65,418 research outputs found

    A Tractable State-Space Model for Symmetric Positive-Definite Matrices

    Get PDF
    Bayesian analysis of state-space models includes computing the posterior distribution of the system's parameters as well as filtering, smoothing, and predicting the system's latent states. When the latent states wander around Rn\mathbb{R}^n there are several well-known modeling components and computational tools that may be profitably combined to achieve these tasks. However, there are scenarios, like tracking an object in a video or tracking a covariance matrix of financial assets returns, when the latent states are restricted to a curve within Rn\mathbb{R}^n and these models and tools do not immediately apply. Within this constrained setting, most work has focused on filtering and less attention has been paid to the other aspects of Bayesian state-space inference, which tend to be more challenging. To that end, we present a state-space model whose latent states take values on the manifold of symmetric positive-definite matrices and for which one may easily compute the posterior distribution of the latent states and the system's parameters, in addition to filtered distributions and one-step ahead predictions. Deploying the model within the context of finance, we show how one can use realized covariance matrices as data to predict latent time-varying covariance matrices. This approach out-performs factor stochastic volatility.Comment: 22 pages: 16 pages main manuscript, 4 pages appendix, 2 pages reference

    Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture

    Get PDF
    This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The algorithm is derived via a low-variance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering with convergence guarantees similar to those of the k-means algorithm. Empirical results from a synthetic test with moving Gaussian clusters and a test with real ADS-B aircraft trajectory data demonstrate that the algorithm requires orders of magnitude less computational time than contemporary probabilistic and hard clustering algorithms, while providing higher accuracy on the examined datasets.Comment: This paper is from NIPS 2013. Please use the following BibTeX citation: @inproceedings{Campbell13_NIPS, Author = {Trevor Campbell and Miao Liu and Brian Kulis and Jonathan P. How and Lawrence Carin}, Title = {Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process}, Booktitle = {Advances in Neural Information Processing Systems (NIPS)}, Year = {2013}

    Bayesian forecasting and scalable multivariate volatility analysis using simultaneous graphical dynamic models

    Full text link
    The recently introduced class of simultaneous graphical dynamic linear models (SGDLMs) defines an ability to scale on-line Bayesian analysis and forecasting to higher-dimensional time series. This paper advances the methodology of SGDLMs, developing and embedding a novel, adaptive method of simultaneous predictor selection in forward filtering for on-line learning and forecasting. The advances include developments in Bayesian computation for scalability, and a case study in exploring the resulting potential for improved short-term forecasting of large-scale volatility matrices. A case study concerns financial forecasting and portfolio optimization with a 400-dimensional series of daily stock prices. Analysis shows that the SGDLM forecasts volatilities and co-volatilities well, making it ideally suited to contributing to quantitative investment strategies to improve portfolio returns. We also identify performance metrics linked to the sequential Bayesian filtering analysis that turn out to define a leading indicator of increased financial market stresses, comparable to but leading the standard St. Louis Fed Financial Stress Index (STLFSI) measure. Parallel computation using GPU implementations substantially advance the ability to fit and use these models.Comment: 28 pages, 9 figures, 7 table

    A Spatio-Temporal Point Process Model for Ambulance Demand

    Full text link
    Ambulance demand estimation at fine time and location scales is critical for fleet management and dynamic deployment. We are motivated by the problem of estimating the spatial distribution of ambulance demand in Toronto, Canada, as it changes over discrete 2-hour intervals. This large-scale dataset is sparse at the desired temporal resolutions and exhibits location-specific serial dependence, daily and weekly seasonality. We address these challenges by introducing a novel characterization of time-varying Gaussian mixture models. We fix the mixture component distributions across all time periods to overcome data sparsity and accurately describe Toronto's spatial structure, while representing the complex spatio-temporal dynamics through time-varying mixture weights. We constrain the mixture weights to capture weekly seasonality, and apply a conditionally autoregressive prior on the mixture weights of each component to represent location-specific short-term serial dependence and daily seasonality. While estimation may be performed using a fixed number of mixture components, we also extend to estimate the number of components using birth-and-death Markov chain Monte Carlo. The proposed model is shown to give higher statistical predictive accuracy and to reduce the error in predicting EMS operational performance by as much as two-thirds compared to a typical industry practice

    Predictive information in Gaussian processes with application to music analysis

    Get PDF
    This is the author's accepted manuscript of this article. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-40020-9.Lecture Notes in Computer ScienceLecture Notes in Computer ScienceWe describe an information-theoretic approach to the analysis of sequential data, which emphasises the predictive aspects of perception, and the dynamic process of forming and modifying expectations about an unfolding stream of data, characterising these using a set of process information measures. After reviewing the theoretical foundations and the definition of the predictive information rate, we describe how this can be computed for Gaussian processes, including how the approach can be adpated to non-stationary processes, using an online Bayesian spectral estimation method to compute the Bayesian surprise. We finish with a sample analysis of a recording of Steve Reich’s Drummin

    Bayesian Nonstationary Spatial Modeling for Very Large Datasets

    Full text link
    With the proliferation of modern high-resolution measuring instruments mounted on satellites, planes, ground-based vehicles and monitoring stations, a need has arisen for statistical methods suitable for the analysis of large spatial datasets observed on large spatial domains. Statistical analyses of such datasets provide two main challenges: First, traditional spatial-statistical techniques are often unable to handle large numbers of observations in a computationally feasible way. Second, for large and heterogeneous spatial domains, it is often not appropriate to assume that a process of interest is stationary over the entire domain. We address the first challenge by using a model combining a low-rank component, which allows for flexible modeling of medium-to-long-range dependence via a set of spatial basis functions, with a tapered remainder component, which allows for modeling of local dependence using a compactly supported covariance function. Addressing the second challenge, we propose two extensions to this model that result in increased flexibility: First, the model is parameterized based on a nonstationary Matern covariance, where the parameters vary smoothly across space. Second, in our fully Bayesian model, all components and parameters are considered random, including the number, locations, and shapes of the basis functions used in the low-rank component. Using simulated data and a real-world dataset of high-resolution soil measurements, we show that both extensions can result in substantial improvements over the current state-of-the-art.Comment: 16 pages, 2 color figure
    • …
    corecore