the study may then over-represent the fraction of 

children with CM1.  The Rotterdam Project, which investigated many neurological 

abnormalities, used a less biased approach that analyzed the MRI images of 2000 adult subjects 

with a mean age of 63.3 years without selecting for specific symptoms or phenotype.  This study 

found CM1 in 0.9% of the population.11  Although CM1 prevalence estimates vary, 

approximately 1 in 100 people are affected, though many of those are asymptomatic.6  CM1 is 

one of the most common neurodevelopmental disorders, and the most severe cases can be the 

source of complications and pose a near lethal threat in cases that severe and early onset.12
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1.3 Comorbidities with CM1: Syringomyelia, Scoliosis and 
Genetic Syndromes

CM1 often presents alongside other neurodevelopmental disorders, the most common 

being syringomyelia and scoliosis.  Syringomyelia occurs when cerebrospinal fluid (CSF) 

collects in the spinal cord or brain stem creating a cyst.  The observed comorbidity rates for CM1

with syringomyelia have ranged from 23%13 to 85%10.  This large range is likely due to patient 

heterogeneity, the decreased severity of CM1 with age, and incomplete patient data.  

Nevertheless, publications reporting on the surgical intervention of CM1 have established that 

many syringomyelia cases resolve along with CM1, providing evidence that both diseases occur 

from a similar structural defect.14  

Scoliosis, another neurodevelopmental disorder characterized by a curvature of the spine,

is also often associated with CM1.  The frequency of CM1 patients with comorbid scoliosis 

ranges broadly from 18% to 50% in cohorts comorbid with connective tissue disorders.15  One 

publication of individuals younger than 5 years and presenting with Scoliosis and CM1 reported 

that decompression surgery had successfully treated both even though the surgery was not 

performed to alleviate scoliosis.16  Similarly to syringomyelia, this adds to the evidence 

suggesting a relationship between the structural causes for scoliosis and CM1. 

In addition to syringomyelia and scoliosis, 20 other syndromes and disorders have been 

found to be comorbid with CM1, such as the two connective tissue disorders Marfan Syndrome 

and Klippel-Feil.17  The large number of other diseases comorbid with CM1 suggests that a given

number of the cases that are not spontaneous might be the result of multifactorial inheritance and

indicates a genetic contribution to its etiology.  Additionally, family-based and twin studies have 

been found to also suggest a genetic contribution to CM1, even though few causative genes or 

mutations have been identified.
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1.4 Evidence From Twin and Family Studies
In a recent study, Abbot et al. looked for reported CM1 cases in two healthcare providers 

and matched them to their pedigrees from the Utah Population Database.  They calculated 

relative risk (RR) which is commonly used to find evidence supporting genetic contribution to a 

given phenotype.  The RR works as a measurement of likelihood of finding an individual with 

CM1 in a cohort given the presence of an affected relative.  This is calculated by counting CM1 

cases to obtain a cohort-specific population disease rate.  In turn, this rate is used to predict the 

number of CM1 cases expected given the cohort size and compared to those observed in the form

of an unbiased ratio.18  

When looking at first- (parents and siblings), second- (aunts and grandparents) and third- 

(cousins) degree relatives, the authors calculated a RR of 4.54, 1.20 and 1.36 respectively.  The 

RR scores for first- and third-degree relatives were significantly elevated with p-values smaller 

than 0.001, indicating familial clustering of CM1.  They also theorized that the reason why 

second-degree relatives were not significantly elevated was due to reduced ascertainment in 

older generations from lack of neuroimaging.18

A case study by Nagy et al. (2016) focused on a family with five confirmed CM1 cases 

and eight additional individuals with symptoms, the highest recorded number of CM1 cases in a 

single family to date.  This family also exhibited a high incidence of a rare inherited connective 

tissue disorder, Ehlers-Danlos syndrome that affects skin and joints.  The cases of Ehlers-Danlos 

were correlated with CM1, suggesting a possible link between these disorders.19 

Finally, Speer et al. (2003) reported six cases of twins where one or both had CM1.  Of 

these, three cases were monozygotic twins with concordant CM1 (two of which also had 

syringomyelia), one was a set of dizygotic twins with concordant CM1, and the other two were 

dizygotic twins where only one twin was affected.20  Together these family studies provide more 
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support for a genetic contribution for CM1 without the need to identify a specific candidate gene 

or genes responsible for the malformation.

1.5 Genetic Association and Linkage of Chiari Type 1
Family-based studies, twin studies, and comorbidity with syndromes of known genetic 

origin support a genetic contribution to CM1, but they do not identify possible causative genes or

mutations.  To identify genes linked to CM1, Boyles et al. (2006) performed a linkage analysis 

of 23 families with 71 affected CM1 individuals and were able to find two regions on 

chromosomes 9 and 15 associated with CM1.  The chromosome 15 locus included a gene, FBN1,

that encodes an extracellular matrix (ECM) protein previously associated with the connective 

tissue disorder Marfan Syndrome, which is also associated with CM1.17,21  In another whole 

genome linkage study on CM1, Markunas et al. (2013) increased their detection power by 

stratifying their cohort of 367 individuals into patients that did or did not show signs of 

connective tissue disorders.  Using this approach they were able to pinpoint two regions on 

chromosome 8 associated with CM1.22  These regions contained the growth factors GDF6 and 

GDF3, which have previously been implicated in Klippel-Feil syndrome, another connective 

tissue disorder associated with CM1.17  Using the same dataset, but stratified based on cranial 

base morphometrics, they also found significant association between CM1 and regions on 

chromosomes 1 and 22.23  

A case-control association study for CM1 with 451 patients and 524 controls identified 

18 SNPs and 14 genes as possible candidates.  While many of the SNPs and genes did not 

overcome multiple correction testing, four SNPs within CDX1, FLT1, and ALDH1A2 were 

marginally significant.24  The same group also conducted a joint eQTL analysis using expression 
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data from the blood, cranial tissue and dura mater of 43 individuals with CM1 and identified 239 

genes with a highly significant correlated expression in both tissues.  This study identified three 

genes (IPO8, XYLT1, and PRKAR1A) as potential candidates of CM1 etiology due to their 

function in osteoblast differentiation, alterations in which could contribute to a smaller posterior 

fossa.25 Finally, two other studies independently investigating copy number variants in locus 

16p11.2 found that one of it’s three patients had CM1 along with their other neurodevelopmental

disorders and the second uncovered CM1 as one of the most common associated abnormalities 

out of a cohort of 246 individuals.26,27 

More recent studies have focused on finding rare variants with strong effects.  Two of 

these studies used exome sequencing to detect variants in CM1 patients.  The first study in 2016 

evaluated the child-parent trio exome of a boy with CM1 and Dent disease Type 2 (DD2).  By 

sequencing his exome and those of his parents, they found a de novo deletion in OCRL1, the 

gene causal for DD2, as well as a rare inherited mutation in the INPP5B protein family.28 

OCRL1 and INPP5B are paralogs that play a role in ciliogenesis, suggesting that disrupting 

ciliogenesis can lead to CM1.  Another CM1 study looked at the exomes of two parent-offspring 

trios and the exome of 65 sporadic CM1 cases.  In the two families, they found three 

heterozygous missense variants in DKK1, LRP4, and BMP1. These are part of the WNT and bone

morphometric protein (BMP) pathways functionally responsible for the normal development of 

the posterior fossa, suggesting a link between WNT and BMP signaling with CM1.  They also 

looked for genetic variants that were located on the three genes of interest in the exomes of the 

65 sporadic cases and found variants in two of them.29
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1.6 Genetic Heterogeneity in Chiari Malformation Type 1  
The association and exome studies performed so far are just beginning to shine a light on 

the genes and pathways involved in CM1 etiology.  These studies have found genes involved in 

different biological functions, along with genes that are causal to other syndromes, e.g. Marfan 

syndrome.  Nevertheless, the association, linkage, and exome studies failed to establish strong 

certainty to any of the genes and pathways they found in their data.  Chiari Malformation Type 1 

research is not unique to these challenges and similar trends have been observed by groups 

researching other neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) and 

Epileptic Encephalopathies (EE).30  The possibility of many genetic changes being able to 

produce similar disease phenotypes fits as a reason for the difficulty finding overlap between the 

genes implicated from the previously mentioned papers.  In which case predictability for 

diagnosis of the disease for genetic counseling and understanding its basic biology will continue 

to be a difficulty.  As CM1 research continues an individual approach to a collective of CM1 

cases could benefit the search for the etiology of the disease.31  In contrast to ASD and EE, CM1 

benefits from higher sensitivity when identifying patients since a herniation of the cerebellum is 

more quantitative than behavioral traits or diseases that appear intermittently.  In that way even 

though so far the genetic heterogeneity has been the major challenge, bigger studies and the 

compiling of the data of each will hold the key to understanding CM1.   
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Chapter 2: Finding   de novo   Mutants in  

Patient-Parent Exome Trios

2.1 Abstract
Chiari Malformation Type 1 (CM1) is a neurodevelopmental disorder that occurs when 

one of the cerebellar tonsils herniates past the foramen magnum causing headaches, motor or 

sensory deficits, sleep apnea, and bowel and bladder incontinence.  CM1 is classified as a 

neurodevelopmental disorder with a likely heterogeneous genetic etiology due to the complex 

symptomatology of affected patients.  Other disorders with similar complex genetic 

relationships, such as Epileptic Encephalopathy (EE) and Autism Spectrum Disorder (ASD), 

have used trio exome studies to find an enrichment of de novo mutations (DNMs) in specific 

genes and pathways associated with these disorders, suggesting specific mutations, genes, and 

pathways involved in the pathogenesis of EE and ASD.  We analyzed the exome of 29 parent-

offspring trios of early onset and severe CM1 cases and called the genetic variants for each of 

them.  All variants were annotated by finding their corresponding gene, pathogenicity and allele 

frequency data from previously published online databases. Using two different DNM prediction

algorithms, TrioDeNovo and DeNovoGear, we calculated a score to predict real DNMs from 

false positives.  The variants with the highest likelihood of being real DNMs were further 

analyzed for functional roles and any interaction with genes previously implicated as candidate.  

The top variants with high confidence of being real and  with a good potential of being causal 

were Sanger validated.
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2.2 Introduction
Our understanding of the genetics of CM1 is still in its infancy.  With only a handful of 

genetic loci and genes implicated to CM1 etiology, and even fewer direct connections to the 

biological processes, we have much to learn.  Future studies on CM1 should be shaped and 

informed by successful approaches observed in other similar neurodevelopmental diseases.  

Previous groups have gleaned important insight into the genetic basis of other 

neurodevelopmental diseases by looking for spontaneous cases of diseases and using whole 

exome sequencing (WES) of parent-offspring trios to identify potential causal de novo mutations

(DNM) in coding regions.32  This approach has successfully identified putative causative 

mutations in a number of neurodevelopmental disorders, such as Epileptic Encephalopathies 

(EE) and Autism Spectrum Disorder (ASD), regardless of the genetic heterogeneity 

characteristic of them .32–35  

The challenge of disorders with genetic heterogeneity
These two disorders are defined by a group of phenotypic traits or symptoms, and 

patients diagnosed with them can exhibit some or all of the traits.  Some of these defining traits 

or symptoms can be phenotypically very similar but caused by different genotypes.  One way in 

which this happens is when two changes in gene function result in different molecular 

consequences affecting an overall network that control a single phenotype or function.  This 

variance of ASD and EE genotypes causing similar phenotypes is the described genetic 

heterogeneity.30 As an example, four publications have found loss of function de novo variants in

different exons of the SCN2A gene of ASD patients.  This gene encodes a subunit of the sodium 

voltage-gated ion channels which play a crucial role in neuronal activity.34,36–38  Genetic 

heterogeneity poses a challenge to association and linkage studies by reducing their power of 

detection for relevant variants.  For these two methods to be successful they rely on the 

9



population being analyzed being relatively homogeneous or a method for good stratification, all 

of which are difficult to accomplish for disorders of heterogeneous backgrounds and reduces the 

number for disorders that are hard to ascertain.  To compound the problem even more, older 

methods of doing these analysis will only common variants to be causative.  These common 

variants will only explain a percentage of the sampled affected population which increases the 

difficulty even more. In the case of ASD, it’s been observed that common variants explain about 

40% of cases in Autism and more recently DNMs are being found to also play a causal role.30,32,39

All these difficulties would be part of any endeavor to find CM1 causative genes using this 

methods, since both CM1 and ASD have an estimated 1% prevalence and have shown genetic 

heterogeneity.

Two solutions for the loss statistical power when detecting causal genes in a cohort are 

increasing the number being studied to thousands or increasing the homogeneity of the cohort 

being analyzed.  Of these two options, ASD research has been successful doing both by 

increasing its cohort sizes and creating more stringent cohorts, e.g. the Simmon Simplex 

Collection.  In some cases attempting to increase specificity by removing ambiguous cases and 

creating distinct phenotypic subsets is much more difficult and impractical solution.  Unlike 

autism CM1 is ultimately defined by an empirical measurement of herniation of the cerebellar 

tonsils and although ascertainment bias still exist having less false positive cases increases the 

specificity overall.

Success finding candidate causal genes in EE and ASD trios
Epileptic encephalopathies refer to a broad group of conditions characterized by recurring

epileptic seizures along with developmental and learning disabilities.  Multiple approaches have 

been used to find the underlying genetic causes of EE, with six GWAS studies resulting in the 

identification of eight candidate loci.40 In parallel, the Epi4K consortium and the Epilepsy 
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Phenome/Genome Project performed WES analysis of a cohort of 264 unaffected parents and 

affected offspring trios and found 329 confirmed de novo variants that potentially contribute to 

EE.35 An excess of DNMs were uncovered in genetic regions intolerant to genetic changes and 

some were found in genes that had been previously associated with EE, such as STXBP1 and 

SCN1A, providing confidence in their approach.41  In contrast, a study using only ten trios of 

individuals with epilepsy of unknown etiology and unaffected parents found and confirmed 15 

DNMs in nine of the ten patients.  Variants were located in genes such as SCN1A, CDKL5 and 

EEFIA2 which were previously associated with early onset EE.42 In this study the confirmed 

DNMs were often found in patients exhibiting the earliest and most severe symptoms, suggesting

the most severe early onset cases are likelier to be caused by DNMs.

Autism Spectrum Disorder is another neurodevelopmental disorder with a complex 

genetic origin.  Like EE and CM1, there is evidence of genetic contributions to its etiology from 

twin and family studies, but more progress has been made in finding associated and causal genes 

in ASD development.  In early experiments, GWAS studies calculated the role of common 

variants in autism heritability, finding only modest associations in individual variants but 

collectively explaining 15% to 50% of ASD cases.43  Later whole exome and whole genome 

sequencing of autism patient trios led to the discovery of enrichment for de novo mutations in the

genomes of autism patients.44 As of 2019, lists of genes associated with ASD have reached 253, 

with additional rare CNVs and SNVs being reported regularly.45 This presents us with the next 

big challenge for these studies: If hundreds of genes and variants are potentially associated with 

ASD, how do you prioritize them?  Some studies have focused on aggregating the data from 

multiple projects, and finding over-representation of not just single nucleotide DNMs but of 

copy-number variants and functional enrichment from protein-protein interaction and co-
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expression networks.45 These studies used online databases of projects like ClinVar and ExAC, 

tissue type expression analysis (TSEA), and network analysis like HumanBase and the Search 

Tool for Retrieval of Interacting Genes/Proteins (STRING) to identify the biological processes 

relevant to ASD etiology.46,47  Most of the identified mutations are missense mutations likely to 

be disruptive to the gene, and they are present in pathways such as synaptic functioning, 

chromatin remodeling, WNT signaling, transcriptional regulation, interactions with FMR1 and, 

more broadly, MAPK signaling.34,45,48 

Success has also been found for exome trio projects searching for DNMs.  Sanders et al. 

(2012) used the Simon Simplex Collection (SSC) of trios to study 238 families, where exomes of

unaffected parents, affected children, and an unaffected sibling were sequenced in 200 of the 

families, found 125 DNMs in the affected probands. They focused on 13 that were nonsense or 

in splice sites, of which only one gene had a DNM in two unrelated probands.  They modeled the

probability of finding two of these mutations in brain-expressed genes by chance and found that, 

with 150,000 iterations and p = 0.008, it was significantly unlikely.36  Another successful project 

by  Al-Mubarak et al. (2017) featured a much smaller sample size with sequenced exomes of 19 

trios from Saudi Arabia.  Similar to the SSC group, these cases were all sporadic.  They found 

DNMs in 17 of the 19 trios, of which 3 were missense DNMs confirmed by Sanger sequencing 

and previously associated with ASD in the literature.49    

Increasing the likelihood of finding causal DNMs by specific cohort selection
The studies reviewed illustrate how pairing trio studies with WES can be used to find 

DNMs.  The two key parameters to the success of a WES approach are read depth and sample 

size.  Since the average human genome is expected to have 1 to 2 DNMs in coding sequences, 

finding these variants requires a high enough depth such that artifact of sequencing and variants 

calling can be overcome.50  There also need to be sufficient trios that meet diagnostic criteria in 
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order to reduce the effect of genetic heterogeneity, and when focusing on severe cases it is 

expected that missense and potential gene disruptive DNMs are most likely responsible.32,39,51

 When severe neurodevelopmental diseases appear spontaneously in a family, normal Mendelian 

inheritance is expected to be disrupted. One reason for the expectations it the lack of family 

history for the disease.  Additionally, in cases of severe and early onset neurodevelopmental 

disorders fitness is reduced, making mutations likely to be lost due to purifying selection. From 

the biological reasoning and trends observed in ASD and EE a proportion of causative alleles for 

neurodevelopmental disorders will very likely be de novo, especially so for the most severe, 

early onset cases.  
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2.3 Methods

Patient Recruitment and Sequencing
Trios were composed of Chiari Malformation Type 1 patients and their parents recruited 

from the St. Louis Children’s Hospital Neurology and Neurosurgery Clinics.  Patients were 

selected for participation based on criteria that increased the chances of finding de novo variants 

involved in the etiology of the Chiari Malformation Type 1 patients.  All the patient’s came from

families with no known or reported history of CM1, and one of two criteria. A cerebellar tonsil 

herniation greater than greater than 10 mm, considered severe, or showed symptoms from before 

the age of 10, considered early-onset.  DNA was extracted from cheek swabs from all the 

members of the trios.  To create an exome sequencing library we used the the 65-Mb Illumina 

Tru-Seq Exome enrichment kit to select the coding DNA sequences for selective amplification.  

The libraries were paired-end sequenced on an Illumina HiSeq 2000 to at minimum average of 

30x coverage per trio. 

Sequence Alignment, Quality Control and Variant calling
The reads were mapped to the human genome version GRCh37/hg19 using the Burrows-

Wheels Aligner.52  Quality control and variant calling for the mapped reads was done using the 

Genome Analysis Toolkit (GATK) version following the steps outline in it’s use manual online 

and published in the Depristo et al. 2011 article.53  All 102 trio members were processed by the 

GATK  pipeline alongside 5,829 other exomes. These exomes were made into libraries and 

sequenced with similar protocols, and processed for quality control and mapped using the same 

methods.  The reason to include the CM1 trios in a joint variant calling method of so many other 

samples was to increase the certainty and quality of the genetic variants detected.  By calculating
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population wide statistics the software does a better job to distinguish between the real biological

signals and those from library or sequencing specific artifacts.

 In brief, the aligned reads go through four major steps, base quality score recalibration 

(BQSR), haplotype calling with the gVCF method, and variant quality score recalibration 

(VQSR).   In the BQSR step the individual quality scores of each nucleotide reads are 

recalculated after obtaining an error rate specific to three sources of covariation: the reported 

quality score, the cycle of the sequencing when the base was read, and the dinucleotide context 

of each base.53  The SNP calling step is done by HaplotypeCaller which is described in their 

original protocol.  This method calculates the likelihood of each particular genotype in all the 

locations of the genome using the quality of the mapping as variables to measure certainty.54  It 

then merges all the individual samples into a single joint called project using its 

“GenotypeGVCFs” algorithm.55   This method generates De Bruijn Graphs and uses a Hidden 

Markov Model algorithm to decide the identity of the base in that position for each sample taking

into consideration the identity of the reference and all other samples in that position.55  Lastly, 

the VQSR step decides which variants are real by calculating a Gaussian Mixed Model, 

comprised of two distributions, one for real SNPs and another for calling errors.  Using an 

expectation maximization algorithm it decides which are real variant calls and which are 

probable computational artifacts. After the model is created, it calculates the likelihood of each 

called SNP belonging to the the real distribution versus the false positive one.53  Once all these 

steps were were finished, an output list of the variant genotypes for each of the samples was 

created in Variant Calling Format (VCF).  Once the full GATK pipeline was completed the 

exomes for the 34 trios of CM1 patients were extracted.  The output also contained multiple 

statistics describing the number of reads used, and measuring the quality and certainty of the 
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genotypes called in the variant positions.  The software also calculated scores measuring the bias 

between reference and alternate allele reads on the quality of their mapping, the position of the 

variant on each sequencing read and the frequency and quality of the strand sequenced 

supporting each of the alleles.  Some of these statistics were used before processing to reduce 

false positives by selecting for variants that had a minimum depth (DP) of 8 for each member of 

a trio, an allele balance (AB) between 0.20 and 0.80 for the heterozygous calls, and a genotype 

quality score higher or equal to 20.  All other calculated statistics were used in later steps to 

discern the confidence of the genotypes for the variants of interest.

Finding de novo single nucleotide variants with TrioDeNovo and DeNovoGear 
To find de novo mutations (DNMs) from the called SNVs I used three different methods. 

The first approach to find DNMs relied on simple filtering by finding a genotype on the patients 

that were incompatible with Mendelian inheritance, i.e. variants were the affected patient in the 

trio was heterozygous while the parents were homozygous.  Other than that, I also chose only 

those likely to be causal by keeping only non synonymous mutations.  The other two approaches 

were two different algorithms, called TrioDeNovo (TDN) and DeNovoGear (DNG), that 

calculate certainty of variants being DNMs given their quality statistics.56,57  The mathematical 

frameworks used to create these algorithms were tested using variants obtained from older and 

more basic software.  As the quality of variant calling increases, many of the false positives are 

remove before getting to these DNM predicting steps.  Nothing guarantees that these software 

will outperform basic filtering of variants that have been heavily processed by GATK.  If 

successful the combination of GATK and these software would reduce the computational time 

and the number of false positives.  To implement this we used the filtered variants as input for 

TDN and DNG.  
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TrioDeNovo gave each variant a de novo quality (DQ) score using the default parameters.

This score is the log odds of the reads from a potential DNM belonging to a mutation model that 

reflects a de novo event over a model that supports reads from a polymorphism:

The TDN algorithm uses the Genotype Likelihood (GL) calculated by GATK for each candidate 

DNM, the alternative allele frequencies from the data of the 1000 Genome Project, and derived a

simplification for the absolute allelic mutation rate and transition rate of each mutation model.  

The full derivation for the simplifications of the mutation rates  of each model are outside the 

scope of this thesis but can be found in the algorithm’s publication Wei et al. 2015.

DeNovoGear shares the same goal of TDN but takes a likelihood approach to obtain a 

probability for each found potential DNM.  It used the GATK outputted GL for each member of 

the trios, the calculated probabilities of transmission from the parents to the child given their read

depth information and mapping quality, and calculated the prior probabilities of observing a 

polymorphism or a DNM at any site in the genome from user provided mutation frequencies.  

We used both their default prior probability values of 1.0 x 10-3 and 1.0 x 10-8 for the 

polymorphism rate and the DNM rate respectively. Their polymorphism prior was calculated 

from fitting a beta-binomial likelihood model to the 1000 Genome Project and the mutation rate 

was calculated from validated DNMs in this same dataset.50,57

Annotation of the candidate DNMs
Along with the output from de novo variant prediction algorithms, the candidate DNMs 

were annotated with data from multiple online databases and the GATK calling software. The 

information added for each of the variants can be classified into four broader categories: 

mutation quality statistics, mutation type annotations, population frequency from large genome 
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projects, and potential pathogenicity.  All except the quality statistics from GATK were 

compiled and put together using the Annovar software package.58  Random variants were 

selected and viewed in the UCSC Genome Browser to double check their annotations.  The 

quality statistics that were extracted from the GATK using GATK’s VariantToTable function.  

The output selected included mapping quality, base quality, depth of sequencing for the position,

allele specific depth and allele balance for the heterozygous calls, and multiple different bias 

tests.  The bias test assigned each variant a significance score by comparing the difference 

between mapping quality and base calling quality of the reads used to call an alternate allele 

versus those that matched the reference genome.  An additional bias test checked if the alternate 

allele supporting reads were clustered at the 5’ end of them.  This helps correct for systematic 

sequencing errors that become more likely after a certain number of cycles in the 

pyrosequencing.

Mutation type annotations included the genes were the variants resided, the functional 

annotation, e.g. exonic or intronic, and the specific exonic functional change, e.g. synonymous, 

non-synonymous, or stop gain.  The gnomAD and ExAC databases were downloaded from 

Annovar’s repository and were searched by the software for matches to any of the variants 

selected as candidate DNMs.[gnomad and exac publications] For pathogenicity annotation 

CADD version 1.3 was used to obtain scores for all given positions.[cadd ref] The other 

pathogenicity scores were obtained from the Database of Non-synonymous Functional Prediction

(dbNSFP) which compiles scores for non-synonymous mutations from SIFT, PolyPhen2 HDIV, 

PolyPhen2 HVAR, LRT, MutationTaster, MutationAssessor, FATHMM, MetaSVM, MetaLR, 

VEST, CADD, GERP++, DANN, fitCons, PhyloP and SiPhy.59
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 Merging of the full dataset
The GATK, DNG, TDN, and Annovar output were merged using a custom made 

algorithm coded in the Python3.5 language.  Although tools like Bedtools are well established 

and can perform the merging of multiple genomic regions in short periods of time, the 

streamlining of these steps is crucial for a manageable process.  A custom script allowed to 

correctly manage  multiple alleles in the same location from different trios, account for variants 

that did not have output from some of the annotations, and perform verification that each unique 

trio and variant position pair was correctly kept.  The python output generates a dataframe that is 

compliant with the R language’s data reading functions and ready to be visualized in any data 

array or calculation sheet processor regardless of operating system. All the software code and 

steps are available on my online repository1.

Dataset filtering in R and curation with online databases
To filter and generate a final list of candidate DNMs of interest, we used the 

programming language R version 3.4.4 for statistical analysis and RStudio version 1.2 for 

visualization.  Other than the base functions included with R we used the svglite, ggforce, 

ggplot2, ggpubr, and wesanderson libraries to complement figure generation and the reshape2, 

limma, tidiverse, export, mclust, and mixtools for additional statistical tools.  The annotated 

source code used for all the processing is on my repository1 .  The filters created with the the 

code classified each candidate into certain groups. The groups were those that passed or failed 

the VQSR, those that were processed by TDN or DNG, the subset the previous group with high 

confidence scores for each algorithm, those that passed the manual filtering schema, and 

annotation groups by functional role and exonic effect for those that fell in gene exons.  For the 

group of high certainty sets, the cutoff was selected by finding the lowest value before the 

highest scoring population group within the distribution of scores, i.e. the last local minima 
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before the peak for the highest score in the distribution density plots.  The resulting variants of 

high quality and high confidence were then sorted by trio and for each trio we searched for 

variants concordant between algorithms, high pathogenicity prediction scores or with a non-

synonymous functional annotation.  Those likely pathogenic DNMs were individually processed 

by searching in the HumanBase and UCSC genome browser databases.  The search focused on 

finding significance in tissue specific expression, protein-protein, co-expression, and theoritical  

interactions, membership to groups of know molecular function, and any phenotypic 

associations.
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2.4 Results

Cohort phenotype descriptions and total number of variants
Out of the 34 parent-offspring exomes of CM1 patients collected only 30 fit the criteria 

of having no family history and one or both severity indicators.  The severity indicators chosen 

were an age of diagnosis younger than 10 to classify as early onset and herniation of at least 

twice the diagnostic cutoff of 5mm for severe herniation.  The 30 CM1 patients had an mean age 

of 5.9 years and a mean herniation of 14 mm.  From the cohort, 20 (66.7%) of them were severe 

enough to require surgical intervention, 15 (50%) had a spinal syrinx, and 4 (13%) also had 

scoliosis.  We had symptom incidence information for 26 of the 30 CM1 patients, of which  20 

(54%) were affected with headaches and 8 (31%) had some degree of difficulty swallowing.  The

data can be found byin Table 2.1. 

After joint calling the exomes from the 30 trios, there were over 200,000 variant sites. 

This was reduced to 879 total with a mean of 30 .3 variants per trio after filtering for quality and 

keeping variants inconsistent with the parental genotypes, also known as mendelian violations.  

We called these variants candidate DNMs since anywhere from 0 to 3 of them are expected to be

real and were the input for both de novo mutation predicting software.44,50  The count of each 

candidate DNM per trio is visualized in Figure 2.1 by the purple bars.
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Table 2.1 Symptoms and comorbidity of the CM1 cohort aAge of diagnosis, the ones with asterisks are
estimated based on time of appointment. Green values are below our threshold for early onset of younger 
than 10 b Millimeter of cerebellar tonsil herniation. Green pass our threshold of twice the 5 mm cutoff c 1 
for  presence of a syrinx, 0 for absence. d 1 for presence of scoliosis, 0 for absence. e 1 for cases severe 
enough to require surgery, 0 for no surgery. f 1 for reported headaches, 0 for not reported g 1 for reported 
problems swallowing or gagging, 0 for not reported.

Family ID Age a Herniationb Syrinxc Scoliosisd Surgeriese Headachef Swallowingg

1008 14 28 0 0 1 1 0

1013 15 12 1 0 1 1 0

1040 8 22 0 0 1 1 1

1076 3 9 1 0 0 0 0

1091 4 10 1 0 0 0 0

1095 13 25 1 0 1 1 1

1096 14 11 1 0 1 1 0

1098 3 9 1 0 1 0 0

1112 3 23 0 0 1 1 1

1113 15 10 1 0 1 1 0

1132 4 9 0 0 0 0 0

1136 7 17 1 0 1 1 0

1142 < 9* 20 1 0 1 — —

1143 1.1 6 0 0 0 0 0

1150 13 16 1 0 1 1 1

1155 1.9 7 0 0 0 0 0

1177 3 — 1 1 0 0 0

1180 8 13 1 1 1 0 0

1199 < 10* — 1 0 1 — —

1203 1 12 0 0 0 — —

1207 2 14 0 0 0 0 1

1210 4 17 0 0 0 — —

1238 4 15 1 1 1 0 0

1261 2 9 0 0 1 0 1

1266 2 14 0 0 1 1 1

1272 2 18 0 0 1 1 0

1280 6 7 1 1 1 0 0

1309 7 13 0 0 0 1 0

1332 2 16 0 0 1 1 0

1338 2 10 0 0 1 1 1

22



23

N
um

be
r 

of
 V

ar
ia

nt
s

Count of all potential DNMs and filtered DNMs per trio 

2
4 4 3

7
5 4

0

6
2

0 1 1
5

2 3 2 2
5 5

1

7

2 1
3 4

1 0 1

83

60

46
45 40

36
34

33

32

31
29 28 28

27
26 25 25 25

25 24
24

24

23
22

22
19

18

13 12

0

25

50

75

1098
1112

1203
1091

1180
1095

1238
1008

1338
1013

1177
1142

1210
1136

1272
1143

1150
1207

1309
1076

1261
1280

1040
1132

1266
1113

1199
1155

1332

Trio IDs

Filtering Level Unfiltered Filtered

Figure 2.1 Bar plot of candidate and high quality variants per Trio
The purple bars indicate the total number of called variants in the offspring that was incompatible with the parental genotypes. The 
total count is displayed on top of each. The orange bars inside the purple bars are the subset after filtering for variants with good 
quality, and above the threshold of 0.80 for DNG scores and 11.5 for TDN scores.



A threshold of 11.5 was selected for the high certainty TrioDeNovo values
As established in the methods, TrioDeNovo’s calculates a statistic for certainty of a DNM

being a true positive and calls it the DQ score.  These DQ scores are the log of the likelihood of 

the variant being a DNM over the likelihood of the null, where the variant is an artifact.  Since 

the scores have no upper limit, the decision of what the cutoff to separate high likelihood 

candidate DNMs from low was obtained by looking at the distribution of all scores.  From the 

879 candidate DNMs the TrioDeNovo algorithm calculated DQ scores for 683 (73%), and 

dismissed the rest because of low confidence or nonsensical result.  The mean of the scores is 

7.21, but the cutoff used was that of 11.5.  The value was decided after observing Figure 2.2 and

selecting the peak density with the highest DQ value.  From the plotted density of the 

distribution of scores we can see two clear peaks, one around the DQ score of 5.9 and the second

around the DQ score of 12.5.  We expect the real DNMs to be those in the second group with DQ

scores distributed around the second peak.  For this reasons we selected a cutoff of 11.5, dashed 

orange line in the figure, and classified anything above it as a member of the high quality 

TrioDeNovo set, (hqTDN).  The hqTDN set has 39 variants (6% of the total) from 20 of the 29 

trios.   
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Figure 2.2 Density plot of TrioDeNovo’s DQ Scores. Distribution of the Denovo Quality scores from 
TrioDeNovo for 683 candidate DNMs.  The solid blue line is at the mean value of 7.21 and the dashed 
orange line is at the selected cutoff of 11.5. 



A threshold of 0.75 was selected as the high certainty DeNovoGear values
DNG calculated a posterior probability for the candidates DNMs that were provided as 

input.  Of the 879 input variants it generated a score for 482 variants (55% of total) who met the 

software’s minimum quality thresholds and did not generate a nonsense result.  Since these are 

posterior probability (PP) values they will range from 0 to 1 and I refer to them as the DNG 

scores.  The resulting DNG scores had a mean of 0.414 and when these scores are plotted it 

shows a bimodal distribution (Figure 2.3).  The first group around the score value of 0.046 are 

the predicted false positives and the second group around the score value of 0.98 are the 

candidate DNMs predicted to be true positives.  Instead of using a the mean value as a cutoff we 

decided to use the score value of 0.75 as the threshold, dashed orange line in the figure.  This 

value in the distribution density plots is approximately where the density starts to increase for the

second peak.  Of the 879 candidate DNMs, 85 (9.7%) variants have a score above the threshold 

and are part of the high quality DeNovoGear set (hqDNG).  
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Figure 2.3 Density plot of DNG’s Posterior Probabilities. Distribution of the de novo posterior 
probabilities that DNG calculated for 482 candidate DNMs.  The solid blue line is at the mean value of 0.414 
and the dashed orange line is at the selected cutoff of 0.75. 



Depth of sequencing is significantly different between variants analyzed by the algorithms 
and those that were not

We compared the overlap of variants that TDN and DNG were able to process as a 

heuristic way to test how flexible these algorithms are with their input.  Unlike the data they 

were created and tested with, our very large joint calling method involves multiple computations 

and recalculations of parameters that they will use to score each variant.  Variables related to the 

format of the input can easily be changed or manipulated through programming, but the 

underlying distribution of quality scores, which reads are trusted or discarded, and what 

genotype  to decide in ambiguous cases are all calculations that cannot be easily reverted once 

processed and ready to analyze.  We adjusted TDN’s minimum score to report from 5.00 to 0.00 

and the minimum depth per member of trio from 5 to 8.  For DNG we reduced the minimum 

depth per individual from 10 to 8.  In Figure 2.4 we see that from the 879 candidate DNM 

variants, DNG and TDN  respectively calculated scores for 482 (53%) and  683 (79%) of the 

total.  The overlap between them was 479 (54%) variants intersected and all DNG having no 

unique variants processed makes the union 686 (79%) all together.  
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The density plot of variant depth in Figure 2.5 A is both the called and skipped sets, with

193 (21% of total) skipped and the 689 processed by the algorithms.  It show that the majority of 

the density for both lies under 50 reads and it has noticeable skew to the left indicating possible 

outliers.  The processed variants have a mean depth of 29.3 with a standard deviation (sd) of 31.8

and the skipped variants a mean of 17.8 and an sd of 16.1.  The evidence of outliers is clear when

comparing the top 11 variants whose depths range from 207 to 554 reads and make up less than 

5% of the total of number of variants.  The violin plots in Figure 2.5B better illustrate the effect 

the outliers have on the distribution and the need to remove them so that any statistical 

assessment comparing the two groups is accurate to the real population.  This sort of distribution 

and outliers are not unexpected since read depth data has been previously described as a mixture 

model of a both a Poisson and a Negative Binomial distribution with over-dispersion.  This 

makes the use of standard statistical outlier exclusion methods inappropriate for this data set 

since they expect a normal distribution and if used it would likely remove real variants.  

For the reasons discussed, I removed values higher than the mean read depth plus it’s 

square root multiplied by 5 which was a method proposed in a 2015 review of quality control 

and artifact finding in trio exomes.60  With a mean depth of 29.3 and 17.8 in the called and 

skipped groups respectively, the calculated cutoffs are of 56.37 and 43.11.  After removal this 

leaves us with 91.7% of called and 94.4% of skipped variants.  Both with and without the 

removed data points the difference in depth between the groups is significant with a p-value 

below 2.2x10-6 when calculated using Mann-Whitney U statistical test.  This test was selected 

over others for it’s robustness with data that is not normally distributed.  This statistically 

significant difference between the depth of called and skipped variants is expected.  Nevertheless

there is concern was concern that the DNM software isn’t correctly compensating for it.
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Figure 2.7 Boxplot comparing the distribution of depth between confidence sets The group of the left 
is the high confidence variants and on low confidence on the right. Each group is divided into each 
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The DNG algorithm generated a larger group of high confidence variants 
The real value of these programs will depend on their ability to reduce groups of 

hundreds of candidates to a group of small size with high confidence.  After applying the 

minimum quality cutoffs of 0.75  and 11.5 to the group of candidate DNMs, the number of total 

candidate variants decreased from 482 to 85 and from 683 to 39 for TDN and DNG respectively. 

These smaller groups were considered as candidate DNMs of high and low confidence.  Figure 

2.6 shows the overlap for the variants that TDN and DNG processed and considered as high 

confidence variants.  Because the high quality variants from the TDN algorithm were a subset of 

those from DNG, I chose to use the DNG scores as the primary predictive score.  With this more 

manageable size of high confidence variants, I tested for multiple parameters for significant 

differences using the Pairwise Wilcoxon Rank Sum Test with the Benjamini-Hochberg 

Procedures to correct for multiple comparisons.  Of the metrics the most significant differences 

was comparing between groups sorted by the role of the members of the trios (child, mother and 

father groups) and those variants that pass the DNG score threshold for confidence (high and low

groups) for a total of six groups.  The depth values were transformed by applying the square root 

to each depth value which helped to better illustrate the overdispersed distribution for the six 

groups.  

Figure 2.7 is the resulting boxplot of the square root of depth in the variant positions 

between the six groups.  The high and low confidence groups have significantly different 

sequencing depth value with a p-value < 2x10-16.  When the groups are analyzed without dividing

for high or low confidence and looking between the familial roles, the parents don’t have a 

significant difference in depth (p-value = 0.35) but there is a significant difference between the 

depth of the children in the cohort and the parental members. Those comparison have a  p-value 

< 2x10-16 and  p-value = 4.9x10-16 for the child-mother and child-father pairs.  The significant 
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differences in sequencing depth between high and low certainty groups, along with the 

significant difference between variants processed and skipped, indicate just how important 

sequencing depth is for the calculation of scores for both algorithms.  It also indicates a bias 

where depth artificially increases the confidence scores calculated by the DNM predicting 

algorithms.  A potential fix would be to scale or normalize scores based on total depth of the trio 

to increase true DNMs prediction.  The best way to successfully normalize for depth would be by

comparing and modeling the depth of groups of variants that are pass or fail sequencing 

validation.  Unfortunately this would require a lot of sequence validation and is outside of the 

scope of this project. 

Depth and Quality Scores were not significantly different between the members of each 

trio; but they did significantly differ between the candidate DNMs in the intersect of both 

algorithms and those from the union set which can be seen represented in Figure 2.6. This could 

mean TDN is less likely to assign high scores based on depth.  Although as a counter observation

to this, the threshold chosen to differentiate between the two sets is an ad hoc value decided from

visualizing their distributions and selecting for a high scoring subset. It might just be there is a 

better method to decide a cutoff for TDN.  Ultimately it may result that most of the high 

confidence variants unique to DNG are artifacts of one type or another, but from Sanger 

validation, we know that TDN missed true stop-gain variant in the CRIM1 gene which is in the 

set of variants unique to TDN.
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The functional annotation for the complete and high confidence DNM candidate sets were 
consistent with expectations

Looking at the functional annotation of each variant is an effective way to decide 

likelihood of pathogenicity and add context to the potential molecular changes . (Figure 2.8A)  

For the overall population of variants the majority are annotated as intronic sequences, which is a

probably caused by lower quality score at the boundaries of exons selected for during library 

preparation.  This is further supported when the certainty cutoff is applied and a large number of 

the candidate DNMs that fall on intronic regions are eliminated.(Figure 2.8B)   It is to be 

expected that when selecting for variants that are inconsistent with parental genotype you will 

have a population biased to contain real de novo events and artifacts caused by low sequence 

quality at the extreme of sequencing reads.  From the exonic candidate DNMs the distribution 

between synonymous and non synonymous variants doesn’t change much between the groups, 

(Figure 2.8C & D) likely because the population of variants in exonic regions fall in more 

reliable regions in between the probes during exon enrichment of the sequencing library.

The high quality variants feature three validated stop-gain variants
After filtering for those variants with a high confidence score, the other annotation fields 

were used to remove variants that might be real DNMs but would be unlike to be causative.  The 

first criteria was find which of these variants were previously detected by the ExAC and Gnomad

projects.  If they were found, anything with a frequency in any of the populations higher than 

0.001 was removed, which left us with 44 variants with high confidence score and either rare or 

not found by population sequencing studies.  As a way to compare how effective this was to a 

manual approach we compared the number of variants we would have selected if we had selected

for variants from every GATK called SNV with two criteria: nonsynonymous annotation which
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Figure 2.9 Venn diagram of non-synonymous mutation overlap between selecting methods TDN stand 
for TrioDeNov, DNG is DeNovoGear and manual is the set of nonsynonymous variants that don’t appear in 
databases.

Figure 2.10 Graph from string analysis. String analysis result from the 44 variants. 
Known interactions: cyan lines for curated databases and for experimentally determined interactions
Other methods: yellow lines are connected from textmining publications, the black lines are co-expression, and 
the pale blue line is protein homology. Some genes are not in the list of 44 variants but were added by STRING 
to display connections with intermediaries 
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Table 2.2 Candidate de novo Mutants
(a)chrom and (b)pos are the chromosome and position for each variants
(c)trio is the ID for the family
(d)change is the mutation with the reference and then the variant
(e) functional and (f)exonic change are the variant type annotation
(g)gene is the gene name
(h)TDN:DQ is the de novo quality score assigned by TrioDeNovo
(I)DNG is the posterior probability assigned by DeNovoGear



 are the likeliest pathogenic, no presence in public databases and allele not present in the parents’

genotypes. Figure 2.9 shows that we would not have obtained variants unique from those using 

DNM predictive algorithms, but we did obtain a much smaller set with 16 nonsynonymous in 

common with the manual method’s group of 81. We also took into scores computed to predict 

pathogenicity by CADD, Polyphen, Fathmm, and Sift. Out of 16 non synonymous mutations that

Polyphen evaluated, it assigned 7 as possibly or probably damaging.  Sift scored  9 out the 16 

nonsynonnymous and the only integenic variant as damaging. Fathmm assigned scores as 

damaging for 10 of 16 nonsynonymous, 3 of 3 stopgain and the 1 of 1 intergenic variants.  Of all 

the variants, 3 of the 3 stopgain variants have been sequenced and confirmed so far. 

We searched for interactions in the STRING database (Figure 2.10)  and  3 networks 

with more than 3 nodes were found . The first and largest including genes ABCF3, CD5L, 

ABCG5, MTTP, DAPP1, PLCG1, DAG1 and PDGFRL with an assigned PPI enrichment p-value 

of 3.07x10-9.  The 6 network gene with CHD8, BPTF, NIPAL2, NFYC, NFYA and NFYB has a 

PPI enrichment p-value of 1.31x10-7. These score measure the significance of finding these 

interactions in comparison to the size and number of proteins chosen at random. With a false 

discovery rate of 0.044 the CHD8 and BPTF in the second network have the brain development 

biological process descriptor.   
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Table 2.3 Pathogenic Annotation of the high confidence candidate DNMs
(a)chrom and (b)pos are the chromosome and position for each variants
(c)trio is the ID for the family
(d)change is the mutation with the reference and then the variant
(e) Is the assigned phred adjusted CADD score, values higher than 5 can be pathogenic for non synonymous 
and10 for others
(f) Presence of absence in the clinvar database, 1 for yes, 0 for no
(g) Polyphen score and (h) the prediction of its effect. B for benign, P for probably pathogenic and D for likely 
damaging
(i) Fathmm score and (j) the prediction of its effect. D for damaging and T for tolerated
(k) Sift score and (l) the prediction of its effect. D for damaging and T for tolerated
 



2.5 Discussion

Gene Networks can play a crucial role in understanding the genetics of lesser studied 
disorders

As the scientific community keeps increasing the accuracy of their predictive tools by 

creating more advanced methods to analyze and integrate previously published data, research 

groups interested in other disorders and questions get to use those tools and knowledge to their 

benefit.  CM1 research features a modest number of previous experiments focusing on 

understanding the genetic contribution to its cause, but this makes it a prime candidate to reap 

the benefits from the research of other neurodevelopmental disorders.  This thesis aimed to 

expand our understanding of CM1 analyzing the trios exome of severe or early onset 

spontaneous cases of CM1.  The golden standard for success for this experimental design is 

finding highly deleterious mutations in the same gene that with further functional analysis are 

proved to have a strong enough effect to be at the least partially causative.  Although that is 

undeniably a good scenario, with a group of 29 trios this is highly unlikely to happen.  We did 

achieve to narrow down from over 800 potential variants to less than 60 variants with positive 

annotations and quality metrics of being potentially related to CM1 etymology.  In comparison 

with current large studies that have thousands of exomes in their analysis, our project has just 

under 30 and still detected 3 stopgain mutations that were validated.  These variants have to be 

further analyzed with experiments beyond the scope of this thesis, but the annotation and data 

from predictive algorithms from methods like the network analysis in HumanBase and STRING 

helped to narrow down which of these variants would be of a higher likelihood to be important 

for understanding CM1.
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DeNovoGear gets more high-quality results, TrioDeNovo can processes more variants and 

both need to be supplemented with other statistics to increase certainty

Both algorithms performed comparably even though their mathematical frameworks used

different formulas and assumptions to generated a predictive score.  TrioDeNovo required the 

least amount of preparation, less user provided inference of mutation rates, and no need to adjust 

parameters.  It also didn’t provide an user friendly method to change or adjust those internal 

parameters and assumptions.  Nevertheless, it narrowed down to 39 variants assigned with high 

confidence of being real DNMs.  DeNovoGear required more attention and input from the user, 

but with suitable enough default parameters and fast running speeds, it offered greater control. 

Overall this resulted in TDN making it nearly impossible to adjust to compensate when false 

positives were missed or to understand what was the metric that caused the true positive to be 

classified as a false positive.  In contrast, the ability to adjust all the filtering steps and initial 

statistical values for the DNG software allowed for excellent calibration which could take into 

account previously confirmed DNM.  TDN and DNG demonstrated a significant bias towards 

high depth of sequencing. This bias is not entirely unexpected since both incorporate Phred 

likelihood scores obtained from variant calling software, like GATK and Bedtools, to perform 

their calculations and therefore rely on these calling algorithms to normalize for read depth 

within and between trios.  This feature opens the possibility of newer methods of mutation 

calling biasing and inflating signals that influence the underlying mathematical assumptions. 

Their primary benefit over blindly looking for variants that are missing in the parental 

variant sites is using the known parental relationship between the three sets of variants in a trio.  

A possible reason for the inflation or bias in prediction of these two software could be that they 

were designed and tested using two types of data.  The first type of data used is in silico 
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generated variants from modeling an artificial trio, this gives complete certainty of know true 

positive DNMs and control over different statistics of the exomes and variants such as 

sequencing depth and quality.  The second sets come from in vivo samples from large projects.  

These sets include population studies such as the 1000 genome projects or datasets of specific 

phenotypes like the Simon Simplex Collection for ASD.  In contrast to the reality of smaller 

research project, an average dataset of human sequencing is likely to lack uniformity in depth 

and is often doesn’t feature sequencing depth much higher than 30x.  The sequencing of patients 

in a hospital setting will happen through a larger span of time and often features sequencing 

using different versions on protocols that have been updated as time passes.  All this variability 

within a cohort’s sample preparation, sequencing platform used, individual idiosyncrasies 

between the people creating the libraries and many other variables become a sources of error that

is often not taken into account during the benchmark tests in the published with these sets.

These considerations make it crucial as the end-user and researcher using these methods 

to be aware of the underlying biases and ready to detect them.  It is a given fact that increasing 

sequencing depth can benefit the finding and identification of novel mutations and that large 

numbers of trios in a cohort will increases the power of the study. In contrast, these same 

features create a need to for the filtering and normalization of the data.  Since normalization isn’t

always possible or viable, we use the other quality statistic generated by the variant calling step 

of the experiments and took it a step further by combining and filtering based on their 

relationships.

We found three genes with stopgain mutations  the rationale for their role on CM1 etyology
With a cohort of 29 trios, we did not find recurrent genes but we have already validated 3

of the 3 stop-gain variants (CHD8, CRIM1 and ARL8A)  Further validation will be done for the 

other high CADD scores in the list of 44 variants.  CRIM1 has previously been associated with 
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ASD, which  hints that we are heading in the right direction.  Ultimately diseases with high 

heterogeneity are expected to be difficult to associate to a small group of genes, but the presence 

of 3 stopgain variants in different trios on a small trio cohort indicates the strength of selecting 

good candidate trios based on the medical history and severity of the phenotype being studied.  

Adding three stop gain variants which are validated in severe cases is already a step forward in 

the understanding of CM1’s biology.  The network analysis of these variants included the CHD8 

and CHTF18 interacting in the result of the STRING analysis, both being members of the SH2 

domain of protein families.  All these connections and genes are themselves nodes in larger 

networks that we still don’t have a clear picture of and by adding genes, keeping true positives, 

and removing false positive we increase the power and have a better picture of which genetic 

interactions are disrupted in CM1.  There are also many other experiments happening with 

datasets of CM1 patients of which very few have the parental genetic information and some are 

not spontaneous like the trio cohort selected for this project.  This group of genes can now 

become part of the analysis being done with those exomes and increase the odds of elucidating 

pathways and gene networks to focus on. 
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Conclusion

Annotating and identifying de novo mutations is quickly becoming a popular a reliable 

source for the discovery of genetic risk of neurodevelopmental disorders.  Most of these studies 

benefit from previous studies that have found genes of interest using other methods.  This project

adds to the body of work that previous CM1 research have done to understand its etiology.  From

29 trios with thousands of genetic variants, we found and confirmed three stopgain mutations. 

We also identified 22 variants in genes that had not been previously identified associated or 

linked with CM1.  From the multiple research projects finding genes related to the origin of 

neurodevelopmental disorders, Autism spectrum disorder research has found the most success in 

numbers.  They have benefited from finding co-ocurring genes of interests from multiple 

experimental sources, and it is my hope that the list of genes obtained from this thesis will aid 

future research projects by increasing the certainty of genes of interests that may play a role in 

CM1 etyology.

From a technical perspective, using GATK’s joint calling method with TrioDeNovo and 

DeNovoGear led to finding some critical biases that can be corrected for in future projects. 

Depth of sequencing significantly influenced the predictive scores calculated for DNMs, along 

with the difference in the sequencing depth of the members of the trio.  Taking these metrics into

consideration will be crucial for the removal of outliers in projects using algorithms designed for 

single trios on joint called trios. Additionally, a method to scale the confidence scores by depth 

can increase the success in future experiments when discerning between false and true positives. 

The three stop gain mutations in the list of potential true positive DNMs that was created through

this analysis have already been confirmed, more of these candidates are to be validated in future 
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experiments.  Having a validated set of true and false positives will be beneficial for the 

detection of other features and metrics of the candidate DNMs that successfully distinguish 

between both groups.  Additionally, the true DNMs will increase the confidence of the variants 

and genes of interest found in other exomes of CM1 patients from the Gurnett’s lab internal 

database.
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