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Predictive information in Gaussian processes
with application to music analysis

Samer Abdallah1 and Mark Plumbley2

1 University College London
2 Queen Mary University of London

Abstract. We describe an information-theoretic approach to the analysis
of sequential data, which emphasises the predictive aspects of perception,
and the dynamic process of forming and modifying expectations about
an unfolding stream of data, characterising these using a set of process
information measures. After reviewing the theoretical foundations and
the definition of the predictive information rate, we describe how this can
be computed for Gaussian processes, including how the approach can be
adpated to non-stationary processes, using an online Bayesian spectral
estimation method to compute the Bayesian surprise. We finish with a
sample analysis of a recording of Steve Reich’s Drumming.

1 Introduction

The concept of predictive information in a random process has developed over a
number of years, with many contributions to be found in the physics and machine
learning literature. For example, the excess entropy [1] is the mutual information
between the semi-infinite past and future of a random process. Addressing the
observation that some processes with long-range dependencies have infinite excess
entropy [2], Bialek et al [3] introduced the predictive information as the mutual
information between a finite segment of a process and the infinite future following
it, and studied its behaviour, especially in relation to learning in statistical models.
In previous work [4], we defined the predictive information rate (PIR) of a random
process as the average information in one observation about future observations
yet to be made given the observations made so far; thus, it quantifies the new
information in observations made sequentially. The PIR captures a dimension of
temporal structure that is not accounted for by previously proposed measures. In
this paper, we show how various process information measures including the PIR
are defined for discrete-time Gaussian processes, and apply this to the analysis
of musical audio using an adaptive nonstationary Gaussian process model.

2 Information measures for stationary random processes

For an infinite stationary discrete-time random process (Xt)t∈Z, the predictive
information rate (PIR), as defined in [4], is global measure of temporal structure
that characterises the process, or statistical ensemble, as a whole, rather than
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Fig. 1. I-diagram representation of several information measures for stationary random
processes. Each circle or oval represents one or more random variables. The circle
represents the ‘present’. Its total area is H(X0) = ρX + rX + bX , where ρX is the multi-
information rate, rX is the erasure entropy rate, and bX is the predictive information
rate. The entropy rate is hX = rX + bX . The excess entropy is EX = ρX + σX .

for particular realisations of the process, in the same way that the entropy rate
characterises its overall randomness. In previous work [5] we examined several
process information measures and their interrelationships, as well as generalisation
of these for arbitrary countable sets of random variables. Following the conventions

established there, we let
←
Xt = (. . . , Xt−2, Xt−1) denote the variables before time

t, and
→
Xt = (Xt+1, Xt+2, . . .) denote those after t. The predictive information

rate bX of the process X is defined as the conditional mutual information

bX = I(Xt;
→
Xt|
←
Xt) = H(

→
Xt|
←
Xt)−H(

→
Xt|Xt,

←
Xt). (1)

Thus, the PIR may be interpreted as the average information gain, or reduction
in uncertainty about the infinite future on learning Xt, given the past. In similar
terms, three other information measures can be defined: the entropy rate hX , the
multi-information rate ρX [6] and the erasure entropy rate rX [7], as follows:

hX = H(Xt|
←
Xt), (2)

ρX = I(Xt;
←
Xt) = H(Xt)−H(Xt|

←
Xt), (3)

rX = H(Xt|
←
Xt,

→
Xt). (4)

Because of the symmetry of the mutual information, the PIR can also be written

as bX = H(Xt|
←
Xt) − H(Xt|

→
Xt,

←
Xt) = hX − rX . The measures are illustrated

in an information diagram, or I-diagram [8], in fig. 1, which shows how they
partition the marginal entropy H(Xt), the uncertainty about a single observation
in isolation; this partitioning is discussed in depth by James et al [9].

Dynamic information measures Moving from the general charactarisation of
a random process to the analysis of specific sequences, we consider time-varying
information measures that can be computed given an unfolding sequence and an
assumed process model: from a sequence of observations up to time t, we define
two values: (a) the negative log-probability, or surprisingness of the observation
Xt=xt given the observations so far

←
x t ≡ (. . . , xt−1),

`xX(t) , − logP (Xt=xt|
←
Xt=

←
x t); (5)



and (b) the instantaneous predictive information (IPI) in the observation Xt=xt

about the entire unobserved future
→
Xt given the previous observations

←
Xt=

←
x t,

ixX(t) , I(Xt=xt;
→
Xt|
←
Xt=

←
x t), (6)

where the conditional information an event about a random variable is defined as
the Kullback-Leibler (KL) divergence between the posterior and prior distributions
of the variable of interest before and after the event. The terms ‘self-information’
and ‘information content’ have also been used for the quantity we have called
‘surprisingness’. Before Xt is observed, the the expected surprisingness is a mea-
sure of the observer’s uncertainty about Xt and may be written as an entropy

H(Xt|
←
Xt=

←
x t), and the expected IPI is the mutual information I(Xt;

→
Xt|
←
Xt=

←
x t)

conditioned on the observed past.

3 Predictive information and Bayesian surprise

In this section we examine predictive information in process models with hidden
parameters which are initially unknown but gradually inferred from the observa-
tions, and demonstrate a connection between Itti and Baldi’s ‘Bayesian suprise’
[10]. Suppose Θ is a random variable representing the unknown parameters of
the model and that the observed variables Xt are conditionally iid given Θ, as
depicted in fig. 2(a). Thus, the present and future are independent given Θ:

I(Xt;
→
Xt|Θ) = 0. (7)

This accounts for the lower zero in the I-diagram of fig. 2(b). Next, we make an
additional assumption that, given a long sequence of observations, each additional
observation carries less and less extra information about Θ, until, in the limit,
any extra observation will not carry any more information about Θ. We call this
the zero asymptotic information (ZAI) assumption, and write it as

∀x, lim
n→∞

I(Xt=x;Θ|Xt+n
t+1 ) = 0, (8)

where Xn
m ≡ (Xm, . . . , Xn). This accounts for the other zero in the I-diagram.

Suppose that only a finite segment of the process Xt−1
1 , has been observed, leaving

some uncertainty about Θ, and let Ot denote the observation event (Xt
1 = xt1).

Conditioning on Ot−1 does not affect the conditional independences given above,
and so

I(Xt=xt;
→
Xt|Ot−1) = I(Xt=xx;Θ|Ot−1), (9)

that is, the IPI is precisely the Bayesian surprise.
If we relax the assumption that the observations are conditionally independent

given the parameters, we find, retaining the ZAI condition, that

I(Xt=xt;
→
Xt|Ot−1) = I(Xt=xt;

→
Xt|Θ,Ot−1) + I(Xt=xx;Θ|Ot−1). (10)
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Fig. 2. Surprise and information in an exchangeable random sequence (X1, X2, . . .),
which are conditionally independent given the hidden parameters Θ. (a) graphical model
representation; (b) I-diagram summarising the situation after observations up to time t.
The zeros represent conditional independence assumptions (see main text for details).

Assuming Θ takes values in a set M, the first term on the right-hand side can
be expanded as

I(Xt=xt;
→
Xt|Θt, Ot−1) =

∫
M
I(Xt=xt;

→
Xt|Θ=θ)pΘ|Ot

(θ) dθ, (11)

where pΘ|Ot
is the posterior pdf over the parameter space given the observations xt1.

The second term, the Bayesian surprise is the KL divergence D(pΘ|Ot
||pΘ|Ot−1

).
Thus, we see that the IPI in a system where parameters are being estimated
online is composed of two components: the Bayesian surprise, and the IPI for a
known parameter value averaged over the posterior distribution over parameters.

If, instead of assuming that Θ is constant, we assume it varies slowly, then the
above analysis may be taken as an approximation, whose accuracy depends on
the extent to which information gained about the parameters is manifested in a
finite sequence of future observations corresponding to the time-scale of variation.

4 Process information measures for Gaussian processes

It is known that the entropy rate of a stationary Gaussian process can be
expressed in terms of its power spectral density (PSD) function S : R→ R, which
is defined as the discrete-time Fourier transform of the autocovariance sequence
γk = E XtXt−k, where E is the expectation operator. For a Gaussian process,
the entropy rate is the Kolmogorov-Sinai entropy:

hX =
1

2

(
log(2πe) +

1

2π

∫ π

−π
logS(ω) dω

)
. (12)

Dubnov [6] gave the multi-information rate (MIR) of a stationary Gaussian
process in terms of the spectral density S(ω) as:

ρX =
1

2

(
log

[
1

2π

∫ π

−π
S(ω) dω

]
− 1

2π

∫ π

−π
logS(ω) dω

)
, (13)

which follows from the observation that H(Xt) = log(2πeγ0) and the relation
ρX = H(Xt) − hX . Verdú and Weissman [7] give a general expression for the



erasure entropy rate of a Gaussian process in terms of its power spectral density.
Using this and writing the entropy rate in a slightly different form, we obtain

bX =
1

2

(
log

[
1

2π

∫ π

−π

1

S(ω)
dω

]
− 1

2π

∫ π

−π
log

1

S(ω)
dω

)
, (14)

which, compared with the expression (13), suggests a duality between the multi-
information and predictive information rates on the one hand, and Gaussian
processes whose power spectra are mutually inverse on the other. A similar duality
was noted by [5] in relation to the multi-information and the binding information
(the extensive counterpart to the predictive information rate) in finite sets of
discrete-valued random variables.

Autoregressive Gaussian processes An autoregressive Gaussian process of
order N is a real-valued random process such that Xt = Ut −

∑N
k=1 akXt−k,

where the innovations Ut are iid Gaussian random variables with zero mean and
variance σ2, and the ak are the autogressive or prediction coefficients. The class
of such processes is known as AR(N). If the coefficients ak are such that the filter
is stable, the process will be stationary and thus may have well defined entropy
and predictive information rates. It is relatively straighforward to show that the
entropy and predictive information rates of an AR(N) process are

hX = 1
2 log(2πeσ2), bX = 1

2 log

(
1 +

N∑
k=1

a2k

)
. (15)

The multi-information rate ρX does not have a simple general expression in
terms of the parameters and can be computed either by solving the Yule-Walker
equations to get the marginal entropy or from the power spectrum.

Adding noise to avoid infinite information If no restrictions are placed
on the PSD, both ρX and bX are unbounded. The reason for this, we suggest,
lies in the assumption that the real-valued random variables can be observed
with infinite precision. This rather un-physical situation can be remedied if
we introduce noise, observing the process X through a noisy channel Y , where
Yt = Xt+Vt and (Vt)t∈Z is white noise. In this case, each observation Yt can only
yield a finite amount of information about Xt. For AR(N) processes, this results
in an inverted-‘U’ relationship between the PIR and both the multi-information
and entropy rates, with finite maxima for all information measures.

Dynamic information measures Since Xt is conditionally Gaussian, the
dynamic surprisingness measure `xX(t) defined earlier (5) is a function of the

deviation of xt from its expected value x̂t = E (Xt|
←
Xt =

←
x t), which, for an

autoregressive process, can be computed directly from the prediction coefficients
and the previous observations. The result can be written as (see [11] for details)

`xX(t) = hX + πe1−2hX (xt − x̂t)2 − 1
2 . (16)



Note that (xt − x̂t) is by construction the innovation at time t and thus, the
expectation of (xt − x̂t)2 is e2hX/2πe independently of t, which means that at all
times, expectation of `xX(t) is constant at hX . It also means that the sequence of
surprisingness values is itself uncorrelated in time. This is in marked constrast
with the situation for Markov chains [4], where, in general, the expected suprise
depends on the previous observation and thus varies in time, reflecting the
observer’s varying levels of uncertainty about the next observation. In a Gaussian
processes, this predictive uncertainty is constant and therefore does not provide
any useful structural analysis of the sequence. The IPI (6) can be expressed in
several ways, but perhaps the most illuminating (see [11] for a derivation) is

ixX(t) =
[
1− e−2bX

]
[`xX(t)− hX ] + bX . (17)

Since hX is the expectation of `xX(t) and bX is the expectation of ixX(t), this
has a rather perspicacious reading: the deviations of the surprisingness and the
IPI from their expectations are proportional to one another. The constant of
proportionality varies from zero when bX = 0 to 1 as bX → ∞. As with the
expected surprisingness, the expected IPI is constant and equal to bX .

4.1 AR estimation and Bayesian suprise

Our method for spectral estimation is based on Kitagawa and Gersch’s [12]
‘spectral smoothness prior’—they consider autoregressive Gaussian processes and
introduce a measure of spectral smoothness to be used as a regulariser in spectral
estimation when the model order is high but the amount of data available is low.
They show how this leads to a Gaussian prior with independent coefficients such
that ak ∼ N (0, λ−2k−2α), where α > 0 controls the order of smoothness favoured
and λ controls the overall strength of the prior. This is especially convenient
since, when parameterised by the ak, the (multivariate) Gaussian is a conjugate
prior, so that the posterior distribution remains Gaussian as data accumulates.

We adapted Kitagawa and Gersch’s offline method to online estimation of
both the innovation variance σ2 and the coefficients a1:N using a conjugate
prior, which is inverse-Gamma for σ2 and conditionally Gaussian for a1:N . At
time t, the posterior is represented by its natural parameters ηt (in language of
exponential families), which are essentially the sufficient statistics of the data
with respect to the model. This amounts to keeping a running estimate of
the autocovariance of the signal at lags from zero to N . In order to allow for
slow variations in the spectrum, a forgetting factor is included, resulting in an
exponentially decaying memory of older observations. The recursive update can
be written as η′t−1 = (τ − 1/τ)ηt−1, ηt = T (xt;x

t−1
t−N ) + η′t−1, where τ is the

effective time constant and T (·) computes the sufficient statistics for the current
observation given the previous N . The initial state η0 is derived from the spectral
smoothness prior. Given ηt, the Bayesian surprise is the KL divergence between
the two distributions specified by ηt and η′t−1, which we can write as Dη(ηt||η′t−1).
The entropy rate and PIR of the currently estimated process are computed from
the posterior mean of a1:N computed from ηt. Finally, the marginal variance
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Fig. 3. An analysis of Steve Reich’s Drumming in terms of process information measures.
The spikes in the Bayesian surprise correspond to significant events in the score (changes
in instrumentation), while the traces of features of the predictive information and entropy
rates can be related to structural features of the music. Part boundaries are at around
18, 36, and 46 minutes.

and thus the marginal entropy H(Xt) are estimated directly from the signal in

order compute the MIR as ρ
(t)
X = H(Xt)−h(t)X . This was found to be more stable

numerically than computing the MIR from a1:N , since the estimated coefficients
would sometimes yield an unstable filter with an undefined MIR.

5 Applications to music analysis

We applied the above methods to a recording of Steve Reich’s Drumming, following
the general approach of [13]: the signal was represented as a sequence of short-term
Mel-frequency spectra (256 bands, frame length 186 ms, hop size 46 ms, frame rate
approx. 21 Hz); the first 32 decorrelated principal components were computed
offline. Then, treating each channel independently, dynamic mean subtraction
(time constant about 10 mins) was followed by online spectral estimation using an
AR(24) model, with a forgetting time constant of about 12 s, α = 1 and λ = 1. The
resulting information measures were summed across all 32 channels to produce
the results illustrated in fig. 3. Part boundaries and changes in instrumentation
are well captured by peaks in the Bayesian surprise.



6 Discussion and conclusions

The PIR and IPI were found to be simply expressible for stationary discrete-
time Gaussian processes, with a certain duality between the PIR and MIR with
respect to spectral inversion (exchaninging poles for zeros). The expressions for
dynamic surprise and instantenous predictive information suggest that stationary
Gaussian processes are relatively lacking in temporal structure. The identification
of the Bayesian surprise as a component of the IPI when learning parameterised
models links the two activities of learning about parameters and gaining new
information about future observations. The accuracy of these results when used
as an approximation for models with time-varying parameters will depend on
the information geometry of the model and will be a subject of future work.

When appplied to the analysis of a recording of Steve Reich’s Drumming, the
information measures were found to vary systematically across the piece, with
several structural boundaries and features visible. As we chose to use a framework
modelled on that of [13], a fuller analysis and comparison with Dubnov’s multi-
information rate analysis will be the subject of future work.
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