
Planning with Time Limits in BDI Agent Programming Languages

Lavindra de Silva
RMIT University,

Melbourne, Australia
ldesilva@cs.rmit.edu.au

Anthony Dekker
DSTO∗,

Canberra, Australia
dekker@ACM.org

James Harland
RMIT University,

Melbourne, Australia
jah@cs.rmit.edu.au

Abstract

This paper provides a theoretical basis for performing
time limited planning within Belief-Desire-Intention
(BDI) agents. The BDI agent architecture is recog-
nised as one of the most popular architectures for
developing agents for complex and dynamic environ-
ments, in addition to which they have a strong the-
oretical foundation. Recent work has extended a
BDI agent specification language to include HTN-
style planning as a built-in feature. However, the ex-
tended semantics assume that agents have an unlim-
ited amount of time available to perform planning,
which is often not the case in many dynamic real
world environments. We extend previous research by
using ideas from anytime algorithms, and allow pro-
grammer control over the amount of time the agent
spends on planning. We show that the resulting in-
tegrated agent specification language has advantages
over regular BDI agent reasoning.

Keywords: BDI Agents, Operational Semantics, Time
Limited Planning

1 Introduction

An Intelligent Agent is piece of software that is
(Jennings, Sycara & Wooldridge 1998): situated in
an environment, capable of autonomous behaviour,
i.e. with little or no intervention from humans, and
flexible. Flexibility means the agent is: responsive
to the environment (i.e. able to perceive and re-
spond to changes in a timely manner), proactive (i.e.
able to exhibit goal directed behaviour), and social
(i.e. able to interact with other agents and humans).
Intelligent agents are used in numerous real world
applications such as Unmanned Autonomous Vehi-
cles (UAV) (Karim & Heinze 2005) and autonomous
spacecraft control (Chien, Knight, Stechert, Sher-
wood & Rabideau n.d.).

The BDI (Belief-Desire-Intention) architecture,
based on Bratman’s theory of practical reasoning
(Bratman 1987) and Dennett’s theory of intentional
systems (Dennett 1987), is a popular and well stud-
ied model for intelligent agents situated in com-
plex and dynamic environments. Beliefs represent
an agent’s knowledge of its environment, Desires
represent an agent’s goals or its desired outcomes,
and an Intention is a chosen desire that the agent
commits to. The purpose of the BDI architecture

∗Defense Science and Technology Organisation

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sym-
posium (CATS2007), Ballarat, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
65. Joachim Gudmundsson and Barry Jay, Eds. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

is to make agents capable of behaving in a more
human-like manner. There are numerous BDI agent
programming and specification languages such as
Prs (Ingrand, Georgeff & Rao 1992), AgentSpeak
(Rao 1996), 3APL (Hindriks, de Boer, van der Hoek
& Meyer 1999), Jack (Busetta, Rönnquist, Hodgson
& Lucas 1999) and Can (Winikoff, Padgham, Har-
land & Thangarajah 2002).

BDI systems execute as they reason and are ro-
bust in handling failure, therefore well suited for com-
plex and dynamic environments requiring real-time
reasoning capabilities. However, reasoning for longer
durations before acting is also advantageous in cer-
tain situations where time is less critical, and with
the recent advances in planning technology, planning
or lookahead within the BDI architecture has become
feasible.

In (Sardina, de Silva & Padgham 2006), Hier-
archical Task Network (HTN) style planning (Erol,
Hendler & Nau 1994) capabilities were integrated into
the Can BDI specification language introduced in
(Winikoff et al. 2002). The integration involved (1)
extending the Can operational semantics with plan-
ning capabilities to form CanPlan; (2) substantially
improving and simplifying the Can operational se-
mantics; and (3) exploring the theoretical properties
of the new CanPlan language.

CanPlan is a good first step towards formalising
the type of planning that is appropriate for the BDI
architecture. However, a notable limitation in the
semantics is in not having control over the amount of
time to be spent on planning – CanPlan will attempt
to find a complete solution for a goal, before executing
the first action. Control over the planning duration
is necessary in many domains, as it is often the case
that agents only have (or should only spend) a limited
amount of time for (on) planning.

Planning with time limits is important when
solving real-time problems in a moderately fast-
changing world (Korf 1990, Dean, Kaelbling, Kirman
& Nicholson 1993b). In such situations, performing
a relatively poor action in time may be preferable to
performing a planned action which is too late. Plan-
ning with time limits can be achieved by giving the
planner an explicit time limit, and falling back on
BDI-style reaction if necessary.

Planning with time limits is also useful in agent-
based modelling and simulation of real human organ-
isations. Under extreme time pressure, human beings
react by curtailing planning which cannot provide a
solution in time (Newell & Simon 1972, Gigerenzer
& Selten 2002). The CAVALIER-NPA framework
(Dekker & de Silva 2006) investigates the impact of
planning time, communications delays, and workload
sharing in military organisations through modelling
with BDI agents augmented by time-limited planning.

Therefore, it is important that work with time-
limited planning of this kind be placed on a solid

131

E72964
Typewritten Text

E72964
Typewritten Text
Citation:De Silva, L, Dekker, A and Harland, J 2007, 'Planning with time limits in BDI agent programming language', in Proceedings of theThirteenth Computing: The Australasian Theory Symposium (CATS2007), Ballarat, Vic., 30 January - 2 February 2007.

E72964
Typewritten Text

theoretical basis. In this paper, we extend the Can-
Plan operational semantics with the ability to plan
for a controlled depth, and we explore the theoreti-
cal properties of the new operational semantics. For
example, we show that limited planning will lead to
early failure detection, not possible with regular BDI
execution. Our work also forms a theoretical basis for
the experimental work done with CAVALIER-NPA
(Dekker & de Silva 2006), and for work in augmenting
agents with a time-limited version of the Metric-FF
(Hoffmann 2003) planner.

2 Background

In this section we will introduce the work done on for-
malising the BDI architecture, i.e. the Can (Concep-
tual Agent Notation) language (Winikoff et al. 2002),
and we will also introduce CanPlan (Sardina et al.
2006), which is an extension of Can to capture plan-
ning from within the BDI architecture. Finally we
will discuss past work on planning under time con-
straints.

2.1 The CAN Language

Can (Conceptual Agent Notation) (Winikoff et al.
2002) is a high level plan language most similar to
AgentSpeak (Rao 1996), but also similar to other
languages such as 3APL (Hindriks et al. 1999, van
Riemsdijk, Dastani & Meyer 2005). Unlike other lan-
guages, Can combines a declarative and procedural
view of goals and includes semantics for BDI failure
recovery and goal persistence (Sardina et al. 2006).

According to Can, BDI agents consist of a set of
beliefs B and a plan library Π. There are three oper-
ations possible on B; (1) check whether a condition φ
follows from B (B |= φ), (2) add beliefs to B (B∪{b}),
and; (3) delete beliefs from B (B \ {b}).

The plan library Π consists of predefined plan rules
provided by the programmer, and is therefore differ-
ent to the plans (or solutions) generated at runtime
by a planner. More specifically, Π consists of a set of
rules of the form e : ψ ← P , where e represents an
event handled by the system, and P represents a cor-
responding plan body that could be used to achieve e.
There can be one or more plan bodies that handle the
same event, but a single plan body can only handle
a single event. The condition under which a certain
P is applicable for e is encoded in ψ. On receiving
an event e′ from the environment, Can rules search
for a P ′ that handles e′, but at the same time, a P ′
whose precondition ψ′ is met. P ′ is then executed. If
there is no applicable P ′, the handling of e′ fails.

The execution of a plan body P involves executing
the contents of P , which may include primitive ac-
tions act, operations to add +b and delete −b beliefs,
tests for conditions ?φ, etc. P can include multiple
such programs with the sequencing construct ; (i.e.
P1;P2) or execute programs in parallel using the par-
alellism construct || (i.e. P1||P2)1. The full language
of P is shown below2.

P ::= nil | act | ?φ | +b | −b | !e | P1;P2 | P1 B P2 | P1‖P2 |
Goal(φs, P1, φf) | Lψ1 : P1, . . . , ψn : PnM.

The operational semantics of Can are as follows.
A transition C −→ C ′ specifies that some configura-
tion C yields some configuration C ′ in a single execu-
tion step. Similarly, C −→ specifies that there is some

1Refer to (Sardina et al. 2006) for a description of the complete
language of P .

2Program P1 B P2 executes P1 and then executes P2 only if P1
failed. The guarded set of plan bodies Lψ1 : P1, . . . , ψn : PnM is
also represented as L∆M for short.

configuration C ′ that can be reached within a single
execution step from C. The relation ∗−→ denotes the
reflexive transitive closure of −→.

The transition relation −→ on a configuration is
defined using one or more derivation rules. Deriva-
tion rules have an antecedent and consequent. The
antecedent can be empty, but otherwise consists of
transitions and auxiliary conditions. The conclu-
sion consists of a single transition. See Plotkin’s
(Plotkin 1981) Structural Operational Semantics for
a full account of the operational semantics in Can.

Some of the main derivation rules of Can are
shown and explained below. The usage of some of
these rules will be shown in the examples to follow.

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B,A, !e〉 −→ 〈B,A, L∆M〉 Event

ψi : Pi ∈ ∆ B |= ψiθ

〈B,A, L∆M〉 −→ 〈B,A, Piθ B L∆ \ PiM〉 Sel

〈B,A, P1〉 −→ 〈B′,A′, P ′〉
〈B,A, (P1 B P2)〉 −→ 〈B′,A′, (P ′ B P2)〉 B

〈B,A, (nil B P)〉 −→ 〈B,A,nil〉 Bt

〈B,A, P1〉 −→ 〈B′, A′, P ′〉
〈B,A, (P1;P2)〉 −→ 〈B′, A′, (P ′;P2)〉 Seq

〈B,A, (nil ;P)〉 −→ 〈B,A, P 〉 Seqt

B |= φθ

〈B,A, ?φ〉 −→ 〈B,A,nil〉 ?

a : ψ ← Φ+; Φ− ∈ Λ aθ = act B |= ψθ

〈B,A, act〉 −→ 〈(B \ Φ−θ) ∪ Φ+θ,A · act,nil〉 act

The Event rule collects all the relevant plan bodies
for the event, along with their corresponding precon-
ditions, and stores them in L∆M. The Sel rule selects
a plan body from L∆M whose precondition meets the
current state of the world, and schedules the plan
body for execution. The B rule states that, as long
as there is more to decompose in P1, P1 should be
decomposed. On reaching the program nil B P , rule
Bt states that there is no need for program P , as the
left hand side of B has been successfully decomposed.
The rule Seq handles the execution of two programs in
a sequence, and on reaching the sequence nil ;P , rule
Seqt removes the program nil and continues with the
right hand side of the sequence. The rule that tests
for a condition ? simply succeeds if the condition φ is
met in the current state, and the act rule applies an
action to the current state of the world, on the basis
that ψ is met in the current state, by adding and/or
deleting facts from the current state of the world.

2.1.1 An Example

As an example consider a simple meeting sched-
uler (personal assistant) agent written in Can. The
agent’s task is to handle the scheduling of meetings
for a single person. When meeting requests arrive,
the agent will try and schedule the request into an
appropriate slot in the person’s diary.

The set of possible plan rules for such an agent
is shown in Figure 1. The events that the agent
can handle are scheduleMeeting, findSuitableSlot,
clearSlot and moveEntry, where scheduleMeeting
is an external event received from the environment
and the rest are internal events. Some events, such
as findSuitableSlot, have more than one plan rule.
Some of the plan bodies are simple and always suc-
ceed, provided the precondition holds, and some other
plan bodies are complex and can lead to a sequence
of further operations, including posting of internal
events and modifications to the agent’s beliefs.

132

According to the plan rules in Figure 1, when the
agent receives a scheduleMeeting event requesting
the scheduling of some person p into the diary, the
internal events findSuitableSlot(p, s), clearSlot(s)
and addEntryToEmptySlot(p, s) are posted in that
sequence. The first internal event finds an appropri-
ate slot for the person p, and on successful completion,
a binding for slot s will have been found. clearSlot(s)
then clears slot s, which may include doing nothing
in the situation where slot s is already clear. The
final event addEntryToEmptySlot(p, s) will add the
person p to slot s.

The following example shows briefly how the
scheduling of a meeting works in Can. A differ-
ent, more detailed example can be found in (Winikoff
et al. 2002).

Assume the initial state is such that John is al-
ready scheduled into the diary, and David wants to
be scheduled into the diary, i.e.:

B0 |= (occupiedBy(John,Monday9am)∧
availableSlotFor(John,Monday9am)∧
availableSlotFor(John, Tuesday9am)∧
meetingRequest(David)∧
availableSlotFor(David,Monday9am))

The agent execution will then proceed as follows3,
where the rules used are Event, Sel, Event, Sel, Bt,
and Seqt respectively, from top to bottom.

〈B0,A0, !sm〉 −→ 〈B0,A0, L!fss; !cs; !asM〉
−→ 〈B0,A0, !fss; !cs; !asB LM〉
−→ 〈B0,A0, LnilM; !cs; !asB LM〉
−→ 〈B0,A0,nil B LM; !cs; !asB LM〉
−→ 〈B0,A0,nil ; !cs; !asB LM〉
−→ 〈B0,A0, !cs; !asB LM〉
−→ ...

The Event derivation rule is applied first as a re-
sult of its antecedent being met. The consequent of
the rule selects the set of applicable ψ : P pairs for
!sm, to create L∆M. In this example, L∆M only con-
tains a single plan body, i.e. !fss; !cs; !as. The only
rule that can work with L∆M, is Sel, which selects
!fss; !cs; !as from L∆M, and removes the plan body
from L∆M. The first program in !fss; !cs; !as, i.e. !fss,
results in the Event and Sel rules being used again,
but this time for selecting the applicable set, and re-
sulting plan body (respectively), for !fss. Finally,
Seqt removes nil from the program nil ; !cs; !as to yield
!cs; !as, and execution continues in this manner until
!sm evaluates to nil .

2.2 HTN Planning

We can gain some guidance on formalising planning
for BDI agents by looking at the semantics of HTN
planning. HTN planning has several similarities to
BDI execution. Although BDI systems execute as
they look for a solution, and HTN planners find a
complete solution before execution begins, they use
similar techniques for composing a solution(de Silva
& Padgham 2004).

The rest of this subsection is based on (Sardina
et al. 2006). An HTN planning domain D = (Π,Λ)
consists of a library Π of methods and a library Λ of
primitive tasks. Each primitive task in Λ is a STRIPS
(Fikes, Hart & Nilsson 1972) style action with corre-
sponding preconditions and effects in the form of add
and delete lists. An HTN planning problem P is the

3where sm = scheduleMeeting(David), fss = findSuita-
bleSlot(David,s), cs = clearSlot(s) and as = addEntryToEmptyS-
lot(David,s). Note that the preconditions have been excluded for
clarity, when showing the contents of L∆M.

triple 〈d,B,D〉 where d is the network of tasks to ac-
complish, B is the initial belief state (i.e. a set of all
ground atoms that are true in B), and D is a plan-
ning domain. A plan σ is a sequence act1 · ... · actn of
ground actions (that is, ground primitive tasks).

Given a specific planning problem P, HTN plan-
ning proceeds by selecting an applicable reduction
method from D, and applying the method to some
compound task in d. The resulting task network d′
is then reduced further, until no compound tasks re-
main. On every application of a reduction method,
compound tasks become less abstract (i.e. more prim-
itive), eventually producing a solution σ, composed
only of primitive tasks. If an applicable reduction
method does not exist for a compound task at any
stage, the planner backtracks and tries an alternative
reduction for a different compound task.

The following operational semantics for HTN plan-
ning is taken from (Erol et al. 1994). The semantics
define the set of plans sol(d,B,D) that solves a plan-
ning problem instance P = 〈d,B,D〉.

sol1(d,B,D) = comp(d,B,D),

soln+1(d,B,D) = soln(d,B,D) ∪
[

d′∈red(d,B,D)

soln(d′,B,D),

sol(d,B,D) =
[

n<ω

soln(d,B,D),

In the above semantics, comp(d,B,D) is the set
of primitive tasks, corresponding to all plan competi-
tions of d, and red(d,B,D) is the set of all reductions
of d in B by methods in D.

2.3 The CANPlan Language

In (Sardina et al. 2006), the CanPlan language was
introduced. CanPlan is an extension to Can with
support for; (STRIPS like) actions with preconditions
and effects, multiple variable bindings, a more simpli-
fied account of declarative goals, and planning capa-
bilities.

The main feature of CanPlan is the (local)
planning construct Plan(P). Plan(P) is a planning-
program that ensures P can be fully decomposed, be-
fore execution can begin within the BDI execution
engine. The first step in the plan resulting from the
decomposition is then executed within the BDI ex-
ecution engine. Hence Plan(P) encodes finding the
right choices at decision points within P , so that the
BDI engine may make the right choices when faced
with the decision points during execution.

The main derivation rule for Plan is shown below.
The rule relies on two types of transitions on con-
figurations: bdi and plan transitions. The relation
C

bdi−→ C ′ specifies a single step transition of type bdi,
corresponding to a single execution step of an agent.
Similarly C

plan−→ C ′ specifies a single step transition of
type plan, corresponding to a single step of imagined
execution within the planner. A transition without a
label: C −→ C ′, specifies that either type applies.

The Plan derivation rule states the conditions un-
der which a planning-program Plan(P) in the context
of the current belief base B can legally make a single-
step transition, with Plan(P ′) being the remaining
program to be executed and B′ being the new be-
lief base (A and A′ stand for the actions executed so
far):

〈B,A, P 〉 plan−→〈B′,A′, P ′〉 〈B′,A′, P ′〉plan∗−→ 〈B′′,A′′,nil〉
〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P ′)〉

Plan

133

scheduleMeeting(p) : meetingRequest(p)← !findSuitableSlot(p, s) ; !clearSlot(s) ; !addEntryToEmptySlot(p, s)
findSuitableSlot(p, s) : availableSlotFor(s, p)← nil
clearSlot(s) : 6 ∃(p)occupiedBy(s, p)← nil
clearSlot(s) : occupiedBy(s, p) ∧ availableSlotFor(s2, p)∧ 6 ∃(p2)occupiedBy(s2, p2)← !moveEntry(p, s2)
clearSlot(s) : occupiedBy(s, p) ∧ availableSlotFor(s2, p) ∧ occupiedBy(s2, p2) ∧ s 6= s2← !clearSlot(s2) ; !moveEntry(p, s2)
moveEntry(p, s) : occupiedBy(s2, p) ∧ availableSlotFor(s, p)∧ 6 ∃(p2)occupiedBy(s, p2)← −occupiedBy(s2, p) ;+occupiedBy(s, p)
addEntryToEmptySlot(p, s) : ¬occupiedBy(s, p)← +occupiedBy(s, p)

Figure 1: The set of plan rules in Π for a meeting scheduler

The rule states that a configuration 〈B,A,Plan(P)〉
can make a single BDI step to 〈B′,A′,Plan(P ′)〉 pro-
vided that 〈B,A, P 〉 can make a single plan step to
〈B′,A′, P ′〉, from where it is possible to reach a final
configuration 〈B′′,A′′,nil〉 in a finite number of plan-
ning steps (Sardina et al. 2006). Note that, to make
a single BDI transition, the only requirement is for
at least one plan to exist. The rules permit, but do
not require the agent to commit to a plan when one is
found: interrrupting a plan and re-planning is always
permissible.

It was proven in (Sardina et al. 2006) that Plan(P)
can be seen as an integrated HTN planner, operating
on the same domain knowledge as the BDI system.
However, Plan(P) does not merely lookahead on the
BDI execution cycle, as some types of execution, such
as failure handling, is only used at the BDI level.

Since HTN planning is more expressive than first-
principles planning (Erol et al. 1994), CanPlan can
also be used to encode a first principles planner
(Fikes et al. 1972), by writing a program of the form
Plan (!seqActions; ?φ) (Sardina et al. 2006). The
event seqActions can be handled by multiple pro-
grams, each (except for a terminating program) con-
taining a single action followed by a recursive call
to seqActions, to simulate a first principles planner
trying different combinations of existing actions un-
til a terminating condition is reached. Additionally,
CanPlan can be used to encode more general plan-
ning strategies, e.g. Plan(Pa)BPlan (!seqActions; ?φ),
which specifies that first-principles planning should
be tried, only after failure of the HTN planning rep-
resented by Plan(Pa).

2.3.1 An Example

In the previous example, scheduling a new meeting
into the diary may sometimes involve rescheduling ex-
isting meetings. The rescheduling is handled by the
plan body of clearSlot(s) which has a recursive call
to clearSlot(s). However, an alternative and possibly
better approach is to remove the plan rule with the
recursive call, and to replace the call to clearSlot(s)
occuring in the plan body for scheduleMeeting(p),
with Plan(!clearSlot(s)). The behavior of the BDI
system on reaching the Plan(!clearSlot(s)) program
is shown below 4.

The rule Plan is the first applicable rule. The
first step on reaching Plan(!clearSlot(Monday9am))
is shown below (note that programs P and P ′ from
the original Plan rule have been replaced with the
corresponding programs of this example).

〈C, !cs〉 plan−→〈C, L!meM〉 〈C, L!meM〉plan∗−→ 〈B′,A′,nil〉
〈C,Plan(!cs)〉 −→ 〈C,Plan(L!meM)〉 Plan

The antecedent of the above rule is met as a result
of applying Event, Sel, Event, Sel and Seqt (etc.)

4where -ob = -occupiedBy(John,Monday9am), +ob =
+occupiedBy(John,Tuesday9am), me = moveEntry(John,-
Tuesday9am), cs = clearSlot(Monday9am), and C = B0,A0.

rules, respectively. The example below shows these
initial steps.

〈B0,A0,Plan(!cs)〉 −→ 〈B0,A0,Plan(L!meM)〉
−→ 〈B0,A0,Plan(!meB LM)〉
−→ 〈B0,A0,Plan(L−ob ; +obMB LM)〉
−→ 〈B0,A0,Plan(−ob ; +obB LMB LM)〉
−→ 〈B1,A0,Plan(+obB LMB LM)〉
−→ ...

Note that the last step results in the belief base
changing from B0 to B1. Execution is continued in
this manner, until the Plan rule succeeds, resulting in
the slot Monday9am being cleared.

2.4 Planning with Time Limits

The Plan(P) construct is an important addition to
the Can language, as it allows lookahead deliberation
before acting. The construct ensures that the agent
finds a complete solution for P , before executing even
the first step of P . However, it is not always feasi-
ble to find a complete solution – if the environment
is rapidly changing, the agent will need to act with
little or no deliberation. Alternatively, the agent may
have enough time for deliberation, but may perform
better if the time spent on deliberation was balanced
carefully with execution (Dekker & de Silva 2006).

Limited deliberation has been studied for many
years in the field of anytime algorithms (Korf 1990,
Russell & Wefald 1991, Dean & Boddy 1988, Briggs
& Cook 1999, Goodwin 1994, Hansen & Zilberstein
2001, Dean, Kaelbling, Kirman & Nicholson 1993a,
Drummond, Swanson, Bresina & Levinson 1993,
Dean et al. 1993b, Miura & Shirai 2001, Atkins, Dur-
fee & Shin 1996) but without a formal operational
semantics. Anytime algorithms provide a tradeoff be-
tween time spent on deliberation and the quality of
the solution, by ensuring that the quality of the so-
lution gradually increases as more time is spent on
deliberation.

There are two broad categories of anytime algo-
rithms (Zilberstein 1995): contract algorithms and in-
terruptible algorithms.

2.4.1 Contract Algorithms

Contract algorithms (e.g. (Korf 1990)) require a time
limit to be known in advance, before the algorithm
can begin. Moreover, the algorithm cannot be inter-
rupted for the specified duration. The time limit can
either be programmer specified, or calculated based
on the state of the world (Goodwin 1994, Atkins
et al. 1996).

Many existing planning algorithms can be consid-
ered contract algorithms, and depth-limited planning
is one of them (Zilberstein & Russell 1995, Russell
& Zilberstein 1991). Hence, we have essentially intro-
duced a contract algorithm into the BDI architecture.
This mapping of our work to a contract algorithm is
important, as future work can focus on using existing
techniques for converting contract algorithms into in-
terruptible ones, to extend our operational semantics.

134

2.4.2 Interruptible Algorithms

Unlike contract algorithms, interruptible algorithms
do not require a predefined time limit. The algorithm
can be interrupted at any time during the deliberation
process, and a solution obtained. Due to the ability to
interrupt the algorithm, interruptible algorithms are
more difficult to construct than contract algorithms.

Interruptible algorithms are suitable for domains
where the amount of time available for deliberation
is not known in advance. The agent will therefore
deliberate until an event is received from the envi-
ronment, signalling the need to stop deliberation and
start execution.

2.4.3 Converting a Contract Algorithm into
an Interruptible Algorithm

Interestingly, given any contract algorithm, a cor-
responding interruptible algorithm can be composed
with a small penalty (Zilberstein 1995). The conver-
sion is done by initially allocating some time period
t to the contract algorithm, and repeatedly calling
the contract algorithm with an increased time alloca-
tion on each subsequent call. According to (Russell
& Zilberstein 1991), the optimal time allocation for
each subsequent call is an exponential increase, in the
sequence: t, 2t, 4t, ... 2it, where t is a value arbitrar-
ily chosen, representing the smallest time allocation
which produces a significant improvement in the qual-
ity of the solution (Russell & Zilberstein 1991).

When the newly composed interruptible algorithm
is interrupted at some point in time, the result ob-
tained from the most recently completed contract al-
gorithm is returned. For example, if the interruptible
algorithm were interrupted at some time t1, where
2kt < t1 < 2k+1t, the solution returned will be the
one produced by the contract algorithm with time
allocation 2kt. If the algorithm were interrupted at
some time t2, where 2k+2t < t2 < 2k+3t, the solution
returned would be from the contract algorithm with
time allocation 2k+2t. Hence the solution at interrup-
tion point t2 is guaranteed to be no worse than the
solution at interruption point t1.

3 Planning with Time Limits in BDI Systems

We now extend CanPlan with a new construct
Plan(P,K), where K is a number specifying the maxi-
mum depth for lookahead within P . More specifically,
Plan(P,K) means “plan for P offline, searching for a
complete hierarchical decomposition within depth K.”

The new construct Plan(P,K) is intended to be
used in a similar manner to Plan(P), i.e. from any-
where within a CanPlan program. Hence we add
Plan(P,K) into the language of P in CanPlan, to
give the following new language for P :

P ::= nil | act | ?φ | +b | −b | !e | P1;P2 | P1 B P2 | P1‖P2 |
Plan(P) | Plan(P,K) | Goal(φs, P1, φf) | Lψ1 : P1, . . . , ψn : PnM.

Next we specify the necessary behaviour when the
new construct Plan(P,K) is encountered during ex-
ecution. The specification is done by introducing
derivation rules for Plan(P,K). We provide four sim-
plified derivation rules that are sufficient for deal-
ing with Plan(P,K): two main rules PlanKSuc and
PlanKOpt, and two simpler rules PlanKt and PlanK P.

The first main rule PlanKSucc handles the case
where there is a solution for P of length less than
or equal to K, and the second main rule PlanKOpt
handles the case where P does not have a solu-
tion of length less than or equal to K. The sim-
pler rule PlanKt handles the case where planning

has been completed, and PlanK P handles the case
where a Plan(P,K) construct is nested within another
Plan(P,K) construct. All new rules are shown in Fig-
ure 2, and a more detailed description of each follows.

The PlanKSucc rule states that configuration 〈B,-
A,Plan(P,K)〉 can evolve to 〈B′,A′,Plan(P ′,K)〉 pro-
vided that 〈B,A, P 〉 can evolve to 〈B′,A′, P ′〉, from
where it is possible to reach a final (successful) con-
figuration within a depth of K. Therefore the con-
sequent of this rule is only applicable in situations
where P can be decomposed completely, in K steps
or less.

The alternatives when there is no solution within
a depth of K is to either behave optimistically or
to behave pessimistically. If Plan(P,K) behaves pes-
simistically, and fails when no solution can be found
within depth K, regular agent execution, i.e. without
the use of planning, may sometimes find a successful
solution when Plan(P,K) does not. Hence by making
Plan(P,K) behave optimistically, there is a guarantee
that the agent will behave no worse than the regular
execution of P (shown later).

The optimistic rule PlanKOpt states that configu-
ration 〈B,A,Plan(P,K)〉 can evolve to 〈B′,A′,Plan-
(P ′,K)〉 provided that 〈B,A, P 〉 can evolve to 〈B′,-
A′, P ′〉, from where it is possible to reach some con-
figuration in K − 1 steps. Hence PlanKOpt behaves
optimistically by executing a step, hoping that some
step after K will lead to a final configuration. Note
that the first (left) conjunction in the antecedent of
PlanKOpt ensures that this rule is not applicable when
PlanKSucc is applicable.

The simpler rule PlanKt handles planning for pro-
gram nil, i.e. when P has successfully been exe-
cuted within Plan(P,K). The rule simply returns
success from Plan(P,K), by replacing Plan(nil ,K)
with nil . The second simpler rule PlanK P han-
dles the Plan(P,K) construct from within a planning
context. If a Plan(P,K) construct is nested within
another Plan(P,K) construct, lookahead and depth
limit within the nested construct is avoided, and con-
trol on lookahead and depth-limit will be maintained
by the meta-level construct. These two simpler rules
are similar to the secondary rules Plant and Plan P,
defined in (Sardina et al. 2006) for the Plan(P) con-
struct5.

We now use the derivation rules to show a num-
ber of interesting properties about the behaviour of
Plan(P,K).

4 Theoretical Properties

In this section we will discuss the formal properties of
the Plan(P,K) construct. First we show some rules
related to agent executions, along with four useful def-
initions, both taken from (Sardina et al. 2006).

An agent is a tuple of the form 〈N ,Λ,Π,B,A,Γ〉
where N is the name of the agent, Λ is an action li-
brary, Π is a library of plan rules, B is a belief base,
A is a sequence corresponding to actions already ex-
ecuted, and Γ is a set of plan bodies currently being
executed. Agent transitions =⇒ are defined by the
following three rules.

P ∈ Γ 〈B,A, P 〉 −→ 〈B′,A′, P ′〉
〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B′,A′, (Γ \ {P}) ∪ {P ′}〉 Astep

e is a new external event

〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B,A,Γ ∪ {!e}〉 Aevent

5Two more rules are necessary, but are trivial and therefore left
out. These rules should be similar to PlanK P, and used for deal-

ing with situations where Plan(P) is encountered within Plan(P,K),
and vice versa. Again, control will be left to the construct encoun-
tered first.

135

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉 plani−→ 〈B′′,A′′, nil〉 0 ≤ i < K

〈B,A,Plan(P,K)〉 bdi−→ 〈B′,A′,Plan(P ′,K)〉
PlanKSucc

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉

〈B,A,Plan(P,K)〉 plan−→ 〈B′,A′,Plan(P ′,K)〉
PlanK P

〈B,A, P 〉 6plani−→ 〈B′,A′, nil〉 〈B,A, P 〉 plan−→ 〈B′′,A′′, P ′′〉
planK−1−→ 0 < i ≤ K

〈B,A,Plan(P,K)〉 bdi−→ 〈B′′,A′′,Plan(P ′′, K)〉
PlanKOpt

〈B,A,Plan(nil,K)〉 −→ 〈B,A, nil〉 PlanKt

Figure 2: The four new rules for planning with time constraints

P ∈ Γ 〈B,A, P 〉 6−→
〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B,A,Γ \ {P}〉 Aclean

Rule Astep performs a single step in a plan body
within Γ, rule Aevent appends a new external event
e to Γ, and rule Aclean removes a plan body that is
completed (i.e. one which has reached nil , or one from
where no transition is possible) from Γ. Next, some
important definitions used in the rest of the paper are
shown (see (Sardina et al. 2006) for more details).

Definition 1 (BDI Execution) A BDI execution
E of an agent C0 = 〈N ,Λ,Π,B0,A0,Γ0〉 is a, pos-
sibly infinite, sequence of agent configurations C0 ·
C1 · . . . · Cn · . . . such that Ci =⇒ Ci+1, for every
i ≥ 0. A terminating execution is a finite execu-
tion C0 · . . . · Cn where Cn = 〈N ,Λ,Π,Bn,An, {}〉.
An environment-free execution is one in which rule
Aevent has not been used.

Definition 2 (Intention Execution) Let E be a
BDI execution C0 · C1 · . . . · Cn for an agent C0 =
〈N ,Λ,Π,B0,A0,Γ0〉, where Γ0 = Γ′0 ∪ {P0}. Inten-
tion P0 in C0 has been fully executed in E if Pn = ε;
otherwise P0 is currently executing in E. In addition,
intention P0 in C0 has been successfully executed in
E if Pi = nil, for some i ≤ n; intention P0 has failed
in E if it has been fully but not successfully executed
in E.

Definition 3 Two, possibly derived, agent
executions C0 · . . . · Cn and C ′0 · . . . · C ′n
are equivalent modulo intentions iff C ′i
= 〈N i,Λi,Πi,Bi,Ai,Γ′i〉, for every 0 ≤
i ≤ n. Also, the two executions are
equivalent modulo intentions P0 ∈ Γ0 and P ′0 ∈ Γ′0 if
they are equivalent modulo intentions and for every
0 ≤ i ≤ n, (Γ′i \ {P ′i}) = (Γi \ {Pi}) (where Pi (P ′i)
is P0’s (P ′0’s) evolution in configuration Ci (C ′i)).

Definition 4 (Program Simulation) Let E be an
execution of C = 〈N ,Λ,Π,B,A,Γ ∪ {P}〉. Program
P ′ simulates program P in execution E iff there is an
execution E′ of configuration C ′ = 〈N ,Λ,Π,B,A,Γ∪
{P ′}〉 such that (a) E and E′ are equivalent modulo P
and P ′; and (b) if P has been successfully executed in
E, so has P ′ in E′. We say that P ′ simulates P iff P ′
simulates P in every execution of any configuration.

Next we discuss the theorems. The first two
theorems are based on the relationship between the
Plan(P) and Plan(P,K) constructs. The first the-
orem shows the intuitive result that Plan(P) can,
in any situation, find all the successful executions
that Plan(P,K) can find. Moreover, in some situ-
ations, Plan(P) will find more successful executions
than Plan(P,K).

Theorem 1 For every program P and every value
of K, Plan(P) simulates Plan(P,K).

Proof. The proof relies on the following lemma from

(Sardina et al. 2006): if 〈B,A, P 〉 plan∗−→ 〈Bf ,Af ,nil〉,
then 〈B,A,Plan(P)〉 bdi∗−→ 〈Bf ,Af ,nil〉.

Let C = 〈N ,Λ,Π,B,A, {Plan(P,K)}〉 and let
C ′ = 〈N ,Λ,Π,B,A, {Plan(P)}〉. Contrary to the
theorem, suppose there is some successful exe-
cution E for C of the form C0 = C · . . . ·
Ck such that Ck = 〈Bk,Ak, nil〉 for some k ≤
K and that an equivalent modulo Plan(P,K)
and Plan(P) execution E′ does not exist for C ′.
From the Plan(P,K) derivation rules PlanKSucc and

PlanKt, E exists because 〈B,A,Plan(P,K)〉 bdik−1−→
〈Bj ,Aj ,Plan(nil,K)〉 bdi−→ 〈Bk,Ak, nil〉 holds. There-

fore the antecedent of PlanKSucc; 〈B,A, P 〉
plank−1−→

〈Bj ,Aj , nil〉, also has to hold. From the above lemma,

if 〈B,A, P 〉 plan∗−→ 〈B′,A′, nil〉, then 〈B,A,Plan(P)〉
bdi∗−→ 〈B′,A′, nil〉. Since 〈B,A, P 〉 plank−1−→ 〈Bj ,Aj , nil〉
holds, using the above lemma and derivation rule

Plant, 〈B,A,Plan(P)〉 bdik−1−→ 〈Bj ,Aj ,Plan(nil)〉 bdi−→
〈Bk,Ak, nil〉 also holds. Therefore E′ has to exist.
¥

The second theorem says that, in situations where
no solutions lie outside depth K, Plan(P,K) can also
find all the successful executions that Plan(P) can
find.

Theorem 2 Let C = 〈N ,Λ,Π,B,A, {Plan(P)}〉.
If for every belief base B′, sequence of actions A′,
program P ′ and i ≥ K > 0 such that 〈B,A, P 〉
plani−→ 〈B′,A′, P ′〉, it is the case that 〈B′,A′, P ′〉 6 plan−→
〈B′′,A′′,nil〉, then for every value of K, Plan(P,K)
simulates Plan(P) in all executions of C.

Proof. On the contrary, suppose that
there is some successful execution E of
C = 〈N ,Λ,Π,B,A, {Plan(P)}〉, of the form C0·. . .·Ck
where Ck = 〈Bk,Ak,nil〉, for which there is no equiv-
alent modulo Plan(P) and Plan(P,K) execution
E′ of C ′ = 〈N ,Λ,Π,B,A, {Plan(P,K)}〉. Observe

that for E to exist, 〈B,A,Plan(P)〉 bdij−→ 〈Bk,Ak,nil〉
holds, and from the antecedent of the Plan rule,

〈B,A, P 〉 bdij−→ 〈Bk,Ak,nil〉 also holds. Furthermore,
0 ≤ j ≤ K holds as the theorem states that there
is no successful execution past K. From Lemma

3, 〈B,A,Plan(P,K)〉 bdij−→ 〈Bk,Ak,nil〉 holds and
therefore the execution E′ must exist. ¥

In summary, the above two theorems show that
Plan(P,K) is not as powerful as Plan(P) in general,
but in certain specific situations, Plan(P,K) is as
powerful as Plan(P). Next we move on to the relation-
ship between Plan(P,K) and regular BDI execution,
and show that the former does have advantages over

136

the latter. But first, we introduce a new lemma that
the next two theorems rely on.

Lemma 3 For every B,A and P , if 〈B,A, P 〉
plani−→ 〈Bf ,Af ,nil〉, then 〈B,A,Plan(P,K)〉 bdii−→
〈Bf ,Af ,nil〉, for all 0 ≤ i ≤ K.
Proof. We prove this by induction on n, representing
the number of derivation steps using transitions of
type plan.

Base case n = 0: 〈B,A, P 〉 plan0−→ 〈Bf ,Af ,nil〉
holds for P = nil , Bf = B, and Af = A, and

〈B,A,Plan(P,K)〉 bdi0−→ 〈Bf ,Af ,nil〉 also holds using
derivation rule PlanKt.

Inductive case n = m + 1, for 0 < n ≤ K:
Then, there exists 〈Bj ,Aj , P j〉 such that

(a) 〈B,A, P 〉 plan−→ 〈Bj ,Aj , P j〉, and; (b)

〈Bj ,Aj , P j〉 planm−→ 〈Bf ,Af ,nil〉. For (a) we can use
derivation rule PlanKSucc to obtain 〈B,A,Plan(P,K)〉
bdi−→ 〈Bj ,Aj ,Plan(P j ,K)〉. Moreover, using (b) and
the induction hypothesis, 〈Bj ,Aj ,Plan(P j ,K)〉
bdim−→ 〈Bf ,Af ,nil〉. Thus 〈B,A,Plan(P,K)〉 bdii−→
〈Bf ,Af ,nil〉, for all 0 ≤ i ≤ K follows. ¥

The next theorem states that, if failure within K
steps is inevitable, Plan(P,K) will detect this failure,
and fail (i.e. by not taking a step). This is an impor-
tant result, as it shows that Plan(P,K) does indeed
provide a benefit over regular BDI execution, as the
latter will waste time executing up to the point at
which it fails.

Theorem 4 Let C = 〈N ,Λ,Π,B,A, {Plan(P,K)}〉
such that, 〈B,A,Plan(P,K)〉 6 bdi−→. Then for every
belief base B′, sequence of actions A′, program P ′ and

0 ≤ i < K such that 〈B,A, P 〉 plani−→ 〈B′,A′, P ′〉, and
for every belief base B′′, sequence of actions A′′ and

program P ′′ such that 〈B,A, P 〉 planK−1−→ 〈B′′,A′′, P ′′〉,
it is the case that 〈B′,A′, P ′〉 6 plan−→ 〈B′′′,A′′′, nil〉 and

〈B′′,A′′, P ′′〉 6 plan−→.

Proof. On the contrary, suppose;

1. 〈B,A,Plan(P,K)〉 6 bdi−→ and 〈B,A, P 〉 plani−→
〈B′,A′,nil〉 for some 0 ≤ i ≤ K. How-

ever, from Lemma 3, if 〈B,A, P 〉 plani−→
〈B′,A′,nil〉 then it is the case that
〈B,A,Plan(P,K)〉 bdii−→ 〈B′,A′,nil〉, for some
0 ≤ i ≤ K. Therefore 〈B,A,Plan(P,K)〉 6 bdi−→
cannot hold.

2. 〈B,A,Plan(P,K)〉 6 bdi−→ and 〈B,A, P 〉 planK−→
〈B′,A′, P ′〉. However, since 〈B,A, P 〉 planK−→ ,
from derivation rule PlanKOpt, it is the

case that 〈B,A,Plan(P,K)〉 bdi−→. Therefore
〈B,A,Plan(P,K)〉 6 bdi−→ cannot hold. ¥

Theorem 5 and 6 shows the situations under which
Plan(P,K) will take a single step, and what it means
to take a single step.

As hinted by Theorem 2, in a situation where there
is a solution within depth K, Plan(P,K) will take a
single step only if that step is one that eventually

leads to a solution. Therefore Plan(P,K) will guide
BDI execution along a successful execution, when a
successful execution is visible. This is again a useful
result and contrasts with default BDI behaviour.

Theorem 5 Let C = 〈N ,Λ,Π,B,A, {Plan(P,K)}〉
such that, 〈B,A,Plan(P,K)〉 bdi−→ and 〈B,A, P 〉
plani−→ 〈B′,A′, nil〉 for some 0 < i ≤ K. If E is
an environment-free agent execution of C, then
intention Plan(P,K) is either executing or has been
successfully executed in E. Moreover, there is an
execution Es of C in which intention Plan(P,K) has
been successfully executed in Es.

Proof. This follows directly from Lemma 3. ¥

As mentioned before, Plan(P,K) behaves opti-
mistically, and Theorem 6 confirms that this is in-
deed the case. If there is no solution within depth K,
Plan(P,K) will take a single step, only if there is an
execution of length K from P . Therefore Plan(P,K)
will execute the first step of P , hoping that a success-
ful path to a solution exists beyond K steps.

If these K steps are not the prefix of a successful
execution, then Plan(P,K) will eventually fail. How-
ever, there is also a chance that these K steps lead to
success. Most importantly, there is a higher chance
that success will be reached with Plan(P,K), than
with regular execution of P , as Plan(P,K) will prune
all paths that fail within depth K.

Theorem 6 Let C = 〈N ,Λ,Π,B,A, {Plan(P,K)}〉
such that, 〈B,A,Plan(P,K)〉 bdi−→ and such that
for every belief base B′, sequence of actions A′,
program P ′ and 0 ≤ i < K such that 〈B,A, P 〉
plani−→ 〈B′,A′, P ′〉, it is the case that 〈B′,A′, P ′〉 6 plan−→
〈B′′,A′′, nil〉. If E is an environment-free agent
execution of C, then intention Plan(P,K) is either
executing or has executed K steps in E.

Proof. The proof relies on the following

lemma: For every B,A and P , if 〈B,A, P 〉 6plani−→
〈B′,A′,nil〉 and 〈B,A, P 〉 plani−→ 〈B′,A′, P ′〉, then
〈B,A,Plan(P,K)〉 bdii−→ 〈B′,A′,Plan(P ′,K)〉, for some
0 ≤ i ≤ K.

On the contrary suppose there is an environment-free
execution E of the form C0 = C · . . . · Ck such
that 〈Bk,Ak,Plan(Pk,K)〉 6 bdi−→ for some k < K.
However, observe that 〈B,A,Plan(P,K)〉 bdik−→
〈Bk,Ak,Plan(Pk,K)〉 will hold. From the antecedent
of the derivation rule PlanKOpt, we can see that

〈B,A, P 〉 plank−→ 〈Bk,Ak, Pk〉
planK−k−→ 〈B′,A′, P ′〉 and

hence 〈B,A, P 〉 planK−→ 〈B′,A′, P ′〉 applies. By using
the above lemma, we get that 〈B,A,Plan(P,K)〉 bdiK−→
〈B′,A′,Plan(P ′,K)〉. Next, since 〈B,A,Plan(P,K)〉
6 bdi−→ 〈B′,A′,Plan(P ′,K〉, there exist B′′,A′′, P ′′
such that 〈B,A,Plan(P,K)〉 bdi−→ 〈B′′,A′′, P ′′〉 bdiK−1−→
〈B′,A′,Plan(P ′,K)〉. Thus, 〈B,A,Plan(P,K)〉 bdi−→
and the execution E cannot exist. ¥

The last theorem conforms to the hypothesis that
prefix plans can provide guidance to the reactive sys-
tem at critical choice points, thus helping the re-
active component avoid dead-ends during execution
(Drummond et al. 1993).

137

5 Conclusion

Time limited planning is important in real world
agent applications. On some occasions, agents do not
have time to plan for a complete solution (Zilberstein,
Charpillet & Chassaing 1999), while on other occa-
sions, agents can benefit by being able to control
the amount of time spent on planning (Dekker &
de Silva 2006).

In this work we have extended previous work on
planning in BDI systems, with ideas from contract
anytime algorithms (Zilberstein & Russell 1995). In
particular, we have extended the CanPlan semantics
to allow programmer control over planning duration,
by introducing a new program construct Plan(P,K),
for limiting the depth of lookahead to K.

The operator Plan(P,K) was shown to have some
useful properties, i.e. Plan(P,K) is subsumed by
CanPlan’s Plan(P) construct, but Plan(P,K) can
find any successful execution that Plan(P) can find, in
situations where no solutions lie outsideK. Moreover,
Plan(P,K) prunes failing paths within a depth of K,
hence resulting in a higher chance of success with
Plan(P,K) than with regular execution of P . Most
importantly, Plan(P,K) will follow a successful path
when there is one within depth K, and Plan(P,K)
will generally6 detect failure earlier than regular BDI
execution. Our theorems also compliment work on
anytime algorithms, as shown with the connection be-
tween Theorem 6, and the hypothesis in (Drummond
et al. 1993).

The operational semantics and theorems form the
basis for an implemented system that extends the
popular Metric-FF (Hoffmann 2003) planner. More-
over, they provide a theoretical framework for exper-
imental work on simulating how humans behave in
real organisations (Dekker & de Silva 2006).

A possible direction for future work involves ex-
tending our semantics to suit interruptible anytime
algorithms, so that the planner can be interrupted
to obtain a partial solution with some guaranteed
quality. Basically, the steps involved would be as fol-
lows: (i) call the existing Plan(P,K) construct mul-
tiple times, starting with an arbitrary value for K,
and: (ii) on each successive call, increase K by one.
The first step will create the interruptible algorithm,
allowing the solution at the most recently completed
depth to be returned on interruption, and the second
step is equivalent to the ideal scenario of exponen-
tially increasing the contract algorithm’s time allo-
cation (see (Russell & Zilberstein 1991) for a simi-
lar example using the RTA∗ algorithm). The results
from (Zilberstein 1995) may help as a starting point
in the formalisation. The semantics could also be ex-
tended to capture interleaved planning and execution,
i.e. continue to plan for the next K steps, while ac-
tions from the first K steps are being executed (e.g.
(Miura & Shirai 2001)).

6 Acknowledgements

We would like to thank Sebastian Sardina for feed-
back on the operational semantics, and for helpful
discussions during the initial stages of this work. We
would also like to thank the anonymous reviewers for
their useful feedback, and the Australian Research
Council for their support through grant “Learning
and Planning in BDI Agents” (number LP0560702).

6Plan(P,K) will not detect failure earlier than regular execution

of P , if failure happens on the K + 1th step.

References

Atkins, E. M., Durfee, E. H. & Shin, K. G. (1996),
Building a plan with real-time execution guaran-
tees, in ‘AAAI-96 Workshop on Structural Issues
in Planning and Temporal Reasoning’, pp. 1–6.

Bratman, M. (1987), Intentions, Plans, and Practical
Reason, Harvard University Press.

Briggs, W. & Cook, D. J. (1999), Anytime plan-
ning for optimal tradeoff between deliberative
and reactive planning, in ‘Proceedings of the
Twelfth International Florida Artificial Intel-
ligence Research Society Conference’, AAAI
Press, pp. 367–370.

Busetta, P., Rönnquist, R., Hodgson, A. & Lucas, A.
(1999), ‘JACK Intelligent Agents - Components
for Intelligent Agents in Java, AgentLink News
Letter, Agent Oriented Software Pty. Ltd., Mel-
bourne’.

Chien, S., Knight, R., Stechert, A., Sherwood, R.
& Rabideau, G. (n.d.), Integrated Planning
and Execution for Autonomous Spacecraft, in
‘Proceedings of the IEEE Aerospace Conference
(IAC), Aspen, USA’, Vol. 1, pp. 263–271.

de Silva, L. P. & Padgham, L. (2004), A comparison
of bdi based real-time reasoning and htn based
planning, in ‘Proc. of Australian Joint Confer-
ence on AI’, pp. 1167–1173.

Dean, T. & Boddy, M. S. (1988), An analysis of time-
dependent planning., in ‘AAAI’, pp. 49–54.

Dean, T., Kaelbling, L. P., Kirman, J. & Nicholson,
A. (1993a), Deliberation scheduling for time-
critical sequential decision making, in ‘Uncer-
tainty in Artificial Intelligence’, pp. 309–316.

Dean, T., Kaelbling, L. P., Kirman, J. & Nicholson,
A. (1993b), Planning with deadlines in stochastic
domains, in R. Fikes & W. Lehnert, eds, ‘Pro-
ceedings of the Eleventh National Conference on
Artificial Intelligence’, AAAI Press, Menlo Park,
California, pp. 574–579.

Dekker, A. & de Silva, L. (2006), Investigating organ-
isational structures with networks of planning
agents, in ‘Proceedings of International Confer-
ence on Intelligent Agents, Web Technologies
and Internet Commerce (To Appear)’, Sydney,
Australia.

Dennett, D. (1987), The Intentional Stance, MIT
Press.

Drummond, M., Swanson, K., Bresina, J. & Levin-
son, R. (1993), Reaction-first search, in ‘Proc.
of the Int. Joint Conf. on Artificial Intelligence’,
Chambery, France, pp. 1408–1414.

Erol, K., Hendler, J. & Nau, D. S. (1994), HTN Plan-
ning: Complexity and Expressivity, in ‘Proc. of
AAAI-94’, pp. 1123–1228.

Fikes, R. E., Hart, P. E. & Nilsson, N. J.
(1972), ‘Learning and executing generalized
robot plans’, Artificial Intelligence 3, 251–288.

Gigerenzer, G. & Selten, R. (2002), Bounded Ratio-
nality, MIT Press.

Goodwin, R. (1994), Reasoning about when to start
acting, in K. Hammond, ed., ‘Proceedings of 2nd
International Conference on AI Planning Sys-
tems’, American Association for Artificial Intel-
ligence, Menlo Park, California, pp. 86–91.

138

Hansen, E. A. & Zilberstein, S. (2001), ‘Monitor-
ing and control of anytime algorithms: A dy-
namic programming approach’, Artificial Intelli-
gence 126(1-2), 139–157.

Hindriks, K. V., de Boer, F. S., van der Hoek, W.
& Meyer, J.-J. C. (1999), ‘Agent Programming
in 3APL.’, Autonomous Agents and Multi-Agent
Systems 2(4), 357–401.

Hoffmann, J. (2003), ‘The Metric-FF planning sys-
tem: Translating “ignoring delete lists” to nu-
meric state variables’, 20, 291–341.

Ingrand, F. F., Georgeff, M. P. & Rao, A. S. (1992),
‘An Architecture for Real-Time Reasoning and
System Control’, IEEE Expert: Intelligent Sys-
tems and Their Applications 7(6), 34–44.

Jennings, N. R., Sycara, K. & Wooldridge, M. (1998),
‘A roadmap of agent research and development’,
Journal of Autonomous Agents and Multi-Agent
Systems 1(1), 7–38.

Karim, S. & Heinze, C. (2005), Experiences with the
design and implementation of an agent-based au-
tonomous uav controller., in ‘AAMAS Industrial
Applications’, pp. 19–26.

Korf, R. E. (1990), ‘Real-time heuristic search’, Artif.
Intell. 42(2-3), 189–211.

Miura, J. & Shirai, Y. (2001), Parallelizing planning
and action of a mobile robot based on planning-
action consistency, in ‘IEEE Conf. on Robotics
and Automation’, pp. 1750–1756.

Newell, A. & Simon, H. (1972), Human Problem Solv-
ing, Prentice Hall, Englewood Cliffs.

Plotkin, G. (1981), A Structural Approach to Opera-
tional Semantics, Technical Report DAIMI-FN-
19, Dept. of Computer Science, Aarhus Univer-
sity, Denmark.

Rao, A. S. (1996), AgentSpeak(L): BDI Agents Speak
Out in a Logical Computable Language, in W. V.
Velde & J. W. Perram, eds, ‘Agents Breaking
Away (LNAI)’, Vol. 1038 of LNAI, Springer-
Verlag, pp. 42–55.

Russell, S. J. & Zilberstein, S. (1991), Composing
real-time systems, in J. Mylopoulos & R. Reiter,
eds, ‘Proceedings of the Twelfth International
Conference on Artificial Intelligence (IJCAI-91)’,
Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA, pp. 212–217.

Russell, S. & Wefald, E. (1991), Do the right thing
: studies in limited rationality, Artificial intelli-
gence, MIT Press, Cambridge, Mass.

Sardina, S., de Silva, L. & Padgham, L. (2006), Hi-
erarchical Planning in BDI Agent Programming
Languages, in ‘Proc. of AAMAS-06’, pp. 1001–
1008.

van Riemsdijk, M. B., Dastani, M. & Meyer, J.-J. C.
(2005), Semantics of Declarative Goals in Agent
Programming, in ‘Proc. of AAMAS-05’, pp. 133–
140.

Winikoff, M., Padgham, L., Harland, J. & Thangara-
jah, J. (2002), Declarative & Procedural Goals in
Intelligent Agent Systems, in ‘Proc. of KR-02’,
pp. 470–481.

Zilberstein, S. (1995), ‘Operational rationality
through compilation of anytime algorithms’, AI
Magazine 16(2), 79–80.

Zilberstein, S., Charpillet, F. & Chassaing, P. (1999),
Real-time problem-solving with contract algo-
rithms, in ‘IJCAI’, pp. 1008–1015.

Zilberstein, S. & Russell, S. (1995), Approximate rea-
soning using anytime algorithms, in ‘Natarajan,
S. (ed.), Imprecise and Approximate Computa-
tion’, Kluwer Academic Publishers.

139

