596 research outputs found

    Battery Protective Electric Vehicle Charging Management in Renewable Energy System

    Get PDF

    A smart distribution toolbox for distribution system planning

    Get PDF
    Paper 1623The distribution system planner should be able to coordinate smart grid solutions in order to find cost effective expansions plans. These plans should be able to deal with new added system uncertainties from renewable production and consumers while guaranteeing power quality and availability of supply. This paper proposes a structure for distribution systems planning oriented to help the planner in deciding how to make use of smart solutions for achieving the described task. Here, the concept of a system planning toolbox is introduced and supported with a review of relevant works implementing smart solutions. These are colligated in a way that the system planner can foresee what to expect with their combined implementation. Future developments in this subject should attempt to theorize a practical algorithm in an optimization and decision making context.postprin

    Challenges and pathways of low-carbon oriented energy transition and power system planning strategy: a review

    Get PDF
    This paper provides an overview of the challenges and pathways involved in achieving a low-carbon-oriented energy transition roadmap and power system planning strategy. The transition towards low-carbon energy sources is crucial in mitigating the global climate change crisis. However, this transition presents several technical, economic, and political challenges. The paper emphasizes the importance of an integrated approach to power system planning that considers the entire energy system (including both physical and information systems and market mechanisms) and not just individual technologies. To achieve this goal, the paper discusses various pathways toward low-carbon energy transition, including the integration of renewable energy sources into current energy systems, energy efficiency measures, and market-based and regulatory strategies encompassing the implementation of regulations, standards, and policies. Furthermore, the paper underscores the need for a comprehensive and coordinated approach to energy planning, taking into account the socio-economic and political dimensions of the transition process. In addition, the paper reviews the methodologies used in modeling low-carbon-oriented power system planning, including both model-based methods and advanced machine learning-assisted solutions. Overall, the paper concludes that achieving a low-carbon-oriented energy transition roadmap and power system planning strategy requires a multi-dimensional approach that considers technical, economic, political, and social factors

    Practice and Innovations in Sustainable Transport

    Get PDF
    The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid

    Modeling Electric Vehicle Charging Station Behavior Using Multiagent System

    Get PDF
    Agent-based models(ABMs) are a type of simulation in which a large number of self-sufficient agents interact in a way that combines stochastic and deterministic behavior. Recently, there have been reestablished interests in utilizing multiagent systems (MASs) to get more granular data relating to specific conditions. MESA is an ABM framework for Python. It enables users to quickly develop ABMs with built-in core components, view them with a browser-based interface, and evaluate their findings with Python’s data analysis capabilities. This chapter depicts an ABM of a photovoltaic (PV)-powered electric vehicle (EV) charging station in a university car park modeled using MESA. The goal is to determine the preliminary requirements for PV-powered EV charging stations, which would result in increased PV and cost benefits
    • …
    corecore