451 research outputs found

    A BDI agent programming language with failure handling, declarative goals, and planning

    Get PDF
    Agents are an important technology that have the potential to take over contemporary methods for analysing, designing, and implementing complex software. The Belief- Desire-Intention (BDI) agent paradigm has proven to be one of the major approaches to intelligent agent systems, both in academia and in industry. Typical BDI agent-oriented programming languages rely on user-provided ''plan libraries'' to achieve goals, and online context sensitive subgoal selection and expansion. These allow for the development of systems that are extremely flexible and responsive to the environment, and as a result, well suited for complex applications with (soft) real-time reasoning and control requirements. Nonetheless, complex decision making that goes beyond, but is compatible with, run-time context-dependent plan selection is one of the most natural and important next steps within this technology. In this paper we develop a typical BDI-style agent-oriented programming language that enhances usual BDI programming style with three distinguished features: declarative goals, look-ahead planning, and failure handling. First, an account that mixes both procedural and declarative aspects of goals is necessary in order to reason about important properties of goals and to decouple plans from what these plans are meant to achieve. Second, lookahead deliberation about the effects of one choice of expansion over another is clearly desirable or even mandatory in many circumstances so as to guarantee goal achievability and to avoid undesired situations. Finally, a failure handling mechanism, suitably integrated with both declarative goals and planning, is required in order to model an adequate level of commitment to goals, as well as to be consistent with most real BDI implemented systems

    handling, declarative goals, and planning

    Get PDF
    A BDI agent programming language with failur

    Hierarchical planning in BDI agent programming languages: A formal approach

    Get PDF
    This paper provides a general mechanism and a solid theoretical basis for performing planning within Belief-Desire-Intention (BDI) agents. BDI agent systems have emerged as one of the most widely used approaches to implementing intelligent behaviour in complex dynamic domains, in addition to which they have a strong theoretical background. However, these systems either do not include any built-in capacity for "lookahead" type of planning or they do it only at the implementation level without any precise defined semantics. In some situations, the ability to plan ahead is clearly desirable or even mandatory for ensuring success. Also, a precise definition of how planning can be integrated into a BDI system is highly desirable. By building on the underlying similarities between BDI systems and Hierarchical Task Network (HTN) planners, we present a formal semantics for a BDI agent programming language which cleanly incorporates HTN-style planning as a built-in feature. We argue that the resulting integrated agent programming language combines the advantages of both BDI agent systems and hierarchical offline planners

    BDI agent architectures: A survey

    Get PDF
    The BDI model forms the basis of much of the research on symbolic models of agency and agent-oriented software engineering. While many variants of the basic BDI model have been proposed in the literature, there has been no systematic review of research on BDI agent architectures in over 10 years. In this paper, we survey the main approaches to each component of the BDI architecture, how these have been realised in agent programming languages, and discuss the trade-offs inherent in each approach

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs

    Leveraging New Plans in AgentSpeak(PL)

    Get PDF
    Many papers have been written on the anticancer properties of dietary flavonoids, and a range of potential mechanisms of action of flavonoids. However, most dietary flavonoids - notably polyphenolic flavonoids—have very poor ADME properties, and the levels necessary to stop growth of tumour cells cannot be sustained in a human body trough dietary intake alone. At present no flavonoid based drugs are clinically used in cancer therapy. Thus, whereas epidemiological and pre-clinical data seem to indicate a high potential for flavonoids, from the point of view of the pharmaceutical industry and drug developers, they are considered poor candidates. The flavones—which constitute a subgroup of the flavonoids—show some structural analogy with oestrogen and are known to interact with human oestrogen receptors, either as agonist or as antagonist. They are classed as phytoestrogens, and may play a role in cancer prevention through a mechanism of action possibly similar to that of the clinically used medication tamoxifen. Flavones are abundantly present in common fruits and vegetables, many of which have been associated with cancer prevention. Their phytoestrogen activity makes that they can assert their biological action at concentrations that are realistically achievable in the human systemic circulation

    Planning with time limits in BDI agent programming language

    Get PDF
    This paper provides a theoretical basis for performing time limited planning within Belief-Desire-Intention (BDI) agents. The BDI agent architecture is recognised as one of the most popular architectures for developing agents for complex and dynamic environments, in addition to which they have a strong theoretical foundation. Recent work has extended a BDI agent specification language to include HTN-style planning as a built-in feature. However, the extended semantics assume that agents have an unlimited amount of time available to perform planning, which is often not the case in many dynamic real world environments. We extend previous research by using ideas from anytime algorithms, and allow programmer control over the amount of time the agent spends on planning. We show that the resulting integrated agent specification language has advantages over regular BDI agent reasoning
    • …
    corecore