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Abstract

The world is currently in the midst of a fourth major energy transition which is intended to
reduce dependency on fossil fuels. This transition is motivated by the desire to move
towards a more sustainable energy paradigm which is less harmful to the environment, and
which will also increase the energy security of countries. Increasing levels of renewable
technologies such as photovoltaic (PV) systems into the fuel mix of the global electricity
generation sector and the electrification of the transport sector are essential to support the

move to a sustainable energy paradigm.

Whilst electrifying the transport sector and increasing the penetration levels of PV can
support the move to a sustainable energy paradigm, they also pose a major challenge for
electricity network operators and their aging and overworked systems. These challenges are
heightened for operators in the global south where electricity demand is predicted to
increase exponentially this century due to ambitious economic and social development
programs. One of the major challenges facing operators is predicting how these changes will
affect patterns and peaking characteristics of load profiles especially as the rate and scale of

change is unknown.

This research presents a new scalable computational method which is proven to be capable
of synthetically generating load profiles of electricity networks which will inevitably become
significantly more complex in the near future. A systematic design approach that can be
used to ensure that an optimal model can be found for any unique load forecasting scenario

is also presented and forms the basis of investigation of select future energy use cases.

Many countries in the global south are currently engaged in programmes that aim to exploit
high indigenous renewable energy potential to meet forecasted increasing demand for
electricity. A case study of Yangon City, Myanmar was used to investigate the suitability of
using PV in these endeavours and to examine the diurnal variation in PV output and the
effects of this variable output on local load demand profiles over the course of a year. The
results of the study demonstrated a strong correlation between PV output and local load
demand, meaning that there would be little grid support needed from non-renewable

generation and storage technologies to accommodate increasing PV levels.



The output from PV systems at times need to be curtailed to prevent network conditions
such as voltage rise. This curtailment negatively affects the financial viability of PV systems.
A case study of three countries at different stages of economic development was carried out
to investigate the efficacy of different low-cost smart grid solutions in reducing or even
preventing PV curtailment. Results showed that updating grid codes alone can prevent
curtailment in some locations. They also showed that combining different smart grid
solutions for locations in the global south could reduce curtailment at all PV penetration

levels.
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Chapter 1

Introduction

This PhD research considers the evolution of the energy mix due to climate change
mitigation low carbon targets into more electrical energy-based solution with greener
technologies like renewable generation and electrical vehicles. Planning of the future
electricity mix needs development of new tools and techniques. Artificial intelligence is one
of the technologies looked at very favourable at the current time as a technology that has a
lot of potential in reducing human effort. This work explores designing the use of one artificial
intelligence technology namely Artificial Neural Networks (ANN) in the planning of the future
electricity mix from an energy, sustainability, technical design and deployment, and

economic points of view.

1.1 Background

The decarbonisation of the energy network has created higher demand for electricity over oll
and coal. Some of the electrical power network assets such as transformers and switchgear
assets were installed as early as the 1950s and are still in use today [1]. For example, the
UK’s National Infrastructure Delivery Plan 2016-2021 identifies that “much of the existing
infrastructure which has served us well is now old” and that “major investment is required to
accommodate new generation and replace ageing assets”. However, there is also a greater
focus now on lowering the cost of delivering electricity. The performance-based electricity
distribution model Revenue = Incentives+ Innovation+ Outputs (RIIO) model of the UK which
has been in operation from 2015 [2] is representative of this drive. In the continuing drive to
reduce cost, given the high cost of assets, especially at the transmission and sub-
transmission voltage levels, it is safe to assume that even in the near- or medium-term,

power networks will be mostly composed of present-day assets.

There will be high volumes of customer-side renewable generation due to the
decarbonisation targets. However, the exact penetration levels, renewable generation type
and their share in the demand mix is presently uncertain. A decentralised power supply
becomes problematic for the traditional operating mode of the electricity network where net
load on the network is largely foreseeable, power supply is controlled and there is a uni-
directional electricity flow from large generators to consumers [3]. Power networks are
currently moving into the smart grid paradigm. The inherent cost attached to smart grids

technologies means that the global economic inequality will be reflected in their deployment.
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Developing nations with lower economic reserves to spare are often constrained in terms of
the level and nature of changes they could make to their power networks. However, owing to
energy supply deficits, load growth, dependency on fossil fuel imports etc. developing
nations are in greater need of cheaper low carbon generation. This can only be realised
through efficient and sustainable energy policies. Figure 1 is representative of the modelling
requirements within the energy policy nexus. A multitude of scenarios of with variations in
underlying technical processes, energy behaviour and associated economics needs

investigation for effective policymaking.

Processes

INPUTS

Energy

Economics

OUTPUTS

Policy

Figure 1 - Outline of Modelling Requirements for Energy Policymaking

As energy flow becomes inevitably more complex with larger integration of renewable
generation, electric vehicles and energy storage in modern power networks, power system
planning methods are becoming more complicated compared to how they were with
conventional, mostly thermal, generation. It was evident from a survey of recent literature on
power system planning that there is a significant focus recently on largescale renewable
integration, specifically with regards to generation expansion planning focusing on national
energy policies [4]. Majority of literature tends to concentrate on optimisation of transmission
and distribution planning, ultimately underpinned by load flow analysis [5]. As an emerging
area there is a high level of attention given to energy storage from the point of view of
technical constraints, given the uncertainty around their economics [6]. There is also focus
on the drivers and challenges of renewable penetration such as carbon tax [7] and resource
uncertainty and variability [8]. Resource planning [9] and mitigating strategies such as
demand side management (DSM) and On-Load Tap-Changing transformers (OLTC) for

voltage rise mitigation [8] is investigated in this context.

Authors of [10] reviewed power system planning challenges for India with increasing

penetration of renewables given the ambitious installed capacity targets. The current energy



policies are summarised, and it is recommended that India learn from international
experiences and adopt best practices from developed countries. The need for DSM and
advanced forecasting methods is also emphasised along with other recommend actions to
facilitate higher renewable penetration. In [11] a method combining probabilistic duck curve
and probabilistic ramp curve to efficiently compensate the imbalance between the high PV
generation time and peak time of load was demonstrated for a use case of China. The
authors of [12] emphasise that load forecasting is often the first step in power system
planning. Plug-in electric vehicles (PEVs) and the Korean government PEV targets are
focussed on. A stochastic method for forecasting PEV load profiles is introduced focusing on
the PEV expansion target, statistics of existing vehicles and consumer numbered connected
to substations. Ref. [13] focuses on the voltage rise problem with increased renewable
penetration for ageing power networks and introduces an algorithm for carrying out decision-
making on asset upgrades or network reinforcement by addition of components and
modification of topology. The trade-off between power line upgrades and placements and
operation of on-load tap-changing transformers (OLTC) in the network was investigated from
the point of view of technical constraints. In [14] authors identify that increasing renewable
penetration is confidential with increasing need for flexibility within power systems. Market
design is identified as the structural tool that can facilitate flexibility. Potential market reforms
are outlined with a focus on DSM. The impact of the difference in nature and requirements of
different regional networks and availability of flexible loads are acknowledged. It is
recommended that future research focus on planning and operation of power system
factoring the difference into account. In [15], a multi-region power system planning approach
named REPLAN is proposed for Nigeria. The focus was on improved energy exporting and
importing arrangement between regions and overall energy cost reduction by forecasting
inter-regional transmission capacity and pathways for developing regional generation.
Although the study emphasised the need to investigate local (regional) network models, it

was aimed at long-term power system planning and not on diurnal power system operation.

It was evident from the literature surveyed and cited above that there is a strong focus on
energy policies. However, the focus is mostly at the higher-level vision-type policies, often at
the national level, setting the energy targets rather than the policies or grid codes at the
operational level, which translate the envisioned benefits to reality. Revenue from energy is
the basis of renewable energy economics. Policy makers will not be able to capture the full
picture for facilitating higher penetration of renewable like PV based on research that just
focus on maximum hosting capacity, the implications of technical measures / constraints to

PV energy and PV system owners also need to be understood. In this context, the main aim



of this work is to support scenario-based impact assessments for power system planning by

means of ANN and thus aid sustainable energy policymaking, especially for developing

countries.

1.2 Research Aims and Objectives

As mentioned above, the main aim of this work is to support scenario-based impact

assessments for planning the future electricity mix which would have high shares of

renewable generation technologies and electric transport by utilising the artificial intelligence

technology ANN and thus aid sustainable energy policymaking, especially for developing

countries. The objectives have been defined as:

1.

To conduct a detailed literature review on the current energy mix evolving into a more
electricity-based situation based on climate change mitigation low carbon targets to
understand the planning needs for future energy mixes, especially for developing
countries.

To review the tools for electricity planning with a specific focus on energy use
forecasting and the use of ANNs in the field, in order to outline how to properly
design ANN based forecasting tools.

To investigate different parameters, algorithms, structures, types attached to ANNSs to
identify candidate architectures, their testing, optimal configurations and finally their
validation.

To develop a Systematic Artificial Neural Network (ANN) Design Approach for load
forecasting using MATLAB.

To analyse the effectiveness of ANN forecasters in investigating the energy
potentials of renewables and electric vehicles (EVs) for future electricity mix planning

based on select use case scenarios in both the developed and developing world.

1.3 Original Contribution

The following original contributions resulted as part of the research work done during the

course of the PhD:

1.

2.

Development of a computational procedure for PV and EV penetration scenario-
based future load profile generation based on public data and its testing for a case
study in Middlesbrough, UK.

Assessment of the PV potential for a selected location in Myanmar to determine the
impacts on current and future electricity demand profiles in order to aid system

planning.



3. Development of a systematic approach for designing ANN load forecasting that could
be employed by global south countries to generate accurate and realistic synthetic
PV output and load profiles which can be used by system operators and planners to
forecast future load profiles.

4. Introduction of a net prosumer load forecasting framework and demonstration of its
application for select use cases.

5. Analysis of the effectiveness of ANN forecasters in investigating the energy
potentials of renewables and EVs for future electricity mix planning based on select

use case scenarios in both the developed and developing world.

These contributions are supported by the following publications:
Publications

1. Allison, M., Akakabota, E. and Pillai, G., 2018, February. Future load profiles under
scenarios of increasing renewable generation and electric transport. In 2018 5th
International Conference on Renewable Energy: Generation and Applications
(ICREGA) (pp. 296-300). IEEE.

2. Akakabota, E., Pillai, G. and Allison, M., 2019, September. Supporting LV distribution
network voltage using PV inverters under high EV penetration. In 2019 54th
International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE.

3. Allison, M. and Pillai, G., 2018, November. Photovoltaic Energy Potential and its
Impact on Electricity Demand Profiles. In International Conference on Science and
Technology for Sustainable Development; Yangon, Myanmar.

4. Allison, M. and Pillai, G., 2020. Planning the Future Electricity Mix for Countries in the
Global South: Renewable Energy Potentials and Designing the Use of Artificial
Neural Networks to Investigate Their Use Cases. Designs (MDPI), 4(3), p.20.

5. Pillai, G., Allison, M., Tun, T.P., Chandrakumar Jyothi, K. and Kollonoor Babu, E.,
2021. Facilitating higher photovoltaic penetration in residential distribution networks
using demand side management and active voltage control. Engineering Reports
(Wiley), p.e12410.

1.4 Overview of the Thesis

The rest of the thesis is presented as follows: Chapter 2 is a literature review on the energy
and energy use. It covers areas such as the role of energy in human activities as well as
historical, present day and future use, sources of energy and the impact of energy use to the

environment. Chapter 3 investigates the potential of renewable energy to meet the



forecasted energy demands of developing countries in the global south. Chapter 4 explores
the importance of load forecasting in electricity planning operations. Chapter 5 details the
findings of work carried out to investigate the degree to which different design features of
Artificial Neural Networks (ANNs) can affect forecasting performance. Chapter 5 also
presents a systematic approach that can be used to increase the performance of ANNs used
in forecasting problems. Chapter 6 investigates the ability of smart grid strategies to
promote the use of PV systems by minimising energy curtailment. Chapter 7 gives the main

conclusions of this work and suggests how the work could be carried on in the future.



Chapter 2

Literature review: The Future of the Energy Mix

The utilization of energy has played a fundamental role in human development throughout
history [16]. Access to energy in modern societies is crucial to the economic and social
development of countries [16-19]. Energy affects all aspects of human life and improves the
quality of life of individuals [16, 17, 20-22] and is critical for eradicating poverty [20].
Increasing energy consumption usually leads to improved lifestyles [16]. The role of energy
in human development has seen its demand grow exponentially. Demand is predicted to
continue to grow by 45% between 2015 and 2030 and by over 300% by the end of the
century [18]. Meeting this demand is one of the most important global issues today [23]. The
fuels that have traditionally been used to meet energy demand cause serious environmental
and health problems [17]. This has led to the realisation that both energy and energy
sustainability are necessary for humans and the planet [22]. Indeed, the global sustainable
energy agenda has become the primary challenge for many developed and developing
countries [19]. This chapter looks reviews the state of play in terms of the different aspects

contributing to and affecting the energy mix as well as its future global outlook.

2.1 Historical Energy Mix

Pre-industrial society energy needs were met by wood and waterpower [24]. Since this time
the world has withnessed a number of significant structural changes known as energy
transitions [24]. These energy transitions do not see the total elimination of an energy source
but significant levels of use of additional sources [24]. The first major energy transition dates
to the industrial revolution(s) of the mid-19" century when due to wood supply shortages
other (lower cost) energy sources were explored [25]. Along with the creation of the coal-

powered steam engine this led to large scale use of coal, followed by oil and gas [24].
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Figure 2 - Historical Global Primary Energy Mix (Data Source: 26)

The turn of the century saw the rise of hydropower [26]. The invention of the diesel engine in
the 1910’s heralded the seconded maijor transition due to its use of oil [27]. The transition to
oil was intensified by World War 1l [24]. The 1960’s witnessed the introduction of nuclear
energy into the mix [26]. A Third major transition took place in the 1970’s driven by natural
gas due to its superior performance over coal and oil and because of its cleaner burning

characteristics when compared to other fossil fuels [28-29].

The fourth major transition began in the 1980’s when increasing levels of modern
renewables such as solar/PV and wind were introduced to the mix [24, 26]. Along with
technological advances this transition has been motivated by a desire to decrease reliance
of fossil fuels [24, 30-31].

An energy supply system is defined as “the chain of systems and activities required to
ensure supply of energy and include supply sector, energy transforming sector and energy
consuming sector” [32] The utilisation of energy is crucial to economic and social
development and increasing energy consumption typically leads to improved lifestyles [33].
Therefore, access to adequate and secure energy supply is a necessity in contemporary

society [34]. The importance of energy to human development has seen its consumption
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grow exponentially since the first industrial revolution of the mid-19™ century. This growth is
predicted to continue well into the near future with energy demand expected to be 300%
higher by the end of the century compared to 2015 levels [18].

Energy demand has historically been met by fossil fuels (coal, oil, and natural gas). Fossil
fuels are a finite and diminishing resource which is increasingly leaving countries vulnerable

to disruptions of supply, infrastructure failure and higher price fluctuations [35].

Fossil fuels also emit high levels of greenhouse gasses (GHGs) such as carbon dioxide
(CO,) which is the most significant long-lived cause of climate change [36]. These factors
have forced policy makers around the globe to conclude that energy and energy
sustainability are both necessary for people and the planet [22]. Indeed, the global
sustainable energy agenda has become the primary challenge for many countries and

organisations around the world [19].

The transportation sector is a vital part of today’s society [37]. It is a key driver of economic
and social development which has seen its demand grow over recent decades [38].
Traditionally the production of energy has often been associated with negative
environmental costs such as the emission of airborne pollutants and GHGs [39]. Global
transportation is almost completely dependent on oil to meet its energy needs which makes
the sector one of the major emitters of airborne pollutants and GHGs [37]. Reducing the
dependence on oil to meet the increasing demand is a major challenge for the transportation
sector (particularly light-duty road transportation) [40-41]. Electric vehicles (EVs) are around
three times more efficient than Internal Combustion Engine Vehicles which are powered by
oil [42]. EVs also move the point of GHG emissions from the tail pipe to the electricity
generation sector where they can be more efficiently and cost-effectively reduced. This has
seen national policies implemented around the globe aimed at paving the way for the

electrification of the transportation sector [37, 39-40, 42].

2.2 Energy Sources

Primary energy sources are energy sources that can be used directly as they are found in
the natural environment without the need of any human engineered conversion process.
Primary energy sources can be categorized as fossil, fissile (commonly referred to as
nuclear) and renewable [16]. Oil, coal and natural gas are the most widely used fossil fuels,

nuclear fuels include uranium and thorium [43]. Renewable energy sources come from
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natural sources what are constantly replenished such as hydropower, wind, solar/PV,
geothermal and modern biofuels [43].

2.2.1 Fossil Fuels

As show in Figure 3 fossil Fuels have been the dominant energy source since the industrial
revolution [44-46], and they are still heavily relied upon in today’s energy systems and
currently meet around 80% of global demand [16, 19, 47-48]. Although in North America,
Europe and other OECD countries fossil fuel use has been declining over recent decades
[45]. Fossil fuels are used in the electricity generation, transportation, and industry sectors
as well as in household consumption [49]. The use of fossil fuels has helped accelerate the
development of both global economy and human civilisation [17, 50].
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Figure 3 - Historical Fossil Fuel Dominance of Global Fuel Mix

Whilst the use of fossil fuels has helped accelerate economic and social development it has
also caused major damaged to the environment and human health [17, 48]. Two-thirds of
global greenhouse emissions come from the burning of fossil fuels [17, 51]. CO, emissions
vary between different fossil fuels [52]. Fossil fuels as a whole were responsible for 9.9
billion metric tonnes of global CO, emissions in 2014 [45]. Coal was the highest contributor
to this figure (45%) followed by oil (35%) and natural gas (20%) [45].

10



The International Energy Agency (IEA) have stated that current trends in fossil fuel demand
are patently economically, environmentally and socially unsustainable [53]. The international
community are collectively working towards limiting the use of fossil fuels with the aim of
transitioning to a sustainable low-carbon future [50]. This has included countries supporting
the development of low-carbon technologies, often through subsidies, which is forecasted to

change the value of high-carbon fossil fuels [50].

Reserves

Fossil fuel sources are finite [49] and accurately determining their reserves is not a
straightforward task [54]. Whilst reserves are diminishing ever faster [16], commercially
recoverable reserves of fossil fuels are still relatively plentiful [44, 54]. However, reserve
levels are not the main concern for fossil fuels. Due to environmental concerns sustainable
energy consumption has become a global priority [16, 44]. Organisation such as the IEA
state that in order to meet the target of restricting the increase in global temperature to 2°C
by 2050 33% of oil reserves, 50% of natural gas reserves and 80% of coal reserves must be

unused up to this time [54].

Coal

Coal has the largest reserves (1,055 billion tonnes as of 2018) of fossil fuels and the longest
time to exhaustion (153 years at current levels of production) [45, 55-56]. Coal is more
abundant and widely distributed compared to oil and natural gas [16]. However, five
countries hold three quarters of the world’s reserves: United states (23.7%), Russian
Federation (15.2%), Australia (14%), China (13.2%) and India (9.6%) [55]. Table 1 shows

global coal reserves and how they are distributed by region.

Table 1 - Coal Reserves by Region

Region Million Tonnes Global Share
North America 258,012 24.5%
South & Central America 14,016 1.3%
Europe 134,593 12.8%
CIs 188,853 17.9%
Middle East & Africa 14,420 1.4%
Asia Pacific 444 888 42.2%
World 1,054,782 100.0%
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Whilst coal powered the industrial revolution and has aided economic development around
the world it is also the largest emitter of CO, amongst fossil fuels [45]. Globally consumption
of coal has declined at an average of 0.9% since 2013 [52]. This decline has been driven by
a shift towards renewable sources and less harmful natural gas in developed countries [45,
52, 57]. In the UK, the birthplace of the industrial revolution, the use of coal has been rapidly
declining in recent times and could be phased out by as early as 2025 [52]. Large decreases

in coal use have also occurred in Canada and across the European Union [52].

However, the decrease in coal use in developed nations could soon be outpaced by the
increase in developing countries, particularly those where energy poverty is prevalent [45,
52, 57]. Regions such as South & Central America and Asia Pacific have seen use increase
around 3% per year [52], where coal is used for generating electricity [45]. The Asia Pacific
region is the major consumers of coal, and their share of the global total has increased from
64.5% (2,261million tonnes of oil equivalent (Mtoe)) in 2008 to 75.3% (3,772Mtoe) in 2018
[55]. Figure 4 shows the change in coal consumption between 2008 and 2018.

In terms of individual countries whilst the consumption of coal is decreasing in the United
States, it was still used to meet one third of the country’s electricity needs in 2016 (3,780m
MWh out of 11,067m MWh) [58] and as of 2018 it was still the third largest consumer of coal
at 8.4% of the global total [55]. India’s consumption of coal has grown at a rate of 4.8%
annually in recent years [52] and is currently the second largest consumer of coal accounting
for 12% of the global total [55]. If the country’s consumption continues at current rates it will
double in less than two decades leading to an increase of an extra billion tonnes of CO-
emissions annually [52]. China has consistently been the heaviest consumer of coal in
recent times and as of 2018 accounted for over half of global consumption at 50.5% [55].
Turkey also depends heavily on coal to meet its increasing energy demands with 37.3% of
the country’s electricity in 2018 obtained through burning coal [59]. Other developing nations
in the Asia Pacific such as Indonesia and Vietham have also seen increased coal

consumption in recent years [57].
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Figure 4 - Recent Coal Consumption by Region

Crude Oil

As with coal, oil is believed to have aided economic development around the world which is
why it is often referred to as ‘black gold’ or ‘industrial blood’ [17]. Once it has been refined,
oil is used in several sectors including industry and building, however, it is primarily used in
the transportation sector [60]. Despite the increase in penetration levels of electric vehicles
90% of global transport energy demand is still met by oil-refined liquids today [17]. In recent
decades the ownership of private vehicles has been steadily increasing because of
increased income levels, particularly in developing nations [60]. These factors combined

have seen the consumption of oil grow at an average of 1.4% globally since 2012 [52].

The growth in consumption has been led by countries in the developing world such as China
and India where increases in consumption has been around 5% per year since 2012 [52,
57]. In China 19% of present primary energy demand is met by oil which mostly comes from
imported sources (70%) [60]. Whilst in the US and EU the increase has been below the
global average at 1.3% and 0.4% annually respectively [52]. Other OECD countries have

also witnessed below global average increases [57].

13



British Petroleum (BP) and the Energy Agency (EA) both predict that oil consumption will
peak around 2030 and be a significant part of the global energy mix up to 2040 [60].

Natural Gas

Natural gas is a naturally occurring mixture of saturated hydrocarbons and inorganic gas
mixture that consists primarily of methane [16]. It emits lower levels of pollutants such as
CO; when compared to other fossil fuels such as coal or oil [16, 29, 61]. Due to its cleaner
burning characteristics it is viewed as a more attractive fuel than other fossil fuels [29].

However, it is still a major source of the increase of global CO; emissions [52].

In 2017 the EU’s member states consumed 466.8bcm of natural gas which met 24% of the
union’s primary energy demand [62]. Whilst the consumption of coal and gas has been
declining since the 1970’s the consumption of natural gas has been growing [26, 52].
Consumption of natural gas increased by 5.3% in 2018 and 2% (78 billion cubic metres
(bcm)) in 2019 [57]. The 2% increase in 2019 is below the 10-year average and is a result of
decreased energy demands caused by COVID restrictions that were in place during most of
the year [57].

The growth in consumption has been witnessed in every region and in many countries
around the world [52]. In 2019 demand in the US grew by 27bcm, mostly at the expense of
coal used in electricity generation [57]. In China consumption has increased by 8.4% per
year since 2012 [52], and by 24bcm in 2019 (280bcm in 2018 to 304bcm in 2019) [57, 60].
The increased demand in both countries is arbitrated to their respective environmental

protection policies [52].

Analysists predict the growth in consumption of natural gas will continue for the foreseeable
future [29]. The growth is expected to occur in developed nations such as the US [29] and

developing nations around the world [61].

2.2.2 Low Carbon Fuels

Nuclear and renewable energy sources are collectively known as low carbon fuels. They are
called low carbon fuels because unlike fossil fuels their use does not produce carbon dioxide
emissions [63]. They are considered to be cost-effective and environmentally friendly energy

sources by today’s policymakers [64].
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Nuclear

Nuclear energy is obtained by releasing the binding energy in the nucleus of atoms through
either fusion, decay or fission reactions [65]. Fusion is the process of two or more small
nuclei fusing together to form one larger nucleus [66]. The energy available from fusion is
almost limitless but its application is still largely theoretical [66]. Decay is the process of
converting the heat released during the decay of radioactive material into electricity [66].
Decay is only used in niche application such as powering space probes [66]. Fission
releases the energy, in the form of heat, of nuclei by splitting an atom into smaller atoms [65-

67]. Nuclear fission is primarily used to generate electricity in nuclear power plants [65, 67].

The first commercial nuclear power plant began operation in the late 1950’s in the US [58,
66]. Nuclear energy became a popular option in the late 1960’s [16]. Today there are nuclear
power plants operating in over 50 countries [66]. In 2019 nuclear energy met 3.95% of
primary energy demand [26]. In the US nuclear energy currently meets 20% of the country’s
electricity demand and it is expected to be a significant part of its electricity fuel mix for the

foreseeable future [58, 67].

Nuclear power plants provide continuous reliable and cost-effective energy over the plant’s
lifespans, which can be more than 80 years [68]. Nuclear energy also generates much lower
levels of CO, than fossil fuels (a few grams per kWh generated) [56]. These attractive
features have led to many developing countries today considering adding nuclear to their
energy mixes [16]. 2016 saw the largest increase in global nuclear capacity for a quarter
century with over 9GWe coming online [64]. Studies have predicted that nuclear energy
could meet a quarter of global electricity demand by 2050 [64].

Organisations such as the IEA and the International Atomic Energy Agency (IAEA) have
stated the importance of nuclear energy in achieving sustainable energy mixes [63].
However, nuclear energy is a highly controversial subject due to several disadvantages [16,
68].

The disadvantages of nuclear energy include the need for well-trained and competent
operational staff and large investment and operational costs [16, 68]. The long-lived
radioactive waste created by nuclear power plants remains hazardous for hundreds of
thousands of years and its disposal costs the industry around £2.5 billion per year [68]. The

hazardous nature of the radioactive waste also means that potential accidents at nuclear
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power plants are a major security concern due to the likelihood of causing serious damage
to human life and the environment. To date the world has witnessed 33 accidents at nuclear
power facilities, the most famous of which being at the No. 4 reactor in the Chernobyl
Nuclear Power Plant in 1986 which still poses risks to both human life and the environment
today [68]. The accident at the Fukushima Daiichi Nuclear Power Plant in 2011 also showed
that nuclear facilities are particularly vulnerable to natural events such as tsunami and
earthquake [68]

The disadvantages associated with nuclear energy means it has many, often strong,
opponents who say it is expensive, high risk and environmentally unfriendly [68]. The
opposition to nuclear energy has seen interest in the technology decline in recent years in
many developed economies [16, 58].

Renewables

Renewable Energy Sources (RES) come from natural, sustainable sources which are
constantly replenished such as the sun [36, 69]. The world is reducing its dependence on
non-renewable energy sources [47, 64]. This has led to RES currently being the fastest
growing energy source around the world and seen its penetration in the global energy mix
grow rapidly since the end of the 2000s [16, 19, 35, 57]. In 2019 the consumption of RES
increased by 3.2 exajoule (EJ), led by China (0.8 EJ), the US (0.3 EJ) and Japan (0.2 EJ)
[57].

Biomass

Biomass is non-living fossil and biodegradable organic material [17]. The Environmental and
Energy Study Institute (EESI) define it as ‘living or recently dead organisms and any by-
products of those organisms, plant or animal’ [70]. The EESI carry on saying that biomass
excludes coal and oil [70]. Before the first industrial revolution it was the main source of
global energy. It is still the fourth largest source of global primary energy today accounting
for 10% of energy consumption in industrialized countries and as much as 35% in
developing countries [17]. 38% of the global population (2.7 billion people) still rely on
biomass for cooking, mainly in Asia and Sub-Sahara Africa [64]. Around 224x10° tons of dry
biomass can be produced globally per year due to photosynthesis [17]. Biomass can also be
used to produce energy for transportation known as biofuels by fermenting corn or

sugarcane [48]. Biofuels are in wide use in both Brazil and the US [48].
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Hydropower

Humans have harnessed the kinetic energy of water since ancient times to power
mechanical devices such as watermills, sawmills and domestic lifts [71-72]. Hydropower is
the harnessing of the kinetic energy in water of rivers and lakes to generate electricity [71,
73]. As the water is not used up or reduced in the process and is constantly replenished by
the earth’s water cycle hydropower is a renewable energy source [71]. As hydropower relies

on the water in rivers and lakes resources around the globe vary substantially [73].

Hydropower is the most mature and well-established RES and has provided electricity for
over a century [74]. The first machine to generate electricity through hydropower was built by
William Armstrong in Northumberland, England in 1878 and was used to power a single
lamp [75]. The first electricity generated by hydropower the US came shortly after in 1880
where it was used to power 16 brush-arc lamps at the Wolverine Chair Factory in Grand
Rapids, Michigan [72]. The Schoelkopf Power Station became the first commercial
hydropower station when it began using water from the Niagara River three years later to
power streetlights in nearby New York [75]. The first commercial hydropower station Europe
began operation in ltaly in1885 and by the early 1890’s hydropower had become well
established in both Europe and North America [73].

To increase electrification of rural communities the US Army core of Engineers began
building hydropower plants across mainland US in the 1920’s with their most famous project,
the Hoover Dam, being completed in 1937 [76]. Since that time thousands of hydropower
plants were built across North America and Europe [76].

Like all RES hydropower is a low carbon energy source [74, 77]. Unlike other RES
hydropower can be quickly dispatched and its output can be quickly adjusted at minimal cost
[76, 77]. It is also well suited to frequency control [74, 77]. They are also seen as a way of

improving transportation and of promoting economic development [73].

Hydropower plants can also be used as Pumped Storage Plants (PSPs) [74, 77]. PSPs act
as a battery by using excess electricity in grids to pump water uphill at times of low demand
where it is stored until times of high demand or times of low water levels when it is released
back to the lower reservoir which turns the plants turbine and generates electricity [71].
Unlike small scale storage devices such as batteries which are used for short term storage

(daily or shorter) PSPs can store energy for weeks and even months [78]. The use of PSPs
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is extensive in developing countries such as Brazil and Chile [77]. PSPs are seen as
attractive as they can enhance the flexibility of electrical systems by balancing systems
caused by daily and seasonal variations and the increased penetration of intermittent RESs
[74, 77-78].

Hydropower does have some negatives as well. Hydropower projects require large areas of
land and often requires altering the elevation of groundwater [73]. This leads to inevitable
change and damage to the local ecosystem [73]. The changes to the local area around
hydropower projects has also caused millions of people to be resettled and has led to the
loss of livelihoods [73, 76]. They are expensive to build [74]. Unlike other RES such as wind
and solar/PV hydropower plants take a long time to design and construct [77]. As the water
used in hydropower is often used for other purposes such as irrigation the operation of
hydropower stations can be constrained [77]. They are subject to seasonal changes which
can see their potential output lowered in dry seasons and excess potential unutilised in rainy
seasons [73]. Projected climate change is likely to lead to water shortages in the future
which has raised doubts about the reliability of hydropower in the near future [73, 76].

Only around 22% of the global hydropower potential has been exploited to date [76].
However, due to the negative aspects discussed here most developed countries stopped the
building of new hydropower projects decades ago [74]. Instead in regions such as Europe
and North America the focus has been on refurbishment of some plants and the removal of
others [74, 76]. Up to 2018 the UK, France, Switzerland, Portugal, Sweden and Spain
removed 3,450 hydropower plants and between 2006 and 2014 a further 546 plants were

removed in the US at enormous financial cost [76].

Excluding traditional biomass hydropower has been the largest RES since its first use in the
latter part of the 19" century [76]. However, due to the decommissioning of plants and the
increasing penetration levels of other renewables such as wind and solar/PV its share of the
RES mix has been declining for some decades now (as shown in Table 2) [16]. At the start of
the new millennium hydropower accounted for 91.1% of the RES mix [26]. This figure fell by
14.4% in 2010 and a further and a further 20.3% between 2010 and 2019.

Table 2 - Hydropower’s Historical Share of the RES Mix

Year ‘Hydropower Other RES
1890 |  100.0 0.0
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1900 100.0 0.0
1910 100.0 0.0
1920 100.0 0.0
1930 100.0 0.0
1940 100.0 0.0
1950 100.0 0.0
1960 100.0 0.0
1970 97.9 2.1
1980 97.2 2.8
1990 93.4 6.6
2000 91.1 8.9
2010 76.7 23.3
2019 56.4 43.6

Whilst the use of hydropower has been declining globally since the 1970’s it has continued
to grow in developing countries [76]. In countries that have an abundance of hydro resources
such as Brazil hydropower is an increasingly important part of the fuel mix [77]. China which
also has extensive hydro resources has been the largest generator of hydropower since
2004 when it exceeded 100,000MW [73]. The installed capacity exceeded 200,000MW in
2010 and 300,000MW in 2015 [73]. China's theoretical hydropower reserves of
approximately six trillion kWh per year accounts for 15% of the world's supply. [73] The large
hydropower power potential in China is expected to see the resource play an important role
in the country’s electricity generation industry [73]. Developing countries continue to build
ever larger projects along the Mekong, Amazon and Congo River basins which have

overlooked the ecological damage in favour of increasing access to electricity [76].

Solar/Photovoltaic

Radiation from the sun (solar radiation) that reaches the Earth’s surface drives a series of
environmental processes that are critical to life [79]. The energy in the solar radiation that
reaches the Earth’s surface is about 1,000 times greater than the global annual consumption
of fossil fuels [80]. This energy is continuously replenished and will continue to do so for as
long as the sun continues to shine [81]. The heat energy in solar radiation is utilised for the
desalination of seawater and water heating and cooling [17]. Whilst the light energy in solar

radiation is converted into electricity using solar/photovoltaic (PV) systems [82].

Levelised Cost of Electricity (LCoE) calculates the average net present cost of each unit of

electricity generated by a plant or system over its lifetime [58, 83]. The cost of manufacturing
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PV systems has been consistently decreasing recently whilst at the same time efficiency has
been increasing [76, 84]. This led to the LCoE of large-scale PV installations drop 73%
between 2010 and 2017 [85]. The decrease in the LCoE of PV generation has seen it reach
parity with traditional fossil fuel plants, and leading energy companies, consultancies and
non-governmental organisations all forecast that this parity will continue into the near future
[84].

The parity of PV to fossil fuels has seen support in the technology grow in policy makers
around the globe who see it as a cost-effective way of empowering the energy transition [17,
86-87]. This support has seen PV systems installed in a wide range of sizes in recent years,
from residential, prosumer, systems of 10kW and less to utility size installations between 1
and 10 MW [58]. These installations have combined to see global PV capacity increase
significantly in the past decades [86, 88].

Global installed PV capacity reached 100 GW in 2012 [89]. In 2017 new installations of PV
surpassed that of fossil fuel and nuclear installations combined [85]. The majority of these
new installations where at the distribution level where generous feed-in tariffs encouraged
homeowners to install small PV systems on their roof-tops in countries such as Germany,
the UK and Japan [46, 89]. 272 GW of electricity generating capacity was connected globally
in 2018 and 47 GW of capacity was decommissioned [89]. Of the 272 GW of new capacity
39% (107 GW) was PV [89]. The new capacity saw PV meet 2.6% of global electricity
demand in 2018 [88]. By the end of 2019 this figure passed 3% [46], and global PV capacity
reached 586 GW [90]. China had the largest installed capacity (205 GW) followed by Japan
(61.8 GW), the USA (60.5 GW), Germany (49 GW), India (34.8 GW) and lItaly (20.9 GW)
[90]. The 49 GW of PV capacity in Germany is more than 30% of the countries thermal
electricity generating plant capacity and the 20.9 GW in Italy is more 20% of their thermal
plant capacity [89].

The recent increases in PV capacity all exceeded forecasts and this trend is expected to
continue as the transition to a sustainable future accelerates [46]. It is predicted that PV
capacity could reach as high as 1.4 TW by 2024 [89]. Along with wind energy PV is
forecasted to increase more than other energy source beyond this date and up to 2050 [91].
By which time wind and PV combined is expected to meet between one-third and two-thirds
of total global electricity demand [84]. According to "A European long-term strategic vision

for a prosperous, modern, competitive and climate neutral economy" in order for the EU to
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meet 2050 decarbonisation targets in the power sector the member states would require a
combined PV capacity of between 441 GW and 825 GW installed by that time [89].

Figures from the IEA show that $1.85 trillion was invested in the global energy sector in 2018
[89]. 42% ($775 billion) of this figure was invested in the electricity generation sector [89].
RES received the highest share of this investment ($304 billion) followed by network
infrastructure upgrade ($293 billion), fossil fuel power ($127 billion), nuclear power ($47
billion) and energy storage ($4 billion) [89]. A further $25 billion of the investment in the
global energy sector went towards RES for transport and heating [89]. Developing countries
invested more than developed countries on RES in 2018, continuing a trend begun in 2014
[89].

PV attracted the largest share of the investment in RES every year between 2000 and 2018
[89]. In 2018 PV attracted 42.5% ($140 billion) of the total investment in RES [89]. This
investment was spread evenly between developed ($65 billion) and developing economies
($75 billion). $2.1 billion of the global investment in PV was spent on research and
development projects which were mostly supported by the EU and the Chinese government
[88].

The investment in PV saw manufacturing levels increase 40% on average each year
between 2004 and 2018 [89]. In 2018 around 120 GW of PV was manufactured across the
world in Europe, Japan, China, and other Asian countries such as Taiwan, India, Malaysia,
Thailand, the Philippines and Vietnam. [89]. The increase in manufacturing levels has moved
the PV industry closer to the mass-producing industry that is required meet the predicted rise

in demand.

Curtailment of Solar/PV Output

Whilst PV is pivotal in meeting decarbonisation targets increasing penetration levels also
pose significant challenges to network operators [92-94]. This is particularly true at the low
voltage distribution level where the existing infrastructure is ill suited to high penetration
levels of renewables such as PV [95]. For example, at times of high PV generation and low
customer demand (e.g. UK summer), reverse power flow will likely cause network voltage to
rise beyond limits mandated by grid codes [94]. This will result in a curtailment of PV

generation, unless appropriate control means are used.
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Curtailment is defined as the “reduction in the output of a generator from what it could
otherwise produce given available resources, typically on an involuntary basis” [96].
Curtailment is primarily induced by network operators for two purposes: a temporal
mismatch between supply and demand (oversupply), and to avoid overvoltage [96-97].
Curtailment has been a standard practice since the start of the electric power industry [96].
However, as PV penetration levels increase so does the risk of oversupply and voltage

violations and therefore curtailment of PV [98-99].

A recent study found that in 2018 around 6.5 million MWh of PV electricity was curtailed in
Chile, China, Germany and the U.S. [100]. As penetration levels of PV continue to increase
so do the instances of curtailment. For example, in California curtailment of PV has doubled
between 2018 and 2019 [100]. The curtailment of PV is expected to continue to increase
significantly in the near future, with one recent study projecting curtailment could reach 30-
60% of potential output [99].

When the output of a conventional fuel-based generators is curtailed the unused fuel can be
burned at a later time [100]. However, the curtailment of PV output is often considered a
loss, as effectively free energy is wasted and unused [101]. Curtailment of PV also
represents missed chances to reduces CO, emissions of electricity networks [102]. These
factors reduce the economic viability of PV projects and could deter future PV deployment by
undermining investor confidence [96, 98-100, 103]. Therefore, current thinking is that
curtailment of PV output should be a last resort in order to maximize the potential of the
technology [97, 101].

A popular measure for reducing PV curtailment in literature is increasing energy storage [92,
104]. However, increasing energy storage would require a significant capital investment from
network operators [100]. Instead, operators and planners are seeking strategies to manage
networks that minimize curtailment whilst also minimising network upgrades [100, 105]. One
strategy that has been proposed is to discretely size PV systems that minimise investment
whilst avoiding excess generation [101]. However, this approach limits the potential capital

return of any PV project [98-99].

wind Energy
The original source of the energy in wind comes from the sun [106]. Uneven heating of the

earth’s surface by the sun causes pressure differences that in turn causes wind [106-107]
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Wind is present everywhere around the globe but at different densities in different locations
[106, 108]. According to the WEC around 27% of the Earth’s land area has annual wind
speed of more than 5m/s at 10m above ground level [17]. Harnessing the energy in wind is a
free, clean (carbon neutral) and unlimited source of energy [109]. Global wind energy
resources are larger than the anthropological primary energy demand [110], with around 10
million MW of wind energy continually available [107]. Wind energy, along with PV, is the
fastest developing RES [111].

The power of the wind has been harnessed since the earliest history of human civilization
[84]. Firstly, for transportation by propelling sailing vessels and latter for mechanical
applications such as windmills which were used for grinding grain or pumping water [84, 106,
109]. Interest in wind energy faded due its intermittent nature and because of the invention
of steam power in the 18" century followed by latter technologies which harnessed the
energy in fossil fuels [106, 109].

Windmills convert the kinetic energy of wind into mechanical energy [106]. Wind turbines
convert the wind’s kinetic energy into electrical energy [106-107]. The first wind turbine was
built in Denmark in 1890, by 1910 the country was home to several hundred wind turbines
which each had a capacity of between 5 and 25 kW [109]. Commercial wind turbines were
introduced to the US in the mid 1920’s where they were used on farms to charge storage
batteries which were in turn used to power small electrical appliances such as radios and
lights [109]. Up until the 1970s wind turbines where primarily used to supply electricity to
communities who lacked access to national electricity networks [84]. The Arab oil crisis of
the 1970’s intensified the interest in wind turbines and saw governments around the world
examine the potential of the technology to meet significant portions of their electricity needs
[84, 106].

The utilization of any energy sources is highly dependent on its cost [112]. The cost
effectiveness off wind turbines is dependent on their size and power rating [107]. The size
and power ratings of individual wind turbines has increased since interest in their application
was intensified in the 1970’s [107, 112]. By 1980 the typical wind turbine had a rotor
diameter of 15m and a power rating of 50 kW [112]. In 1990 the typical figures increased to
40m and 500 kW and increased further to 80m and 2 MW in 2000 [107]. Today typical
turbines have diameters of 190m and power ratings of 10 MW [112].
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Technological improvements during this time have also seen the efficiency of wind turbines
increase annually [106-107]. They have also increased the lifespan of today’s turbines to
between 20 and 25 years [113]. The increased power ratings and efficiency have seen the
cost of wind-energy decrease to a fraction of its 1970’s level [84]. This reduction in cost has
seen wind energy become a cost competitive technology in most markets [84, 112-114].
Indeed, BloombergNEF, IEA and BP have all stated that wind has achieved price parity with
natural gas and that they anticipate this to continue into the coming decades [84]. This in
turn has seen wind energy playing an increasingly important role in the global primary

energy mix especially for the generation of electricity [84, 112].

Due to the differences in wind densities in different locations it has been found that to better
utilise wind resources it is often more advantageous to install serval wind turbines at the
same site [106]. As well as capturing more wind energy from high density locations this also
reduces operational costs by concentrating repair and maintenance equipment and labour
[106]. The arrays of wind turbines on a site can range from a small number to several
hundreds and are known as wind farms [108]. Larger wind farms have capacities of
comparable to traditional power stations [112].

Individual wind turbines and wind farms can be constructed both onshore and offshore.
However, the majority are currently installed onshore (95.2% as of 2020) (see Table 3) [115].
This is because whilst there is more wind resource at higher speeds and less turbulence at

sea offshore wind is significantly more expensive to construct and operate [106, 113].

Table 3 - Global Wind Installations by Region (Data [109])

On-Shore Installations (MW) | Off-Shore Installations (MW) Combined (MW)
Region Year New Total New Total New Total
Americas 2019 13,437 148,081 0 30 13,437 148,111
2020 21,750 169,758 12 42 21,762 169,800
Africa & Middle East 2019 830 6,454 0 0 830 6,454
2020 823 7,277 0 0 823 7,277
Asia-Pacific 2019 28,626 283,780 2616 7,301 31,242 291,081
2020 52,546 336,286 3,120 10,414 55,666 346,700
Europe 2019 11,741 182,651 3,627 21,901 15,368 204,552
2020 11,813 194,075 2,936 24,837 14,749 218,912
World 2019 54,634 620,966 6,243 29,232 60,877 650,198
2020 86,932 707,396 6,068 35,293 93,000 742,689

24



Despite the differences in costs there has been a significant increase in offshore wind
energy since the start of the millennium [111, 113]. One reason is the maturity of offshore
wind energy has seen the gap between the cost to onshore narrow [114]. The other reason
is the limit of onshore wind potential due to the lack of land space with sufficient wind
resources and public opposition [106, 111, 113].

The concept of offshore wind turbines was developed in the 1930’s by the German inventor
Hermann Honnef [106]. In the 1970’s wind farms off the coast of Massachusetts were
proposed but never built [106]. It wasn’t until 1991 that the first offshore wind turbine was
installed 350m of the coast of Sweden [106, 111]. The following year the first offshore wind
farm was construction near the town of Vindeby in Denmark [106]. The 1990° witnessed
rapid growth in the European wind industry with experimental projects built up to 4km off
coasts [111, 114].

Europe is the largest consumer of offshore wind energy while the UK, Germany, Denmark,
the Netherlands and Sweden are all major consumers [111, 114]. The UK is the global
leader in terms of offshore installed capacity with 10.2 GW as of 2020 [111, 115]. The UK
government has set an ambitious target of almost quadrupling this figure to 40GW by 2030
[115]. In 2020 the UK installed 483 MW of new offshore wind and Germany installed 237
MW but the world leader, for the third year in a row, was China who installed 3 GW of new
capacity in 2020 [115]. These new installations have seen China overtake Germany for
second spot in terms of capacity [114-115]

In 2016 figures from the Global Wind Energy Council (GWEC) showed the global cumulative
capacity of both onshore and offshore wind energy grew by 54.6 GW to 486.74 GW [110].
By region the Asia-Pacific led the way of new installations with 203.6 GW followed by
Europe with 166.3 GW [110]. Further figures from GWEC show that by 2020 the cumulative
total had reached 742.7 GW after experiencing a year-on year growth of 53% [109]. The
growth in capacity of wind in recent decades show the resource meet 1% of the global
electricity demand for the first time in 2007 [132], and 5% for the first time in 2019 [26].
Several countries have surpassed the global average and meet 10-20% of their electricity
demand from wind [84]. On the 3™ of November 2013 Denmark became the first country to
produce more electricity through wind energy than was consumed at the national level,
which has now become a regular occurrence in the country [112]. The growth in capacity is

expected to increase by a factor of 10 by 2050 [84]. Therefore, wind is expected to play a
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significant role in the global energy mixes of the present and near future [91, 107, 112]. With
some experts predicting it will meet 25-33% of global electricity demand by 2050 [84].

The life cycle harmful emissions of wind energy are extremely low [84]. In scenarios created
by the Global Wind Organisation it was predicted that wind energy saved 1.2 billion tons of
CO? emissions in 2020, and that this figure could rise to 2.6 billion tons per year by 2030.
[110]. Therefore, wind is predicted to be a major contributor to the growing sustainable

energy of the world in the future [84].

Penetration levels of renewables varies by region and country [20]. The acceptance of
renewables is high in developed nations and is rising in developing nations [47] especially in
the Asia Pacific region [20]. In 2018 the highest concentration of RES was in Asia (43.54%),
followed by Europe (22.82%) and North America (15.59%) [119]. In terms of per capita
consumption Iceland, Denmark, Germany, Sweden, and Finland lead the way [36]. In the EU
one-third of energy demand is met by RES, in China it is one-fourth, and in the US, India and
Japan it is one-sixth [19]. In Asia wind and solar/PV are both significant contributors to the
rise in RES in the region, with 600GW of the two sources having been installed since 2010
[19].

RES and Electricity Generation

The penetration of RES has increased in several sectors such as heating, transport and
cooling [36]. They are predominantly recommended for electricity generation [86-87]. In the
member states of OECD and EU the proportion of RES in the electricity fuel mix has
increased significantly in recent years [19]. In 2019 the share of RES in the global electricity
fuel mix increased 1.1% from the previous year reaching 10.4%, surpassing nuclear for the
first time [57]. RES, in particular solar/PV, wind and hydropower, is expected to increasingly

meet electricity demand in both developed and developing nations [36, 116].

Benefits of the Use of RES Technologies in Generating Electricity

To keep global warming to below 2°C a report in 2017 published by the International
Renewable Energy Agency (IRENA) argued that global CO, emissions would need to be
reduced to 9.5 Gt by 2050 [63]. RES do not emit CO, or other GHGs in their day-to-day
operations [35, 44, 117]. Therefore, they are seen as a vital component in the fight to limit
global warming [63]. However, several studies have reported that RES will only be able to

have a positive impact on the fight against global warming once a minimum threshold of
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penetration levels has been reached [64]. The authors of [118] calculated that RES need to
supply 8.39% of global energy demand before any impact on CO;, emissions could be
observed. Whilst the report by IRENA stated that RES needs to supply 80% of global
electricity demand by 2050 to ensure global warming targets are met [63].

RES are also seen as a way of increasing energy security by reducing the dependency on
foreign energy sources [16]. The technological advancement and lowering costs of RES in
recent decades has seen them increasing be seen as a way to improve energy equality [19,
35].

The ability of RES to address all three dimensions of the energy trilemma highlights their
potential to play a major role in the transition to a sustainable energy paradigm [35-36, 44,
86]. This has seen interest in RES is growing internationally [44] and especially in Asia [19].
They play a key role in defining energy policies around the globe [86] in areas such as the

EU, UK, US and Asian countries such as China, India and Japan [19].

Penetration Levels of RES

Penetration levels of renewables varies by region and country [20]. The acceptance of
renewables is high in developed nations and is rising in developing nations [47] especially in
the Asia Pacific region [20]. In 2018 the highest concentration of RES was in Asia (43.54%),
followed by Europe (22.82%) and North America (15.59%) [119]. In terms of per capita
consumption Iceland, Denmark, Germany, Sweden, and Finland lead the way [36]. In the EU
one-third of energy demand is met by RES, in China it is one-fourth, and in the US, India and
Japan it is one-sixth [19]. In Asia wind and solar/PV are both significant contributors to the
rise in RES in the region, with 600GW of the two sources having been installed since 2010
[19].

The penetration of RES is increasing significantly in member states of OECD and EU [19]. In
2019 RES accounted for 80% of new generation in OECD countries, in non-OECD countries
it accounted for 35% of growth [36]. If the adoption of RES in the EU continues to grow at
the same rate of the last decade, they will supply more energy than coal by 2021 in the
region [52]. The EU want the increase of RES to continue and have set the target of 27%
RES by 2030 [120]. The IEA has predicted that renewable energy sources could increase
their share in the electricity fuel mix to 12.4% in 2023 [50] and 39% in 2050 [36].
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The expenditure on RES grew 63.3% ($177 billion to $289 billion) globally from 2008 to 2018
[36]. In developed countries expenditure rose 12.6% $(120.9billion to $136.1 billion), whilst
in developing countries the rise was 102% ($30.5 billion to $61.6 billion) [36].

Employment

In 2016 the global renewables sector employed 9.8 million people (see Table 4) [20].
Solar/PV was the largest employer with 31.6% of the renewables total, followed by modern
biofuels, hydropower, wind, solid biomass and other technologies which includes biogas,
small hydropower, geothermal and concentrated solar power [121]. China was the largest
employer in the renewables sector (40.3% of global total), followed by the European Union
(12.3%) and Brazil (10.8%) [20].

Table 4 - Employment in Renewables Sector in 2016

Technology Employees Share of
Sector (millions) | Renewables
Solar/PV 3.1 31.6
Modern Biofuels 1.72 17.6
Hydropower 1.52 15.5
Wind 1.16 11.8
Solid Biomass, Heating & Cooling 1.55 15.8
Other Technologies 0.75 7.7
Total 9.8 100

2.2.3 Link with Economic Growth

It has long been known that electricity consumption and energy consumption in general are
key drivers for both economic and socio-economic growth [17, 36, 107, 122-123]. It has also
been found that there is an intimate and symbiotic relationship between energy and
economic growth [122]. This relationship means that whilst economies grow so does energy
demand [117]. Today this means the energy sector accounts for nearly 10% of global GDP
[123]. Due to the diminishing reserves of fossil fuels and their negative impacts on the
environment discussed earlier, alternative (environmentally friendly) energy sources have
been investigated to determine their potential to replace environmentally damaging fossil
fuels [47, 124].

The relationship between renewable energy consumption and economic growth has been

examined in several recent studies. These studies have examined individual countries such
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as the United States [125], Germany [126], India [127] and Indonesia [128]. Other studies
have examined different regions such as Asia [129-131], Africa [132-134], the European
Union [135-136] and the Commonwealth of Independent States [137]. Some have examined
Groups such as the Organisation for Economic Co-operation and Development (OECD)
[138-140]. Whilst others concentrated on low and middle-income countries around the globe
[141].

These studies and others found a strong symbiotic relationship between the consumption of
renewable energy and economic growth, particularly in emerging economies [126]. The
findings in [126] showed that a 1% increase in the consumption of renewable energy led to
economic growth of 0.219%. Whilst the findings in [36] found that an increase of 1% in per

capita income results in a 3.5% increase in the consumption of renewable energy.

2.2.4 Present Day Energy Mix

By sector electricity generation and transportation are the major consumers of energy
globally. Figures from the United States Energy Information Administration (US-EIA) show
that in 2020 they combined to consume 64% of the energy in the United States (US),
followed by industry, commercial, and residential (see Figure 5) [142]. Electricity generation
and transport are also the main contributors to CO, emissions globally through their heavy
reliance on fossil fuels [45].

m Electricity Generation mTransportation  mIndustry Commercial = Residential

Figure 5 - Energy Consumption by Sector in the US in 2020
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In 2019 fossil fuels continued to dominate the global primary energy mix meeting 84.4% of
demand [26]. The other 15.6% being met through low carbon sources (see Figure 6). The
ratio between high carbon and low carbon sources in the electricity fuel mix was better
during the year with fossil fuels meeting 63.3% of demand and low carbon source meeting
the other 36.7% (see Figure 7). Despite the penetration levels of low carbon energy sources,
in particular renewables, continuing to increase year on year the world burns more fossil
fuels each as energy demands increase. In The 10 years up to 2019 energy production from
fossil fuels increase from 116,214 TWh to 136,761 TWh [26]

mOQil mCoal mGas mMNuclear mHyropower mWind mSolar/PV m Other Renewables m Biofuels

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6 - Global Primary Energy Mix 2019

mOil mCoal mGas mMNuclear mHyropower mWind mSolar/PV m Other Renewables

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 7 - Electricity Fuel Mix 2019
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u Energy (electricity, heat, transport) ™ Industrial Processes ® Agriculture, land use, change & forestry ™ Waste (landfill and wastewater)

9.44 1.57
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Figure 8 - Global Greenhouse Gas Emissions by Sector 2016

2.3 The Environment and Climate Change

The increasing consumption of fossil fuels is unsustainable [16]. Whilst energy consumption
from fossil fuels leads to economic and social growth it also leads to environmental
degradation most notably in the form of significantly increased greenhouse gas emissions

which leads to climate change [47, 124].

Climate change is defined as “the variability of the climate system that includes the
atmosphere, the biogeochemical cycles (carbon cycle, nitrogen cycle and hydrological
cycle), the land surface, ice and the biotic and abiotic components of the planet earth” [143].
A major impact of climate change is global warming which is the increase of the mean global
temperature [143].

The International Panel on Climate Change (IPCC) state that global mean temperatures
have risen by 0.85°C (with a range of 0.65-1.06°C) since the second industrial revolution of
the 1820s [45, 52, 144]. This increase in temperature is evidenced in a recent report from
the IPCC that showed that seventeen of the eighteen warmest years occurred in the 21%
century [145]. Whilst this temperature rise may appear small it has increased extreme
weather events and climate disasters [45, 143, 146]. Global warming has seen sea levels
rise causing the flooding of coastal areas and the disruption of global rainfall and water
supply [17, 146]. This is reflected in the damage caused to the northern range of the Great
Barrier Reef in Australia which has lost half its coral cover since 2014 due to extreme

weather events [52].

Extreme weather and climate disasters are also responsible for the loss of human life and
the disruption of societies and cause severe financial burden, for example in the 2017 it is
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estimated they cost the United States $306 billion [52]. Climate change can also alter insect
and plant phenology and affect global food production levels [143]. The impacts of climate
change are potentially long-term [17]. Indeed, if global warming is not stopped some of the
main landmasses and islands around the world will become uninhabitable. [147]

Human activities such as the burning of wood have affected the environment throughout
history by causing deforestation and creating air pollution [16]. However, the impacts of
human activity on the environment have increased massively since the industrial revolutions
of the eighteenth and nineteenth centuries [16]. The exponential growth in the consumption
of fossil fuels since the first industrial revolution has led to large amounts greenhouse
gasses being released into the atmosphere [16-17].

The emissions of greenhouse gases (GHG) such as carbon dioxide (CO;), methane (CHa,),
and nitrous oxide (N2O) are the main proponents of climate change and global warming
[143]. Greenhouse gasses collect in the atmosphere where they stay for centuries absorbing
sunlight and trapping heat [148]. CO, forms the largest component of harmful GHG

emissions and therefore is the most responsible for climate change [52, 59].

Figure 9 shows historical global CO, emissions. Prior to the first industrial revolution CO>
emissions, also referred to as carbon emissions, were very low [26]. Up to the middle of the
20" century the growth in emissions was still relatively low. In 1950 global CO, emissions
were just below 6 billion tonnes [26]. Between 1950 and 2000 emissions grew at an average

of 2.9% per year.
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Figure 9 - Historical Global CO2 Emissions

Between 2008 and 2018 the growth in CO; emissions continued to grow but at a slower rate,
1.1% per year on average [57]. In 2019 the growth slowed to 0.5% [57]. Global emissions
passed 364 billion tonnes by the end of the year with the US alone emitting about the same
amount as the entire world did in 1950 and China twice as much [26]. China, the US and
India together have been responsible for 85% of the increase in emissions since 2018 [59].

The negative effects of CO, emissions on the environment are largely irreversible for 1,000
years after the emissions stop [146]. Research has shown that there is a limit to the amount
of GHG such as CO; that the earth’s atmosphere can absorb before the effects of global
warming are irreversible [45]. In 2018 the IPCC stated that we are close to passing this point
and that the world needs to reach net zero emissions by 2040 to prevent this point being
reached [45].

The scientific community and policy makers around the world agree that climate change is
one of the most pressing global issues of the 21 century [16, 47, 54, 59, 64]. Restricting
global temperature rise to 2°C compared to pre-industrialization levels is seen as key to
combating climate change [45, 54, 63]. To this end, 196 parties signed a legally binding

international treaty known as the Paris Agreement in Paris, France on the 12" of December
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2015. The goal of the teary is to limit global warming to below 2°C (preferably 1.5°C)
compared to pre-industrial levels [89].

In order to restrict global warming to 2°C a number of governments of developed and
developing countries have set targets to reduce their CO, emissions [36, 26]. As a result,
several policies and initiatives have been developed at national and international level with
the common aim of mitigating climate change [54]. Key to these policies and initiatives is
reducing the dependence on fossil fuels [47]. As whilst emissions from fossil fuels appear to
be slowing, they have not yet reached their peak [26]. One area where emissions are rising
the highest is the global south where emissions have risen steadily since the 1980’s due to
the urbanisation and economic development programs instigated by countries in the region
[45]. This was seen in a study of the urbanisation of India between 1901 and 2011 which
found that whilst the urbanisation promoted economic growth it also increased CO
emissions [64].

As energy is the main contributor to greenhouse gas emissions and climate change, clean
and affordable energy is seen as an important tool in combating climate change and meeting
sustainable goals [20]. Indeed, the decarbonisation of the global energy system and the
electrification of final use of energy is seen as the single most important component in
limiting global warming and meeting the aims of the Paris Agreement [89, 149]. A model
developed by the IEA found that the decarbonation needs to be achieved well before 2050
[89]. The decarbonisation of energy systems will involve the transition to more

environmentally sustainable systems that use clean energy sources [81, 150].

2.3.1 Environmental Kuznets Curve

The Environmental Kuznets Curve (EKC) hypothesizes that there is an inverted U-Shaped
relationship between of economic growth and environmental degradation [151-152]. This
means that the early stages of economic growth contributes to environmental degradation.
However, as growth continues degradation declines, and when a certain point of
development is achieved the trend reverses and further economic development leads to
environmental improvement. Some authors have used the theory to claim that “there is clear
evidence that, although economic growth usually leads to environmental degradation in the
early stages of the process, in the end the best—and probably the only—way to attain a

decent environment in most countries is to become rich” [153].
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The theory is based on the premise that the economic development of pre-industrial
economies requires increasing levels of energy [51]. It also assumes that environmental
protection will be seen as a conflicting goal to growth in the early stages of economic
development [124, 152]. The recent industrialisation of China is often used as to
demonstrate this as during the early stages of its economic growth the country relied almost
exclusively on environmentally damaging fossil fuels to meet its rapidly increasing energy
demands. China also demonstrates that as an economy reaches a certain stage it will focus

more and more on trying to achieve sustainable energy paradigms.

2.3.2 Traditional Thinking

The approach taken by China to achieve economic development was the same approach
that has been taken by numerus countries since the 1% industrial revolution. It is the
traditional thinking associated with this approach that assumes that economic development
and environmental protection are conflicting goals [152]. Traditional thinking also assumes
that there is a scale effect to economic growth and environmental damage [152]. This
assumes there is a scale effect between the two factors that means a 1% increase in
economic growth causes a 1% increase in environmentally damaging emissions if there is
no change in the technologies and industries driving an economy. However, different
industries have different pollution concentrations [152]. Over the course of an economies
development the industries driving growth will change. In the early stages of development
heavy industry which is a severe polluter replaces low polluting agriculture. In the later
stages of development heavy industry is replaced by less intensive light manufacturing and
service sectors [152]. It is this shift in industries which creates the Kuznets Curve and gives

it a quadratic appearance, as can be seen in Figure 10.

35



Environmental

Degradation
4 I Turning
| Point
Developing Developed
Economies Economies

Economic
Growth

Figure 10 - Environmental Kuznets Curve

2.3.3 Factors in the Decrease of Pollution

Along with the change in industries driving economies there are several other factors which
decrease pollution levels of economies. These include improvements in technologies that
increase productivity and reduce emissions of processes [152]. Improvements in technology
also lead to more efficient use of natural resources and recovery of some resources through
recycling. Increasing income levels of populations also make them more willing to pay for a
cleaner environment [51]. However, the most significant means of reducing pollution is the

substitution of fossil fuels with RES technologies in fuel mixes [51].

The effectiveness of RES in reducing pollution levels was demonstrated by the authors of
[154]. The authors examined the factors that reduced pollution levels of seventeen OCED
countries. The findings confirmed the most significant factor was the increasing penetration
levels of RES in their respective fuel mixes of the countries studied. The findings also
confirmed the validity of the EKC hypothesis by showing that the more developed an
economy became the less harmful pollutants it emitted. The findings of [155] also confirmed

the effectiveness of increasing RES penetration levels in reducing damaging pollutants.
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2.3.4 Developed and Developing Countries

Energy demand is higher for developing economies compared to developed economies [47].
According to the IEA by 2040 developing nations will account for 64% of energy demand
with Asia expected to see the largest increase in demand [19]. This was shown in the
findings of [156] which examined 90 countries at different stages of economic development.
The study found that energy demands were higher for developing countries especially those
in the early stages of development. The study also found that high income countries such as
the USA and UK had reached the turning point of the EKC and were actively seeking ways
of significantly reducing their damaging effects on the environment. Heightened
environmental awareness in both policy makers and the public of developing countries has
seen an increase in the support of the use of RES in the early stages of development of
many developing nations around the globe in the aim of transitioning towards a more
sustainable future [51].

2.3.5 Environmental Sustainability

According to the World Energy Council (WEC) environmental sustainability is the transition
of “energy systems towards mitigating and avoiding potential environmental harm and
climate change impacts” [157-159]. The environmental sustainability dimension of the
energy trilemma focuses on decarbonisation to combat climate change through increasing
productivity and efficiency of generation, transmission and distribution of energy [21, 24,
160-161].

The United Nations Framework Convention on Climate Change (UNFCCC) states that
countries have a common but differentiated responsibility towards environmental
sustainability [161]. The UNFCCC goes on to say that developed countries should take the
lead on environmental sustainability [161]. This is generally the case and means that the
most environmentally sustainable energy systems are found in the developed nations of
Europe [21]. However, various institutions are increasingly expecting developing nations to
mitigate climate change more actively [161]. Indeed, climate change considerations are
increasingly important criteria for international development banks in their dealings with
developing countries [161]. Today most countries in the developed and developing world see
the transition to environmentally sustainable energy systems as a top priority in their policy
making [123].
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The energy mix of a nation is crucial to it achieving environmental sustainability [162].
Diversifying fuel mixes is seen as key to achieving long-term sustainable energy paradigms
and de-carbonising economies [62, 162]. The two most often talked about strategies for
creating long-term sustainable energy systems are the electrification of the transport sector
and the increase in penetration levels of clean RES into fuel mixes [89]. Of the RES currently
widely available PV has been highlighted as playing a significant role in these two strategies
due to the maturity of the technology, its modular design and its continual decreasing cost
[163].

2.4 Energy Equality

Energy equality concerns the access to electricity, heat, or other modern energy services for
both domestic and commercial use at affordable prices [24, 161, 164]. WEC defines energy
equality as “a country’s ability to provide universal access to reliable, affordable, and
abundant energy for domestic and commercial use” [21]. It is estimated that 1.4billion people
(20% of the global population) lack access to reliable electricity and 2.7 billion depend on
biomass for cooking [161]. The people living in these conditions are said to be living in
energy poverty. Due to population increases energy poverty is on the rise. The ranks of
people living in energy poverty is predicted to increase by several hundred million in the

coming years, mostly in the global south [24].

Due to the importance of energy equality in enabling social and economic prosperity
irradicating energy poverty is a top priority for many developing countries in the global south,
particularly those in Southeast Asia. This has led to several governments in Southeast Asia
to enact ambitious national electrification programs [165]. Southeast Asia has large
concentrations of populations and economic activities along its extensive coastlines and has
a strong reliance on the region’s natural resources such as agriculture and forestry [166].
Therefore, it is at high risk from the effects of climate change [166]. As a result of this,
policymakers in the region are focused on finding a sustainable energy model that allows the
region to irradicate energy poverty without compromising energy security or damaging the
environment [165, 166]. Policy makers in Africa, where accesses to electricity is also low,
are also focused on finding sustainable energy models and see investment in RES as a way

to achieve this as well as create employment [162].

The COVID-19 pandemic which was first identified in Wuhan, China, in December 2019

highlighted the importance of energy equality. Energy services have been pivotal in the
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response to the pandemic by powering healthcare facilities, suppling clean water for hygiene
and enabling communication services whilst people were following social distancing rules
[164].

2.5 Energy Security

The concept of energy security used to be concerned with the balance between supply and
demand [23]. The modern concept of energy security has evolved to include environmental
and social concerns and is incorporated into national security policies [23]. Today’s energy
security paradigm must consider several geopolitical dimensions such as international trade,
political stability and foreign affairs [18, 23, 35].

The WEC defines energy security in today’s world as “a nation’s capacity to meet current
and future energy demand reliably, withstand and bounce back swiftly from system shocks
with minimal disruption to supplies” [21]. Whilst the United Nations Development Program
defines energy security as “the constant availability of energy in sufficient and affordable

quantities without any adverse economic and environmental impacts” [162].

Energy security incorporates the efficiency of the management of both domestic and foreign
energy sources, the quality of supply and the reliability and resilience of energy systems [21,
24]. It covers short-term facets such as the ability of energy systems to respond swiftly
changes in the balance between supply and demand, and long-term facets such as the
investment to supply energy in a socioeconomic and sustainable way [167]. Achieving a
secure supply of energy is a prerequisite of modern economies functionality and critical to
technological revolution [35]. In regions with low access to energy such as Africa energy

security is seen as one of the most important strategies to alleviating poverty [162].

Different countries and organisations have very different positions on energy security
dependant on domestic energy resources and reliance on imported sources of energy [21].
Counties which depend heavily on imports due to limited natural resources are thought of as
suffering energy security vulnerability [35]. This is true of many of the countries in the EU
which as a whole is one of the largest energy importers around the globe [18, 62]. 90% of
the crude oil and 66% of the natural gas consumed in the EU come from external sources
[35]. Most of the natural gas consumed by EU member states, particularly those countries in
the Baltic region and eastern Europe, comes from one source, Russia which supplies 39% of
the EUs demand [35, 39, 168].
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The dependence on a single supplier leaves the member states of the EU vulnerable to
disruptions of supply, infrastructure failure and higher price fluctuations [18, 35]. These
vulnerabilities were highlighted in by a number of disputes between Russian and Ukrainian
gas companies between 2009 and 2014 and the Ukrainian civil war and Russian annexation
of Crimea in 2014 [62, 168]. These events resulted in cuts to the gas supply to Ukraine in
June 2014 which restricted the supply to the EU countries [18, 168].

These events have seen energy security receive increasing attention and become one of the
primacies of the EUs energy policy [18, 35, 168]. These policies are intended to reduce

member states dependence of energy from politically un-stable regions [39].

Approximately two-thirds of the crude oil consumed in the US comes from foreign sources
with 68% coming from countries in the middle east [56]. Almost all the natural gas imported
into the US (98%) comes from one source, Canada [39]. These figures have seen numerous
US political figures call for an end to the dependence on foreign oil and gas since the Arab
oil embargo of 1973 [29]. Today reducing this dependence is seen as key to achieving
energy security [56]. Achieving energy security is in turn understood as vital in growing the

country’s economy and meeting its defence needs [56].

As an energy exporting country, the Russian concept of energy security is different to most
other countries around the globe [169]. Due to its vast domestic fossil fuel resources one
quarter of Russia’s GDP comes from energy exports [169]. Therefore, Russia’s energy
security policies concentrate more on the security of demand which has been hit by
sanctions from EU countries since the annexation of Crimea in 2014 [169]. The depletion of

fossil fuel reserves is another concern for Russia and its economy [18].

The energy mix of a nation is an important aspect of its energy security [162]. Reducing the
dependence on external energy suppliers by diversifying energy mixes is seen by policy
makers in developed and developing countries as essential to achieving energy security [23,
62, 168, 170]. For example, EU leaders have implemented a number of polices such as the
European Energy Security Strategy of 2014 which aim to diversify the fuel mixes of member

states in order to reduce their dependence on Russian natural gas supplies [62, 171].
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Concentrations of fossil fuels are limited to a small number of locations around the globe
[16]. This fact along with depleting reserves can create military tensions and even conflicts
[16, 35]. This in turn can adversely influence the energy market due to concerns over the
reliability of supply [56]. This forces many countries to stockpile fossil fuels to ensure
continuity of supply such as Japan who stockpile a 90-day supply of oil and a 50-day supply

of natural gas respectively [35].

The potential of military conflicts and political instability significantly increase the price of
fossil fuels at times [64]. A recent example of this was the conflict between Europe’s two
biggest natural gas suppliers, Russia and Ukraine, in 2014 discussed earlier [169]. This led
to a significant increase in energy costs across Europe for a considerable length of time. The
fear of these price rises and their potential to remain persistently high as well as the
reliability of supply means that many governments now view reliance on fossil fuels as a

serious risk to their energy security [64, 172-173].

The COVID-19 pandemic which caused a reduction in demand for oil highlighted the
susceptibility of global fossil fuel markets to price shocks [162]. This fall in demand led to a
massive fall in oil prices and a collapse in the market which saw oil record negative prices for
the first time in history on the 20™ of April 2020 [162, 174] The susceptibility of these markets
has led to several countries with high indigenous fossil fuel resources such as Canada and

Russia view diversification as a way of improving energy security [21, 162].

2.6 Energy Diversity

All energy sources are subject to market forces which can result in large price rises and
even interruption of supply [175]. Even if the risks associated with any one source of energy
are low the consequences of the risks associated with interruption of supply are extremely
high [162]. Energy diversification is the introduction of different energy sources into a mix
and increasing the share of energy from each source to avoid the dependence of any single
source [162, 170]. This is seen as a way of reducing the risk of interruption of supply as
diverse energy systems are more likely to continue in the presence of the failure of any

singular energy source [170].

Countries with rich fossil fuels reserves such as Russia view diversification as a major risk to
their energy security [169]. However, they are aware that they need to adapt to the structural

changes that will occur in the energy sector [169]. Whilst countries that are heavily reliant on
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energy imports are looking to diversify their energy mixes that will increase energy security
without damaging the environment [23]. The strategy employed by the Eu to achieve this
goal is the replacement of imported fossil fuels with indigenous RES technologies which they
state will allow them to increase energy security of member countries and help them meet

de-carbonisation targets [18, 35].

2.7 Transportation sector

2.7.1 Green House Gas Emissions

The transport sector is one of the major consumers of primary energy in the world today. In
the EU it consumes over a third of the country-members primary energy [176]. Current
research points to the importance of the role the transport sector needs to play in mitigating
climate change [177]. The sector is the second largest CO, emitter in the world, behind
electricity generation [120]. And it is the only major sector where global GHG emissions are
continually rising year on year in developed regions such as the EU [176-177]. GHG
emissions increased by nearly 20% between 1990 and 2014 in the sector [176]. In 2014 the
sector accounted for 21% of total GHG emissions around the world [178]. In 2017 emissions
by the sector were close to 26% of the global total [145].

Road transport is the main driver of increasing GHG emissions in the sector. The number of
private light vehicles (PLGs) is rising rapidly which has seen road transport emissions
increase by 71% between 1990 and 2016 [178]. In 2016 PLGs and other transport on the
road, Heavy Duty Vehicles (HGVs), accounted for 95% of all the GHG emissions in the
transport sector [145].

Global trends in population increase, urbanisation and motorisation all indicate that the
number of PLGs on the world’s roads will continue to rise sharply well into the middle of the
century [176]. Therefore, it is reasonable to assume that unless major changes occur in the
sector its global emissions will continue to rise at an ever-increasing rate. Indeed, if
emissions in the transport sector follow current trends than they are predicted to grow 38%
between 2014 and 2040 when the sector will emit 10,317 million tons of CO; [178].
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2.7.2 Air Quality

As well as contributing to climate change the emissions from road going internal combustion
engines vehicles (ICEVs) detrimentally effect health by reducing air quality in the localised
vicinity. Stringent tailpipe emission limits on new vehicles have been enforced to try to
combat this issue but exposure to tailpipe emissions such as particulate matter and nitrogen
oxides (NOy) is still a major health hazard in urbanised areas [120]. In the European region
alone the air pollution in urbanised areas is linked to 100,000 deaths per year with a

significant fraction of these deaths attributable to the air pollution created by ICEVs [120].

2.7.3 Noise

Noise is increasingly seen as another as a major health risk of ICEVs. According to the
World Health Organisation (WHO) traffic noise in urban areas of Europe affects the health of
nearly one third of local populations [120]. They go on to say that in the EU around 40million
people in urban areas and 25 million people outside of metropolitan areas are exposed to

street level noise of 50 decibel (dB) at night due mainly to road transport [120].

2.7.4 Electrification of the Transport Sector

Due to the forecasted rise of GHG emissions in the transport sector policy makers around
the globe have prioritised its transition to a low-carbon model [176]. Electrification is
regarded as the best strategy for decarbonising the transport sector [179]. As road vehicles
are the main cause of GHG emissions in the sector policy makers around the globe such as
the EU have focused their attention in recent times on electrifying road transport, in
particular PLGs [145]. The EU has set the goal of road transportation being 100% CO.-free
by 2050 with the vehicle fleet being mostly electric with only a minor portion being powered
by other fuels [120].

Replacing ICEV stock with state-of-the-art electric vehicles (EVs) is seen as an efficient way
of reducing GHG emissions in the sector [120]. As well as reducing GHG emissions the
electrification of PLGs will improve energy efficiency and reduce localised air pollution [145].
The electrification of PLGs and HGVs can also reduce noise pollution in urban environments
especially when they are driven at slow to medium speeds [120]. Countries such as China
also view EVs as a way of improving energy security by reducing the dependence of foreign

oil supplies [180].
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The use of the batteries in electric vehicles when they are connected to a smart grid could
also create a more harmonised system by acting as temporary energy storage/source for
fluctuating renewable energy sources such as wind and PV [120].

2.7.5 Electric Vehicle Stock Levels

The numbers of EVs on the roads today are relatively small compared to ICEVs [145].
Current EV stock levels are currently primarily made up of two different technologies, Battery
Electric Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs) [120]. In 2015 there
were approximately 1.25million EVs on the roads with the vast majority registered in Europe
and other major economies around the world [120]. The largest share of vehicles was in the
US (33.3%) and China (23.1%) with Japan a distant third (10.8%) (see Table 5).

Table 5 - Number of Electric PLGs on the Roads in 2015 [120]

Country BEVs PHEVs Combined
Austria 5,000 1,500 6,500
Belgium 3,900 4,700 8,600
Denmark 7,600 500 8,100
Finland 600 1,500 2,100
France 44,000 10,600 54,600
Germany 25,500 10,800 36,300

o lreland 1,000 200 1,200
S ltaly 4,200 500 4,700
Ll;.l) Netherlands 9,400 78,200 87,600
Portugal 1,300 800 2,100
Spain 3,600 1,100 4,700
Sweden 4,800 9,800 14,600
Switzerland 6,300 2,700 9,000
Turkey 200 0 200
UK 20,000 27,000 47,000
Norway 70,700 12,100 82,800
= USA 214,600 191,900 406,500
s Canada 7,900 7,700 15,600
?_ China 199,800 81,800 281,600
© South Korea 8,800 1,500 10,300
S Japan 76900 55200 132,100
Australia 2,500 1,300 3,800
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In 2016 the different EV technologies made up only 1% of road transport vehicles [145].
Between 2016 and 2017 the registration of BEVs increased by 51% and registration of
PHEVs increased by 35% [145]. Whilst currently low EV stock levels are increasing
worldwide as manufactures introduce more models to the market [120, 145].

Governments are also introducing policies aimed at increasing EV levels. These policies
include the funding of vehicle purchase schemes and public charging infrastructure
installation and levy taxes related to CO, emissions [145]. India has initiated a policy which
has the commitment to end the sale of ICEVs by 2030 and China is working on a policy to
end the sale of ICEVs by 2050 [177]. Several developing countries are looking to follow the
lead of India and China and are embracing the future of electric transportation [177]. The
increase in EV penetration will significantly contribute towards climate change mitigation and
increase energy security by reducing dependence on foreign supplies of oil [120, 177]. It will

also aid realise the four freedoms of the EU — goods, capital, services and people [120].

2.8 Electricity

Electricity is the most important form of energy in the modern world [47]. It is essential for
nearly every activity of industry, commerce, and individuals [16, 33, 181-182]. It is one of
cornerstones of economic and social development [182]. Therefore, reliable and secure
access to the resource around the clock is essential for economic and social development
[19, 34, 181-183].

Due to its role in facilitating economic and social development electricity generation and
distribution is especially important to developing countries [183]. Due to this Governments in
many developing countries have created polices aimed at increasing access to electricity of
their populations. An example being the National Electrification Plan which was introduced in
2014 by the government of Myanmar in South-East Asia which aims to provide access to the

country’s entire population by 2030 [184].

The importance of electricity in contemporary society and the increase of access to
electricity is seeing demand of the resource constantly increase [185, 144]. Between 2000
and 2017 global demand increased by an average of 3% per year [19]. The electrification of

the transport sector will further accelerate demand for electricity and change the nature of
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demand patterns. Bloomberg New Energy Finance estimate access programs, electrification
of the transport sector along with population growth will grow from 25,000 terawatt-hours in
2017 to over 38,000 terawatt-hours by 2050 [84].

Meeting the increasing electricity demands is a main goal of countries around the globe [16,
183]. However, increased awareness of climate change has seen the focus shift towards
meeting future demand in a sustainable way [36, 150, 181, 186]. Key to achieving a move to
a more sustainable electricity generation paradigm is the replacement of fossil fuels with
environmentally friendly renewable energies sources (RES) [17]. Increasing RES penetration
levels is seen as a way of not only facilitating the transition to a sustainable low carbon
economy but also increase energy security by reducing dependence on fossil fuels [187].
The reducing costs of RES technologies and the abundance of RES potential such as PV in
many developing nations has seen policy makers in such countries increasingly view RES
as a suitable way of increasing energy equality to their citizens [182].

2.8.1 Electricity Networks

To ensure all sections of a society has a continuous source of electricity countries all around
the world have built complex systems known commonly as electricity networks, power
networks or grids [181]. The main purpose of these networks historically has been to meet
the yearly peak electricity demand in a reliable way [188] and provide around the clock
supply [34]. However, in the aim of abating the impacts of climate change the
decarbonisation of these networks is seen as playing a major role in the transition to a more

sustainable paradigm [36, 188].

Many of the top electricity consuming countries around the globe have been engaged in
transitioning to more sustainable electricity networks that can still support economic and
social development for several decades now [186]. The main focus of these countries has

been the reduction of fossil fuels and diversifying their electricity generation fuel mix [54, 73].

2.8.2 Diversity and Electricity
The diversity of the fuel mix to generate electricity is particularly seen as a way of measuring
the effectiveness of energy policies [35]. Diversifying the electricity mix is seen as a major

route to achieving energy security, equality and sustainability [35]. There has been progress
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in diversifying the electricity fuel mix since the middle of the 20" century, however the growth
of diversity needs to increase if global sustainability is to be achieved [76].

Reducing the levels of environmentally damaging fossil fuels in the electricity fuel mix is the
major driver for diversification for most policy makers [33, 189]. However, countries without
indigenous supplies of fossil fuels also view diversification as a strategy to increase energy
security [21]. Key to this strategy is maximising the use of domestic RES [23]. The US for
example views increasing RES as key to diversifying their electricity fuel mix and increasing

energy security [56].

2.8.3 Access to Electricity

Reports from the IEA showed that in 2010 there were 1267m people around the globe
without access to electricity, with the figure growing to 1285m in 2012 [19]. The majority of
these people live in developing counties in Latin America, Africa and Asia where population
growth is outpacing access to electricity [19]. In 2020 there were still 770 million people
without access to electricity [109]. As the global population continues to increase it is
expected that this figure will rise by several hundred million in the coming years, again in
developing countries [24]. The ratio of people without access to electricity in developed and
developing countries highlights the social inequality involved [24]. For example, the per
capita energy usage in the US is times higher than that of India, where hundreds of millions
currently do not have access to electricity [52].

2.8.4 Ageing Networks

The electricity grid is described as “the largest interconnected machine on Earth, so
massively complex and inextricably linked to human involvement and endeavour that it has
alternately (and appropriately) been called an ecosystem” by the U.S. Department of Energy
[53]. It has been hailed as the greatest engineering achievement of the twentieth century by

the National Academy of Engineering [190].

Electricity grids have served us well for a long time. They have evolved to become ever
more complex systems that are now true marvels of engineering [53]. However, the majority
of the infrastructure that built these grids have been in use since the early part of the 20"
century. The aged equipment has begun to struggle to meet the demands placed by the

ever-increasing demand and is rapidly running up against their limitations [53, 179]. This has
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caused policy makers to become concerned about the ability of the aging networks to
continue to reliably serve the 215 century they helped fashion [16]. Network operators need
to contend with the issues of overtaxing demand and aged equipment whilst meeting
challenging targets for de-carbonising of their systems [179].

2.8.5 EVs and the grid

Whilst the electrification of the transportation sector has been successful in reducing the
tailpipe emissions of vehicles it has increased the load on the worlds ageing electricity
networks [38, 177, 189]. Whilst this increase in load is relatively small today it is expected to
increase significantly in the near future as the penetration levels of EVs increase [38]. In the
UK the transport sector consumes 36% of the country’s energy with 75% of the transport
sector energy in the UK is consumed by PLGs (41,199 tons of oil the equivalent) [179].
Transferring this load to the already over worked National Grid in the UK would require an
extra 479.2TWh generation capacity [179]. Worldwide the electrification of the transport

sector would require a twofold increase in present electricity generation output [179].

Accommodating the forecasted increase in charging of EVs at the distribution level of
networks is a major challenge for network operators [37, 179]. The increased load caused by
the charging of EVs can negatively impact voltage stability, harmonics and reduce the
reliability of networks [38]. To try to mitigate these issues accurate information on charging
patterns and load profiles needs to be used to allow ‘intelligent’ charging to occur [37].
Accommodating the increase of EV charging will require additional infrastructure and
generation capability [179]. To meet de-carbonisation targets in both the transport and
electricity generation sectors the fuel mix of this extra generation needs to be carefully
considered [33, 38, 177].

2.8.6 Generation

The fundamental principles of electricity generation were discovered by the British scientist
Michael Faraday in the 1820s and early 1830s [191]. Faraday found that the motion of a loop
of copper wire between the poles of magnet was all that was needed to generate electricity.
Since the early days of the first industrial revolution the burning of fossil fuels has been used
to turn the turbine of generators which use Faraday’s principles to generate electricity. This
model of electricity generation is still widely used today and meets the large majority of

current day demand [191].
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Traditionally these electricity generating plants, or power plants, have been located far from
areas where the electricity is consumed [182]. The employment of these large ‘centralised’
power plants requires an extensive transmission and distribution infrastructure [182]. The
evolution of electricity grids has seen a move away from this centralised generating model to
a distributed generating model [182]. Distributed Generation (DG) is defined as electricity
produced close to the load source and seeks to introduce new technologies that significantly
reduce the cost of producing energy [192]. DG decentralises electricity generation and
facilities generation closer to the point of consumption [182].

DG has several advantages over the traditional centralised model. It reduces transmission
costs and helps reduce technical losses and installation time [182]. It attracts private
investment and increases energy stability and grid optimisation [182]. DG also increase
diversity by increasing use of RES and even allows consumers to generate their own
electricity whereby they become known as prosumers [182]. Moving to a DG model with
increase levels of RES has emerged as the preferred choice in the sector to de-
carbonisation and reducing GHG emissions [147, 193].

Whilst there are several benefits to the DG model there also some significant challenges that
need to be assessed in accommodating large amounts of RES. There is an uncertainty and
variability in the production output of RES [147, 193]. Escalating penetration levels of RES
also have technical impacts on electricity grids such as voltage rise and reverse power flow
[194]. The inverters used by RES can also cause power quality issues such as harmonics
and flickers [147]. So, to facilitate the move to a DG paradigm and increase in RES
penetration levels on grids these issues need to be investigated and accurate information on

how RES will affect networks is essential for proper operation and planning.

2.8.7 Demand Side Management

Demand Side Management (DSM) is a smart grid solution used in the DG model to control
customer loads to achieve a better match between the available supply and the demand
[195]. It is commonly used to reduce peak load demand and prevent the need to increase

generation capacity [196].
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2.9 Energy Trilemma

Whilst sustainable energy normally focuses on environmental protection it covers a complex
and multidimensional range of interrelated areas across different disciplines [20, 47].
Sustainable energy is energy that can be used to improve the quality of life of present
generations in an economic, ecological and social way so as not to compromise the ability of

future generations to meet their own needs [20, 47, 197].

The WEC state that achieving energy sustainability involves “managing three core
dimensions: environmental sustainability, energy security and energy equality of energy
systems throughout the transition process” [21, 24]. The WEC collectively name these three
elements as the “energy trilemma” [53, 123]. The term energy trilemma has emerged
recently as a means of describing the complexity of meeting the economic, social and
environmental challenges in order to achieve energy sustainability [24, 53-54]. Balancing the
trilemma enables individual countries to achieve prosperity and competitiveness [21].

Graphically the energy trilemma can be represented by a Venn diagram made up of three
sets (dimensions) as shown in Figure 11. The overlapping area of the three sets characterises
energy sustainability [53]. The other areas illustrate the interdependence and trade-offs

between the environmental, security and equality dimensions [53].

Energy Intersecting
Security Triangle

Environmental | Energy

Sustainability Equality

Figure 11 - Energy Trilemma Venn Diagram

It is more commonly presented as a triangle whose three points represent the core

dimensions of the energy trilemma (see Figure 12).
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Security

Environmental Energy
Sustainability Equality

Figure 12 - Energy Trilemma Triangle

The three dimensions of the energy trilemma are often thought to be competing demands
which therefore leads to trade-offs needing to be made when formulating sustainable energy
policies [53, 159-161]. For example, in the mid-1980s countries such as England, Wales,
Norway and Chile restructured their respective energy markets to increase energy security
and energy equality without considering environmental sustainability equally [198]. In more
recent times the priority of many developing countries has been to alleviate energy poverty,
with little consideration given to energy security or environmental sustainability [160-161].
Today developed countries are mostly concerned with increasing the environmental
sustainability of their systems as policy makers try to combat climate change [24, 198].
These decisions were all made because it was thought at the time that policymakers could

only choose one or two of the energy trilemmas dimensions to focus on [159].

An opposing approach to the world energy trilemma recognises that progress can be made
in all three dimensions of the trilemma once deep-seated obstacles are overcome [159].
Overcoming these obstacles allow strong energy systems to be created which are

environmentally sustainable, secure and equitable [160].

2.9.1 De-carbonisation
Solving the energy trilemma involves creating healthy systems which are environmentally

sustainable, equitable and secure. Key to achieving this is the rapid transition to a
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decentralised and de-carbonised future [199]. As electricity generation is the largest
consumer of primary energy the sector was identified by the IPCC in 2014 as critical to this
transition [200-202].

2.9.2 Energy Transition
The transition to a de-carbonised future is the fourth major energy transition and is
considered to have begun in the 1980’'s when modern renewables such as solar/PV and
wind were first introduced to the energy fuel mix [24, 26]. These RES were introduced at the
time to investigate their potential to decrease reliance on fossil fuels and to find a cleaner
energy source [24, 30-31].

Realising this fourth energy transition will create a sustainable energy paradigm in which
energy can be used to improve the quality of life of the present generations in an economic,
ecological and social way so as not to compromise the ability of future generations to meet
their own needs [20, 47, 197]. The transition to a sustainable energy paradigm is central in
combating climate change and greenhouse gas emissions [22, 24, 47]. Achieving
sustainability in the energy sector requires a transition in the use of energy for electricity,

transport and heating & cooling [22, 117, 197].

2.9.3 International Policies and Treaties

In recent decades there have been several major international treaties brought forward
which are aimed at facilitating the transition to a sustainable energy paradigm. These
treaties have been signed by the majority the worlds governments in both developed and
developing countries. In the treaties all signatories agreed to set individual goals and targets

to meet the overriding goal of mitigating climate change.

On the 11" of December 1997 one-hundred and ninety-three countries signed up to the
Kyoto Protocol [150, 203]. The protocol is an international treaty that committed the
signatories to de-carbonise energy systems to reduce their GHG emissions (relative to 1990
levels) which came into force on the 16™ of February 2005 [150]. Each country agreed to
adopt policies to meet individual targets for reductions and to report on progress periodically
[150, 203].
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The World Energy Assessment published in September 2000 by the UN investigated the
relationship between energy, the environment, health and other social issues [20]. The
report found a strong link between energy, the environment and social development. The
report also highlighted the importance of the role of energy in the economic prosperity of
developing countries [20]. The findings of this report were discussed at United Nations
Conference on Sustainable Development (UNCSD) in Rio, Brazil in June 2012. The
conference was attended by 192 UN members and several private organisations. The
conference culminated with the writing of a non-binding document called "The Future We
Want" which laid out 17 objectives for sustainable development [20]. Of the 17 objectives
laid out two were identified as having the potential to impact the whole of humanity most
significantly. These were Goal 7 “Ensure access to affordable, reliable, sustainable and
modern energy for all” and Goal 13 “Take urgent action to combat climate change and its

impacts” [20].

In 2015 the UN updated the goals laid out in the Future We Want and set out new targets to
be met by 2030 [20]. In September the governments of one-hundred and ninety-three
developed and developing countries signed up to meeting these targets known as the
Sustainable Development Goals (SDGs) [19, 24, 117]. The SDGs were 17 interlinked global
goals which were designed by the United Nations General Assembly to “achieve a better
and more sustainable future for all” [19]. Goal 13 — Climate Action was widely regarded by
the signatories as the most import of the goals [24]. The SDGs again were not enforceable
[24].

At the 2015 United Nations Framework Conference on Climate Change (UNFCCC) in Paris,
France 195 countries agreed to take actions aimed at reducing CO, emissions to zero by
2050 in order to prevent “dangerous anthropogenic interference with the climate system”
[110, 146, 149]. The main goal of these actions was to keep global warming to below 2°C
(compared to pre-industrial levels) [145]. The participants also expressed their intention to

take actions to limit temperature even further to 1.5°C [120].

Policy makers such as those in the EU are strongly committed to meeting the targets of
these different policies as they have stated their belief that ensuring an efficient, sustainable
and secure supply of energy is one of the most important tasks of our time [35]. To
successfully transition to a sustainable future the EU agreed to reduce their GHG emissions
20% by 2020 [63]. They further committed to reducing emissions by at least 60% by 2040
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and 80% by 2050 [63, 120]. The EU are strongly committed to meeting these targets and
have adopted comprehensive strategies to reduce GHG emissions [117]. The EUs 2030
climate and energy framework stated that all economy sectors would need to participate in
the effort to meet these targets but highlighted the electricity generation sector as having to
play a key role [90].

2.9.4 Increasing Demand for Energy

The global demand for energy began to increase sharply in the 19" century when it was
used to fuel the industrial revolution. This rise has continued in recent decade when demand
increased 53% between 1995 (8,588.9 million tonnes) and 2015 (13,147.3 million tonnes)
[19]. Demand is forecasted to continue to rise into the near future. In one scenario studied by
the IEA the findings estimated that global energy demand would continue to increase 75%
between 2008 and 2035 [110].

One of the main drivers of the forecasted energy demand is the rapid increase in the global
population [46, 204]. By 2050 the global population is projected to reach 9.8 billion an
increase of 2.2 billion from 2017 [84]. The IEA estimates this will increase energy demand by
1.6% annually [110]. The developing and transitioning nations of the global south are
predicted to see the largest increase in population and are therefore expected to witness the
greatest increase in energy demand (60-65% of the global total) [110]. This is currently being
seen in India where the growing population is driving the increase in energy demand [47].
Energy equality and economic development programs will also increase energy demand in

the global south into the near future [204].

The forecasted increase in energy demands highlights the complexity involved in solving the
energy trilemma. The increased demand will need to be met to achieve energy security and
equality [204]. Lessons learnt from countries such as China who used fossil fuels to power
their economic development have shown that achieving energy security and equality can be
done at the expense of environmental sustainability [21]. Only if all three dimensions of the
energy trilemma are addressed will the transition to a sustainable de-carbonised future be
realised [160].
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2.10 The Role of Renewables in the Transition to a Sustainable Future

To realise their sustainability targets the EU identified the need to transition away from fossil-
based economies [145]. In 2011 the European Commission acknowledged the potential of
RES and smart grid technologies to enable the member states to transition away from fossil-
fuels and to meet GHG emissions targets through the de-carbonisation of their electricity
networks by 2050 [149, 201]. In December 201 the EU Commission published ‘A Clean
Planet for All' which laid out their plans for de-carbonisation by 2050 [89]. The plan stated
that to meet the de-carbonisation target RES penetration levels would need to be greater
than 60% by 2050 [89]. To promote the increased penetration of RES in their electricity fuel
mix the EU have introduced several policies such as the European Directive 2001/77/C
[205].

Other policy makers and energy experts around the world agree with the EU with regards to
the importance of RES in meeting decarbonising targets [16, 36, 111, 199, 206]. Increasing
decarbonisation through the electrification of the transport sector by the mass employment of
EVs has also gained interest from many policy makers around the globe in recent years [38].
To fully utilise the potential of EVs to reduce GHG emissions many countries have set high

RES penetration targets in their respective electricity fuel mixes [90,207].

Environmental protection is the most commonly talked about aspect of energy sustainability
and considered the most important part. However, there is growing understanding that to
successfully transition to a sustainable future the other two dimensions of the energy
trilemma, security and equality, also need to be addressed at the same time [161]. Recent
research has shown that RES also have the potential to significantly improve both security
and equality whilst playing a primary role in environmental sustainability efforts [24, 160,
198, 208]. At the same time as reducing carbon emissions replacing fossil fuels with RES
will also improve security by reducing the dependence on imported sources [24, 149, 201].
RES can further increase security as they are not subjected to the same volatility in price

increases of fossil fuels [50, 76, 162].

The UN stated in the ‘Future We Want’ publication of 2000 that to achieve energy equality
there would need to be a substantial increase in the share of RES in the global fuel mix by
2030 [159]. PV is regarded by many as the best candidate RES to realise energy equality
[159, 208]. The maturity level of the technology has realised consistent and significant

reduction in generation costs over recent decades [36]. And the generation costs of PV are
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now comparable to traditional fossil fuel sources [36, 116, 209]. PV has lower maintenance
requirements and costs compared to traditional fuels and other RES such as wind. The
modular nature of PV allows the technology to be effectively employed in small- and large-
scale projects and has short installation times. Due to all these factors PV is seen as a good
option in reducing energy equality, especially in the global south where inequality is most
prevalent and PV resources are high [145, 208].

Due to the potential of PV to empower the transition to a de-carbonised future and improve
all three dimensions of the energy trilemma governments all around the world have
introduced initiatives such as tax reductions and grants to encourage growth of PV
generation [36]. These initiatives have been initiated by developed countries such as the US,
UK and the member states of the EU and numerous developing countries in Africa, Asia and
Latin America [36].

2.10.1 Penetration Levels

The amount of attention given to RES by policy makers has seen investment increase in the
sector. In 2017 RES accounted for two thirds of the total investment in global spending of
electricity generation [145]. This investment has seen their share in the global electricity fuel
mix increase at a steady rate in recent times. The share or RES in the global mix grew by
2% between 2019 and 2020 [210]. Overall RES grew from 26% to 28% in this time with PV
and wind increasing from 8% to 9% [210]. Despite issues in the supply chain and
construction phase caused by the Covid-19 crisis RES generation has continued to grow at
a rate of 5% [210].

The European region has seen one of the largest increases in the deployment of RES.
Between 2004 and 2016 the share of RES in Europe grew on average by 6% per year which
saw its share double in that period [145]. The US has also witnessed a significant increase in
the share of RES in recent times where it reached 17% in 2017 [211]. At the beginning of
2020 the penetration of RES in India reached 23.41% in terms of installed capacity [116].

Of the individual RES wind and PV have seen the most dramatic growth in installed capacity
in recent years [145, 212]. Wind energy presently contributes over 10% of the electricity
produced in eight countries [211]. In 2000 there was almost zero PV global capacity, yet in
only 16 years global capacity surpassed 100GW [145]. In 2017 PV meet more than 7% of

the demand for electricity in Greece and ltaly and 3.7% of the overall demand in the EU
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[145]. PV capacity is forecasted to double between 2019 and the end of 2022 [211]. The
increase in PV has been driven in part by individuals and small to medium sized business
who have installed small PV systems at their properties to help meet their electricity
demands and to sell unused electricity to network operators [210]. In 2019 these prosumers
made up one-fifth of all RES capacity deployed worldwide [210].

The penetration levels of RES are expected to continue to grow up to 2050 and beyond as
countries work towards meeting the targets they signed up in international treaties such as
the Kyoto Protocol and the UNFCCC [58]. Wind and PV are forecasted to continue to make
up the biggest share of RES up to this time [208].

As stated previously the cost of PV generation has reached parity with conventional fossil
fuels. There is an abundance of PV resources spread evenly around the world. The maturity
of PV and technological advancements have increased the working life of crystalline-silicon
systems to 25-30 years and increased efficiencies [145, 213]. PV systems are also easy to
install due their modular nature and require little to no expert maintenance making them
ideal for remote isolated communities [214]. They are also viewed as a way of optimising
electricity consumption in areas already connected to networks, even in countries such as
Sweden which has low PV resources [214]. The public view PV more favourably than other
RES technologies such as wind which has perceived issues with regards to noise and

appearance [215].

Due to these reasons in the Near-term PV is set to see the fastest increase in growth of the
RES technologies [210]. The IEA forecasts that by 2050 solar/PV will make up 22% of the
global electricity fuel mix [213]. Many developing and transitioning countries in the global
south have high indigenous PV resources. For example, the National Institute of Wind
Energy has stated that India a PV potential of 750 GW, two and half times greater than the
country’s wind potential [116]. In 2018 the Ministry of New and Renewable Energy of India
enacted a policy to exploit 100 GW of this potential by the end of 2022 [116].

2.10.2 Progress in Realising the Energy Transition

Many European countries have made great strides in realising the transition to a sustainable
energy paradigm [21]. The UK has reduced CO, emissions by 31.5% since 2000 and levels
now match those of 1888 [21]. This has been accomplished by tactics such as the reduction

of coal in the fuel mix to 5% by replacing it with offshore wind [21]. This tactic saw the UK be
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one of only 19 countries to significantly decrease CO> emissions whilst global emissions
rose [52]. Despite these achievements if the UK is to continue to meet its obligations and de-
carbonisation targets it will need to employ new strategies such as the wide scale
deployment of EVs [21].

Developing and transitioning countries are also actively engaged in the energy transition
[208]. The majority of these countries have focussed their attention on RES and have
implemented legal frameworks and tax incentives to encourage the integration of RES on to
their networks [208]. This has led to the investment in RES by these nations being greater
than that of the developing world since 2015 [216]. In 2019 developing and transitioning
economies invested $152 billion in RES compared to the developing economies investment
of $130 billion [208]. This investment has seen an improvement in environmental
sustainability of Asian countries such as China and Cambodia [21]. However, as Asia is
currently the largest importer of fossil fuels more work still needs to be done especially as
many countries in the region seek to increase energy equality [21].

2.10.3 Continuing Progress

Policy makers now face the challenge of continuing this progress in the energy transition
[208]. To this end many governments are continually drafting new energy policies which
continue to support measures already in place and introduce new ones [21]. This will require
significant investment which can be problematic for developing nations who are also working
to meet increasing energy demands [207]. Due to the significant role played by RES in
progress made to date most of this investment is expected to go to the most well-established
RES technologies [160].

2.11 The Impact of COVID on Energy

The coronavirus disease 2019, known commonly as COVID-19, is an infectious disease
caused by the recently discovered SARS-CoV-2 that mainly affects the respiratory system
[217]. It was first identified in Wuhan, China on the 31% of December 2019 [218]. Since that
time it has become a pandemic which has spread right across the world and has caused an
excess of five million deaths [217]. The measures taken to combat the pandemic have

affected every aspect of human life [35].
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COVID lockdown measures have curtailed industrial and commercial activities in most
countries around the world [210]. In countries such as the United Kingdom, France, ltaly,
Spain and India who have all implemented full lockdown measures electricity demand has
significantly reduced (at least 15%) [210]. Whilst lockdown measures reduced demand also
highlighted the critical role electricity plays in key aspects of human life such as health by
powering vital medical equipment and allowing businesses to continue to operate by

enabling teleworking and videoconferencing equipment to operate [35].

Lockdown measure led to a global decrease in the demand of fossil fuel-based energy
sources such as natural gas (5% in 2020) and coal which witnessed the largest drop in
demand since World War 1l (8%) [210]. Oil was also exposed to a collapse in demand for
transportation fuels where COVID lockdown measures led to global road transport levels
falling to 50% of 2019 levels, and air travel levels declining more than 90% in some
European countries [210]. The combined decrease in demand for electricity and transport
led to global demand for oil decreasing by 57% in 2020 [210].

The magnitude and speed of the decline in demand for these fossil fuels far exceeded the
market flexibility of supply. The financial and macroeconomic consequences of which could
undermine industry’s ability to ramp up production levels to pre-COVID levels and cause
further financial strain and could become a significant energy security concern creating
uncertainty about the outlook [210]. Whilst demand for fossil fuels has been hit by the
lockdown measures the penetration of RES has accelerated faster than pre-pandemic
forecasts [210].

Renewable energy sources such as wind and PV proved to be the most resilient fuel source
to the global pandemic and saw an increase in use of around 1.5% in 2020 compared to
2019 figures [210]. This was in part due to new wind (approximately 60GW) and PV (excess
of 100GW) installations which were completed in this time and because renewables are
usually dispatched before other sources of electricity [210]. The manufacture of PV modules
has also started to ramp back as countries such as China, who manufacture 70% of global

total, restart operations as lockdown measures ease [210].

2.12 Predicting Future Energy Use
The topics discussed in this literature review highlight the complexities facing policy makers

and network operators as they aim to implement the transition to a sustainable energy
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future. Accurate information is critical to this endeavour to allow proper allocation of funds
and resources [160]. Accurate predictions of the future energy demand and its patterns are
one of the most vital components of this information [16].

2.12.1 Load Profiles

Load (electricity demand) profiles show the variation in electricity demand over time. They
are normally recorded at the system level or the customer category level (residential,
commercial etc.) They are an indispensable tool for companies and organizations in the
power sector and are used in the decision-making process in areas such as volume of
generation and maintenance scheduling. Load varies greatly throughout the course of a day
due to customer activities and other factors such as customer class [185, 219-220]. Load
profiles are essential for power transmission and distribution companies in order to make
important decisions on the volume of generation, power purchase agreements, operation
and maintenance scheduling, development of network infrastructure etc [221-222].
Traditionally load profiles are created using historical data [223] and are used in many

countries to balance load demand [224].

The most significant factor to affect demand is the weather, in particular the temperature
[181, 185, 220, 225-229]. As well as affecting the intraday patterns in electricity demand,
temperature also greatly influences seasonal demand [227, 229, 230]. Higher and lower
temperatures both lead to increases in demand [227]. This is particularly true in residential
areas [228]. Higher temperatures in the summer season increase demand for air-
conditioning, whereas lower temperatures in winter increase the demand due to heating
requirements [231]. The demand for these two services typically occurs at different times of
the day which changes the pattern of demand throughout the year. Variations in seasonal
demand are particularly pronounced in counties with temperate climates as the UK where

demand is significantly dependant on seasonality (as shown in Figure 13) [185, 232].
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Figure 13 - Typical Seasonal Weekday Load Profiles for The England and Wales Transmission Network

Load profiles are graphical representations of these variations of demand over a day [233].
Profiles can represent transmission networks, distribution networks or individual customer
classes on a network (residential, commercial and industrial) [233]. Load profiles are
complex signals due to the stochastic and non-linear behaviour of customers and the other

factors which influence demand such as weather patterns [181, 226].

Electricity is unlike material products [219, 230, 232, 234]. It cannot be stored in large
guantities yet and therefore must be generated as soon as it is demanded [185, 219, 230-
231, 234]. This means the variability in demand is a significant issue for the various
organisations in the electricity sector [229], and that demand needs to be accurately

estimated in advance to balance supply and demand at all times [219].

2.12.2 Load Forecasting

Forecasting is the predication of future events and conditions [235]. Load forecasting is the
technique used to estimate electricity demand in advance [219, 236]. Load forecasting has
been used in the electricity industry for over a century [237]. It is the key task in any planning
operation in the electricity industry as it determines the required resources needed to

operate networks that efficiently and securely meet customer demands [230]. It has been
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widely studied from the points of view of the different organisations involved in the industry
[157]. Today it is a critical task for network operators [183, 225] and compulsory for the
proper functioning of the industry [219]. Accurate load forecasts lead to significant savings in
operation and planning and maintenance, and this has meant that research into forecasting
has become a major field in power engineering [238].

As well as being used to balance supply and demand, load forecasting plays a crucial role in
a wide range of planning and operational activities of the different organisations involved in
the electricity sector such as generation companies, network operators and financial
institutions [220, 226, 230-231]. It is used in designing expansions to networks to ensure
they can adequately and securely meet future demand [181, 225, 230] and reduce
unexpected losses and costs [225, 235]. It is also used in the decision-making process on
contract evaluation, purchasing and generation of electricity, load switching, voltage control
and infrastructure development [220, 239-240]. It also minimises blackouts and losses [232].
Load forecasting is also important for a country’s economic development, security and daily
life of its population [228, 234].

Accurate load forecasts allow stakeholders in the electricity industry to make optimal
decisions to increase economic benefits [226-227]. Increasing the accuracy of forecast by as
little as 1% can considerably reduce costs [225, 230, 240]. According to a conservative
estimate increasing forecast accuracy by 1% would reduce costs by up to $1.6 million a year
of a 10 GW utility in 2018 [181]. Therefore, increasing the accuracy of load forecasting
techniques and developing new methods has become an important goal for researchers
[226, 241].

Time Horizons

Load forecasting can be carried out to perform prediction from minutes to years ahead [241].
Forecasts are classified in terms of the time horizons they are predicting [230]. There is no
current precise standard for classifying these time horizons [234]. Some authors divide
forecasts into three time horizons: short-term, medium-term and long term [157, 183, 225,

232, 236-237], whilst some authors use a fourth horizon known as ultra-short term [234-235].

Ultra-short-term forecasts (USTFs) range from a minute up to one hour ahead [234-235].

USTFs are used for real time control of networks [234, 241].
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Short term forecasts (STFs) range is from one hour to one week ahead [219, 230, 234, 241].
They are important for the management, security and planning operations of networks [239].
STFs are used for day-to-day operations such as the scheduling of generation [181, 227,
234]. They can also be used to make decisions about load flow in order to prevent
overloading and improve reliability [219, 220]. STFs are especially crucial in regions where
several countries have heavily inter-connected networks such as in the EU [226]. STFs can

achieve an accuracy of around 1-3% [220].

Medium term forecasts (MTFs) range is from one week up to one year ahead [219, 234].
MTFs are important for planning maintenance operations of a network [122, 225, 235]. They
are used for planning fuel purchases and maintenance scheduling [157, 183, 219, 234].
There is less need for accuracy in MTFs compared to other time horizons such as STFs
[235].

Long term forecasts (LTFs) generally cover the horizon of one year to 20 years ahead [230,
232, 234-235]. LTFs are extremely important for the economic [225, 183] and planning [122,
157, 183, 243] operations of a network. They are used to strategic planning, construction of
new generation and the expansion and of networks [181, 183, 219, 230]. Accurate long-term
forecasting is difficult to carry out as the long-time horizons contain significant uncertainties
in the factors that drive demand [181, 183, 220].

The authors of [234] carried out a review of academic research (in English only) on electrical
load forecasting and found 276 papers (journal and conference) on the Web of Science
online database. Their analysis of this body of works found that where the time horizon was
relevant or emphasized the majority of the papers focused on short term and ultra-short-term
prediction. Indeed, short term forecasting has been a very popular area of study over recent
decades and several different methods have been presented suitable for the short-term time
horizon [240]. Despite the volume of research on load forecasting more accurate models are
still required particularly for the longer time horizons where uncertainties make it difficult to
match the accuracy of STFs [158, 226].

2.12.3 Load Forecasting for Future Electrical Power Systems
Load forecasting is becoming ever more important due to the restructuring of the electricity
industry [219]. There is a growing global tendency to deregulate the electricity sector which

has seen networks unbundled into several different sectors (generation, transmission and
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distribution) [181, 219, 230]. Load forecasting is vitally important in this deregulated
economy as there is an increased demand on planning management and operations by all
the participants in the industry [219-220, 234]. Accurate long-term forecasting in particular is
more important in deregulated economies [220].

Demand is also continually increasing and changing in pattern due to the use of new
technologies such as the charging of electric vehicles [230, 234]. This has made demand
patterns more complex and unrecognisable compared to historic patterns [230]. Generation
patterns are also changing due to the increase in the penetration levels of renewable energy
sources onto networks (particularly at the distribution level) [181]. Load forecasting is crucial
in ensuring that the electricity from these intermittent sources can be effectively utilised [158,
225, 240, 244].

2.12.4 Load Forecasting Methods and Techniques

As electricity demand varies continuously over time it is considered to be a non-stationary
time series [230, 235, 245]. It is also well established that demand is nonlinear which makes
it difficult to describe using an explicit mathematical formula [200]. Therefore, traditionally
load forecasting was carried out using different time series methods such as the Box—
Jenkins or autoregressive integrated moving average (ARIMA) approach which were all
based on the understanding that demand is a time series signal with known seasonal,
weekly and daily patterns [185, 228, 231, 245]. This allowed future demand to be modelled
as a function of historical load and other exogenous factors [16, 181, 219, 227, 230, 235,
246].

Due to the continuing changes to networks and demand patterns around the globe
traditional load forecasting methods based on historical data are becoming obsolete as they
cannot be used to accurately interpret the uncertainties in future demand [158, 181, 231,
247-248]. As a result, over recent decades several different approaches to load forecasting
have been proposed [183, 220, 225-226, 231].

Due to its simplicity linear regression has been used in load forecasting [144]. However, the
method can produce biased results as it does not address the issue of multicollinearity (the
occurrence of high intercorrelations among two or more independent variables in a model)
amongst the explanatory variables [144]. Several classical statistical techniques have also

been applied to load forecasting, including regression models, semi-parametric models and
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Kalman filtering [225, 236]. These techniques perform well under normal conditions [236].
However, they struggle to model networks with high penetration levels of renewable sources
which can cause abrupt changes in generation to occur [225, 236]. The accuracy of
statistical techniques also reduces as the time horizons being forecasted increase [225].

Artificial Intelligence

Computational techniques known collectively as machine learning (ML) or artificial
intelligence (Al) techniques have increasingly been utilised in load forecasting [226, 236-237,
239-241]. Al techniques have proven powerful tools well suited to dealing with complex non-
linear problems [225, 241]. This allows them to overcome the deficiencies of traditional
methods and generate more accurate forecasts [181, 239].

Al techniques that have been applied to load forecasting in research literature include:

e support-vector machines (SVM) [181, 220, 227, 230, 237],
e expert systems [225, 230, 235, 237],

e genetic algorithms [236]

e random forests [181],

e regression trees [227],

o fuzzy logic [185, 220, 230, 235, 237],

e ant colony [230],

¢ self-organising maps [185],

¢ wavelet transform [185],

e chaotic artificial bee colony algorithm [185],

o artificial neural networks (ANN) [158, 181, 185, 220, 227, 230, 235-237, 241].

Artificial Neural Networks (ANN)

ANNs have proven their ability to learn the complex nonlinear function mapping without the
need of explicit mathematical formulation [157, 200, 237, 239, 249]. ANNs are used in a
wide variety of tasks in different fields including finance, industry, science, and engineering
[250-253]. Previous research has also shown that amongst the different Al techniques ANNs
produce the highest levels of accuracy in load forecasting problems [227, 237, 245-246].
These factors have made ANNs the most studied and applied Al technique to load
forecasting [183, 220, 225, 227, 234, 239, 254]. They have been widely applied to load
forecasting of modern-day networks such as smart grid applications [158] and networks with

RES generation such as solar/PV [246].
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Research literature shows that ANNs are easily applied to STF and USTF time horizons
[236, 239, 254-255]. However, due to the large uncertainties involved ANN models have not
typically been applied to LTF [245, 254].

ANNSs can be created using a variety of programming languages such as C or FORTRAN
[200]. Using programming languages requires knowledge of computer programming and the
particulars of the specific language being used. Their use also makes designing an ANN
model more complex and more time consuming [200]. The use of specialist ANN design
software disembarrasses users from elaborate programming [256]. This speeds up the
design process and allows users to concentrate on optimising the performance of their ANN
model [200].
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Chapter 3
Renewable Energy Technologies and Their Potential in the Global
South

Ample and reliable electricity supply is vital to modern life [257]. Demand for electricity has
been rising sharply globally for decades [258]. This increase has been driven by developing
nations in the global south, such as those in Southeast Asia who have increased their share
of global consumption dramatically in the past few decades [259-262]. This is due to the
understanding of the importance of electricity as a tool for economic growth [258, 263-265]
and as many developing nations increase access levels to the resource through national

electrification programs as a tool for social development [259].

At the same time governments and the public alike have realized that current electricity
networks are environmentally, economically and socially unsustainable due to their heavy
reliance on fossil fuels such as coal [266-267]. This has led to an increase in the interest in
exploiting rich local renewable energy resources (RER). Several studies have demonstrated
the potential of solar photovoltaic (PV) in Southeast Asia [268-270]. However, the variable
nature of the output of renewable energy sources such as PV installations makes managing

electrical power networks more challenging.

This chapter assesses the potential of PV to play a significant role in meeting the increasing
energy demands of developing nations in the global south through the use of a case study of
Yangon City, Myanmar. Load matching is used to investigate the diurnal variation and
degradation of a typical PV system over the course of its lifetime and to determine the
impacts on current and future electricity demand profiles. The use of load matching and
degradation also allows a thorough study of the correlation between PV and electricity
demand of developing nations in the global south to be carried out. This will aid system
planning by determining the impacts of increasing penetration levels of RES such as PV on
local electricity networks and understanding what grid support such as storage technologies

will be needed to accommodate increasing PV levels.

67



3.1 Electricity situation in the Global South

3.1.1. China

The second industrial revolution (1870-1914) was triggered in part by the introduction of
public electricity [258]. Since its introduction the demand for electricity across the world has
constantly grown as shown in Figure 14 [271-272]. Electricity is now considered to be

indispensable in modern day life [263, 273], which has led to a steady growth in demand

over recent decades [258].
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Figure 14 - Historical Global Energy Consumption [274]

In 1978, Kraft and Kraft discussed the relationship between electricity consumption and
economic growth using data from 1947 to 1974 [275]. Since this time there has been a
significant volume of research on the connection between the two factors [276]. Today it is
widely believed that electricity consumption is the engine of modern economic growth [258,

263-265], especially in developing countries [263].

China can be used as a case study of the connection between electricity consumption and
economic growth. Since the Chinese Economic Reform (CER) in 1978 the country has
experienced rapid economic growth and development with an average GDP growth rate of
9.8% [258]. This figure is far higher than the rest of the world and has made China the
second largest economy after the United States (US) since 2020 [258].
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Prior to the CER China ran an administered labour system in which almost all urban jobs
were with state-owned enterprises in which roles were allocated by a bureaucracy [277-278].
Under this system, labour mobility was not permitted which meant that workers were
allocated life-long jobs [277]. The CER saw China move away from this centrally planned
socialist system to a market orientated system in which labour turnover and mobility was
permitted [277-278] which in turn led to a massive growth in China’s domestic urban
workforce market [279-280].

The new mobility of the (increased) workforce allowed China to change from an agricultural
society to a more industrial-focused one. It also to led to urbanization of the country as large
portions of the population left rural areas seeking newly attainable work. The industrialization
and urbanization of the country along with agricultural modernization are considered to have
triggered the economic development of China and were all supported by an increase in

electricity consumption [258].

There is a documented link between economic growth and residential electricity
consumption as seen in China where there has been a five-fold increase in electricity
consumption in residential buildings between 2000 and 2015 [267]. Before its economic
reform, China was the third largest consumer of electricity globally [258]. Since the reform,
China has become the principal driver of the increase in global electricity consumption with
an average national increase in demand over the past few decades of 9.3% [265, 281]. This
has seen consumption in China overtake that of the European Union (EU) in 2007, the US in
2010 and continental North America in 2013 [258]. The growth in electricity consumption in

China since the economic reform is shown in Figure 15.
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Figure 15 - Electricity Consumption in China (1965 - 2018) [274]

The increased consumption in China has seen the Asia Pacific become the highest regional
consumer of electricity globally, as seen in Figure 16. Since 1965 the region has increased the
percentage of consumption compared to the global total from 11.92% to 43.17%. In the
same period, Africa, the Middle East and South and Central America have seen small
increases, whilst the Commonwealth of Independent States (CIS), Europe and North

America have all decreased their percentage of the global total as seen in Table 6.
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Figure 16 - Historical Global Electricity Consumption by Region [274]

Table 6 - Percentage of Global Electricity Consumption by Region [274]

Region
. . South and
Year Africa AS."".‘ CIS Europe Middle Nort_h Central

Pacific East America .

America
1965 1.65 11.02 16.02  28.58 1.3 37.55 2.97
2000 2.92 28.59 8.04 22.1 4.41 28.83 5.1
2018 3.33 43.17 6.71 14.79 6.51 20.43 5.06

It

fo

has been shown that during the early stages of a country’s economic development the

cus is on production levels and that environmental quality deteriorates [260, 282]. This has

clearly been seen in China due to the fast speed of its development [283].

China’s development has been fuelled by vast amounts of fossil fuels [284]. Coal is
particularly dominant in the country’s fuel mix, meeting around 70% of consumers’ electricity
demand [267]. Whilst the land mass of China is just 2.2% of the world’s total it consumes

more than half of the world’s coal [280].
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The link between increased pollution and fossil fuels has been extensively documented in
literature [267]. This link can clearly be seen in China, where increasing use of fossil fuels
such as coal has resulted in severe air pollution [284], and seen the country become the
largest emitter of particulate matter and greenhouse gases such as sulphur dioxide (SO-)
and nitrogen oxides [285].

Air pollution is not a problem faced solely by China but one which has become one of the
largest global issues of the Anthropocene epoch [284]. Today approximately 92% of the
world’s population are exposed to air pollution levels in excess of the suggested limits of the
World Health Organization (WHO) [283, 286]. Populations in Africa, Asia and the Middle
East are particularly at risk [286]. The ever-increasing global demand for electricity is
augmenting the air pollution problem and other issues such as global warming [285].

Air pollution in China at times causes heavy haze episodes when particulate matter levels
spike [267]. During these periods the population is advised to stay indoors and close all
windows and doors. The increase in indoor activities leads to an increase in electricity
consumption through the use of appliances such as air conditioners and air purifiers [267].
These pollution mitigation activities have led to the hypothesis of the self-aggravation of air
pollution [267].

It has been shown in [260, 282] that when economic growth reaches an inflection point,
environmental protection awareness increases. This is true in China where over the past
decade the public in the country have shown an increased awareness of the problem and its
adverse health impacts [267]. The issue of air pollution levels has also been a major concern
for the government in China since 2013 as it tries to find a trade-off between environmental
protection and continuing economic growth [282, 283]. In September of that year, the
Ministry of Ecology and Environment of China implemented strict energy conservation and
emission reduction policies, “Atmosphere Ten Plans,” to reduce pollution and increase public
health and quality of life [282-283].

Another way in which China is trying to combat pollution and global warming is by changing
the fuel mix in its electricity network. Since 2000 it has made rapid progress in developing
renewable energy with an average annual growth rate over the last decade of 62.5% [285].

This growth has seen China become the global leader in renewable energy [285]. The
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country’s government have set several targets with regards to this shift, including 60%

renewable energy and 86% renewable electricity by 2025 [285].

China’s renewable energy production is currently dominated by hydropower. However, as
80% of this resource has already been explored, other options need to be examined [285].
Fortunately, China has vast resources of other renewable resources such as solar and wind,
which has led to an annual increase in capacity of 100.3% and 58.2%, respectively, between
2006 and 2015 [285].

3.1.2. Association of Southeast Asian Nations (ASEAN)
Developing countries in Asia and around the globe have looked closely at the symbiotic
relationship between electricity consumption and economic growth in China. They have also

looked closely at the risks of the continued reliance on non-sustainable energy sources.

The Association of Southeast Asian Nations (ASEAN) is a regional intergovernmental
organization in Southeast Asia which promotes inter-governmental co-operation on a range
of policies [260-261]. ASEAN was created in 1967 when five countries; Indonesia,
Philippines, Singapore and Thailand signed the ASEAN Declaration. The bloc now consists
of 10 member countries after Brunei (1984), Vietnam (1995), Laos (1997), Myanmar (1997)
and Cambodia (1997) joined the collation.

According to the United Nations the ASEAN region is home to nearly 650 million people
[287]. There has been a rapid increase in urbanization levels in Southeast Asia in recent
times with urban populations rising from 40% in 2000 to nearly 50% in 2018 [259]. Driven by
rapid economic growth and population urbanization the region is increasingly influencing
world energy trends with demand increasing by over 50% between 2000 and 2013 [261].
However, whilst millions of the region’s inhabitants have gained access to electricity since
2000, there are still approximately 45 million without access today [259]. Access to electricity

has been identified as essential to ASEANs economic growth programs [260].

Over recent years, several published studies have examined the current and near future
energy demands of ASEAN member states by both the ASEAN Centre for Energy (ACE)
and the International Energy Agency (IEA) [259-261]. The studies hypothesized that energy

demand in the region could rise by about 80% up to 2040 and that some countries like
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Malaysia would possibly double their consumption [261]. Other scenarios found that in order
to meet economic growth targets, the regions energy consumption would rise by 2.7 times
compared to 2013 levels [261].

Southeast Asia has large concentration of population and economic activities along its
extensive coastlines and has a strong reliance on the region’s natural resources such as
agriculture and forestry [261]. Therefore, it is at high risk from the effects of climate change
[261]. As a result of this, policymakers in the region are focused on finding a sustainable
model that allows the region to meet the energy needs required to enable continued
economic growth [259-261].

The region has relied heavily on fossil fuels for its energy demands in the past [260], and
currently three-quarters of ASEAN'’s electricity demand is currently met by fossil fuels [259].
However, in lessons learnt from China, policymakers in the region have intensified efforts to
create a sustainable energy solution for the future [259, 261]. Renewable energies are
currently a significant component of the ASEAN energy fuel mix meeting around 25% of
primary demand [261]. ACE and IEA both agree that they are likely to play an even larger
role in the future as cost reductions in renewable energy (RE) technologies are taken
advantage of [259-261]. The potential of both solar and wind have been identified as
significant candidates in meeting the renewable energy aims of the region [260-261]. Several

frameworks have now been put in place to better support investment in wind and solar [259].

3.2. Case Study Country—Myanmar

Due to the high costs of fossil fuels and environmental issues, countries in the global south
are planning exploitation of their renewable energy potential for meeting their energy needs.
In this work, Myanmar is chosen as a case study for which photovoltaic (PV) is seen as the
preferred technology owing to its modular nature and Myanmar’s tremendous PV potential.
The aim is to assess the solar-PV potential for a selected location in Myanmar and to
determine the impacts on current and future electricity demand profiles in order to aid

system planning.

3.2.1. Background
Myanmar (officially the Republic of the Union of Myanmar) was the 9th country to join

ASEAN and is the second largest country in Southeast Asia [268]. It is currently one of the
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lowest consumers of electricity in the world. In 2011 it was ranked 191 [288], and in 2016 the
average electricity consumed per capita was around 150-160 kWh [289]. This figure is far
lower than the top 10 consumers (Table 7) [290], and much lower than the world average of
3000 kWwh. It is even lower than the average of least developed countries figure of 174 kWh
[288].

Table 7 — Top 10 Consumers of Electricity Per Capita [290, 291]

2020 Population Energy Consumption
Rank Country . .
(Millions) (kWh Per Capita)
1 Iceland 0.34 53,832
2 Norway 5.42 23,000
3 Bahrain 1.7 19,597
4 Kuwait 4.27 15,591
5 Canada 37.74 15,588
6 Finland 5.54 15,250
7 Qatar 2.88 14,782
8 Luxembourg 0.63 13,915
9 Sweden 10.01 13,480
10 United States 330 12,994

The low per capita consumption rates of Myanmar are part of a large internal problem in the
country: access to electricity [289]. Whilst in ASEAN the number of people without access to
electricity has fallen by around two-thirds [261] in Myanmar the electrification rate is around
31%—-34% [270, 289]. This figure is far lower than global average of 87% [292]. At present,
there are around 2.3 m million residential connections in Myanmar [293]. This means that
around 39.6—-41.4 million people out of a population of nearly 60 million do not have access

to electricity.

The national grid mainly caters to the urban areas; therefore, it is the country’s major cities
that have the highest electrification rates. Yangon city’s electrification rate of 78% is the
highest in the country. However, 66% of the population live in rural areas [264], which are
poorly electrified with an average rate of less than 20% [268]. Rural communities rely on

traditional biomass for their energy needs, particularly for cooking and lighting [288].

Even though Myanmar has one of the fastest growing economies in Asia [294], it is thought

that the country’s current energy situation is significantly hindering economic growth as well
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as human development [264]. To overcome these issues the government approved the
National Electrification Plan (NEP) in September 2014 [288]. The NEP targets 100%
electrification of households by 2030 [288-289, 293], with around 98% of new connections
being grid-based [264]. The estimated capital cost of the project is somewhere between $5.9
and $10 billion, with financial help coming from the World Bank and the Japanese
government [289, 293]. As well as assisting economic growth, it is believed that meeting the
NEP targets will improve living standards in the country and enhance activities such as
education [264].

The scale of the program is immense and will involve connecting more than 7.2 million
households to the national grid. Figure 17 shows the current and targeted annual
electrification rate required to supply 100% of households by 2030. To achieve 100%
electrification, household connections will need to increase from 189,000 per year currently
to around 450,000 per year over the course of the program and even reach as high as over
517,000 in the latter stages [293]. It will also require around 2600 MW of additional
generation to be commissioned [293].
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Figure 17 — Electrification Rate in Myanmar [293]

Whilst their main priority is electrifying the population, the government of Myanmar has also

set goals for their future energy mix through policies such as the National Renewable
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Energies Policy and Planning—Draft (NREPP). The NREPP has set the goal of achieving an
energy mix, which includes 38% hydropower and 9% (2000MW) from other RES by 2030—
2031 [260].

3.2.2. Climate Conditions in Myanmar

The Koppen—-Geiger (KG) climate classification is a widely used system used to describe
terrestrial conditions [294]. The KG classification is based on five major types, which are
defined by temperature, precipitation and seasonal fluctuations. The latest KG world map
shows that Myanmar has three distinct climatic regions; temperate in the mountainous north
and west region, tropical wet central dry region, and tropical monsoon in southern and
coastal delta regions. Myanmar has three seasons; Cool (November through February), Hot
(March through May) and Rainy (June through October) [294].

3.2.3. Myanmar’s Electricity Fuel Mix

As of 2016 Myanmar had an installed capacity of around 4900 MW with a peak load of
around 200 MW, it also had an off-grid capacity of about 135 MW [289]. Myanmar is
considered to have an abundance of domestic energy resources such as gas and oil [295-
296]. However, the majority of the gas extracted in the country (75%—-80%) is exported to
neighbours such as Thailand and China, whilst the indigenous coal has a low calorific value
so the coal burned in electricity generation plants needs to be imported. Myanmar also has
an abundant potential for hydropower resources and the country is currently highly
dependent on hydropower to meet its electricity needs [268]. In 2015 65% of the electricity
generated in Myanmar came from hydropower, with natural gas providing 33.4% and coal
the other 1.6% [268]. The high dependency on hydropower in the current energy mix means
that robust supply during the dry seasons (cool and hot) cannot be guaranteed [297]. As a
result the country is vulnerable to power shortages for much of the year when rainfall is low
which often results in blackouts [289, 297]. Therefore, the future viability of large-scale
hydropower projects is uncertain [264]. Whilst the current reliance on fossil fuels for power

generation is unsustainable both environmentally and economically [264].

3.2.4. Solar Photovoltaic (PV) Potential in Myanmar
Myanmar has tremendous potential for RE, and whilst it is currently in an early stage, solar-
PV energy is one of the most promising RE candidates [268]. Sunlight in the country is

abundant and Myanmar receives 4.5-5.5 kWh/m? of solar radiation per day [269]. 60% of
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the country’s land area was identified as suitable for PV installations and the PV generation
potential is estimated to be around 40 TWh per year [288]. For Myanmar solar-PV also has
the advantage of working complimentarily with hydropower. Whilst solar-PV output will drop
during the rainy season, it can compensate for the decline in hydropower output during the
cool and hot seasons [288].

3.2.5. Future Energy Outlook

Previously several researchers have assessed the electricity outlook of the ASEAN region in
the coming decades [260—-262, 294—296]. They all concluded that electricity consumption in
the area will grow rapidly over the next 20 years due to economic and population growth as
well as government policies aimed at increasing access to electricity. They also point out
that at the same time the ASEAN member countries have stated their aspirations to move
towards a more sustainable energy mix and are, therefore, promoting the uptake of
renewable technologies. Studies have shown that due to their climatic conditions, many
Southeast Asian countries including Myanmar have high PV potential, and that many new
PV projects are expected to be constructed in the near future to try to close the supply—

demand gap in a sustainable manner [269, 295-296].

3.3. Methodology for Assessing Photovoltaic Energy Potential and its Impact
on Electricity Demand Profiles

3.3.1. Case Study Location

Yangon City, Myanmar, is the region considered for PV generation forecasting and electricity
demand forecasting. Formally known as Rangoon, Yangon City is the state capital of the
Yangon Region of Myanmar and served as the capital city of the country until 2006. It is the
largest city in Myanmar and home to over seven million people. As of 2015, the
electrification rate in the city was 78% and it consumed 44% of the electricity in Myanmar
(4.95 GWh out of a total of 11.25 GWh) [284]. Located in the heart of lower Myanmar, it has
a KG classification of tropical monsoon climate, and experiences little variance in both

temperature and sunlight hours throughout the year as shown in Table 8.

Table 8 — Climate Conditions in Yangon City

Average Average Relative Daily
Season Minimum Maximum Humidity Sunlight
Temperature(°C) Temperature (°C) (%) (Hours)
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Cool 19.8 32 66 11.4
Hot 23.7 35 71 12.2
Rainy 24 29.8 85.8 12.5

3.3.2. PV Generation Modelling

PV generation modelling involved two stages: pre-sizing and detailed system simulation.
PVGIS 5, which is a free-to-use Geographic Information System (GIS)-based online PV
energy estimation tool, was used for pre-sizing. PVGIS 5 generates PV energy output data
with hourly time resolution for 365 days of the year for both standalone and grid-connected
systems. A typical grid-connected polycrystalline PV system on the outskirts of Yangon City
was simulated using PVGIS. Based on the simulation, the size of the PV system needed to
substantially supply the annual electricity demand of the Yangon City was estimated at
approximately 1 MW. It should be noted that the 1MW load would not be connected to the
network at a single point but at many points across the network.

Being a satellite-based GIS, PVGIS also serves as a source of weather data. Averaged
monthly, seasonal and annual irradiance datasets were created using the daily solar
irradiance data obtained from PVGIS 5. PVsyst is an industrial standard detailed PV system
design software, which has an up-to-date library of PV modules and inverters. The average
monthly datasets from PVGIS were imported into PVsyst in order to model the potential
electricity generation of a 1 MW PV system on the outskirts of Yangon City with an assumed
operational start time of 2020. The details of the PV installation modelled in PVsyst are

shown in Table 9.

Table 9 — Photovoltaic Installation Details

Location Latitude 16.8° N
Longitude 96.1° E
Altitude 4m
Summary Module Type Generic 250W 25V 60 cell Si-poly
Number of Modules 4000
Module Area 6508m?
Array Design 250 strings of 16 modules
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Inverter Type generic 500kW 320-700V LF Tr 50 Hz

No of Inverters 2
Optimisation | Plane Tilt 24°
Azimuth 0°

3.3.3 PV Generation Forecasting

Polycrystalline PV modules have an expected lifespan of around 20 years. The output of
these modules over their lifetime is dependent on their annual degradation rate. Degradation
rates in modern crystalline silicon PV modules is between 0.2% and 0.5% [298]. In Mongolia
and India, data has shown that the degradation rate of polycrystalline PV modules was about
0.4% per year over 4 years of operation [292]. In this study, the analysis is over a 10-year
period, and therefore the upper future of 0.5% was chosen as the degradation rate used to
generate future annual PV output profiles up to 2030.

3.3.4. Electricity Demand Forecasting

Actual load profiles for developing countries such as Myanmar are difficult to obtain [285].
The load profiles used in this work are based on a synthetic load scenario created in [264]
and refers to the hourly, over the day, variation in the maximum demand of 100 residences
over 365 days of a typical year. The scenario was developed based on data from the local
energy use patterns in the neighbouring countries with climate and economic environments
like Myanmar. The scenario used assumptions about the basic electricity demand of urban
residences in developing countries in East Asia such as lighting, fans, televisions and other
home appliances such as refrigerators and mobile phone chargers. It was also assumed in
the scenario that the peak demand would occur during the daytime due to the use of fans to
combat the perennial high temperatures of the region. The data from neighbouring countries
and the assumptions about basic electricity needs were used together by the author to
generate a typical daily synthetic load profile and seasonal variations reflective of the

electricity demand of urban household consumers in Myanmar.

Using the typical daily profile and the maximum variations in the seasonal profile of [264],
average daily profiles with an hourly resolution were created for the twelve months of a year.
These monthly profiles were then used to generate aggregated annual and seasonal (cool,

hot and rainy) load profiles for Yangon City. The data from the seasonal profile from [264]
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showed very little variance in the projected demand over the course of a year. The average
daily peak demand was 250 kW. The maximum averaged daily peak demand occurred in
March when the peak was 261.49 kW, 4.6% above the yearly average. July had the lowest
averaged daily peak demand at 240.09 kW, 3.9% below the yearly average. The aggregated
seasonal figures showed an even smaller variance. The hot season had the highest average
daily peak demand at 252.56 kW, 1% above the yearly average. The cool season had the

lowest average daily peak demand at 247.78 kW, 0.9% below the yearly average.

The aggregated synthetic seasonal load profiles for urban Yangon City are shown in Figure 18
where the rainy season profile (grey dotted line) can just be seen slightly below the profile for
the cool season (blue solid line), highlighting the low variation in load over the seasons. The
low variance in load is due to the climate in the region and the assumption that electricity
demand is driven by basic needs such as cooling and lighting [264].
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Figure 18 — Averaged Synthetic Daily Load Profiles for Residential Properties in Urban Yangon City

The ACE predict that load in Myanmar and other South-East Asia countries will increase
3.8% annually up to 2035 [260]. This figure was calculated considering electrification
programs such as NEP as well as a GDP increase of 4.7% annually and a population growth
of 0.9% annually in the region over the same time period. Using the predicted annual load
increase figure from ACE, synthetic future annual load figures for urban Yangon City were
generated up to 2030.
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3.3.5. Load Matching

Solar supply rate is a measure of the percentage of load supplied by solar PV Systems, it is
calculated by dividing the annual load by the annual supply of a solar PV system [299].
However, solar PV systems can only supply power during daylight hours and this is not
taken into consideration with solar supply calculations [300].

Load matching is the correlation between generation and load and refers to the degree of
matching between generation and load profiles at instantaneous points in time. It is
commonly used in the study of Net Zero Energy Buildings to evaluate performance in terms

of the amount of on-site energy produced that is locally consumed [301].

At any instant the level of load matching can be calculated as follows [302]:

Equation 1 — Load Matching

min ((L(¢), P(t))
L(t)

where M is the load matching, L is the load, P is the electricity produced and t is an

M(t) =

instantaneous point in time.

To study the load matching by the output of the solar PV installation described in Table 9 to
the load of urban Yangon City, normalized annual diurnal profiles for the year 2020 were

created using feature scaling as follows:
Equation 2 — Normalisation

x — min (x)

x(n) = max(x) — min (x)

where x is the original value and x(n) is the normalized (per unit value) of PV output or

electricity demand at the nth hour.

Normalizing the data gave peak points in both the PV output profiles and the load profiles a
value of 1, with all other values scaled to the peak with values between 0 and 1.
Normalization allows better visualization of the correlation between the two profiles as it
absorbs the large differences in the absolute two profiles. Future profiles up to 2030 were
then forecasted using the annual load increase rate of 3.8% and the PV degradation rate of

0.5% with the 2020 profiles as a baseline.
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3.3.6 Scenarios Considered

To assess the solar-PV potential for Yangon City, two forecasted scenarios were created to
examine the profile matching between the output of the PV system and the local load. The
first scenario looks at figures from 2020, the assumed first year of operation for the PV
installation. The second scenario looks at the figures from 2030 to determine the effects of

electricity demand increase and PV system degradation.

3.4. PV Generation Potential Analysis

Analysis of the results obtained through the PVsyst simulation showed that in the first year of
operation the PV installation described in Table 9 would inject a total of 16,345,600 kWh into
the local grid at an average of 4490 kWh/Day. With the highest average normalized output
(the energy injected into the grid) occurring in the cool season of November to February
(5502 kWh/day). During the hot season of March to April the average would be slightly less
at 4882 kWh/day. During the rainy season of June to October the output would drop
noticeably to 3434 kWh/day.

Table 10 shows the breakdown of the average energy injected into the grid by month. Table 10
shows that the lowest average injection of energy would occur in June (Figure 19) with 2974
kWh/day, and the highest in February (Figure 20) with 5876 kWh/day.

Table 10 — Daily Average Energy Injected into Grid

Energy Injected

Month Season into Grid
(kWh/day)

January Cool 5551
February Cool 5876
March Hot 5648
April Hot 5352
May Hot 3646
June Rainy 2974
July Rainy 3017
August Rainy 3100
September Rainy 3545
October Rainy 4534
November Cool 5207
December Cool 5372
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Figure 19 — Energy Injected into the Grid in the Month of June
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Figure 20 — Energy Injected into the Grid in the Month of February

From Figure 20 it can be seen that there is little variation in the daily output of the PV system
during the cool season. The average daily output for February was 5876kWh/day, whilst the
lowest daily output was 5505kWh/day and the highest output was 6396kWh/day. The hot
season also experienced little variation in daily output. For example during the month of April
the average daily output was 5376kWh/day, whilst the lowest daily output was 4629kWh/day
and the highest output was 6013kWh/day. However, from Figure 19 it can clearly be seen that
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the unpredictable weather of the rainy season caused a large variation in the daily output of
the PV system. The lowest output during June was just 671kWh/day (6" June) whilst the
highest was 5364kWh/day (14" June). This large variation in output meant that the average
output over the month was 2974kWh/day, which is much lower than the typical output for
months in both the cool and hot seasons.

The International Electrotechnical Commission (IEC) 61724 “Photovoltaic system
performance” series of standards defines performance ratio (PR) as ‘the ratio of the effective
energy produced by a PV system.” For a grid connected PV system PR is calculated by
[303]:

Equation 3 — Performance Ratio

EGrid

PR =
Globlncx PnomPv

where: EGrid is energy injected into the grid, GlobInc is the global incident irradiance in the

collection pane, PnomPv is the standard test conditions power.

PR is used to evaluate the quality of the performance of a PV system [303]. The results of
performance evaluation where typical of installations in global south countries with tropical
weather conditions like those in the Yangon City, Myanmar region. The PR over a year of
the proposed installation in Yangon city was 0.798. The PR was consistent throughout the
year as can be seen in Figure 21. February was the poorest performing month (PR = 0.779)
and August the best (0.824). During the rainy season the PR was 0.818, in the cool season it
was 0.791, and in the hot season it was 0.790.
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Figure 21 - Average Monthly Performance Ratio

The PR figures show that 79.8% of the energy collected by the installation was converted
into useful energy and injected into the grid, meaning that the combined annual losses of the
installation were 20.2%. Figure 22 shows a detailed breakdown of the annual losses of the

system.
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Figure 22 — System Loss Diagram of Simulated PV System in Yangon City

Some of the causes of losses in the system were due to inverter efficiency, ohmic wiring
losses and PV module and string mismatch. The main cause of losses in the system was
due to temperature and low irradiance (14.8%). This high figure helps to explain why PV
output was lower in the hot season compared to the cool season. Figure 23 shows the

normalized production of the installation over the first year of operation.
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Figure 23 — Normalised Monthly Production

The data obtained from the PVsyst™ simulation were used to create average daily PV
output profiles of the PV system described in Table 9 at the same hourly resolution as the
synthetic seasonal load profiles created for urban Yangon City. As with the synthetic load
profiles, aggregated monthly, seasonal (Figure 24) and annual output profiles were then

generated from the monthly profiles.
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Figure 24 — Averaged Daily PV Output Profiles

Although the cool season had the fewest daylight hours, 12 as opposed to 14 for both the

hot and rainy seasons, the average daily output was highest in this season. Output fell by
11.4% in the hot season and by 39.6% in the rainy season.

3.5. Solar Supply and Load Matching

The results obtained from this study found that in the first year of operation of the proposed
PV installation (2020) the solar supply rate was 0.99, suggesting that there is a 99% match
between energy needs and the output from the PV installation. However, as stated

previously, the solar supply rate does not consider whether the output from the PV
installation temporally coincides with load.

Figure 25 shows the normalized yearly profiles of both the PV installation and the local load,
with the shaded area highlighting the degree of matching between the output of the PV
system and the local load it is supplying.
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Figure 25 — Load Matching in 2020

The degree of load matching for the year would be 71%, and as seen in Figure 25 there is a
reasonable correlation between the output of PV installation and the load of an urban setting
such as Yangon City. As stated previously this work assumes that the times of high peak
demand in areas such as Yangon City would occur during the hottest parts of the day (early
afternoon) as consumers use electric devices such as fans to combat the high temperatures.

Figure 25 also shows that these times coincide with the times of high PV output.

Analysis of the results also showed that, as expected due to the climatic conditions and
basic energy needs of the region under study, there was little variance in both solar supply
rate and load matching for the three seasons. The solar supply rate was lowest in the cool
season at 0.98 and highest in the rainy season at 1.09 a difference of 0.12. In terms of load
matching the maximum variation in seasons (6.6%) was again between the cool season
(67.7%) and the rainy season (74.3%).

Figure 26 and Figure 27 show the forecasted load profiles, forecasted PV output profiles and
load matching in 2025 and 2030 respectively, assuming the expected regional annual load

demand increase, and the degradation rate of the PV system discussed previously.
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Figure 26 — Load Matching in 2025
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Figure 27 — Load Matching in 2030

The increase in load and degradation of the PV system output mean that by 2030 the solar

supply rate would decrease to 0.65 and load matching would decrease to 57.3%. Figure 28
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shows the decrease in solar supply factor and load matching of the PV system in the first 10

years of operation (2020-2030).
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Figure 28 — Solar Supply Rate and Load Matching for First 10 Years of Operation

There has been a continued rise in the penetration levels of variable energy sources (VES)
such as solar/PV over the previous few decades [304]. Due to the move towards a more
sustainable energy future this rise is expected to continue [305]. One stumbling block to the
continued integration of PV is thought to be the relationship between PV output and load
demand. This is particularly true in Europe where the highest output levels coincide with

periods of low demand.

3.6. Implications On Future Electricity Mix Planning

The results from this study have shown that for developing nations in the global south with
economic and climate conditions similar to Myanmar that there is a good correlation between
PV output and local load demand. During the first year of operation of the PV installation the
majority of the electricity generated (approximately 75%) would coincide with local demand.
This means that there will still be grid support needs from non-renewable generation
technologies/ storage, although at a lower capacity that needs to be factored into the

electricity generation planning. The results also show that if load demand in the region
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continues as predicted, the correlation between PV output and local load demand will
increase over time. It is evident in the case of Myanmar, it is a suitable candidate for meeting
the country’s ambitions of creating a sustainable network with significant levels of RE in the

near future.

However, to create sustainable electrical power systems in countries like Myanmar, it
becomes more important to study the effects of increasing renewable penetration levels on
load (demand) profiles. The planning of their future energy mixes are reliant on the

forecasting of future load profiles for which an ANN framework is proposed later in this work.
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Chapter 4

Forecasting: An Important Tool for Electricity Planning

Future power networks are certain to have high penetrations of renewable distributed
generation such as photovoltaics (PV). As energy flow becomes inevitably more complex
with larger integration of renewable generation, electric vehicles and energy storage in
modern power networks, power system planning methods are becoming more complicated
compared to how they were with conventional, mostly thermal, generation. The restructuring
of electricity networks means accurate load profiles are increasing important [219].
Traditional methods of creating load profiles that rely on historical data will not be suitable for
modelling the increasingly complex electricity networks of the future. Hence it has become
important to develop suitable new load profile generation methodologies that rely on publicly

available data that can be used to aid different network related analyses by operators.

In this chapter a new computational approach for generating synthetic residential load
profiles of the future which combines artificial intelligence and statistical probability is
presented. The accuracy of the approach is assessed through the use of a case study of a
typical distribution network containing varying levels of modern loads (EV charging) and

customer side generation (PV).

4.1 Proposed Future Load Profile Generation (Forecasting) Framework

Load profiles represent the variation of After Diversity Maximum Demand (ADMD) of
domestic consumers over a day. The standard method of constructing an hourly load profile
is by recording the energy consumption, at feeder or substation level in an electricity
distribution network, at regular intervals and dividing this by the number of customers on that
feeder to produce the ADMD. The nature of customers is changing under de-carbonisation.
Residential customers with generating technologies such as PV are prosumers as they
produce and export electricity in addition to the typical consumer roles. In the smart grid
context, historic forecasts of load profile will not be appropriate. Net load profiles at the
residential customer level will need to be prosumption profiles, factoring in the drastic
changes in load (for example, due to electric vehicles (EV), heat pumps etc.) and at-home
generation technologies (PV, Micro-CHP etc.). Synthetically generated net load profiles are

therefore important for scenario-based assessment studies.
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Several studies have used artificial intelligence models for predicting energy demand of
buildings [306]. Gunay [307] modelled the gross electricity demand in Turkey using Artificial
Neural Network (ANN) models with weather and socio-economic factors as inputs. Zameer
et al. [308] used genetic programming based on an ensemble of neural networks to
demonstrate the feasibility of wind energy prediction (in Europe) by using publicly available
weather and energy data. With regard to the challenge of predictive modelling for uncertain
penetration levels of future distributed resources, a number of researchers have recently had
reasonable success by employing statistical probability distributions [309-311]. For example,
Munkhammar et al. [311] demonstrated the use of the Bernoulli distribution for incorporating
EV demand into load profiles. However, these statistical probability distributions fail to take
into account the time varying behaviour in the energy consumption of distributed resources
as they assume a constant load. Therefore, a framework for synthetic net residential load
profile generation proposed combining artificial intelligence and statistical probability
distributions, that can be used for scenario-based assessment studies, is proposed as
shown in Figure 29. The framework summarises the author's and PhD supervisor's

accumulated experience in using artificial intelligence methods and observations of

literature.
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Figure 29 — Proposed Net Residential Load Profile Generation Framework

Please note that in the work discussed in this chapter that heat pumps and micro combined

heat and power (CHP) generation were not investigated as inputs of the model.
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The net residential load profile generation problem is inherently data centric. The choice of
data, artificial intelligence methods and inclusion of operational elements of the framework
such as statistical probability distribution is dictated by the data available. A method tailored
for the data available and scenario under consideration, can be generated based on the

framework.

4.2 Choice of Artificial Intelligence Model

Testing was carried out to determine a suitable Al model to use in this work. The Al models
tested included 4 different linear regression models, 3 regression trees, 6 support vector
machines, 2 regression tree ensembles and one artificial neural network. The same
computer environment (Matlab) was used to create all the Al models to ensure validity of the
comparison was maintained. All the models investigated were generated using the default
Matlab settings and where trained using the same data set. 10 models of each Al technique
where created (160 in total) and the average values of these 10 runs of coefficient of
correlation (R Value), error (mean square error) and training time where then compared. The
results of these tests are presented in Table 11.

Table 11 — Artificial Intelligence Model Testing Results

Artificial Coefficient of Error Training
Intelligence Correlation Time
Method (R Value) (MSE) (Seconds)
Linear Regression Models
Linear 0.79 0.048458 9.2
Interactions Linear 0.93 0.028354 8.0
Robust Linear 0.79 0.048901 10.7
Stepwise Linear 0.93 0.028361 20.9
Average 0.86 0.038518 12.2
Regression Trees
Fine Tree 1.00 0.000401 12.5
Medium Tree 1.00 0.000951 115
Coarse Tree 0.99 0.004960 10.8
Average 1.00 0.002104 11.6
Support Vector Machines
Linear SVM 0.78 0.049757 28.3
Quadratic SVM 0.95 0.022058 41.5
Cubic SVM 0.99 0.002573 146.8
Fine Gaussian SVM 0.99 0.001305 47.5
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Medium Gaussian SVM 0.99 0.002073 39.2

Coarse Gaussian SVM 0.94 0.012596 50.4
Average 0.94 0.015060 59.0
Regression Tree Ensembles
Boosted Trees 0.98 0.003462 46.3
Bagged Trees 0.99 0.001294 49.6
Average 0.99 0.002378 48.0
Artificial Neural Network
Feed Forward Network 1.00 0.000266 6.0

The results of the testing of the different Al models clearly showed that artificial neural
networks where the most suitable candidate to use in this work. Therefore, the decision was
made to investigate further the viability of basic ANN models to synthesize future load
profiles of networks with varying penetration levels of typical modern-day loads such as PV
and electric vehicle charging was investigated first as described in the next section. Chapter
5 is dedicated to a detailed description of ANNs and their application for load forecasting
using the MATLAB ANN toolbox.

4.3 Viability of Future Load Profile Generation Based on Public Data using
ANN

The exact penetration levels of consumer-side technologies such as PVs and EVs in the
future energy demand mix is presently uncertain. The charging profiles of different EV
technologies is also evolving as EV technology is evolving. As there is a step change in load
the objective is not to generate future load profiles based on historic datasets of load, but to

use standardised load profiles and load/generation-weather relationships.

Previous literature reveals that a large proportion of the variability in electricity demand is
dependent on weather variables such as air temperature, humidity, wind speed, cloud cover
and irradiation [312-313]. It is also evident that the sensitivity of residential and commercial
consumers electricity demand to meteorological variables is higher than that for industrial
consumers [314]. Irradiance, air temperature, wind speed and air mass are weather features
that affect PV power output [315]. Liu et al posit that there is no obvious correlation between
wind speed and PV output power [316]. Aste et al find that performance ratio for crystalline
silicon PV modules is fairly constant in the face of changes in air mass [317]. Seasonal

variations in weather affect the PV output power from month to month. The existing literature
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seems to agree that irradiance and air temperature are the two most important weather
features that impact on the output power of a PV system. The charging profiles of EVs have
no obvious correlation to weather [318]. They are dictated by consumer driving behaviour
which in turn is correlated to the socio-economic factors of the region. As temperature and
irradiance are influencing parameters common to load and PV generation, it makes sense to

include these as inputs for generating future aggregate load profiles.

The feasibility of using publicly available weather and electrical vehicle charging data to
generate future penetration level scenario based residential load profiles is investigated
here.

4.3.1 Data Description

The UK Energy Research Centre (UKERC) has developed load profile models for all 4
seasons of a typical year [319]. The load data used in this study is for residential customers
unrestricted by usage timings. The load profiles from UKERC have hourly time-resolution
and are publicly available. As described in the previous section, temperature and irradiation
are the main weather data to be considered. There are a number of weather databases
which provide weather data for a typical year for different locations such as NREL (National
Renewable Energy Laboratory) National Solar Radiation Data base, NASA Surface
meteorology and Solar Energy, PVGIS (Photovoltaic Geographical Information System)
climate-SAF etc. PVGIS climate-SAF was selected as the reference solar database for the
UK as it provides up-to-date data in the public domain for Europe. The data is available with
hourly time resolution for 365 days a year. A MATLAB program was written to create
seasonal average hourly weather (temperature and global irradiation) datasets. The Low
Carbon London (LCL) project conducted customer trials of new transport and heating loads
on distribution networks in London. Residential EV charging profile data for this study was

taken from the project [320].

4.3.2 PV Generation

Middlesbrough, UK is considered as the region where future load profiles are to be
generated. At the time of this study in the UK, PV systems of 4 kWp rating were eligible for
the highest feed-in tariff incentive. Hence this system size was considered. The crystalline
silicon PV technology was selected as it is the most mature PV technology with the highest
market share. Typical PV systems were modelled using PVGIS 5 online software which

generates PV output data with hourly time resolution for 365 days a year. Seasonal average
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typical PV generation datasets were created using a MATLAB program similar to that
described for weather data. Figure 30 shows the seasonal variation in PV generation. As
expected, summer and spring months have higher power outputs for longer duration as

compared to autumn and winter.
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Figure 30 — Seasonal Variation in PV Output Profiles of the Typical PV system

4.3.3 PV and EV Penetration Scenarios

PV and EV penetration level in this work is defined as the ratio of the number of houses with
a typical PV system or EV to the total number of houses in the distribution network for which
the load profile is representative. In this work, PV penetration level was varied in steps of
10% from O to 100%, along with a similar variation in EV penetration level corresponding to

PV penetration level.

4.3.4 Creation of Composite Future Load Profiles

Composite future load profiles are essential for testing the feasibility of the ANN based load
profile generation methodology. After generating seasonal PV generation profiles, composite
future load profiles, for the whole range of EV and PV penetration scenarios described in the
previous section for all seasons of a typical year, were created. This was done by
aggregating seasonal UKERC profile class 1 load profiles with penetration-level-weighed PV
generation (negative demand) profiles and EV charging profiles from LCL. As future load
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profiles for the penetration scenarios described are not yet available these composite load
profiles were construed as close substitutes to the actual.

4.3.5 ANN Design and Training

In terms of computational structure, ANNs are composed of neurons, which at a very basic
level mimic neurons in the human body in terms of learning and processing information. In
this work, a feed forward neural network is used. In this ANN design, neurons are arranged
in successive layers and information flows from the input layer to the hidden layer and then
to output layer. The method used for ANN training is supervised learning where the training
data includes both the input and the target outputs. Levenberg-Marquardt algorithm is used
for ANN training owing to its training speed and ease of implementation using MATLAB

neural network toolbox.

The input variables for the ANN model were time of day, global irradiation (W/m2),
temperature (0C), PV penetration level (%) and EV penetration level (%). The output is load
for the particular hour (kW). The ANN model was trained on input weather and target load
data for spring, summer and winter for the range of penetration scenarios described in
section 1.C. As complexity increases the difficulty in training and the training time, it was
aimed to keep the ANN structure as simple as possible. A single hidden layer was
considered between the input and output layers. Initially the ANN was trained with 5 input
nodes corresponding to the 5 input variable, 10 hidden nodes (default MATLAB architecture)
and 1 output node corresponding to the load. The use of the default ANN architecture gave
a Pearson correlation coefficient (R) value close to 1, between predicted outputs and targets
outputs of the ANN. The ANN was re-trained after reducing the number of hidden nodes by
one to see the decline in R-value. This iterative procedure continued until the optimum ANN
architecture with 6 hidden nodes shown in Figure 31 resulted. The feasibility of the proposed
method for future load profile generation was investigated using the case study of different
PV and EV penetrations for the autumn season for which the ANN does not have a priori

knowledge from training.

Sl (ol

Figure 31 — ANN Architecture for Future Load Profile Prediction Model

100



4.3.6 Prediction Performance Metrics

The statistical metrics used for examining the prediction accuracy and comparing the
performance of ANN to regression were the root mean square error (RMSE), the mean
absolute error (MAE) and the mean absolute percentage error (MAPE). They are defined by

the following statistical equations.

Equation 4 — Root Mean Square Error

RMSE = /—?ﬂ(Pi —A)"
n

Equation 5 — Mean Absolute Error

el P — Ay
n

MAE =

Equation 6 — Mean Absolute Percentage Error

n |M|

Where Pi and Ai are the synthetic load profile data and actual load profile data at the i point
respectively, and n is the total number of data points (i.e., 24 per load profile for hourly

resolution).

4.3.7 Validation and Viability of ANN use

To validate the suitability of the proposed ANN for generating synthetic future residential
load profiles, the performance of ANN model was compared to multiple linear regression
(MLR) — a common prediction model. This section compares the training and prediction

performance of both models.

Training

Both ANN and regression models were trained using the same input weather and target load
data, and the whole range of penetration levels of PV and EV described in section II.C, with
hourly resolution. The training data was for spring, summer and winter of the typical year. To

analyse the fitness of the model the output of the ANN and regression models with the
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training data was compared to the actual load profiles (targeted training outputs). Owing to
the 112 (in-total) combinations of PV and EV penetration scenarios and 3 seasons, there
were 336 twenty-four-hour load profiles (ANN, MLR and actual) to be compared. Figure 32
and Figure 33 show representative comparison obtained for 2 (out of the 300 scenarios)
namely: 10% PV penetration and 10% EV penetration in spring and 50% PV penetration and

70% EV penetration in winter.
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Figure 32 — Training Results for 10% PV and 10% EV Penetration in Spring
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Figure 33 — Training Results for 50% PV and 70% EV Penetration in Winter

For a typical day in spring, with 10% PV penetration and 10% EV penetration, ANN shows a
markedly better approximation to the actual load profile than MLR - as shown in Figure 32. In

Figure 33, for the scenario of 50% PV penetration and 70% EV penetration on a typical winter,
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the difference between the training performance of both models is not so apparent.
However, because these two scenarios are only small portions of a large training dataset, a
statistical description of training performance over the entire dataset is desirable and is
described by the MAPE, MAE and RMSE values in Table 12.

Table 12 — Training Performance of ANN and MLR for All Four Seasons Combined and The Full Range of EV
and PV Penetration Scenarios

Error ANN MLR
MAPE 7.29% 18.36%
MAE 0.0349 0.1959

RMSE 0.0492 0.2562

From Table 12, it is apparent that ANN has much better training accuracy than MLR. MAPE of
7.29% for ANN means that the ANN trains with about 93% accuracy as compared to about
82% for MLR. The MAE and RMSE values also support the fact that ANN trains better.

Validation

Input weather data, PV and EV penetration levels and composite load profiles for autumn
season of the typical year (for which the ANN models have no a priori knowledge) was used
to test both ANN and MLR prediction models. Figure 34 compares the predicted load profile
for a day in autumn with the actual load profile, for a scenario of 20% PV penetration and
30% EV penetration. The predicted load profile using ANN closely approximates the actual
load profile. On the other hand, MLR prediction shows a marked divergence from the actual
load profile. The superior prediction performance of ANN is statistically supported by Table
2, with MLR showing a prediction accuracy of just about 15% for the test season (autumn).
The ANN model has been proved to be a viable model for generation of synthetic load profile
in the face of increasing penetration of PV and EV resources. The complexity of the

prediction process can be easily visualised from the comparison to the MLR model.
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Figure 34- Testing Results for 20% PV and 30% EV Penetration in Autumn

Table 13 — Testing Performance of ANN and MLR for 20% PV Penetration and 30% EV Penetration in Autumn

Error ANN MLR
MAPE 20.84% 74.83%
MAE 0.0765 0.1959

RMSE 0.1035 1.2481

In order to minimise training difficulty and time the structure of the ANN model was kept as
simple as possible. The experimental results show that the ANN model has the ability to
capture non-linear relationships even when trained with limited data from publicly available
sources. The model was built using the Matlab Neural Network Toolbox with default settings,
namely: a function fitting neural network, with 10 neurons in one hidden layer, hyperbolic
tangent sigmoid transfer functions in the hidden layer, a linear transfer function in the output
layer with the network trained using the Levenberg—Marquardt backpropagation (supervised)
training algorithm. The results prove the feasibility of the proposed ANN based method for
synthesising future residential load profiles under increasing levels of EV and PV

penetration.

4.4 Knowledge gap in the design of ANN load forecasting methods
Over the years several authors have proposed different empirical rules which have been

claimed as can be used in the design of ANN models in order to improve their performance
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[251, 306]. For example, when designing an ANN model with one hidden layer different
authors have proposed a variety of different formula to determine the number of hidden
nodes: n, 2n, n/2 and 2n + 1, where n is the number of input nodes in the model as reported
in [309]. In a model which has five inputs, use of these formulae would mean the hidden
nodes used would be 5, 2.5, 10 or 11 depending on the formula employed. This translates to
a high amount of effort in load forecasting using ANN applications due to the exploratory and
iterative nature of the designing process. The hidden node ranges mentioned in the example
also clearly shows why empirical rules do not work well for all applications [306], and why

designing ANNSs is often considered to be more of an art form rather than a science.

The next chapter provides a details of ANNs and their components, structures algorithms
etc. and proceeds to develop a systematic approach that could be employed for designing
ANN models for load forecasting by nations of the Global South or elsewhere.

105



Chapter 5
Development of a Systematic Artificial Neural Network (ANN)

Design Approach for Load Forecasting using Matlab

The viability of basic ANN models to synthesize future load profiles of networks with varying
penetration levels of typical modern-day loads such as PV and electric vehicle charging has
been proven through a UK-based study in chapter 4. As outlined in section 4.7, ANN
forecasting so far has been reliant on empirical rules which translated to a high amount of

effort due to the exploratory and iterative nature of the designing process.

This chapter aims to address the knowledge gap and simplify the design process, through
the development of a new systematic approach that could be employed in designing any

ANN model for load forecasting by nations of the Global South or elsewhere.

The investigation was carried out using the neural network toolbox (NNTool-box) in Matlab.
The NNTool-box supports the design, implementation and simulation of ANNs [321] whilst
freeing the user from writing complex algorithms which allows them to speed up the design

process and concentrate on trying to find the optimal model design [200].

The NNTool-Box has been used in several research papers in recent years in several fields
of study including economics [322], medicine [323-324], science [325-327] and engineering
[321, 328-337]. The toolbox has also been used in several load forecasting studies, although
they have mostly been in the short-term horizon [226, 239, 241, 338] and medium-term [157,
200]. The popularity of the toolbox has also seen several papers use it to analyse different
ANN design parameters [339-341].

5.1 Matlab Parameter Testing

In reviewing the literature on ANNSs it was found that five parameters were commonly used
by authors to try to improve the prediction capabilities of their models. These were training
function, number of neurons, number of hidden layers, network architecture and transfer
functions used in the hidden layer(s) and output layer. To determine the effects of each of
these parameters on the prediction capabilities of ANN models used in load forecasting
scenarios a number of tests were carried out. This section details those tests and presents

the results.
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5.1.1 Performance Indicators

When evaluating the results from any testing it is important to properly define some
performance indicators [342]. In the testing discussed here performance was measured in
terms of mean square error (MSE) and the coefficient of correlation, also known as the
Pearson correlation coefficient or more simply as the (R) value. MSE is a metric commonly
used to measure of the goodness of fit in the training, validation and testing sets of ANN
models [343-346]. It is a measure of the average squared difference between targets and
outputs of a network [344]. Therefore, the smaller the value of MSE the closer the fit is to the
data and the better the performance of a network [343]. R values are a measure of the
relationship between two variables. They are commonly used to show the prediction
accuracy of ANN models by evaluating the relationship between predicted and actual values
[343—-347]. Where an R value near to 1 indicates a high degree of correlation between actual
and predicted values (good prediction performance) and R values close to 0 indicate poor

correlation between actual and predicted values (poor prediction performance) [348].

5.1.2 Default Matlab ANN Network Architecture Testing

Load forecasting using ANNs is essentially an input-output fitting problem. The
recommended network architecture to use in input-output fitting problems is the function
fitting network (Fitnet) and is the default network used in the Matlab NNtoolbox. A number of
Fitnets were created to determine the effects the number of neurons, number of hidden

layers and training function each had the prediction capabilities of ANNSs.

Initial Testing
An initial test was carried out to determine which of the twenty training functions available in

Matlab arena could be used in this study (see Table 14).

Table 14 - Matlab NNTool-Box Training Functions

Matlab
Training Function
Syntax
Backpropagation Training Functions that use Jacobian Derivatives (BTFJDs)
Levenberg-Marquardt Backpropagation trainlm
Bayesian Regulation Backpropagation trainbr

Backpropagation Training Functions that use Gradient Derivatives (BTFGDs)

BFGS Quasi-Newton Backpropagation trainbfg
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Conjugate Gradient Backpropagation with Powell-Beale Restarts traincgb

Conjugate Gradient Backpropagation with Fletcher-Reeves Updates traincgf
Conjugate Gradient Backpropagation with Polak-Ribiere Updates traincgp
Gradient Descent Backpropagation traingd
Gradient Descent with Adaptive Learning Rules Backpropagation traingda
Gradient Descent with Momentum traingdm
Gradient Desc_ent with Momentum & Adaptive Learning Rules traingdx
Backpropagation

One Step Secant Backpropagation trainoss
RPROP Backpropagation trainrp
Scaled Conjugate Gradient Backpropagation trainscg

Supervised Weight/Bias Training Functions (SWBTFs)

Batch Training with Weight & Bias Learning Rules trainb
Cyclical Order Weight/Bias Training trainc
Random Order Weight/Bias Training trainr
Sequential order weight/bias training trains

Unsupervised Weight/Bias Training Functions (UsWBTFs)

Unsupervised Batch Training with Weight & Bias Learning Rules trainbu
Unsupervised Batch Training with Weight & Bias Learning Rules trainbuwb
Unsupervised Random Order Weight/Bias Training trainru

The testing involved using the training dataset described in Section 4.3 to create an ANN
with the default Matlab design of ten hidden neurons in one hidden layer in a function fitting
network (Fitnet) using supervised learning. As expected, the Matlab ANN toolbox was
unable to initialise training when employing any of the three unsupervised training functions
(trainbu, trainbuwb and trainru). Sixteen of the supervised training functions when tested
successfully converged to a solution in times from a few seconds to a little over 2 minutes
when using Matlab R2017b Update 7 on a HP EliteDesk 800 G2 SFF PC with an Intel Core
3.2GH z 4 Core i5-6500 CPu and 8GB Physical / 11GB Virtual memory running Microsoft
Windows 10.0.16299 Enterprise Operating System. However, the trainc function did not
successfully converge to a solution when it was left to run for over 18 hours on several
attempts. Due to these reasons the three unsupervised functions along with the trainc

function were all deemed to be unsuitable candidates for the next phase of testing.

Training Functions and Neurons Testing

Tests were then carried out to examine the prediction capabilities of the 16 remaining
supervised functions when using the standard Fitnet Matlab ANN architecture. These tests
also studied the effects of altering the number of neurons in the hidden layer from one to

twenty. In all 100 tests were carried out on each algorithm and 1,600 in total. Figure 35 to
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Figure 37 show the average error between predicted values and actual values of each training
function over the range of 1 to 20 neurons.
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Figure 35 — Error of Backpropagation Training Functions that use Jacobian Derivatives in Neuron Testing

1.6
1.4

1.2

0.8

0.6

Performance (MSE)

0.4

0.2 .,/\ [ P

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Neurons

[N
N
w
H
(]
[e)]

e {rainbfg e==traincgb traincgf emmm=traincgp e=traingd traingda

e {3iNGAM emm—traing(X e==train0ss e=s=trainrp e=——trainscg

Figure 36 — Error of Backpropagation Training Functions that use Gradient Derivatives in Neuron Testing
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Figure 37 — Error of Supervised Weight/Bias Training Functions in Neuron Testing

From Figure 35 it can be seen that the error of both of the BTFJIDs was similar. It can also be
seen that as neurons are added to the network the performance of both functions increased

with an almost exponential rate.

From Figure 36 it can be seen that the error of all the BTFGDs was not similar to each other. It
can clearly be seen that the error of the trqingdm function was much worse than the other
types of function that use gradient derivatives, and that the change in performance brought
about by altering the number of neurons was not predictable as was seen with the trainim

and trainbr functions.

Results also showed that the error of the three SWBTFs were unalike to each other. From
Figure 37 it can be seen that the trains function performed extremely poorly and erratically
over the range of neurons. It can also be seen that whilst the trainb function performed better

than trains it was still somewhat erratic and inferior to the performance of the trainr function.

Table 15 shows the average error of each training function in terms of mean square error over
the full range of neurons tested (1 to 20). From these results it can again be seen that the
error of the two backpropagation training functions that use Jacobian derivatives was similar.

It can also be seen that the averaged error of the BTFJDs (0.00374) was substantially better
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than the average error of the BTFGDs (0.08862) and the averaged error of the SWBTFs
(1.83172).

The results in Table 15 also show that whilst the averaged values of the three types of training
function were considerably different the performance of individual functions in each of the
three type categories was comparable. The coefficient of correlation (R value), also known
as the Pearson correlation coefficient, figures shown in Table 16 strengthen these findings.
From these figures it can again be seen that the BTFJDs outperformed the other types of

functions on average but some individual functions in each type had similar performances.

Table 15 — Error of Different Training Functions in a Single Layer Network

. Error (MSE)
Function
Worst Best ‘ Variation Average

Backpropagation Training Functions that use Jacobian Derivatives
trainim 0.0347038 0.0000121 0.0346917 0.0037461

trainbr 0.0343248 0.0000093 0.0343155 0.0037322
Average 0.0345143 0.0000107 0.0345036 0.0037391
Backpropagation Training Functions that use Gradient Derivatives
trainbfg 0.0338772 0.0006297 0.0332475 0.0054425
traincgb 0.0337104 0.0017231 0.0319873 0.0068273
traincgf 0.0345752 0.0026901 0.0318851 0.0082406
traincgp 0.0344542 0.0028998 0.0315544 0.0083364
traingd 0.2529902 0.0341086 0.2188816 0.0758297
traingda 0.1036000 0.0364800 0.0671200 0.0507430
traingdm 1.3472420 0.2141410 1.1331010 0.7682005
traingdx 0.0386438 0.0185596 0.0200842 0.0254688
trainoss 0.0355676 0.0057411 0.0298265 0.0110109
trainrp 0.0358002 0.0013701 0.0344301 0.0067734
trainscg 0.0352436 0.0015827 0.0336609 0.0079448
Average 0.1805186 0.0290842 0.1514344 0.0886198

Supervised Weight/Bias Training Functions

trainb 1.1022000 0.0565000 1.0457000 0.4292240

trainr 0.0345982 0.0037803 0.0308179 0.0082248

trains 9.6046200 0.9617960 8.6428240 5.0577011
Average 3.5804727 0.3406921 3.2397806 1.8317166
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Table 16 — Coefficient of Correlation of Different Training Functions in a Single Layer Network

Coefficient of Correlation (R Value)

Function o
Worst Best Variation Average
Backpropagation Training Functions that use Jacobian Derivatives
trainim 0.9213 1.0000 0.0787 0.9915
trainbr 0.9212 1.0000 0.0788 0.9916
Average 0.9213 1.0000 0.0787 0.9915
Backpropagation Training Functions that use Gradient Derivatives
trainbfg 0.9211 0.9982 0.0771 0.9872
traincgb 0.9204 0.9937 0.0733 0.9835
traincgf 0.9194 0.9914 0.0720 0.9816
traincgp 0.9197 0.9927 0.0730 0.9805
traingd 0.6336 0.9051 0.2715 0.8556
traingda 0.8434 0.9045 0.0611 0.8808
traingdm 0.2818 0.7465 0.4648 0.4257
traingdx 0.9178 0.9501 0.0322 0.9392
trainoss 0.9191 0.9857 0.0665 0.9746
trainrp 0.9156 0.9960 0.0804 0.9845
trainscg 0.9189 0.9950 0.0761 0.9815
Average 0.8282 0.9508 0.1226 0.9068
Supervised Weight/Bias Training Functions
trainb 0.4188 0.8721 0.4533 0.6566
trainr 0.9179 0.9901 0.0722 0.9808
trains 0.5585 0.8964 0.3379 0.8282
Average 0.6318 0.9195 0.2878 0.8219

Training Functions and Hidden Layers Testing

The next stage of testing studied the effects of the number of layers on the prediction
capabilities of the standard Fitnet network. These tests also studied the performance of the
16 training algorithms in different circumstances. Fitnet networks with one to six hidden
layers each with 5, 10, 15 and 20 neurons in each were created and studied. In all 120 tests
were carried out on each algorithm and 1,920 in total. Figure 38 to Figure 40 show the average

error of each training function over the range of 1 to 6 layers.
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Figure 38 - Error of Backpropagation Training Functions that use Jacobian Derivatives in Layer Testing
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Figure 39 - Error of Backpropagation Training Functions that use Gradient Derivatives in Layer Testing
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Figure 40 - Error of Supervised Weight/Bias Training Functions in Layer Testing

From Figure 35 it can be seen that as was the case with the neuron testing the error of both of
the BTFJDs was similar. As layers were added to the ANN model the error of both functions
decreased with an almost exponential rate. The biggest change in error was achieved by
increasing the number of layers to 2 from 1 when the mean square error reduced by 88.42%
for the trainim function and 90.02% for the trainbr function as shown in Table 17. From it can
be seen that the trainlm and trainbr functions behaved differently as more layers were
added. With the trainlm function the rate of change in the improvement in error continually
decreased as the number of layers increased. However, with the trainbr function the rate of
change in error decreased up to 4 layers than increased again up to 6 layers.

Table 17 — Percentage Change in Error Brought About by Adding Layers to Backpropagation Training Functions
that use Jacobian Derivatives

Number of Layers
2 3 4 5 6

trainlm -88.42 -62.57 -28.99 -20.69 -5.19
trainbr -90.02 -60.55 -23.59 -36.26 -45.41

Function

From Figure 39 it can be seen that the traingdm function again performed much more poorly

and erratically than the other BTFGDs. Table 18 shows the average percentage change of the
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mean square error brought about by increasing the number of layers in an ANN model
trained using the eleven different BTFGDs. The results in Table 18 show that the behaviour of
the BTFGDs did not follow any pattern when the number of layers was increased.

Table 18 - Percentage Change in Error Brought About by Adding Layers to Backpropagation Training Functions
that use Gradient Derivatives

. Number of Layers
Function
2 3 4 5 6

trainbfg -56.07 -20.90 -9.19 -41.97 2323.30
traincgb -52.49 10.83 41.54 39.82 261.08
traincgf -42.12 22.32 21.67 173.69 131.87
traincgp -30.16 56.64 -22.38 1.92 110.69

traingd 45.53 -11.83 -1.46 4.25 19.74
traingda -3.38 14.87 14.95 1.44 15.94
traingdm -48.28 62.17 -17.81 -1.24 10.56
traingdx -34.83 -29.84 5.34 84.85 -0.89
trainoss -23.62 19.27 -11.68 16.19 32.18

trainrp -45.30 -33.60 2.61 -8.48 1993.49
trainscg 8.26 -34.23 18.44 12.36 82.74

Results also showed that the error of the three supervised weight/bias training functions
were again unalike to each other. From Figure 40 it can be seen that the trains function
performed extremely poorly and erratically as layers were added. It can also be seen that
whilst the trainb function performed better than trains the error increased as layers were

added, and its performance was inferior to that of the trainr function.

Table 19 - Percentage Change in Error Brought About by Adding Layers to Supervised Weight/Bias Training

Functions
Function Number of Layers
2 3 4 5 6
trainb 606.02 -30.64 21.08 84.42 5.67
trainr -31.91 -15.21 -26.25 11.78 -1.49
trains -35.06 75.47 -51.58 14.73 -13.31
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Table 20 - Error of Different Training Functions in Multiple Layer Networks

Error (MSE)
Function Number of Layers
1 2 3 4 5 6
Backpropagation Training Functions that use Jacobian Derivatives
trainlm 0.000668 0.000077 0.000029 0.000021 0.000016 0.000015
trainbr 0.000681 0.000068 0.000027 0.000021 0.000013 0.000007
Average 0.000675 0.000073 0.000028 0.000021 0.000015 0.000011
Backpropagation Training Functions that use Gradient Derivatives
trainbfg 0.002757 0.001211 0.000958 0.000870 0.000505 0.012235
traincgb 0.004163 0.001978 0.002192 0.003102 0.004338 0.015663
traincgf 0.005645 0.003267 0.003997 0.004862 0.013308 0.030856
traincgp 0.006291 0.004393 0.006882 0.005342 0.005445 0.011471
traingd 0.035694 0.051945 0.045800 0.045130 0.047050 0.056340
traingda 0.059754 0.057737 0.066322 0.076238 0.077334 0.089665
traingdm 1.077980 0.557498 0.904099 0.743039 0.733859 0.811371
traingdx 0.105349 0.068657 0.048171 0.050742 0.093797 0.092962
trainoss 0.008873 0.006777 0.008083 0.007139 0.008295 0.010965
trainrp 0.003814 0.002086 0.001385 0.001421 0.001301 0.027235
trainscg 0.005008 0.005422 0.003566 0.004223 0.004745 0.008671
Average 0.119575 0.069179 0.099223 0.085646 0.089998 0.106130
upervised Weight/Bias Training Functions

trainb 0.219798 1.551808 1.076260 1.303185 2.403291 2.539527
trainr 0.005385 0.003667 0.003109 0.002293 0.002563 0.002525
trains 6.930749 4.500932 7.897890 3.824276 4.387539 3.803602
Average 2.385310 2.018802 2.992420 1.709918 2.264464 2.115218
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Table 21 - Coefficient of Correlation of Different Training Functions in Multiple Layer Networks

Coefficient of Correlation (R Value)

Function Number of Layers
1 2 3 4 5 6
Backpropagation Training Functions that use Jacobian Derivatives

trainim 0.99853 0.99983 0.99994 0.99996 0.99997 0.99997

trainbr 0.99850 0.99985 0.99994 0.99995 0.99997 0.99997
Average 0.99851 0.99984 0.99994 0.99995 0.99997 0.99997

Backpropagation Training Functions that use Gradient Derivative

trainbfg 0.99393 0.99734 0.99791 0.99806 0.99893 0.95259
traincgb 0.99070 0.99599 0.99514 0.99318 0.99047 0.94825
traincgf 0.98725 0.99277 0.99100 0.98912 0.97518 0.94984
traincgp 0.98591 0.99044 0.98464 0.98826 0.98818 0.97319
traingd 0.91175 0.87663 0.89186 0.89324 0.88629 0.85512
traingda 0.86656 0.87252 0.85013 0.81990 0.81572 0.75484
traingdm 0.49102 0.55768 0.33849 0.38663 0.36612 0.35350
traingdx 0.82244 0.89460 0.87627 0.85772 0.74955 0.73443
trainoss 0.98041 0.98487 0.98217 0.98471 0.98204 0.97585

trainrp 0.99168 0.99547 0.99697 0.99696 0.99715 0.97407
trainscg 0.98912 0.98777 0.99223 0.99050 0.99105 0.98414
Average 0.91007 0.92237 0.89971 0.89984 0.88552 0.85962

Supervised Weight/Bias Training Functions

trainb 0.74999 0.38564 0.39385 0.27862 0.43612 0.39190

trainr 0.98845 0.99246 0.99335 0.99533 0.99493 0.99497

trains 0.84946 0.89486 0.86911 0.83968 0.84676 0.77220
Average 0.86263 0.75765 0.75210 0.70454 0.75927 0.71969

Analysis of Results
In analysing the results of the neuron and layers tests conducted on the function fitting

network it was clear that there was a large difference in the performance of the different

training functions.

In the neuron testing the average error of all 1600 tests was 0.4048. The average error of
the 100 tests carried out using the trainbr algorithm was the lowest average at 0.0037. Whilst

the average error of the trains function was 5.0577. The average R value of all 1600 tests
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was 0.8219. The trainlm function had the best average R value at 0.9915, whilst the worst
average R value was 0.4257 (traingdm).

Table 22 — Average Results of the Neuron Testing

Function Error R Value
BTFJDs
trainlm 0.003746 0.9915
trainbr 0.003732 0.9916
Average 0.003739 0.9915
BTFGDs
trainbfg 0.005443 0.9872
traincgb 0.006827 0.9835
traincgf 0.008241 0.9816
traincgp 0.008336 0.9805
traingd 0.075830 0.8556
traingda 0.050743 0.8808
traingdm 0.768200 0.4257
traingdx 0.025469 0.9392
trainoss 0.011011 0.9746
trainrp 0.006773 0.9845
trainscg 0.007945 0.9815
Average 0.088620 0.9068
SWBTFs
trainb 0.429224 0.6566
trainr 0.008225 0.9808
trains 5.057701 0.8282
Average 1.831717 0.8219

The results of the layer testing showed a similar large range in performance of the sixteen
functions. The average error of the 1920 layer tests was 0.4867 and the average R value
was 0.8835. The trainbr algorithm again had the best average error in the layer testing at
0.000136. Whilst the average error of the 120 tests with the trains function was 5.2241. The
average R value of the layer tests was 0.7593. the trainlm and trainbr functions had the best

average R value of 0.9997, whilst the traingdm had the worst average R value of 0.4156.
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Table 23 - Average Results of the Layer Testing

Function Error R Value
BTFJDs
trainlm 0.000138 0.9997
trainbr 0.000136 0.9997
Average 0.000137 0.9997
BTFGDs
trainbfg 0.003089 0.9898
traincgb 0.005239 0.9856
traincgf 0.010322 0.9809
traincgp 0.006637 0.9851
traingd 0.046993 0.8858
traingda 0.071175 0.8299
traingdm 0.804641 0.4156
traingdx 0.076613 0.8225
trainoss 0.008355 0.9817
trainrp 0.006207 0.9920
trainscg 0.005272 0.9891
Average 0.094959 0.8962
SWBTFs
trainb 1.515645 0.4394
trainr 0.003257 0.9932
trains 5.224164 0.8453
Average 2.247689 0.7593

Due to the large range in performance of the different training functions in both the neuron
and layer tests it was decided to discontinue testing of some functions. The time taken to
train for the majority of the networks generated ranged from a few seconds to a few minutes.
Even in the case of the most complicated architectures, 6 hidden layers with 20 neurons in
each, the networks completed training in a little over one-hour. As it is intended that any
model generated in the work would be used for long-term forecasting of load profiles it was
felt that this was an acceptable time. Therefore, the decision was made not to use time as a
metric for performance analysis. Instead, the error (MSE) values and the coefficient of
correlation (R) values were used. Table 24 shows the decision matrix that was used to rank

the performance of each training function.
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Table 24 — Training Function Matrix

Error R Value Overall
Algorithm Best Worst Best Worst
Run RUN Avg. Run RUN Avg Score Rank
Trainlm 1 3 2 2 1 2 11 1
Trainbr 2 7 1 1 2 1 14 2
Trainbfg 3 2 3 3 3 3 17 3
Trainrp (4] 1 4 4 11 4 30 4
Traincgb 8 4 (4] (4] 4 5 33 5
Trainscqg 7 5 5 5 8 7 37 (4]
Traincgf 13 12 8 8 6 6 53 7
Traincgp 12 13 7 7 5 9 53 8
Trainoss 11 11 10 10 7 10 59 g9
Traingdx 10 g9 11 11 10 11 62 10
Traingda 5 8 13 13 12 12 63 11
Traingd 4 10 12 12 13 13 64 12
Trainr 15 15 g9 g9 g9 8 65 13
Trainb g9 6 15 15 15 15 75 14
Trains 14 14 14 14 14 14 84 15
Traingdm 9 16 16 16 16 16 89 16

When reviewing the results based on the training function ranking it was found that five of
the functions outperformed the other eleven considerably in all tested scenarios in terms of
MSE and R values. For example, in the neuron tests the average MSE of the top 5
algorithms was 0.00530 compared to 0.58645. In these tests the top 5 had an average R
value of 0.988 compared to only 0.862 of the other 11 algorithms

Table 25 — Comparison of Results from Fitnet Testing

Metric Test Training Function

All Top 5 Bottom 11
Neurons 0.404840 0.005304 0.586448
MSE Layers 0.486743 0.002962 0.706643
Overall 0.445792 0.004133 0.646545

Neurons 0.901 0.988 0.862

R Value Layers 0.883 0.993 0.834

Overall 0.892 0.991 0.848
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Figure 41 — Performance of Top 5 Training Functions During Neuron Testing of the Fitnet Network
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Figure 42 - Performance of Top 5 Training Functions During Layer Testing of the Fitnet Network
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The best performing algorithms were:

e Levenberg-Marquardt backpropagation (trainlm),

e Bayesian Regulation backpropagation (trainbr),

e Broyden—Fletcher—Goldfarb—Shanno  (BFGS) quasi-Newton backpropagation
(trainbfg),

e Conjugate gradient backpropagation with Powell-Beale restarts (traincgb),

¢ Resilient (RPROP) backpropagation (trainrp).

Testing of the other eleven training functions was discontinued at this time.

5.1.3 Network Architecture Testing

Initial Testing
Research showed that there are twenty network architectures available in the Matlab NN-

toolbox in addition to the recommended Feed Forward Neural Network (see Table 26).

Table 26 - Matlab Network Topologies

Matlab
Network

Syntax

Historical Networks
Elman Neural Network elmannet
Hopfield Recurrent Network newhop
Linear Layer newlind
Perceptron perceptron
Static Networks
Cascade-Forward Neural Network cascadeforwardnet
Exact Radial Basis Network newrbe
Feed-Forward Neural Network feedforwardnet
Function Fitting Neural Network fitnet
Generalized Regression Neural Network newgrnn
Learning Vector Quantization Neural Network Ivgnet
Pattern Recognition Neural Network patternnet
Probabilistic Neural Network newpnn
Radial Basis Network newrb
Static Self-Organizing Networks
Competitive Neural Layer competlayer
Self-Organizing Map selforgmap
Dynamic Networks

Distributed Delay Neural Network distdelaynet
Layered Recurrent Neural Network layrecnet
Linear Neural Layer linearlayer
Nonlinear Auto-Associative Time-Series Network narnet
Nonlinear Auto-Associative Time-Series Network with External Input narxnet
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Time-Delay Neural Network timedelaynet

An initial test was carried out to determine which of these twenty training functions could be
used in this study. This involved using the training dataset described in Section 4.6 to create
an ANN with the default Matlab design of ten hidden neurons in one hidden layer using

supervised learning.

These tests identified three static and two dynamic network architectures that could be used,

namely:

e Static networks
o Cascade-forward neural network (cascadeforwardnet),
o Feed-forward neural network (feedforwardnet),
o Pattern recognition neural network (paternnet),
e Dynamic Networks
o Nonlinear auto-associative time-series network (narnet),

o Nonlinear auto-associative time-series network with external input (narxnet).

Next, 10 runs of each of these networks were carried out with all other settings and
parameters left as standard. The results from these tests were compared to the results

obtained from 10 runs of a Fitnet network with standard settings and parameters.

Analysis of Initial Testing Results

The results from the 60 runs of initial testing on network analysis were then studied. Again, it
was found that there was little variation in the time taken to train the networks and so the
same performance metrics used previously were again employed. From the results it was
clear that the paternet performance was far inferior to the other networks tested as shown in

Figure 43.
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Figure 43 - Network Architecture Initial Testing

Further analysis showed that the average error of both the narxnet and cascadeforwardnet

was lower than that of the default fitnet. It also showed that the average coefficient of

correlation (R Value) of all three networks was alike. Therefore, the decision was made to

use these networks in the next stage of testing.

Table 27 — Average Error of Top 3 In Network Architecture Initial Testing

Network Error (MSE)

Architecture Worst Run  Best Run  Average
fitnet 0.000316 0.000141  0.000217
narxnet 0.000230 0.000103 0.000184
cascadeforwardnet 0.000226 0.000125 0.000167

Table 28 - Average R-Value of Top 3 In Network Architecture Initial Testing

Network R Value

Architecture Worst Run Best Run  Average
fitnet 0.9993 0.9997 0.9995
narxnet 0.9993 0.9997 0.9995
cascadeforwardnet 0.9995 0.9997 0.9996
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Figure 44 - Top 3 Network Architectures from Initial Testing

Neuron Testing

This stage of testing involves carrying out the same tests described for the neuron tests for
the Fitnet network on the NARXnet and CFNN networks. The difference being that only the
five best performing algorithms were used. The testing involved generating 200 networks
each for the NARXnet and CFNN networks and an additional 100 Fitnet networks for each of
the five training functions still under study. In all 2000 further networks were generated
during this stage of testing and as with all the other networks generated in this work they

were saved for further study.

COVID-19 Lockdown Measures

During this stage of testing the COVIOD-19 pandemic began and access to the university
campus and computing facilities was suspended. In order to continue progress on the work
the majority of the testing was completed on a personal laptop. The laptop being a HP
Notebook with an AMD A6-7310 APU processor and 8GB (6.95GB usable) physical memory
running Windows 10 Home 21H1 operating system and Matlab R2018b Update 7.

This was deemed acceptable as the same version of Matlab was used in all tests so would
not affect the main metrics used in the study, error and coefficient of correlation. As stated
previously due to the nature of forecasting scenario training time was not considered of great
importance. However, it was still noted and when discussed here will refer to the average

time taken to train a network when using the personal laptop detailed above.
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Results

The average training time of the 1,000 tests carried out on each network architecture was
very similar. The Fitnet was quickest at an average of 5.94 seconds over the range of 1 to 20
neurons using all five training functions. The average training time of CFNN was 6.56
seconds and NARXnet was slightly slower at 8.05 seconds.
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Figure 45 — Average Training Time of Network Architectures During Neuron Testing

The average performance of the three network architectures studied was alike in terms of
error and R-values and showed similar patterns. With one and two neurons in the hidden
layer the performance of NARXnet was noticeably superior to the other two architectures. As
more neurons were added the performance of the three networks became more alike. They
also all showed a similar pattern whereby adding more and more neurons resulted in a
diminishing increase in performance. As would be expected the average R-values of the

three networks followed the same pattern as the error results.

Overall, the NARXnet architectures performed the best with an average error of 0.001711
compared to the Fitnet average of 0.004283 and CFNN average of 0.003298. However,
further analysis showed that as more neurons were added the performance of the Fitnet and
CFNN architectures improved more than that of the NARXnet and outperformed it in the

range of 10 to 20 neurons as can be seen in Table 29.
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Figure 46 - Average Error of Network Architectures During Neuron Testing
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Figure 47 - Average R-Value of Network Architectures During Neuron Testing

Table 29 — Average Error of Network Architectures During Neuron Testing

Neurons Network Architecture
Fitnet NARXnet CENN

0.007199 0.023949
0.017454 0.005048 0.016468
0.010537 0.003517 0.006344
0.006224 0.002656 0.006025
0.003345 0.001990 0.002580

|

a b wWN
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6 0.002842  0.001407  0.001993
7 0.001480  0.001307  0.001294
8 0.001670  0.001487  0.001012
9 0.001273  0.000938  0.000900
10 0.001061  0.001153  0.000843
11 0.000829  0.000991  0.000629
12 0.000692  0.000836  0.000512
13 0.000822  0.000863  0.000546
14 0.000687  0.001082 = 0.000382
15 0.000658  0.000588  0.000373
16 0.000370  0.000752  0.000514
17 0.000504  0.000597  0.000325
18 0.000315  0.000528  0.000397
19 0.000357 0.000674  0.000368
20 0.000379  0.000611  0.000499
Overall | 0.004283  0.001711  0.003298

Layer Testing

This stage of testing involved carrying out the same tests described for the hidden layer tests
for the Fitnet network on the NARXnet and CFNN networks. Again, only the five best
performing training algorithms were used. 1,200 tests were carried out on each network

architecture and 3,600 in total.

Results

As stated a number of times previously training time was not considered of great importance
in this study. However, the training time of the CFNN network architectures is worth noting.
Due to the connections to preceding layers in the CFNN architecture training time increased
dramatically as the number of hidden layers was increased. From 1 to 3 hidden layers
training time of the CFNN architectures was similar to that of the Fitnet and NARXnet
architectures. For 4 and 5 hidden layers the training time far exceeded that of the other two
architectures. Tests on five layered CFNN architectures with high numbers of neurons (15 to
20 in each layer) could not be carried out on the personal laptop detailed earlier as it would
shut down after around 14 to 16 hours of training due to overheating. So special permission
was given to access the university campus in order to complete testing. Even when using
PCs on campus with similar specifications to that of the desktop PC used in the Fitnet testing

stage testing still took between 12 to 16 hours for the larger network configurations.
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Figure 48 - Average Training Time of Network Architectures During Layer Testing

The average performance of the three network architectures studied was very similar. The
average error across the range of 1 to 6 neurons of the Fitnet architectures was 0.00230282,
the average of the NArxnet architectures was 0.0022204 and for CFNN it was 0.00240701.
However, when looking at Figure 49 and Figure 50 it can be seen that the behaviour of each

architecture differed over the range of hidden layers investigated.

The Fitnet architecture displayed a consistent behaviour. Increasing the hidden layers from
one to three resulted in an increase in performance. Whilst increasing the hidden layers from
4 to 6 resulted in a decrease in performance as the networks became too large and

overtrained and lost generalisation capability.
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Figure 49 - Average Error of Network Architectures During Layer Testing
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Figure 50 - Average R-Value of Network Architectures During Layer Testing

Table 30 - Average Error of Network Architectures During Layer Testing

Architecture
Layers
Fitnet NARXnet CFENN
1 0.0024394 0.00172179 0.00223488
2 0.0009898 0.00100409 0.00080985
3 0.00098101 0.00087005
4 0.00098475 @ 0.0068672
5 0.00233327 0.00084155 0.00064428
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6 ‘0.00608868 0.00201774 | 0.00970597

Overall ‘0.00230282 0.0022204  0.00240701

Validation

The results from the testing described in this chapter was used to improve the accuracy of
the synthetic load profiles that were generated by the ANN model described in Chapter 4 for
a study of the efficacy of smart grid technologies to reduce PV curtailment as described in
the next chapter. As stated previously all ANN models were trained using 3 seasons of data

(Spring, Summer and Winter) with the Autumn data being used to validate results.

When validating the data from all of the hidden layer results an issue was found with the
accuracy of results. When looking at the results it would appear that increasing the number
of hidden layers from 1 to 3 increased the performance of each of the network architectures
studied. However, during validation using the Autumn data it was found that increasing the
number of hidden layers dramatically reduced predication capability when presented with

data the ANN models had no a priori knowledge.

5.1.4 Transfer Function Testing

The default setup of all three network architectures under study use tansig functions in the
hidden layer(s) and purlin functions in the output layer. The last round of testing studied the
effects of changing the default transfer functions in both the hidden layer(s) and the output
layer with the 14 other functions available in Matlab (see Table 31). The tests were carried on

networks which contained 10 neurons in one hidden layer.

Table 31 - Matlab Neural Network Toolbox Transfer Functions

Matlab
Transfer Function

Syntax
Positive Hard Limit Transfer Function hardlim
Symmetric Hard Limit Transfer Function hardlims
Linear Transfer Function purelin
Positive Linear Transfer Function poslin
Symmetric Saturating Linear Transfer Function satlins
Positive Saturating Linear Transfer Function satlin
Inverse Transfer Function netinv
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Logarithmic Sigmoid Transfer Function logsig

Symmetric Sigmoid Transfer Function tansig

Elliot Sigmoid Transfer Function elliotsig
Radial Basis Transfer Function radbas
Radial Basis Normalized Transfer Function radbasn
Triangular Basis Transfer Function tribas

Competitive Transfer Function compet
Soft Max Transfer Function softmax

Firstly 10 runs were carried out on each of the three network architectures with the default
transfer function configuration. The results from these tests were used to compare the

effects changing transfer functions made to prediction capability.

Next, 10 runs of each of the transfer function in the hidden layer was carried out on each of
the three network architectures with all other settings and parameters left as standard. 350
tests were carried out to study the different transfer functions in the hidden layer. This
process was then repeated on the output layer of the different networks with another 350
tests carried out. All tests were carried out using the personal laptop described in the

network architecture section.

Transfer Functions in the Hidden Layer(s)

In the tests conducted on the Fitnet network none of the 14 transfer functions examined
improved the error compared to the average results of the default function (tansig). The
logsig function had the smallest increase in error compared to tansig at 12%, followed by
radbas (33.7%) and softmax (41.9%).

In the NARXnet testing four transfer functions improved the error compared to the default
function. The logsig function reduced the error by 39.8% followed by elliotsig (33.4%),
radbasn (21.8%) and radbas 9.9%.

In the CENN testing four functions again improved the error compared to the default
function. However, in the CFNN tests softmax saw the largest reduction in error (66.9%),
followed by logsig (59.6), radbas (59.4%), and radbasn (51.0%).
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Figure 51- Average Error During Hidden Layer Transfer Function Testing
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Figure 52 - Average of Top 5 During Hidden Layer Transfer Function Testing

Table 32 - Average Error During Hidden Layer Transfer Function Testing

Transfer Architecture

Function Fitnet Narxnet CFNN

Default (Tansig)
Compet

0.0417539

Elliotsig 0.0007355
Hardlim 0.1078749 0.1062950 0.0400238
Hardlims 0.0975034 0.0382323
Logsig
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Netinv 0.2267180 0.2376870 0.0444223
Poslin 0.0017922 0.0010157 0.0017342
Purelin 0.0492708 0.0060219 0.0486469
Radbas 0.0003011 0.0005323 0.0002188
Radbasn 0.0005591 0.0004618 0.0002642
Satlin 0.0015470 0.0007624 0.0013561
Satlins 0.0013784 0.0010444 0.0013469
Softmax 0.0003195 0.0006273  0.0001783
Tribas 0.0016934 0.0009248 0.0012524

Table 33 — Top 5 Functions in Hidden Layer Transfer Function Testing

Architecture
Rank .

Fithet Narxnet CENN
1 Default (Tansig) Logsig Softmax
2 Logsig Elliotsig Logsig
3 Radbas Radbasn Radbas
4 Softmax Radbas Radbasn
5 Elliotsig Default (Tansig) Default (Tansig)

Transfer Functions in the Output Layer

In the tests conducted on the Fitnet network again none of the 14 transfer functions
examined improved the error compared to the average results of the default function
(purelin). The satlin function had the smallest increase in error compared to tansig at 8.1%,
followed by elitotsig (67.5%) and softmax (139.0%). All of the other functions tested saw

massive increases in error.

In the NARXnet testing only one function improved the error compared to the default
function. This was the satlin function which reduced the error by 29.7%. There was an
increase in the error of 49.0% for the softmax function and 91.6% for the eliotsig function. All

the other functions examined saw massive increases in error.

In the CFENN testing only one function again improved the error compared to the default
function. Again, it was the satlin function which reduced the error by 29.7%. There was an
increase in the error of 5.9% for the softmax function and 206.7% for the eliotsig function. As
with the other two network architectures all the other functions examined saw massive

increases in error.
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Figure 54 - Average of Top 3 During Output Layer Transfer Function Testing

Table 34 - Average Error During Output Layer Transfer Function Testing

Transfer Architecture

Function Fitnet Narxnet CFNN
Default (Purelin)

Compet 1.0577900 1.0690400 1.0518700
Elliotsig

Hardlim 0.8977840 0.7416130 0.6027740
Hardlims 2.0808480 2.1365690 2.1702400
Logsig 0.0573367 0.0579057 0.0565279
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Netinv
Poslin
Radbas
Radbasn
Satlin
Satlins
Softmax
Tansig
Tribas

15.2879240
0.0908633
0.0756693
1.0428410
0.0541939
0.0002434
0.0567700
0.0005381
0.0637493

74.1040035

0.0540987
0.0671477
1.0485220
0.0540243
0.0004155
0.0582796
0.0008804
0.0612549

0.8389740
0.0544663
0.0735554
1.0727090
0.0543952
0.0001756
0.0555794
0.0005712
0.0633131

Table 35 - Top 5 Functions in Output Layer Transfer Function Testing

Architecture
Rank .

Fitnet Narxnet CENN
1 Default (Purelin) Satlin Satlin
2 Satlin Default (Purelin)  Default (Purelin)
3 Elliotsig Softmax Softmax
4 Softmax Elliotsig Elliotsig
5 Radbasn Radbasn Radbasn

5.1.5 Discussion of Results

The results from testing proved that training function, number of neurons, number of hidden
layers, network architecture and transfer functions used in the hidden layer(s) and output
layer can all improve the predictive capabilities of ANN models. However, validating the
results using data that the models had no a priori knowledge of clearly demonstrated that the
data obtained from the Matlab interface can be misleading. This was most clearly shown in
the layer testing. In layer testing of the two backpropagation training functions that use
Jacobian derivatives (trainlm and trainbr) the results obtained from Matlab indicated that
there was a large increase in performance when the number of hidden layers was increased
from one to two. The results also indicated that performance continued to increase as more
hidden layers were added (see Figure 38). However, validation showed that increasing the
number of hidden layers massively reduced the prediction capabilities of models as the
larger the models became the less they were able to generalise, a common problem

discussed in literature.

The results also showed the difficulty in predicting how the different free parameters in ANN

models will behave. For example, when increasing the number of neurons in a network it

136



was seen that the training function used changed the behaviour. When using functions such
as trainlm and trainbr performance increased with an almost exponential rate. However,
when using function such as traindgm and trains there was no discernible pattern. With the
traingdm function increasing the neurons from 8 to 9 resulted in a large increase in error,
increasing neurons from 9 to 10 saw a small decrease in error, adding another neuron
results in another increase in error yet adding another neuron to the network saw a large
decrease in error. This unpredictable behaviour occurred over the full range of neurons

tested (see Figure 36).

The results also indicated that it is not possible to predict how training functions will behave
based on the type. The two backpropagation training functions that use Jacobian derivatives
did display similar characteristics in testing. However, the eleven backpropagation training
functions that use gradient derivatives displayed large characteristic differences to each
other. As did the three supervised weight/bias training functions.

The network architecture testing also showed that behaviour of ANN models cannot be
made based on network topology. Testing showed that the three best performing
architectures were two of the nine static networks (Fitnet and CFNN) and one of the six

dynamic networks (NARXnet).

The results from the transfer function testing clearly showed that the combination of
parameters can massively affect overall performance. When looking at the results from the
testing conducted on the hidden layer transfer functions it was seen that the network
architecture used massively affected the results (see Table 33). When conducting tests using
the Fitnet architecture none of the 14 transfer functions studied improved the error compared
to the default setting of using the tansig function. However, when using both the NARXnet
and CFNN architectures four functions were found to improve the performance compared to
the default setting. Again, though there was a difference between these two architectures.
With the NARXnet architecture the logig function gave the biggest improvement in
performance but in the CFNN architecture it was softmax which wasn’t even one of the top
five functions tested on the NARXnet architecture. Testing on the transfer function in the
output layer also showed how the combination of transfer function and network architecture

can significantly affect performance.
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As stated several times previously, training time of the ANN models generated in this work
was not considered important. However, the work has shown that the process of improving
the predictive capabilities of ANN models is a time consuming and complex endeavour when
using the current facilities in Matlab. In all almost 10,000 networks were generated and
analysed in this work, and to fully study the effects of the different combinations of
parameters have on performance many more would need to be carried out. Even with tests
that only took a few seconds to converge to a solution time was needed to record results and
save files for future use. Then time was needed to validate results obtained from Matlab as
especially in the case of layer testing the results were often misleading and inaccurate.
Therefore, it is the conclusion from this testing that a new systematic approach is needed for

designing ANN models in Matlab.

5.2 Systematic ANN Design Approach developed for load forecasting using
MATLAB
Stage one of the proposed approach is data acquisition. It involves data collection, data

pruning and pre-processing to remove abnormal data entries (see Figure 55).

The second stage of the process is network design and implementation. This starts with
extensive and systematic testing of network parameters such as network type, number of
neurons, training function and transfer function. In lessons learnt from the testing on ANN
models described in this chapter the evaluation process in this stage would involve using
data the models had no a priori knowledge of. The data from this stage is then used to

create a final design network.

Lessons learnt from testing have also shown that this stage of the process needs to be
automated. This involves the creation of a new graphics user interface (GUI) in Matlab. The
Proposed GUI would test network type, number of neurons, training function and transfer
function using multiple runs to overcome the issue of randomisation. Where the averaged
indicate that changes to a network parameter setting resulted in an improvement in
performance the results would be validated as described above. The results from this stage

would be used to determine the optimal model design.

The final stage of the process is evaluating the performance of the optimal ANN model in

predicting future load profiles. The first step of this stage is supervised learning. Next, the
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model is tested again as part of supervised learning using data, but which the model has no

a priori knowledge of. Finally, the model is validated for general load forecasting outside the

training case using other datasets.
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Figure 55 — Flowchart: Proposed Systematic Design Approach

5.2.1 Use of the Systematic Desigh Approach

This systematic design approach was used to improve the predication capability of the ANN

model that had been created in the work described in Chapter 4. As stated previously during

validation with data that the ANN model had no apriori knowledge of, the model synthetically

generated composite load profiles with a combined Mean Absolute Percentage Error

(MAPE) of 0.01365 and a root mean square error (RMSE) of 7.81 over a full range of PV

and EV penetration scenarios from 0 to 100% for a low voltage network in Newcastle-Upon-

Tyne, England.
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Using the systematic approach, the optimal ANN model was found in terms of neurons,
hidden layers and training function (at the time work on network architectures and transfer
functions was still ongoing). The optimal network was found to have 13 neurons in one
hidden layer which was trained using the Bayesian regularization backpropagation algorithm.
This model was used to synthetically generate load profiles for the work discussed in the
next chapter. Validation of this model using the same data used with the original model from
Chapter 4 saw the MAPE lower to 0.00608 and the RMSE lower to 3.48.

This work highlighted the need to validate results in stage 2 using data that models have no
a priori knowledge of as the results obtained through Matlab were misleading in terms of
performance of networks with increasing numbers of hidden layers. It also showed the need
to automate stage 2 of the process due to time and effort it took to complete.
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Chapter 6

Investigating Energy Potential for Future Electricity Mix Planning

One of the main issues faced by network operators with regards to PV output is its temporal
mismatch to load demand [100]. This is seen in many countries where PV output occurs at
times of low demand where the PV output pushes the net load down further. This means that
networks are less likely to be capable of absorbing PV output at peak output times [349].
This issue was highlighted in a report from the National Renewable Energy Laboratory
(NREL) that stated that the most common reason for curtailment of wind and PV generators
in the USA was due to oversupply, typically at low load periods [96].

As PV penetration levels continue to rise so does the risk of curtailment with one study
suggesting it could be as high as 30 to 60% in the near future [99]. This represents a missed
opportunity to meet decarbonisation targets by reducing CO. emissions of electricity

networks [102] and reduces the economic viability of PV projects [96, 98-100, 103].

This chapter details works carried out to maximise the energy potential of PV in future
energy mix by investigating the efficacy of two low-cost smart grid solutions: Demand Side
Management (DSM) and Active Voltage Control (AVC), to maximise PV output yield by
minimising curtailment whilst avoiding costs to distribution network operators. The work
focuses on scenario-based impact assessments underpinned by a net prosumer load
forecasting framework as part of power system planning to aid sustainable energy

policymaking.

6.1 Background

The decarbonisation of the energy network has created higher demand for electricity over oll
and coal. Some of the electrical power network assets such as transformers and switchgear
assets were installed as early as the 1950s and are still in use today [1]. For example, the
UK’s National Infrastructure Delivery Plan 2016-2021 identifies that “much of the existing
infrastructure which has served us well is now old” and that “major investment is required to
accommodate new generation and replace ageing assets”. However, there is also a greater
focus now on lowering the cost of delivering electricity. The performance-based electricity
distribution model Revenue = Incentives + Innovation + Outputs (RIIO) of the UK which has

been in operation from 2015 [2] is representative of this drive. In the continuing drive to
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reduce cost, given the high cost of assets, especially at the transmission and sub-
transmission voltage levels, it is safe to assume that even in the near- or medium-term,

power networks will be mostly composed of present-day assets.

There will be high volumes of customer-side renewable generation due to the
decarbonisation targets. However, the exact penetration levels, renewable generation type
and their share in the demand mix is presently uncertain. Due to technological advances, PV
(photovoltaic) system costs has been on a continuous decline and, by 2017, PV module
were more than 80% cheaper compared to a decade ago [350]. PV systems also have a low
maintenance cost due to their static nature. At the domestic residence level, PV systems are
one of the most popular types of renewable generation. Currently, Germany has the highest
PV installed capacity in Europe; with over 49 GW [351]. More than 98% of PV systems are
connected to low voltage distribution networks [352]. Even though the present levels of PV
penetration in most other countries are relatively low, given the ambitious targets (e.g., 175
GW by 2022 for India by the Ministry of New & Renewable Energy), scenarios similar to
Germany with high PV penetration is not far away.

A decentralised power supply becomes problematic for the traditional operating mode of the
electricity network where net load on the network is largely foreseeable, power supply is
controlled and there is a uni-directional electricity flow from large generators to consumers
[3]. Conventional power distribution networks have limited PV generation hosting capacity
and ‘high PV generation - low demand’ conditions can result in network voltage limit
violations [353]. Extensive research has recently been carried out on assessments of the
impacts of distributed generation on the electricity distribution network [354-356]. Such
impact analyses have been able to identify the detrimental effect of future load on network
assets [357-359]. Accelerated aging of transformer oil and insulation [357], deterioration of
functioning of aged circuit breakers and switchgear [358], and higher maintenance
requirements of transformer tap changers [359] are a few of the identified detrimental effects
that have a direct commercial significance. While there are schemes in place for prioritizing
the grid injection of renewable energy [360], the detrimental effects identified as associated
with increase in PV penetration levels have resulted in grid codes making active curtailment
of PV generation becoming a mandatory requirement now in several countries [361]. For
example, according to Engineering Recommendation G98, PV systems in the UK LV
distribution networks are required to curtail generation when the voltage rise at the point of

connection exceeds the mandated limit [362].
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Incentives like feed-in tariffs offered by government bodies have driven the installation of PV
systems, but, as customers have to invest a large capital on installing PV systems and are
getting paid for the energy they generate. Curtailing PV generation reduces the PV energy
yield and therefore the systems financial viability [96]. Maximizing the energy yield and
penetration levels of PV systems is therefore important with respect to both climate change

mitigation and energy economics.

Several approaches have been considered in the literature in order to improve the network
hosting capacity of PV and other renewables and maximize the energy capture. These
approaches include network reinforcement, network reconfiguration, static VAR control,
energy storage [363] and smart grid solutions such as Demand Side Management (DSM)
[364] and Active Voltage Control (AVC) [361, 365].

6.2 Case Study

6.2.1 Countries and Locations Considered

The United Nations (UN) classifies countries into one of three broad categories: developed
economies, economies in transition and developing economies [366]. To fully study the
efficacy of DSM and AVC in reducing PV curtailment one country from each of these three
categories was chosen to study. The UK was chosen as an example of a developed country,
as according to the UN it is one of the seven most developed economies in the world [366].
India was chosen as an example of an economy in transition as the United States Trade
Representative removed it from the list of developing nations in February 2020 [367].
Myanmar was chosen as an example of a developing nation as the UN categorises it as one

of the least developed countries in the world [366].

Newcastle upon Tyne was chosen as the location for investigation in the UK, whilst Mumbai

was chosen to investigate India and Yangon City was chosen to investigate Myanmar.

6.2.2 Climate Conditions of Locations Under Investigation

The Koppen-Geiger (KG) classification system was first presented by the German scientist
Wiladimir Képpen in 1900 [368]. It was the first quantitative classification of the worlds
climates and is still widely used today [369-370]. The KG system classifies climates into five

main zones: the equatorial zone (A), the arid zone (B), the warm temperate zone (C), the
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snow zone (D) and the polar zone (E) [368, 371]. It further classifies climates into 30 sub-
types by using a second letter which differentiates climates with regards to precipitation and
a third letter which differentiates according to temperature [228, 368].

According to the KG classification system Newcastle was a warm temperate fully humid
(Cfb) climate [368]. KG classifies Mumbai as equatorial savannah with dry winter (Aw) [368].
The latest KG world map shows that Myanmar has three distinct climatic regions, and that

Yangon is in the equatorial monsoon region of the country (Am) [368].
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Figure 56 - Case Study Locations

6.2.2 Distribution Networks Considered

A typical UK distribution network model shown in Figure 57 from [372] was used. The low
voltage feeder shown in detail from the secondary distribution transformer has 384 houses.
The total number of houses connected to an 11 kV feeder is 3072 (= 8 x 384) and to the
33/11 kV substation is 18,432 (= 6 x 3072) houses.
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Figure 57 - Typical UK Distribution Network [372]

A typical South-East Asian distribution network was used to investigate both Mumbai and
Yangon (Figure 58). The model consists of a 33/11 kV 15 MVA transformer substation with
nine outgoing feeders (11 kV), supplying 14385 houses. A typical 415 V LV feeder (shown in
red) supplying 385 houses was considered in detail, similar to Newcastle.
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Figure 58 - Typical South-East Asian Distribution Network

6.2.3 PV Generation Simulation

A 3.6 kW polycrystalline rooftop residential grid-connected PV system was considered as
typical for all three countries and was modelled as being connected to each house on the
networks shown in Figure 57 and Figure 58. PVGIS [373] was used as the solar resource
database as well as PV generation simulation tool. Technical data of Sharp ND-R250A5
polycrystalline PV modules and SMA H5 inverter were used for simulation. Daily PV
generation profiles for a typical year were generated for all locations. Systems were

assumed to be stationary and at optimal tilt.

All three systems were modelled with typical system loses of 14%. The overall loses of the
systems were higher for Mumbai (25.62%) and Yangon (25.95%) compared to Newcastle
(18.24%). This was mostly due to higher losses associated with the working temperature of

the systems (see Table 36).
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Table 36 - PV System Loses

Losses (%) Newcastle Mumbai Yangon
System 14 14 14
Temperature & Irradiance 3.7 111 12.26
Other 0.54 0.52 0.31
Total 18.24 25.62 25.95

The PV system’s annual energy yield was found to be 3280 kWh (equivalent to 911
kWh/kW) for Newcastle. For the system in Mumbai, the yield was around 80% more than
that of Newcastle at 6017 kWh (equivalent to 1671 kWh/kW). The system in Yangon City
was slightly lower than that of Mumbai at 5267 kWh (1463 kWh/kW) annual yield. Figure 59
shows the average monthly output of the PV systems for the three case study locations.
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Figure 59 - Average Monthly Output of PV Systems

6.2.4 PV Penetration Scenarios for Assessment
In this study, PV penetration level was defined as the fraction of the number of houses in the
distribution network considered having a typical PV system. 11 scenarios each, are studied

for each location. PV penetration level is varied from 0 to 100% in steps of 10%, to create
the 11 scenarios.
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6.2.5 Smart Grid Solutions Investigated

Demand Side Management

DSM is the control of customer loads in order to achieve a better match between the
available supply and the demand. Of the DSM strategies available, the load shifting strategy
(Figure 60), which is the movement of operation of selected loads between times of the day,
was chosen in this work. This strategy is most suited for maximising self-consumption of
energy (and hence the economic value) from PV systems installed at customer premises.
DSM can be either ‘Active’ or ‘Passive’. 'Active’ Demand Side Management (ADSM) is
defined as the automated (intelligent) control of residential electricity demand to meet the
needs of the power supply system [374]. This has become possible with the roll out of smart
meters and the development of home automation technologies. ‘Passive’ DSM (PDSM)
requires customers to be active participants, the control action of load shifting is realised by
the customers based on inputs from network operator/electricity company. DSM
implementations can be based on price signals such as time of use (ToU) tariffs and real-
time pricing or based on incentive schemes e.g., buy-back programs [375]. Figure 61 is
representative of a plausible ADSM scheme and shows an ADSM controller incorporated
into a smart grid architecture [376] in which maximisation of PV energy capture would be
realised through direct load control by the ADSM controller. In PDSM a similar maximisation
of PV energy could be realised, for example, through a mobile phone app that evokes

customer load action [377].
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Figure 61 - Smart Grid Architecture (adapted from [374]) with an Indicative ADSM Controller

Load shifting can be expressed mathematical as [378-379]:
Equation 7 — Load Shifting
Load Shifting 2> Minimize YN 1(Pyqq(t) — (Objective(t))?)
Desired Consumption at time ‘t' > Objective (t)

Actual Consumption at time ‘' > Pload (t) = Forecast(t) + Connect(t) — Disconnect(t)

where, Forecast(t)=Forecasted consumption at time t, Connect(t)=Connected load amount

at time t and Disconnect(t)=Disconnected load amount at time t.
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Appliances chosen as flexible loads for DSM in this study are shown in Table 37. The table
also shows the household share (percentage of household with the specific appliance), cycle
duration and energy consumption/cycle considered for the chosen flexible loads based on
information assimilated from [380-382]. While the share of Dishwashers was below 1% in
India before 2020, manufacturers have witnessed a 400% surge in demand due to COVID
lockdown and homeworking restrictions [383]. Mumbai and Yangon, being the commercial
capitals of their countries, it is assumed that the increase in PV penetration will be

coincidental with an increase in uptake of Dishwashers.

Table 37 - Details of Flexible Loads Chosen for DSM

Household Household Household Energy
Appliance Share in Share in Share in Consumption/
UK (%) India (%) Myanmar (%) Cycle (kWh)
Washing Machine 95 43 43 1.8
Dishwasher 40 Below 1% Below 1% 1.2
Electric Water Heating 10 45 45 3

Load profiles of these flexible loads chosen for DSM for a typical day were available from
[384] for the UK. Owing to the lack of such appliance level consumption data in India and
Myanmar, the same profiles were assumed for all cases. Figure 62 shows the load profiles for

the three categories of flexible loads.
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Figure 62 - Typical Load Profiles of Flexible Loads (a) Washing Machine, (b) Dishwasher and (c) Electric Water
Heating for A Single Domestic Dwelling

With the use of appropriate control logic and knowledge of the network topology, the feeder
level controller (Aggregator MV) shown in Figure 61 would be able to make nodal voltage
predictions. The in-home ADSM controller can receive these predictions via the smart meter
and trigger load-shifting of the flexible loads according to the DSM program.

Active Voltage Control

Active Voltage Control (AVC) is a part of the active management of the network. Grid codes
usually require that the voltage at the end customer terminal does not deviate from the
nominal value by more than a few percent (e.g., within -6% to +10% for the LV network in
Europe). To satisfy this requirement, the voltage of all nodes in the network should be kept
close to their nominal value at the extremities of the distribution network operation.
Transformer tap changers, voltage regulating transformers and reactive power
compensation are some of the techniques that are used for achieving this control [385].
Amongst these, transformer tap changers are the most common and hence, in this study,

AVC is considered by means of transformer tap changing, as shown in Figure 63 for one
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phase of a three-phase primary substation transformer. The on-load tap changer (OLTC) on
the high voltage winding (winding 2) regulates the voltage by varying the transformer ratio
V,/V1. Tap position O corresponds to no voltage correction and tap position Nrtaps Yields the

maximum voltage correction.

TTC'
(per tap)

T' vnum? vnumi
Ve
|

OLTC on winding 2

Figure 63 - One Phase of Primary Substation Transformer

Reversing the switch connects the regulation winding in opposite polarity and yields negative
tap positions. Hence the tap range is —Nrtaps < N <+Nraps. Voltage regulation by the OLTC

can be described by the equation:

Equation 8 — Voltage Regulation by OLTC

V. _ Vpri Vnoml
see (1 + N. VTC) Vnomz

where Viom1 and Vinomz are the nominal voltages of winding 1 and 2, N is the tap position, V.
is the transformer output voltage after tap changing, V,,; is the source voltage incoming to

the transformer primary part and V¢ is the voltage per tap.

Normally, control of OLTCs at primary substations is by means of an automatic voltage
controller, which controls the tap changer on the high voltage side of the transformer, in
order to keep the voltage on the low voltage side within limits. In contrast to conventional
voltage regulation (which uses Scalar LDC), the automatic voltage controllers in this case
deploys Vector Line Drop Compensation (LDC), which is intended to keep the voltage in the
distribution feeder within limits by compensating for voltage drop along fictitious impedance
and modifying the controller algorithm to keep the transformer terminal voltage equal to a
reference value. As vector LDC also counts on changes in power factor, the results are more

reliable and the mathematical expression is as follows [238],

Equation 9 — Reference Voltage

Reference Voltage — Vyr(t) = |Vsec(t) —V3I®). (Rref +jXref)|
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Where Vsec (t) = Secondary Voltage of Transformer, Rret= Line Resistance, Xrf = Line Reactance and

I(t) = Line Current.

Tap-changer is operated by comparing the reference voltage with the deadband which is a
small voltage range introduced in the transformer’s design in order to avoid unnecessary

switching around the target voltage.

Tap movements are usually made if [Vm — Vier|> Deadband/2 for a certain time delay of ¢,
(which is 1-minute duration in this study) according to the following equation:
Equation 10 — Tap Changer Operation

_1' if Vmax(t) > Vugc' Vmin(t) - VTC = Vlz;cw
TapChange (t + tSfeP) = 1) lf Vmin(t) < Vu’I;;JCJ Vmax(t) + VTC < V[EEV
0, else

where Vmax = 1.1pu-Voltage at current tap position, Vmin = Voltage at current tap position-
0.9pu, Vrc = voltage per tap = 0.125pu, View'© = minimum deadband voltage = -2.5% of Vrc

and V"¢ = maximum deadband voltage = +2.5% of Vrc.

6.3 Performance Assessment

High PV penetration levels can result in situations where the LV network voltage exceeds
the statutory limits. Current grid codes (for example, G98 in the UK) require residential PV
systems to turn-off and curtail generation during periods of voltage rise. The main aim of this
work was to analyse the efficacy of smart grid solutions (DSM and AVC), between countries
at different stages of economic development, in facilitating higher PV penetration in
residential distribution networks, given grid code requirements using the 11 PV penetration
scenarios for Newcastle, Mumbai and Yangon described in the previous sections. The LV
distribution networks for all cases were designed for an ADMD of 2 kW per customer.
However, in terms of PV, Mumbai’s and Yangon’s output were much higher compared to
Newcastle for the same PV system size. As described in section 2.3.1 it is possible to
realise a certain ADSM load action also through PDSM. PDSM as a holistic strategy without
the need for smart appliances or direct load control would be preferable in the first instance
for developing countries like India and Myanmar because of economic reasons. As such,
DSM is chosen as the first preferred solution to prevent PV curtailment, followed by AVC.

The two-stage approach is shown in Figure 64. The objective is to maximise the PV energy
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capture by self-consumption and consequently to reduce the burden caused by the reverse

power flow on electrical network assets to maintain the optimal assets’ lives.
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