Hierarchical Planning in B
Languages: A Fo

Sebastian Sardina
RMIT University
Melbourne, Australia

ssardina@cs.rmit.edu.au

RMIT Univ

ABSTRACT

This paper provides a general mechanism and a solid thealreti
basis for performing planning within Belief-Desire-Int&m (BDI)
agents. BDI agent systems have emerged as one of the mo$t wide
used approaches to implementing intelligent behavior mmlex
dynamic domains, in addition to which they have a strong-theo
retical background. However, these systems either do obide
any built-in capacity for “lookahead” type of planning orthdo

it only at the implementation level without any precise defirse-
mantics. In some situations, the ability to plan ahead iartle
desirable or even mandatory for ensuring success. Alsoga pr
cise definition of how planning can be integrated into a BDd-sy
tem is highly desirable. By building on the underlying siani

ties between BDI systems and Hierarchical Task Network (HTN
planners, we present a formal semantics for a BDI agent anogr
ming language which cleanly incorporates HTN-style plagras

a built-in feature. We argue that the resulting integratgeha pro-
gramming language combines the advantages of both BDI agent
systems and hierarchical offline planners.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Atrtificial Intelligence—
Intelligent Agents,Languages and structures

Keywords

BDI agent-oriented programming, HTN plannning

INTRODUCTION

The BDI (Belief-Desire-Intention) model is a popular andiwe
studied architecture of agency for intelligent agentsa$éd in com-
plex and dynamic environments. The model has its roots lloghi
ophy with Bratman'’s [2] theory of practical reasoning andnbe
nett’s theory of intentional systems [9]. There are a numntdfer
agent programming languages in the BDI tradition, such rs P
[13], AGENTSPEAK [19], 3APL [12], JAcCK [3], CAN [24].

1.

*We would like to acknowledge the support of Agent Oriented
Software and of the Australian Research Council under thatgr
“Learning and Planning in BDI Agents” (number LP0560702).

Permission to make digital or hard copies of all or part of tiork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.
AAMAS’06May 8-12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005$5.00.
© ACM, 2006 This is the author's version
Not for redistribution. The definitive vel
conference on autonomous agents and multi

Lavindra de Silva

Melbourne, Australia
Idesilva@cs.rmit.edu.au

DI Agent Programming
rmal Approach-

Lin Padgham
RMIT University
Melbourne, Australia

linpa@cs.rmit.edu.au

ersity

BDI agent-oriented systems are extremely flexible and mespo
sive to the environment, and as a result, well suited for dernap-
plications with real-time reasoning and control requirateeHow-
ever, alimitation of these systems is that they normallyaltooka-
head or planningin the traditional sense; execution is based on
a user-provided “plan library” to achieve goals. BDI francels
rely entirely on context sensitive subgoal expansionngciis they
go. In some circumstances, however, lookahead deliberéte.,
hypothetical reasoning) about the effects of one choicexpae-
sion over another is clearly desirable, or even mandatoorder
to guarantee goal achievability and to avoid undesirechsdns.

In general, this is the case when (a) important resourceshaay
used in taking actions that do not lead to a successful ogr¢im
actions are not always reversible and may lead to statesvittioh
there is no successful outcome; (c) execution of actions sak-
stantially longer than “thinking” (or planning); and (d)tamns have
side effects which are undesirable if they turn out not to $eful.

In this paper, we develop a traditional BDI-style agent paog-
ming language that includes an-demand planning mechanism
the style of Hierarchical Task Networks (HTN), whose seritant
and implementations are well understood in the planningnecom
nity [11]. The language we propose, nameaNPLAN, provides a
flexible approach regarding when to perform full lookaheatd is
provably more expressive than either BDI or HTN systemsalon
CANPLAN is based on &N [24] and AGENTSPEAK [19]. One
could argue, of course, that it is always possible, in @aitstua-
tions, to explicitly program lookahead within existing B&lstems.
However, such code would generally be domain dependent, can
be fairly complex, and would lie outside the infrastructsupport
provided by the BDI agent platform. Alternatively, there anany
frameworks that attempt to interleave BDI-type executigthef-
fline planning (e.g., [1, 23, 10, 17, 14]). Still, these arestho
implemented systems with no precise semantics and wid fitb-
grammer control over when to plan. Our approach, insteat is
provide a formal specification of planning adailt-in featureof
the BDI infrastructure that the programmer can use as apipiep

The contributions of this paper are threefold. Firstly, agse
account of planning within a typical BDI agent programmiag-
guage is provided. Secondly, the intrinsic relationshiprMeen
lookahead planning in the context of BDI agents and the HTN ap
proach to planning is formally explored. Lastly, the serntnotf
CAN given in [24] is substantially improved and simplified.

The rest of the paper is organised as follows. In section 2, we
provide a brief overview of BDI agent programming languageds
HTN planners; we also provide an informal discussion orr iai-
ilarities. In section 3, we describe the basic BDI agent lsyg
we will use, namely the @\ notation described in [24], but with
some modifications to include actions with preconditiond aft

of the work. It is posted here by permission of ACMfor your personal
rsion was published in "“Proceedings of the fifth international joint
agent systems (AAMAS 2006)" http://doi.acm.org/10.1145/1160633.1160813

use.

Citation: Sardina, S, De Silva, L and Padgham, L 2006, ‘Hierarchical planning In BDI agent programming
languages: A formal approach’, in P. Stone & G. Weiss (ed.) Proceedings of the fifth international joint
conference on autonomous agents and multi agent systems (AAMAS 2006), Hakodate, Japan, 2006.

E79927
Typewritten Text
Citation: Sardina, S, De Silva, L and Padgham, L 2006, 'Hierarchical planning in BDI agent programming languages: A formal approach', in P. Stone & G. Weiss (ed.) Proceedings of the fifth international joint conference on autonomous agents and multi agent systems (AAMAS 2006), Hakodate, Japan, 2006.

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text
© ACM, 2006 This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in "Proceedings of the fifth international joint conference on autonomous agents and multi agent systems (AAMAS 2006)" http://doi.acm.org/10.1145/1160633.1160813

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

fects, multiple variable bindings, and a simpler, thoughieajent,
account of declarative goals. We chosanCfrom the numerous
available options because it has the desirable features) abMm-
bining a declarative and procedural viewgifals and (b) captur-
ing the semantics of BDI failure recovery and goal persistern
section 4, we develop ANPLAN, our new integrated account of
planning and BDI execution. Besides showing some intuities-
pected properties for the combined framework, we prove that
der suitable assumptionsA@PLANs planning module reduces to
HTN planning. In section 5, a brief discussion on a prototype
plementation is given. Section 6 discusses related worallyj in
section 7, we draw conclusions and outline future lines séagech.

2. BDIAND HTN SYSTEMS

There are a number of BDI agent languages and HTN systems.

We provide a brief abstract overview of these in order to cemm
on their similarities, as background for our integratedrapph.

2.1 BDI Agent Programming Languages

Generally speaking, BDI agent-oriented programming laggs
are built around an explicit representation of beliefs,irdss and
intentions. A BDI architecture addresses how these comyene
are represented, updated, and processed to determineghesag
actions. There are a substantial number of implemented B®&I s
tems, as well as a number of formally specified languages.

An agent consists, basically, of a belief b#&ea set of recorded
pending events (goals), a plan librdily and an intention base.
The belief baseencodes the agent’s knowledge about the world.
Theplan library containsplan rulesof the forme : ¢ < P encod-
ing aplan-bodyor program P for handling an event-goal when
contextcondition is believed to hold. Théntention basecon-
tains the current, partially instantiated, plans the ageastalready
committed to in order to handle or achieve some event-goal.

A BDI system responds tevents the inputs to the system, by
committing to handle one pending event-goal, selectin@a plle
from the library, and placing its plan-body/program inte thten-
tion base. The execution of this program may, in turn, post ne
sub-goal events to be achieved. If at any point a programs, flién
an alternative plan rule is found and its plan-body is plaiced
the intention base for execution. This process repeatsaiptan
succeeds completely or until there are no more applicablespin
which case failure is propagated to the event-goal.

In section 3, we shall discuss in detail one formal BDI larggua
of this sort, namely, &N [24].

2.2 HTN Planning

Hierarchical Task Network (HTN) planning is an approach to
planning based on the decomposition of (high-let@tksin order
to accomplish an (initialfask network Two examples of HTN
systems include 1$0P [15] and its successor-®P2 [16]. Below,
we mostly follow the definitions of HTN-planning from [11].

Tasks can be of two types. primitive taskis an actionact(%)
that can be directly executed by the agent (elgive(x1,x2)). A
(high-level)compound task(Z) is one that cannot be executed di-
rectly (e.g.build_trip(origin,dest)). A task networki = [T, ¢]
is a collection of task&' that need to be accomplished and a boolean
formula of constraintg. Constraints impose restrictions on the or-
dering of the taskée < ¢’), on the binding of variableér = z’)
and(x = ¢) (cis a constant), and on what literals must be true be-
fore or after each tasit, e), (e, 1), and(e, I, ¢’). A method(e, ¥, d)
encodes a way of decomposing a high-level compounddasto
lower-level tasks using task networkwhen+t holds. Methods
provide the procedural knowledge of the domain.

An HTN planning domairD = (II, A) consists of a libraryI of
methods and a library of primitive tasks. Each primitive task i
is a STRIPS style action with corresponding preconditiams ef-
fects in the form oiddanddeletelists. An HTNplanning problem
P is the triple(d, B, D) whered is the task network to accomplish,
B is the initial belief state (i.e., a set of all ground atomattare
true in B), andD is a planning domain. Alan o is a sequence
acty - .. .- acty, Of ground actions (that is, ground primitive tasks).

Given a planning problem instan& the planning process in-
volves selecting and applying an applicable reduction otffom
D to some compound task i This results in a new, and typi-
cally more “primitive,” task networki’. This reduction process is
repeated until only primitive tasks (i.e., actions) remédimo appli-
cable reduction can be found for a compound task at any stage,
planner “backtracks” and tries an alternative reductianafaom-
pound task previously reduced. If all compound tasks cantave
ally be reduced, a plan solutienis obtained

In [11], a clear operational semantics for HTN planning was
given. The set of plansol(d, B, D) that solves a planning instance
P = (d, B, D) is defined asol(d, B, D) = U,,.,, soln(d, B, D),
wheresol,, (d', B, D) is, in turn, defined as follows:

soli(d,B,D) = comp(d,B,D),
solny1(d,B,D) = sol.(d,B,D)U | sol,(d', B, D).
d’ered(d,3,D)

Intuitively, comp(d, B, D) is the set of all plarcompletionof a
networkd containing only primitive tasks (i.e., plans for which the
constraint formulap in d is satisfied), anded(d, B, D) is the set
of all reductionsof d in B by methods irD. We refer to [11] for
more details on HTN and its formal semantics.

2.3 Similarities Between HTN and BDI

As stated in [7], BDI agent programming languages and HTN
planners share many similarities despite their differamppses.
The similarities come from the knowledge used by both systasn
well as from how this knowledge is manipulated to createtgmis.

First of all, HTN systems and BDI languages assume an ekplici
representation of the agent’s knowledge (i.e., the beisEpand a
set of primitive tasks or actions that the agent can diremtgcute
in the world. Secondly, procedural knowledge about the doma
is available in both HTN and BDI systems in the form of reduc-
tion methods and plan rules, respectively. Thirdly, and tnios
portantly, both systems create solutions by reducing hitgvel
entities into lower-level ones by appealing to a given seedfic-
tion recipes. Whereas a BDI system “reduces” an event into an
plan-body/program using a plan rule from the plan libranytH&' N
planner reduces a compound task into a task network using a re
duction method from the method library.

The following table gives an indication of the mapping bedgwe
HTN and BDI entities.

BDI SYSTEMS HTN SYSTEMS

belief base state

plan library method library

event compound task
action primitive task
plan-body/program network task

plan rule method

plan rule context method precondition
test?l in plan-body state constraints
sequence in plan-body ordering constraint
parallelism in plan-body no ordering constraint

The above table is not complete—while some entities havamht-
forward mapping some others require a more elaborate atos!
(we refer to [7, 22] for a more detailed mapping).

BDI agent systems and HTN planners, despite their close rela
tionship, differ fundamentally in their objectives. Therfter are
focused on thexecutionof agent programs where “backtracking”
can only happen in the real world. The latter, in contrast,can-
cerned withhypothetical reasoningbout actions and their poten-
tial interactions within a whole plan for achieving a goadk.

3. THE BASIC BDI LANGUAGE

The CaN (ConceptualAgentNotation) notation [24] is a high-
level plan language in the style of typical agent langualge#) in
the BDI tradition and elsewhere (e.g.GANTSPEAK [19], 3APL
[12, 21], and even GNGOLOG [5, 6]). Its syntax and semantics
attempt to extract the essence of a class of implementalelet ag
platforms and could be considered as a supersetGENTSPEAK
(see [24]). Unlike ASENTSPEAK, though, the semantics foraAB
includes botHailure handlinganddeclarative goals—-two appeal-
ing features for our planning agents.

An agent is created by the specification of a set of base béief
and a set of planEL. Thebelief baseof an agent is a set of formu-
las from some (knowledge representation) logical languddee
programmer may choose any logical language; all that isiredju
is for operations to exist that check whether a conditiena logi-
cal formula over the agent's beliefs—follows from a belief §.e.,

B = ¢), and to add and delete a beltefo and from a belief base
(i.e., BU{b} andB \ {b}, respectively). In practice, however, the
belief base contains ground belabmsin a first-order language.

As explained in section 2, an ageqpiaan library IT consists of
a collection of plan rules of the form : ¢ «— P, wheree is an
event andy is the context condition which must be true in order
for the plan-bodyP to be applicablé. The plan-bodyor program
P is built from primitive actionsact that the agent can execute
directly, operations to adétb and delete-b beliefs, tests for con-
ditions 7¢, and events or (internal) achievement gdal<Complex
plans can be specified using sequendhgPs, parallelismp; || Pz,
and declarative goalSoal(¢s, P, ¢) (explained later). Hence, the
user languages described by the following grammatr:

P:u=act|+b| —b|?¢|le| P1; P2 | P1||P2 | Goal(¢s, P1,¢y).
There are also a number of auxiliary plan forms which are used
ternally when assigning semantics to constructs: basimégng)
programnil; and compound plans likB; > P>, which executes’;
and then execute; only if P; failed, and(i1 : Pi, ..., ¢, : Py),
which is used to encode a set of (relevant) guarded plansfullhe
languageis therefore described by the following grammar:

P ::=nil ‘act|7q§‘P1DP2‘d¢1:P1,...,¢n:PnD‘
+b| —b|le| Pi; Py | P1||P2 | Goal(¢s, P1,¢5).

In contrast with [19, 24], we take actions as the usual basiams

of the agent to change its environment and, hence, actioys ma
have preconditions and effects. One possibility would béoto

low [12] and assume that gartial function 7 specifying the up-
date semantics of basic actions is given7 ifact, B) is defined, it
yields the new updated belief ba®é, otherwise, we say that the
action’s precondition is not met if. However, for simplicity, we
shall restrict ourselves to agents that are equipped witlinap{e)
STRIPS-likeaction description libraryA containing rules of the

form act : Yact — ®,.,; @), one for each action type in the do-

act?

main. Formulay),.: corresponds to the action’s precondition, and
o} and®, , stand for the add and delete lists of atoms, respec-

act

tively.> For example, actiomove(z, y, z), which moves object:

LAn omitted ¢ is equivalent tanil. Notice thate, v, and P ' may
contain free variables; a plan rule is of the foe®) : ¢ (Z, y) «—
P(%,y,7), whereZ, y andz are vectors of (distinct) vanables

2Free variables ibqct, @, andd;, are free inuct too.

from y to z, could be represented ih as follows:

move(x,y, z) : Free(z) A At(z,y) «—

{Free(z), At(z,y)}; { Free(y), At(z, z)}.

Next, we show the operational semantics for the above lagegua
along the lines of [24]. Aransition relation— on so-callecton-
figurationsis defined by a set of derivation rules. A transition
C — (' specifies that executing configuratiéh a single step
yields configurationC’. We write C' — to state that there ex-
istsC’ such thatC' — C’, and—— to denote the usual reflexive
transitive closure of—. A derivation rule consists of a, possibly
empty, set of premises, which are transitions together sotine
auxiliary conditions, and a single transition conclusiarighble
from these premises. (see [18] for more on operational sgécsin

Two types of transitions will be used to define the semantics o
our agents. The first type defines what it means to execute-a sin
gle intention and is defined in terms bésicconfigurations. The
second type of transition is defined in terms of the first typd a
defines what it means to execute an agentba&ic configuration

is a tuple(B, A, P) consisting of the current belief bageof the
agent, the sequencé of primitive actions executed so far, and the
plan-bodyP being executed (i.e., the current intentidn).

Here are some of the core derivation rules for the language:
A:{'I,ZJZG : PiO\e/ tp; — Py € H/\O:mgu(e,e’)}
(B, A,le) — (B, A, (A))
P P €A B)Z’l[}le
(B, A, (A)) — (B, A, P;i0> (A \ F))

<B7A7P1> 7Ed_l’

FEvent

Sel

bd > B = ¢0 ?
(B, A, (P> Pp)) == (B, A, P2) (B, A,7¢) — (B, A,nil) ~
a:p—dT;d~ €A al =act B
(B, A, act) — ((B\ ®~0) U®T0, A- act, nil)
(B, A, Py — (B, A", P")
(B, A, (P1; P2)) — (B, A', (P'; P2))

act

Seq

Rule Event handles achievement goal events by collectingedl
evantplans for the event in question. Rufl selects onep-
plicable plan from a set of (remaining) relevant plans: program
P> (A) states that prograr? should be tried first, falling back to
the remaining alternatives i\ if required. Notice that plan rules’
context conditions are handled in a lazy manner. Rudeals with
test goals by checking that the condition follows from therent
belief base, whereas rute:t handles the case of primitive actions
by using the domain action description libraky Rule Seq han-
dles sequencing of programs in the usual way. Releis used
along with ruleSel for failure handling if the current plan?; 6 for
a goal fails (i.e., at some point the precondition of an acto a
test goal is not met), rule ; applies first, and eventually, rulgel
may select anothepplicablealternative for the event-goal, if any.
A central distinguishing feature of A is its Goal(¢s, P, ¢¢)
goal construct, which provides a mechanism for represgitath
declarative and procedural aspects of goals. Intuitivelgoal-
programGoal(¢s, P, ¢ ¢) states that we should achieve the (declar-
ative) goalgs by using (procedural) plaf; failing if ¢ becomes

3Strictly speaking, the plan and action librariBsand A should
also be part of basic configurations. For legibility purmsee
omit them as they are assumed to be static entities. Configusa
must also include a variable substitutiérior keeping track of all
bindings done so far during the execution of a plan-body.id\dar
legibility, we keep substitutions implicit in places whehey need
to be carried across multiple rules. See [12] on how sulbstitsi
are propagated across derivation rules for 3APL.

true. The execution of a goal-program is consistent withesde
sired properties of declarative goals (namely, persistemgsible,
and unachieved). For instance Hfis fully executed but; is still

not true, P will be re-tried; and if¢s becomes true during’s exe-
cution, the whole goal will succeed immediately.

In order to capture the desired behaviour of goal-prograans,
sophisticated operational semantics was given in [24kdas ex-
plicit exceptions, a set of conditions being “watched,” alediva-
tion rules with priorities. Here, we provide an alternatimeich
simpler semantics that is equivalent to the original one. The fol-
lowing is the new set of rules for goal-programs:

P4P>Py B sV oy
(B’-A’ Goal(¢S’P7 ¢f)> - <B7-A7 Goal(¢S7P[> P7 ¢f)>

B ¢s G
(B, A,Goal(¢s, P,é7)) — (B, Anily ~°

B ¢f G
(B, A, Goal(gs, P, ¢7)) — (B, A, ?alsg *
P=Pi>P BWFodsV o (B, A, P1) — (B, A", P")
(B, A, Goal(¢s, P, ¢7)) — (B, A, Goal(ps, P’ > P2, 65))
P=Pi>P BiosVor (BA P/
(B, A,Goal(¢s, P, ¢f)) — (B, A,Goal(ps, Po > P2, ¢¢))

When a goal-program is first encountered during executigle, r
G applies: G; “initialises” the execution of a goal-program by
setting the program in the goal 1@ > P, where the firstP is to
be executed and the secoRds just used to carry theriginal plan
P for (potential) use later on by rulér. The second and third
rules handle the cases where either the success conditionthe
failure condition¢; become true. The fourth rul@s is the one
responsible for performing a single step on an alreadyaiisged
goal-program. Notice that the second part in the fair> P,
remains constant. Finally, rulér restarts the original program
(stored as the second program in p&ire> P») whenever the cur-
rent program has finished, but the desired, and still passdual
has not been achieved yet.

The above semantics f@oal is substantially simpler than the
original one in [24] in that we do not appeal to explicit exteps,
“watched” conditions, or special prioritised derivatiames. Al-
though itis not hard to prove that this alternative semansiequiv-
alent to the original one, due to lack of space, we do not db tha
here. Finally, we point out that, in the original semanti€anN,
an agent included also a goal baséo account for the declarative
goals the agent has already committed to via goal-prograiis.
though not done in €N, the goal base couldotentiallybe used to
perform (meta)reasoning about goals at the agent level&rec
such as goal conflict detection/resolution ([20]). Sinceanealso
not concerned in this paper with this type of reasoning, wa-co
pletely omit the goal base from our agents.

Gr

Gs

R

Agent Level Execution

On top of the above basic rules, we define the evolution of an
agent. Anagent configurationor just an agent, is a tuple of the
form (N, A, I, B, A, T') where is the agent name\ is an ac-
tion description libraryIT is a plan library3 is a belief baseA is

the sequence of actions already performed by the agentl"asd
the set of current intentions (i.e., plan-bodies). Trams# between
agent configurations are dictated by the following threesul

Pel (B,AP)— (B, A, P
N, A TLB, ATy = (N,ATL B, A (T \{P}H) U{P'})
e is a new external event
WN,AIL B, ATy = (N AL B, AT U {le})
Pel (B,AP)+—
(NLATL B, AT = (N,ATL B, AT\ {P})

Astep

Ae'uent

Aclean

The first rule performs a single step in one intention; theosdc
rule creates a new intention from an external event; anddbe |
rule removes a completed intention from the intention base én
intentionnil or one that is blocked and cannot make a transition).

Next, we define the meaning of an agent execution and two re-
lated notions that will be used later in the paper.

DEFINITION 1 (BDI EXECUTION). A BDI execution® of an
agentCy = (N, A, I1, By, Ao, L) is a, possibly infinite, sequence
of agent configuration€y-C' .. .-Cy,-. .. such thatlC;, = C41,
for every: > 0. A terminatingexecution is a finite executiatl, -
...-CpwhereC,, = (N, A, 11, By, An, {}). An environment-free
execution is one in which ruld...»: has not been used.

Sometimes we will be only interested in those steps of aniexec
tion where changes occur in either the executed action®dralef
of the agent—agent steps where the belief base and the edemst
tions remain unchanged can be disregarded. S04 Cy-...-Cy,
is a (finite) execution, then thgerived executiol® is the sequence
of configurations obtained fron' by deleting all configurations
C; of the sequence such thdf = B;1 and.A; = Ajy1.

In addition, we give the following notation to track an intiem
during an execution. 1€ - ... - C, is a normal or derived execu-
tion andP is an intention inCy (i.e., P € T'y), then the sequence
Py, = P, P, ..., P, denotesP’s evolution within the execution
and either (i)P; € T';; or (ii) P; = ¢, if the intention has already
been removed from the intention base at sarhewhere;j < 1.

DEFINITION 2. Two, possibly derived, agent executions
Co-...-CpandCyf - ... O are equivalent modulo intentiorif$
Ci = (N, A, 11, Bi, Ai, %), for every0 < i < n. Also, the two
executions are equivalent modulo intentidise 'y and P} € 'y,
if they are equivalent modulo intentions and for everg i < n,
(T5\{P/}) = (T; \ {P;}) (whereP; (P})is Py's (P;’s) evolution
in configurationC; (CY)).

Lastly, we define what we mean by the execution of an intention
and by a program (weakly) simulating another program.

DEFINITION3 (INTENTION EXECUTION). Let E be a BDI
executiorCy-C1-. . .-C), foran agentCo = (N, A, 11, Bo, Ao, o),
wherel', = 'y U{ Py }. IntentionP, in Cy has been fullgxecuted
in E if P, = ¢; otherwiseP, is currently executingn E. In ad-
dition, intention P, in Cy has been successfuléxecuted in¥ if
P, = nil, for somei < n; intention Py has failedin F if it has
been fully but not successfully executedin

DEFINITION 4 (PROGRAM SIMULATION). Let E be an exe-
cution of C' = (N, A I, B, A, T' U { P}). Program P’ simulates
program P in executionk iff there is an executioft” of configura-
tionC’ = (N, AT, B, A, T U {P’}) such that (a)E and E’ are
equivalent modula® and P’; and (b) if P has been successfully
executed inF, so hasP’ in E’. We say that”’ simulatesP iff P’
simulatesP in every execution of any configuration.

We have, so far, defined the necessary technical founddatons
adding HTN-style planning into the A& BDI agent language, in-
cluding substantially polishing and simplifying the origi CAN’s
semantics from [24], incorporating extra representatarattions,
and providing the necessary definitions of agent executiattere
not addressed in [24]. Let us now move on to the core of therpape

4. PLANNING IN BDI SYSTEMS

In this section, we shall integrate hierarchical planninigp ithe
BDI architecture of section 3. To do so, several issues need t

be addressed. Firstly, we want to keep the languagendsrm

DEFINITION 5. A goal-programGoal(¢s, P, ¢5) is coherent

as possible. Secondly, we allow control over when and on what (relative to a plan library and an action library) if for everbe-

planning is to be performed within the BDI architecture. raly,
we need to decide what domain information the planner wékus
we want the planner to re-use as much information as podsiote
an existing BDI specification. Lastly, the result of the pieng
process ought to be carried on, and possibly monitoredjmilie
BDI execution cycle in a uniform manner.

To address the above issues, we extend the @nguage by
introducing a new language constriRian for offline lookahead
planning, so thallan(P), whereP is a plan-body, meangpfan for
P offline, searching for a complete hierarchical decompositiln
this way, the BDI agent oRlan does a full lookahead search before
committing to even the first step.

As with other constructs in the language, we need to provide
the operational rules for thelan construct. To do this, we shall
distinguish, from now on, between two types of transitionsa-
sic configurations, namelydi andplan (labelled) transitions. We

write C — €’ to specify a single step transition of typgwhen
no label is stated, both types apply). Intuitivedyi-type steps will
be used to model the normal BDI execution cycle, whergas-

type transitions will be used to model (internal) delibenatsteps
within a planningcontext.

Following [6], the main operational rule states that confagion
(B, A,Plan(P)) can evolve to{3’, A’, Plan(P")) provided that
(B, A, P) can evolve to{B’, A’, P’y from where it is possible to
reach dinal configuration in a finite number glanningsteps:

plan,
—

(B, A, Py B2 (31 A Py (B, A, Py s (B, A il
bdi

(B, A,Plan(P)) — (B’, A’,Plan(P"))

Plan

There are also three extra simpler rules associated witbtiean
Plan that are shown in Figure 1. Rullan; handles the case
where no planning solution can be found; rBlan; deals with the
trivial case of planning on progranil; and, lastly,Planp handles
thePlan construct within a planning context.

In addition to these three derivation rules Rdan, we need to re-
strict the two derivation rules andGr from section 3 to thédi
context only. This is because failure handling and goalarésg
should not be made available during planning—they are featof
the BDI execution cycle only. Hence, planningist merely doing
lookahead on the BDI execution cycle. We refer to the new ver-
sions of the rules a&l}dl andG%", respectively. Also, since we
now have two types of transition for basic configurations,need
to slightly modify the top-level agent rules;:., and A ;c.n to be
defined in terms obdi-type transitions. We only show here rules

>4 and Astep (rulesG%” and Aciear should be obvious):

(B, A, Py) 22

(BvAv(Pl ‘>P2)> H} <B7~A7P2>

> bdi

Pel (B,A P)2% 3 A P

NI A TLB, AT = (VA ILB LA (T {PH U{P'})

Astep

Observe that, with the alternative rut/*, only the BDI execu-
tion cycle would be allowed to re-try alternative plans farewvent
upon the failure of some failed alternative. Indeed, a mogof
the form (?falser> (A)) has no transition within alan context,
whereas prograriA) would be tried within &di context.

In [24], itwas required that the success and failure coonin a
goal-program be mutually exclusive. There is also anotbesible
restriction on goal-programs, namely, that the progfaprovided
as a method for achieving a (declarative) gpatloes not make the
failure conditiong; true by itself.

lief basesB, B’, B” and sequences of actiong A’, A" such that
(B, A, P)y X5 (B, A" Py 25 (B, A” nil), itis the case that
B’ £ ¢¢. An agent is cohererit every goal-program mentioned in
its plan library is coherent.

From now on, we assume that agentsarkerent—only the en-
vironment or other concurrent intentions may make the faiaon-
dition of a goal-program trué As expected, if the agent’s only in-
tentionPlan(P) is able to start executing, then there is at least one
full successful BDI execution for such intention, providéére is
no intervention from the outside environment. Equally imiaot,
under the same provisions, no execution of the agent willigmd
failing the intention.

THEOREM 1. LetC = (N, A, 11, BB, A, {Plan(P)}) such that
(B, A, Plan(P)) 24, If Eis an environment-free agent execution
of C, then intentiorPlan(P) is either executing or has been suc-
cessfully executed i. Moreover, there is an executidi® of C'
in which intentionPlan(P) has been successfully executediih

PrROOF This relies on the following lemma: {3, A, P) Plany
(Bs, Az, nil), then(B, A, Plan(P)) 25 (B, A, nil).

On the contrary, suppose there is an environment-free ¢xecu
E of the formCo = C - ... - C) such(B, Ax, Plan(Py)) LN
Observe, though, thai3, A, Plan(P)) ok, (Bi, Ak, Plan(Py)).
By the rulePlan, (B, A, P) Plany (B, Ak, Pr) Plany (By, Ay, nil)
and (B, A, P) Plany (By, Ag,nil) applies. By using the above
lemma, we get thatB3, A, Plan(P)) by, (B, Ag,nil). Next,
since (B, A, Plan(P)) 2% (By, Ay, nil), there exis3”, A", P"
such that(B, A, Plan(P)) 2% (87, A", Py 2= (B;, A, nil).
Thus,(B, A, Plan(P)) 24, and the aboveZ cannot exist.

The second part follows easily from the fact tR&t stands for

a finite chain of transitions: if the agent follows those extaansi-
tions, P will eventually terminate successfully. O

Thus, by using the new lookahead constiRlen(P), the program-
mer can make sure—to some extent—fading executions of pro-
gramP will be avoided. This contrasts with the usual (default) BDI
execution ofP which may potentiallyfail programP due to wrong
decisions at choice points. Nonetheless, it should be thedithe
proposed deliberation modulelizcal in the sense that it does not
take into account the potential interactions with the exaeenvi-
ronment and other concurrent intentions.

Let us now focus on the relationship between our planning con
structPlan and existing HTN planners. To that end, we say that a
CANPLAN agent is dounded agerif its belief base and all belief
conditions are defined in a language which follows the same co
straints as those imposed by HTN planners [11] (e.g., fidéo
atoms, finite domains, close world assumption). It is wokdmp
ing out that, in practice, most existing BDI programmingdaage
implementations do actualise such constraints and dewlveitih
bounded agents. We also assume, without loss of genetthlity,
bounded agents do not make usetdfand —b statements in their
plans—only primitive actions can change the belief basé. 4nd
—b statements can always be represented via special BDI agtion

“This definition is a bit too strong in that it requires a gosdgram
to be “sound” w.r.t. the failure condition f@verypossible belief
base ancbverychain ofbdi-transitions, including failed recovered
executions. Even though a weaker version could be obtaiitadaw
more involved definition, we stick, for simplicity, to the@le one.

BAMISP)) — B.An O BAT) — BUGLAN 0 B A b — (B\ L Anil)
(B, A, Pty — (B!, A, P")
BA(PO D) —B.APoh) . BAMPE SBAD U BAPIN) —BAP =
(B, A, Py — (B, A, P') (B, A, Py) — (B, A, P")

Il

[l2

(B, A, (Pr || P2)) — (B", A', (P" || P2))

<B’-A7 (Pl H P2)> -

B A PP AP - BAP 1
plan

<B7A7 P> - (B/7A/7Pl>

(B, A, Plan(nil)) — (B, Anily 12

Planp

plan

(B, A,Plan(P)) — (B’, A’, Plan(P"))

A = {Astep, Aclean, Aevent} @] {Event, Sel,+b, —b,act,?, Seq, Seqt, >, >+, Dl}di, H17 ||2, Ht17 ||t2 ,Gr,Gs,Gg, G%ﬁ7 Plan7 Planh Planp}.

Figure 1: CANPLAN’s complete set of rulesA is built from the rules described in the text plus the ones shen here.

The next theorem establishes, formally, the link between th
Plan construct and HTN planning. First, we prove that the new
constructPlan could indeed be seen as an HTN planner. Second,
we show that executions of progratan(P) encode HTN plan
solutions. Lastly, and not so surprisingly, we demonsttht a
straight-line HTN plan solution could be successfully axed by
the BDI execution cycle. For clarity, we keep the transtatie-
tween the BDI domain knowledge (i.e., libraridsand A, and pro-
gram) and the HTN procedural knowledge (i.e., planning doma
“task network” P) implicit. (the theorem’s proof is based on the
relationship between the BDI's and HTN'’s entities as disedsin
section 2.3.)

THEOREM 2. For any bounded agent,

1. (B, A,Plan(P)) =L iff sol(P, B,ITU A) # 0.

2. (B, A,Plan(P)) 2% (B', A - act - ... - acty, Plan(P’))
with k£ > 1 iff there exists a plam € sol(P, B,IIUA), such
thato = acty - ... acty - ... - acty, for somen > k.

3. Ifthere exists aplan = act-. . .-act,, € sol(P,B,IIUA),
then(B, A, (actq;...;acty)) b (B, A o,nil).

—

Therefore, provided we restrict to the language of HTN [Hlir
deliberator construd®lan provides a built-in HTN planner within
the whole BDI framework. The above theorem is an important
practical result as it gives us the rationale for using exisHTN
planner systems, such asi&p [15] and S10P2 [16], within cur-
rent BDI implementations (e.g., @ZENTSPEAK [19], JACK [3]).

4.1 Planning for Declarative Goals

ALTERNATIVES A B C D E
Plan(P;?¢s) Vv
Plan(Goal(¢s, P, ¢5)) v Vv v
Goal(¢s, Plan(P), ¢) v vV
Goal(¢s, Plan(P; ?¢s), ér) v VvV
Goal(¢s, Plan(Goal(¢s, P, ¢7)). ¢5) v vV v v

Interestingly, dirst-principlesaccount of planning can easily be
obtained by using the first alternati®an(P; 7¢) by taking P =
IseqActions the special eventeq Actions can be solved with any
sequence of primitive actions.

Notice that the last four alternatives make use of the theiape
Goal construct available in @NPLAN to handle declarative goals
within the BDI execution cycle. Observe also that the lagtoop
is the only one satisfying all five properties combining ttiba
advantages from the BDI execution cycle and the planning-mod
ule. Consequently, itis sensible to define a new languagsticant
Plan(¢s, P, ¢) in the following way:

Plan(¢., P, ¢;) £ Goal(¢s, Plan(Goal(¢., P, ¢)),).
Among other results, it can be shown tiRd&an(¢., P, ¢) sub-
sumes all the executions Bfan(Goal(¢s, P, ¢¢)).

THEOREM 3. Foreverygs, ¢y and P, programPlan(¢s, P, ¢¢)
simulates progranlan(Goal(¢s, P, ¢y)).

To recap: combinations of tHélan andGoal constructs suggest
an interesting range of programs for declarative goals. &lie\e
thatPlan(¢s, P, ¢) provides a convenient mechanism for dealing
with declarative goals at both planning and execution time.

So far we have seen how lookahead planning can be done on4 2 P|anning vs BDI Execution

(procedural) programs. Let us now discuss how (classidal)-p
ning for adeclarativegoal ¢s using a procedural prograi can

be done. There are a few choices for this and the following five
properties that we may be interested in satisfying:

(A) P is used towards the eventual satisfaction of gial

(B) P may execute partially if goap; is achieved befor& com-
pletion. That is,P need not be executed completely.

(C) There is a commitment to the gaal so thatP is reinstanti-
ated and retried until the goal in question is established.

(D) There exists a mechanism for dropping the goal when a fail
ure conditiong s becomes true.

(E) At planning time,P is solved up to the point where the goal
is met. That is, it may not be required to solRecompletely.

The different alternatives that we shall consider toget¥itr the
properties satisfied by each one are described in the faitptaible:

We conclude this section by exploring the differences betwe
the execution of a planning program and the normal BDI execu-
tion. A CANPLAN™ agent is a @GNPLAN agent whose plan lan-
guage does not include tHeand Goal constructs. This restric-
tion corresponds to classical BDI agent programming laggsa
like AGENTSPEAK and tototal-order HTN planners like S0P;
neither system include concurrency and goals natively.edadch
restricted QNPLAN agents, the planning module is no more than
a lookahead mechanism on top of the BDI execution cycle.

THEOREM 4. ProgramP simulates progran®lan(P) in every
CANPLAN™ agent.

On the other hand, when concurrency or goal-programs are con
sidered, performing planning may result in extra execstioin
fact, it can be shown that executifgan(Plan(P:)|| P-) is equiv-
alent to executindPlan(P || P2), which in turn, is very different

from executing(Plan(P;)| P2).° A similar situation arises with

programPlan(Goal(¢s, Plan(P), ¢¢)). The reason, technically,
is that aPlan construct is ignored within the context of another
Plan construct—there is no notion of planning within planning.

Surprisingly, also, the BDI execution engine may obtaircsss-
ful executions that the planner cannot produce.

THEOREM 5. There exists an agent configuratiéhof the form
(N, AL B, A, T U {P}) for which there is an execution where
P is successfully executed, but such that no executiafi’ of=
(N, AL B, A, TU{Plan(P)}) can successfully execu®éan(P).

PROOF Let us build a counter-example. Suppose that all ac-
tions are possible and that actiafct; just makes true, thatp
and ¢ are both false initially, and that there are only two plan
rules in the plan libraryII for handling event: (i) e : true «
act1;7q; actz; and (ii) e : p < acts;acta. There is no solution
for Plan(le), but a BDI execution that would successfully execute
le can be obtained by partially executing plan rule (i) (actioft,)
and then, upon failure, fully executing plan rule (ii). O

As one can observe, the proof’s counter-example relies ¢m bo
the plan failure handling mechanism built into the BDI exému
cycle and the programmer not having provided a full set ofigla
In fact, if the plan library in the above proof’s counter-exale had
included a third rule of the forma : true < act1; 7p; acts; acts,
then the planner would have found a full execution. Stillagent
programs are often developed incrementally and in modtihes,
above situation could well arise.

It follows then that the combined framework of (default) BDI
execution plus local hierarchical planning is strictly m@eneral
than hierarchical planning alone. Furthermore, as distlisfter
Theorem 1, by using the new local planning mechanism the pro-
grammer can rule out BDI executions that are bouniiio

5. IMPLEMENTATION ISSUES

In earlier work [8], we presented an implementation that com
bined BDI reasoning with HTN planning. We usedck® BDI
system and J$oP’ HTN planner, a Java version ofH®Pp [15].
Although the integrated framework does not fully realisedpera-
tional semantics presented here, it does incorporate sopwiant
concepts fromit. In particular, it allows the programmespecify
from within a ACK program the points at which 3#®p should be
called, in a manner similar to tHelan construct. Consistent with
the semantics oPlan, JSHoP uses the same domain representa-
tion as Ack does (i.e., the plan librar}i and belief basdés). In
fact, the framework builds at runtime a I8P planning problem
representation automatically from theck domain knowledge.

Some differences in the implementation arise from the eatur
of the systems chosen for the implementation. Sincecalds a
total-order HTN planner, it does not use theonstruct defined in
P. However, since parallelism has benefits, the integrat@uhdr
work converts J80P's total-order solutions into partial-order so-
lutions so that Ack can exploit possible parallelism at execution
time. Some other differences exist between the implemientahd
semantics for the sake of simplicity. For example, we exeltitk
Goal(¢s, P, ¢5) construct in our system, as this construct does not
have a direct matching concept iack or JSHoP. Including this

A framework wherePlan(Plan(P;)||P.) is not equivalent to
Plan(P;||P;) would require an account of HTN planning within
an HTN planner. This framework can be obtained by droppife ru
Planp and making rulé’lan also available within thelan context.
6\/\MIW. agent - sof tware. com au

"ww, cs. und. edu/ proj ect s/ shop/ descri ption. htm

goal construct and usingH®pP2 [16] to accommodate parallel ex-
ecution of sub-goals natively are left for future work.

The main difference, however, is that the implementatoes
not re-planat every step, as indicated by tRéan rule defined
in the semantics. This would clearly be unnecessarily iciefii.
Instead, J8opP was modified to return the relevant methods and
bindings (rather than simply the actions); the BDI exequtam-
gine then follows step-by-step the decomposition sugddstehe
planner. Relevant environmental changes are detectedthg af a
step in the returned plan no longer being applicable withénRBDI
cycle. Atthat point, the planner is then called once agapréwide
an updated plan, and if none is available failure will oceuthe
BDI system. A disadvantage of this is that environmentahgesa
leading to failure may be detected later in the implemengzdion
than in the semantic rules. However, this drawback is offgehe
much greater efficiency in what can be expected to be the major
ity of cases. This approach also has the benefit that an iotent
produced by a call t€lan will, in fact, terminate—successfully if
there is no environmental interference. This is strongen tivhat
Theorem 1 states, in which we needed to account for the &rang
but potentially possible, situation where tA&an module continu-
ally returns a new and different plan prior to termination.

6. RELATED WORK

Except for NDIGOLOG [6], which is notper sea typical BDI
agent programming language (see below), we are not awarg/of a
otherformal BDI-style agent programming language (e.gGENTS-
PEAK [19], 3APL [12], Prs [13]) providing a clean account of
planning as we do here withABIPLAN. There are however a num-
ber of (implementedpystemsor frameworkswhich do, in some
way or another, mix planning and BDI-style execution. Sorhe o
these areplanners such as PEM [1] and SAGE [14], that allow
for the interleaving of action execution during the plamnpro-
cess. Others aragent architecturessuch as RTSINA [17], Cy-
PRESSand QPEF[23], and RRoPICEPLAN [10]; they are able to
do lookahead planning. YPRESSIs based on the ACT [22] for-
malism that provides a uniform representation frameworksl
execution systems and hierarchical planners, hence gingptine
type of mapping we have proposed in section 2 ROPICEPLAN
is perhaps the most similar system to ours, in that it is a8 DI
agent system that is able to call a planning module to findwisol
for a particular problem. Like ENPLAN, a unified representation
is used by both the planner and the BDI system. The work done
in this paper differs, at least, in two ways form the abovedesys.
First of all, we are particularly concerned with tf@rmal specifi-
cationof a BDI agent with built-in planning capabilities as well as
with the formal relation between BDI systems and HTN plasner
To our knowledge, none of the above systems come with a precis
formal semantics. In some sense, however, our work was much
motivated by the existence of these systems in an analogayisow
how AGENTSPEAK [19] was motivated by systems likerB [13].
Secondly, @NPLAN provides a mechanism for local deliberation
on-demandhat the programmer can use, as opposed to a fixed in-
tegration of planning within the execution engine (e.ganpling
always [17] or just on (goal) failure [10, 23]).

Our work is possibly most related to that of De Giacomo and
Levesque [6] in whichMiDIGOLOG, an incremental version of @\-
GoLoG [5] with a local deliberation modul&, is proposed in the
context of the situation calculus. Several ideas are tat@n that
work and applied to the BDI context. Our work is however dif-
ferent in that (i) NDIGOLOG is a cognitive agent language, with
no explicit notions of events, plan library, plan selecti¢eilure
handling, intention base, etc., whereas our approachkedito a

whole family of typical BDI languages and systems; (ii) olarp
ning mechanism is provably linked to a well understood apgino
in the planning community, namely HTN planning, whereas, as
far as we know, theNDIGOLOG deliberator module is very gen-
eral and is not directly related to any planning system) (hie
integration of the planning module with the notion of deatare
goals in &NPLAN has no counterpart iNDIGOLOG. In some
ways, our approach has a more practical orientation thanotha
INDIGOLOG. It would be interesting to investigate the relations
between NDIGOLOG and CANPLAN (e.g., identify the BDI sub-
class of agents that could be written and executediin GOLOG).

7. CONCLUSION AND FUTURE WORK

We have proposed a mechanism for planning within BDI systems
based on the intrinsic requirements of the BDI architectilicedo
so, we provided an operational semantics that substansiatipli-
fies and extends that presented in [24] to incorporate aplan+
ning constructPlan. The new construct offers power and flexibility
to the BDI programmer for specifying lookahead planningnp®i
in programs. We described results showing that the intiegraie-
tween the planning module and the whole BDI execution is tfee 0
intuitively expected, and proved that, under suitable aggions,
the planning task reduces to HTN planning. Lastly, we shathatl
the combined system allows a larger set of “good” executibas
the planning module alone and discussed an implementdtain t
incorporates many of the concepts from the semantics. Vieviel
the work presented here is a significant step towards incatipg
lookahead deliberation into BDI-type agent systems inagipled
manner. More importantly, it provides a firm foundation foaage
of interesting further work.

The fact that we have chosen to provide planning via a new con-
struct is very much in the spirit of BDI systems, namely, wilny
for direct encoding of programmer or domain expertise. is th
case, the knowledge about when planning would be benefiltial.
may be argued, though, that an intelligent agent should) atake
its own decisions as to when to plan. It is therefore wortletiv
gating a more general account in which the agent could itaké
the initiative to plan; for example, when all plans for a gfzl or
when there is substantial spare tifRe-planningollowing failure
of a plan produced by the planner module is also a topic we have
not explored here and which deserves further work (see.[23])

We have already started exploring how to accommodate exten-
sions to classical HTN planning within our formal framewoHor
instance, decoupling the hierarchical structure of BDhpland us-
ing a planning account more akin to first principles wouldwalfor
potential discovery of new plan structures. This, in tuoyld pro-
vide the basis for the agent to “learn” new plans that coulddued
to the plan library. Also, it can be useful to plan only to ataer
level of abstraction or detail, leaving further remainiregdmposi-
tions to execution time or until absolutely necessary agdoi].
Both above generalisations are likely to require (or berfedin)
extra representation of effects for high-level plans. Sextha rep-
resentation would also provide support for reasoning aimbeitac-
tions of the plan being explored with other goals and intargiof
the agent [4, 20]. In particular, we would like to extend ourrent

local lookahead mechanism so that the agent considers, at Ikast, a [22

of its own active intentions when performing planning.

The framework presented here provides a basis for explthiag
interaction between declarative goals [24, 21]—preliminasults
were given in section 4.1 but further investigation is nekde

Lastly, it would be interesting to develapsource-boundeder-
sion of our planning module. To that end, we are considerg d
veloping ananytimeor incrementalersion of thePlan construct.

8.
(1]

(2]

K]

(4

(5]

(7]
8l
B

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(23]

[24]

REFERENCES

J. Ambros-IngersonPEM: Integrated Planning, Execution, and
Monitoring. PhD thesis, Dept. of Computer Science, University of
Essex, U.K., 1987.

M. Bratman.Intentions, Plans, and Practical Reasdtarvard
University Press, 1987.

P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents - Components for Intelligent Agents avd,
AgentLink News Letter, Agent Oriented Software Pty. Ltd.,
Melbourne, January 1999.

B. J. Clement and E. H. Durfee. Theory for Coordinatingh@arrent
Hierarchical Planning Agents Using Summary InformatienPtoc.
of AAAI-99 pages 495-502, 1999.

G. De Giacomo, Y. Lespérance, and H. Levesque. ConGalog
Concurrent Programming Language Based on the SituaticculDal
Artificial Intelligence 121(1-2):109-169, 2000.

G. De Giacomo and H. Levesque. An Incremental Interpriete
High-Level Programs with Sensing. In H. Levesque and Fi,Pirr
editors,Logical Foundation for Cognitive Agents: contr. in honor of
Ray Reiterpages 86—102. Springer, 1999.

L. P. de Silva and L. Padgham. A Comparison of BDI Based
Real-Time Reasoning and HTN Based Planning?ioc. of
Australian Joint Conference on Apages 1167-1173, 2004.

L. P. de Silva and L. Padgham. Planning on Demand in BDISys.
In Proc. of ICAPS-05 (Posterp005.

D. Dennett.The Intentional StanceIT Press, 1987.

O. Despouys and F. F. Ingrand. Propice-Plan: Toward ifiddh
Framework for Planning and Execution.Pnoc. of European
Conference on Planningages 278-293, 1999.

K. Erol, J. Hendler, and D. S. Nau. HTN Planning: Compieand
Expressivity. InProc. of AAAI-94 pages 1123-1228, 1994.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Meyer.
Agent Programming in 3APLAutonomous Agents and Multi-Agent
Systems2(4):357-401, 1999.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architeetfor
Real-Time Reasoning and System ContHBEE Expert: Intelligent
Systems and Their Applicatiqng6):34-44,1992.

C. A. Knoblock. Planning, Executing, Sensing, and Raeping for
Information Gathering. IfProc. of IJCAI-95 pages 1686-1693,
1995.

D. S. Nau, Y. Cao, A. Lotem, and H. Mufioz-Avila. SHOPnpie
Hierarchical Ordered Planner. Rroc. of IJCAI-99 pages 968-973,
1999.

D. S. Nau, H. Mufioz-Avila, Y. Cao, A. Lotem, and S. Mitth
Total-Order Planning with Partially Ordered SubtasksPtac. of
IJCAI-01, pages 425-430, 2001.

P. Paolucci, O. Shehory, K. P. Sycara, K. P. Kalp, andakrii. A
Planning Component for RETSINA Agents. Rtoc. of ATAL-99
pages 147-161, 1999.

G. Plotkin. A Structural Approach to Operational Sertizs
Technical Report DAIMI-FN-19, Dept. of Computer Science
Department, Aarhus University, Denmark, 1981.

A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Lagic
Computable Language. In W. V. Velde and J. W. Perram, edlitors
Agents Breaking Away (LNAolume 1038 of-NAl, pages 42-55.
Springer-Verlag, 1996.

J. Thangarajah, L. Padgham, and M. Winikoff. Detectthg
Exploiting Positive Goal Interaction in Intelligent AgeninProc. of
AAMAS-03pages 401-408, 2003.

M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. @eiits of
Declarative Goals in Agent Programming.Pnoc. of AAMAS-05
pages 133-140, 2005.

] D. E. Wilkins and K. L. Myers. A Common Knowledge

Representation for Plan Generation and Reactive Execuliamnal
of Logic and Computatiqrb(6):731-761, 1995.

D. E. Wilkins and K. L. Myers. A Multiagent Planning Aritacture.
In Proc. of AIPS-98pages 154-162, 1998.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah
Declarative & Procedural Goals in Intelligent Agent Syssein
Proc. of KR-02pages 470-481, 2002.

APPENDIX

A. COMPLETE OPERATIONAL SEMANTICS FOR CANPLAN

bdi
(B, A, Py — (B", A", P") Ay e is a new external event A
NLILA,B,AT) = (N, ILA,B", A (D\{PHU{P}) % (W,ILA,B,AT) = (N,ILA,B,ATU{le}) "
Pel P =ni N Per (B,A P) L)
(N.ILA, B, AT) = (N,ILA,B, AT\ {P}) ="' (NILA,B,AT) = (N,ILA,B, AT\ {P}) ="
A:{wZGPZH\e’w“—PZGH/\G:mgu(e,e’)}E ; 'I,ZJZPIEA B}:d)ze Sel
(B, A, le) — (B, A, (A)) ven (B, A, (A)) — (B, A, PO (A P)) ~°
b —
(B, A, +b) — (BU (b}, A,nil) (B, A,—b) — (B\ {b}, A,nil)
a:hpe—dT®" €A al =act B o ’ B = ¢0)
(B, A, act) — (B\®0) Ud+0, A-act,nil) (B, A,7¢) — (B, A,nil) -
<Bv-’47 P1> — <B”7-AI7P,>
Seq - Seqt
(B, A, (P1; P2)) — (B, A', (P'; Py)) (B, A, (nil; P)) — (B, A, P)
<BvA7P1> _)<B//7-AI7P/> ” <BvA7P2> _)<B”7-AI7P/> ”
(B, A, (Py || P2)) — (B", A, (P || Pa)) " (B, A, (Py || P2)) — (B", A, (P [P)) "
BA M Py (BAPR) " BA (P (B AP I
di
(B, A, Pi) — (B, A, P') (B, A, P1) 7% b

(B, A, (PL1> P)) — (B", A, (P' > P))

P#Pi1>Py

P B A (il 5 P)) — (B, A,nil)

> i
"B, A, (P> P2)) 20 (B, A, P)

Bl;&¢5v¢f

B E ¢s G
(B, A,Goal(¢s, P,é 7)) — (B, Anily ~°

Gr

(B, A,Goal(¢s, P,¢y)) — (B, A,Goal(¢s, P> P, ¢y))

B¢y

(B, A,Goal(¢s, P,¢y)) — (B, A, ?false)

Gy

Bl ¢sV oy (B, A P)— (B A, P') G
(B, A, Goal(gs, Py > P2, 65)) — (B, A',Goal(¢s, P' > Pa, 7))
B 6sVos (BAP) G
- R
(B, A,Goal(s, P 1> P2, 65)) 2 (B, A, Goal(¢s, P2 > P2, 6 7))
(B, A, P) BN (3, 4 Py (B A P S (Y, A il
Plan

bdi

plan

<87A7P> — <B,7A,7Pl>

(B, A, Plan(P)) 222 (', A’, Plan(P"))

Planp

(B, A,Plan(P)) — (B', A’,Plan(P"))

(B, A, Plan(nil)) — (B, Anily "lan

B. AUXILIARY DEFINITIONS

DEFINITION6 (REMOVE Plan TRANSFORMATIONRP (P1, Po) AND RPA(P1)). Let RP(P1, P2) be a relation that holds if?; is exactly likeP;
with 0 < m < n occurrences of thlan construct inP; removed, where is the number of occurrences of tRé&an constructs inP;. Finally, let RPA(Py)
be the program obtained from deleting Bllan constructs inP; (clearly RPA(P1, RPA(Py))).

B.1 Execution Simulation

DEFINITION 7 (EXECUTION SIMULATION). Let C and C’ be two configurations, probably for different agents. Eebe an execution of’. Con-

figuration C’ simulates _simulatesonfigurationC' in execution iff there is an executio’ of C’ such that (a)E and E7 are equivalent, and (b) iZ is
terminating, so isE’. ConfigurationC’ simulatesC' iff C” simulatesC' in every execution of’.

DEFINITION 8 (DERIVED TRANSITIONS). An internal step transition relation—; is obtained by restricting—: R —; R’ iff R — R’ and

O(R) = O(R'). The visible transition relation—, is defined by:R —,, R/ iff there existsR* such thatR —; R* and R* — R’ but R* /—; R’
(i.e., O(R*) # O(R)).

DEFINITION9 (SIMULATION RELATION). A binary relationSim between programs is a simulation relatienr.t. transition— iff for every P; and
P» such thatSim(Pl, Py), itis the case that for everig, A:

1. if(B, A, Py) —; (B', A’,nil), then(B, A, P1) —; (B, A’ nil).
2. if (B, A, Py) — (B', A’, P}), there existsR’, R, P| such that (a\B, A, P1) —; R/, ' — R’ or ' = R",andR" -, (B', A', P});
and (b)Sim(P], P}).

C. AUXILIARY RESULTS

The following Lemma states thatn-type transitions completely ignore the second plan in @ of the formP; > Ps.

LEMMA 6 (PROPERTIES OR> IN plan-TYPE TRANSITIONS). ForeveryBB, A and Py, Ps:
L (B, A, Py > Py) 2 (57, A nil) iff (B, A, Py) 20
2. 1f (B, A, P1) 222, then(B, A, fail > Ps) 2%

3. (B, A,Goal(¢s, P1 > Pa, 7)) "ot (B, A/, nil) iff (B, A, Goal(s, Py, ¢ 7)) oms
4. 1(B, A, Pr) L% andB £ ¢, V o7, then(B, A, Goal(¢s, Pr > Pa, 65)) 225

ProoF Direct from the fact that rule&’}‘“ and del are not available within thelan context. [

plan

(B"”, A, nil);

plan*

(B”, A, nily;

bd|

LEMMA 7. If (B, A, P) — plan, (B', A’, P") without using the®lanp derivation rule, then5, A, P) — (B’, A", P').

PrROOF. Direct from the fact that anplan-type derivation rule except fd?lanp is also available as &di-type. [

LEMMA 8. LetP; andP; = RPA(Py). Then(B, A, Plan(Py)) 2%

24 (B, A Plan(P))) iff A = AandP, = RPA(P!) or (i) (B, A, Plan(Py)) =%
(B', A", Plan(RPA(P))).

PROOF. By assumption we know that (&5, A, P1) — plan, (B',A’, P{), and (b)(B’, A', P]) = plan (B, Ag,nil). Let us consider the following two cases
on (a). If transition (a) is supported by derivation rukan;, then cIearIyB’ =B, A = AandRP (P, P/) (that is, some subprogra®lan(nil) in P; was
reduced to just nil). In this case, we it is obvious titat= RPA(P;) and (i) applies. Now suppose transition (a) is not suppotgdule Plan; and let us

take P; = RPA(P]). Becuase an?lan construct inP; is completely ignored due to ruRlanp, it follows that(5, A, Plan(FPz)) — Ld, (B, A’,Plan(P}))
O

C.1 Properties ofPlan

The following Lemma states that the planning module on anarogf the formP; > P is fully commited to the first progran; only.

bdl* bdl*

LEMMA 9 (>IN Plan). ForeveryB, A, Pi, P>: (B, A,Plan(Py > P»)) —
PROOF. This is a direct consequence of point (1) in Lemma &.]

(B"”, A, nily iff (B, A,Plan(Py)) — (B”, A’, nil).

THEOREM10 (NesTEDPIlan). The following are some axuliarly properties @fan:

1. (B, A, Plan(Plan(P))) 2% (B/, A’, Plan(Plan(P"))) iff (B, A, Plan(P)) 2% (8/, A, Plan(P")).
2. (B, A, Plan(Plan(P))) 2% (B, A’ Plan(nil)) iff (B, A, Plan(P)) 2% (B’, A’ nil).

PrROOF For the first part we have:

bdi

bdl

(B, A, Plan(Plan(P))) — (B’, A’, Plan(Plan(P’)))

iff
(B, A, Plan(P)) 22 (8, A, Plan(P")) and (B', A', Plan(P")) "2 (B, A" nil)
iff
(B, A, P) P2 5/, A/, Py and (B, A, P') 205 (B, A nil)
iff

(B, A, Plan(P)) 24, (B, A’, Plan(P"))
For the second part we have:

(B, A, Plan(Plan(P))) % (B, A, Plan(nil)) iff (B, A, Plan(P)) 22 (8, A’ nil) iff P = nil iff (B, A, Plan(P)) 2% (5, A, nil). O

C.1.1 Interaction betweeman andGoal

THEOREM 11. LetR = (B, A, Plan(Goal(¢s, P, ¢¢))) such thatB [~ ¢s A ¢ . Then,

e if B |= ¢, then there exist&’ = (3, A, Plan(nil)) such thatR 24, R/, and for everyR* such thatR 4 e R* =R

o if B= ¢, thenR 2%,

PROOF. If B |= ¢s, then the only applicable derivation rule @5 and R’ = (B, A, Plan(nil)). Similarly, if B |= ¢y, then for everyR’ such that
(B, A, Goal(¢s, P, ¢r)) Plan 1. itis the case thaR! = (B, A, ?false). O

THEOREM12 (PROPERTIES OFPROGRAMPlan(¢s, P, ¢)). LetCo = (N, A, 11, B, A, ToU{ Py }) be an agent configuration withy = Plan(¢s, P, ¢¢)
(P is a user program). Let? = Cj - ... - Cj be an execution wher® is currently executing and leP# = Plan(Goal(¢s, P, ¢5)). Then,
Py, € {Py, Goal(¢s, Plan(Goal(¢s, P* > P, ¢)) > P#, ¢), nil, ?alse}.

If Pt = Goal(¢s, Plan(Goal(gs, P* 1> P, ¢5)) > P#, ¢ 5), then(By, Ay, PP) 2%, ¥ —, and the following hold:

Suppose{Bk,Ak,P]g) bR B = ¢s, thenR = (B, A, nil). If B = ¢4, thenR = (B, Ay, false).

Supposes = ¢ V ¢ Then:
(Bi, Ay, P*) B8 (B A/, Py 2 (57, A7, P, B = ¢

iff

(B, Ay, PP) 228
(B', A’, Goal(¢s, Plan(Goal(¢s, P! 1> P, ¢4)) > P#, ¢))

there is noR such that

(Bi, Ax, Py B0 R %25 (g A1 Py B = g,
iff

(Br, Ag, Py) 225 (B, Ay, Goal(gs, P# > P# 61)).

D. PROOF OF THEOREM 1

LEMMA 13. ForeveryB, AandP, if (B, A, P) i (By, Ag,nily, then(B, A, Plan(P)) bl (Bg, Ay, nil).

PROOF We prove this by induction on the lengttof theplan-type derivation.
Base case: Supposer = 0. ThenP = nil, By = B, and Ay = A. By using derivation rul@lan;, we get(3, A, Plan(P)) bdi, (Bg, Ay, nil).

Inductive Case: Supposer = k + 1. Then, there exist®* = (B*, A*, P*) such that (a)(5, A, P) Pt R+ and (b) R* plang (Bg, Ay, nil).
Using (a) and (b), we can use derivation riéan to obtain (B, A, Plan(P)) &, (B*, A*,Plan(P*)). Moreover, by (b) and the induction hypothesis,
bdi bdi
* * D

(B*, A*,Plan(P*)) — (B, Ay, nil). Thus,(B, A, Plan(P)) — (B¢, A, nil) follows.

Using the above auxiliarly lemma, we now prove the main tesul

PROOF OFTHEOREM 1: LetC' = (N, A, 11, B, A, {Plan(P)}) such that(, A, Plan(P)) 24, I E is an environment-free agent executioncafthen
intentionPlan(P) is either executing or has been successfully executéd iMoreover, there is an executidi® of C' in which intentionPlan(P) has been
successfully executed m°.

First Claim: On the contrary, assume th&lan(P) failed in some execution. Then, there is an environmest-fxecutionE of the formCy =
C,Ch,...,Cy, such thatk > 1, Cy = (N, A1, By, Ag, {Plan(Py)}), and (B, A, Plan(Py)) ﬂn That is, the execution af' ended up in

configurationC, where the original intentiofPlan(P) is stuck.

We know thatBy 1, Ap_1,Plan(Px_1)) i, (B, A, Plan(Py)) which means that (&)By 1, Ax_1, Px_1) L (Bg, Ak, Px); and (b) there ex-
istsB, Ay such that{By,, Ay, Py) plan, (B#, Ag,nil). By Lemma 13(By,, Ay, Plan(Py)) bdiy, (Bg, Ag,nil). Becaus€®lan(Py) # nil, (By, Ay, Plan(Py,)) odi,

follows (i.e., there is at least on possible next transition
.)) I . i
Second Claim: By assumption, there exi8ty and A such that(3, A, P) i (B, Ag,nil) hold. By Lemma 13, we know thds, A, Plan(P)) bdis,
(Bg, A, nil). Itis not hard to see that we can use this basiti-type derviation to construct an environment-free agericaon Es for C' such that the
original intentionPlan(P) is successfully executed in it. O

An immediate consequence of this theorem is the followingléry.
bdi

COROLLARY 14. LetE be aterminating environment-free execution of agévit A, I1, B, A, {Plan(P)}). Furthermore, suppose th&B, A, Plan(P)) —.
Then, intentiorPlan(P) has been successfully executediin

ProoOF From Theorem 1 and the fact that#f is terminating, then it is the case that intentiBfan(P) has either been successfully executedior it
has failed inE. O

E. TRANSLATION OF BDI LIBRARIES TO HTN DOMAIN KNOWLEDGE: THE = OREM 2

Here, we show how to translate a@PLAN plan libraryII and action description librank into a planning domai® = (Op(A), Me(I1)).

DEerFINITION 10 (BounNnDEDBDI AGENTS). We say that &CANPLAN agent is a bounded ageiitits belief base and all belief conditions are defined
in a language which follows the same constraints as thosesengb by HTN planners [11] (e.g., first-order atoms, finite doms, close world assumption).
Moreover, a plan-body in a bounded agent cannot includei@kplddition or deletion of belief statements (i.e-b and —b statements).

From now on, we assume than@PLAN agents are bounded. In what follows, we will show two thearemhich are specific version of Theorem 2.
Theorem 15 is the most trivial version where the translafiom the BDI language to the HTN one is almost trivial. Howewich theorem holds only for
agents that do not make use of tBeal construct. Theorem 17 extends Theorem 15 to accomm@izaéprograms and relies on a complex transformation
for such specific programs. Finally, we discuss how suctsfoamation can be avoided all together if we slightly chatigesemantics of HTN planning.

E.1 Converting BDI Belief Conditions into HTN Constraints

Given a formulap, we definep* and(¢, n)* inductively as follows:

1. if ¢ =1, theng* =l and(¢,n)* = (I,n).

L if =11 Ala, theng* =11 Alz and(¢p,n)* = (I1,n) A (l2,n).

L if¢g =11 Vi, theng* =11 Vi and(¢p,n)* = (I1,n) V (l2,n).

if ¢ = =1, theng* = ¢7 and(p,n)* = (¢1,n)".

i ¢ ==(p1 A p2), theng™ = (=h1 V =¢1)* and(¢p, n)* = (=d1 V =1, n)*.
6. if = —(¢p1 V ¢2), thengp™ = (=1 A —¢1)* and(¢, n)* = (1 A ~d1,n)*.

The definitions ofn, ¢)* and(n1, ¢, n2)* are analogous.

oA w N

E.2 Converting BDI Action Description Libraries into HTN Op erators: Op(A)

Suppose that the (boundedpEPLAN agent contains an action description libréryvith actions of the following form:
act(@) : 11 (F) A ... ANln () — {a] (@), ..., a, (@)} {a] (@), .. .,a;(f)}ﬂ
wherel; are literals, and.;- a are atoms. Given a library of actiorss we define the corresponding set of HTN primitive tasks/afmesOp(A) as follows:

Op(A) = {lact(@), (pre: (@), ..., (@), (post : —ay (@), ..., ~am(&),a] (@), ..., a5 ()] |
act(@) : 11 (@) A ... Al (@) — {a] (@), ..., am (@)} {a] (@), ..., af (@)} € A}

E.3 Converting Goal-free BDI Plan Libraries into BDI Method Libraries: Me(II)

In this section, we show how a BDI plan librafy that contains n@oal-program can be mapped into an HTN method librady:(IT). We shall later
consider libraries that make use®bal-programs. In the simple case, the mapping is quite stif@igytérd.

Below, | P(Z)| refers to the size of prograt®(Z) meassured as the number of compex constructs in it. We dballige a special operator (or primitive
task)dummyTaskwhich is always possible and has no effects whatsoever wkeguted. When is an HTN planclean (o) stands for plarr with all actions
“dummyTaskoperators (primitive tasks) deleted.

Given a bounded BDI @\ PLAN library IT mentioning no goal-programs, we define its correspondindy Hiethod-libraryM e(IT) as follows:

Me(H) = U {(e(f)vw(fv g)*le(P(f’ ?jv 2)70))} U TQ(P(f’ ?jv 5)70)
(e(2):(2,4)—P(Z,5,7)) €Il

Function7 (P, n) maps a plan-body’ and a natural numbet into a pair(7’, M), whereT is an HTN task-network and/ is a set of methods. We write
T 1(P,n) to refer to the first argumertt of the pair, andZ 2 (P, n) to refer to the second argumehf—that is, if 7 (P, n) = (T, M) thenT 1 (P,n) =T
and7 2(P,n) = M. Function7 (P, n) is defined inductively on the structure Bfas follows:

Base Cases:In this case, the program can be a primitive action, a teddion, an event, or the trivial programil:
o If P(Z) = act(Z), thenT (P(Z),n) = ([{n : act(Z)}, nil],).
o If P(Z) =?¢(Z), thenT (P(Z),n) = ([{n : dummyTask, (¢(Z),n)*], D).
o If P(Z) = e(&), thenT (P(Z),n) = ([{n : e(Z)}, nil],).
o If P(Z) =nil, then7 (P(Z),n) = {[{n : dummyTask, nil],).
Inductive Cases: SupposeP, (Z) is any of the programs in the above base cases, thB} (S) = act(Z) |?¢(Z) | nil | e(Z). Then,
o If P(Z) = (Py(Z); P'(Z)), then
T(P(E),n) =Ty UT',(n <n+1)ACy,AC'],0),
where7 (Py(Z),n) = (T, Cp) andT (P'(Z),n + 1) = (T",C").
o If P(Z) = (Pi(Z) || P2(Z)), then
T(P(@)
where7 (P (Z),n) = (T1,C1) andT (P2 (Z), n + | P1(Z)
o If P(Z) = (P1(&) > P2(&)), thenT (P(Z),n) = T (P (Z
o If P(Z) = (1(Z) : P1(D),...,¢Yr(Z) : Pp(Z)), then

,n) = ([Tl UTs, Cy /\CQ],@>,
| +1) = (T2, Ca).
), n).

k
T(P(&),n) = ([n : choice® (&), nil], U{(choicep(:?:'),wi(f)*,Tl(Pi(f),O))} UT2(Pi(%),0)).

i=1

THEOREM15 (Plan AND HTN-PLANNING IN Goal-FREE PROGRAMS. Let(N, A, TI, B, A,TU{Plan(P)}) be a bounded agent, whefkis a goal-
free plan library andP is a goal-free plan-body. Leb = (Op(A) U {dummyTask, Me(IT)) be the corresponding HTN problem domain and7gt =
T 1(P,0) be the network task obtained from(see as defined in Appendixes E.2 and E.3). Then,

1. (B, A,Plan(P)) 2% iff sol(Tp, B, D) # 0.

bdi

2. (B, A,Plan(P)) — (B’, A - acty - ... - acty, Plan(P’)) with k > 1 iff there exists a plaw € sol(Tp, B, D), such thatclean(c) = acty - ... -
acty, - ... - acty, for somen > k.
3. (B, A, (acti;...;actn)) bdis, (B', A - o,nily, for everyo € sol(Tp, B, D) such thatclean (o) = acty - ... - actp.

PrROOF This is a laborious proof showing thatan-type transitions perform no more than the task decompmositione by HTN planners. The proof is
based on the relationship between BDI's and HTN’s entitiediacussed in section 2.3.[]

E.4 Converting Full BDI Plan Libraries into BDI Method Libra ries: Me™(IT)

We shall nos consider BDI plan libraries and plan-bodies$ thay mentionGoal-programs. To that end, we will extend the transformatiorewgiin
Appendix E.3 to includ&oal-programs; this transformation is a bit more involved gitlesit HTN does not accommodate naturally an construct ofstbrt
We start by converting a BDI plan library into one thatsal-free.

E.4.1 Mappingsoal-programs tocoal-free Programs

Now, let us consider goal-programs of the foBoal(¢s, P, ¢ 7). Informally, we will construct a libraryiT* from an original libraryII in such a way that
executing goal-prograroal(¢s, P, ¢¢) w.r.t. library IT is equivalent to executing prograf w.r.t. library IT*. We observe this transformation does not
complain with the notion oéliminability (see []) as it substantially changes the structure of the agent.

DEFINITION 11 (PROGRAM AND LIBRARY TRANSFORMATIONSP?Y AND I17). Let P be a plan-body and ley (@) be a belief condition. The plan
body P7 is the plan body obtained frof? as follows:

1. Every evene(t) mentionedP is replaced with the (new) eveatt (£, %) in P7.

2. Every test conditiows(#) mentioned inP is replaced with the test conditiop(z) V ~ (<) in P.

3. Every actioruct(Z) mentioned inP is replaced with the (new) evee] ., (¢, w) in P7.

Whenll is a plan library, we build the new library1”7 from1II, as follows:

1. Every plan-rule of the form(Z) : ¢(&Z,) < P(&, ¥, Z) is replaced with the following two plan-rules:
V(& W) : =y (W) ANY(T,) — P,
eV (&, W) : y(w) « nil.

2. For every actioruct(Z) in the domain, the following two plan-rules are included:

e . (&,0) : —y(d) — act(7),
S) - () — il

Relation— 4 stands for the reflexive transitive closoure-6f- where¢ holds at every configuration. More concretelyy ——, Cy, (n > 2) iff there
existsCa, ..., Cp—1 suchthalC; — Cyyq andB; = ¢, forl <i<n—1.

THEOREM 16. For every3, A, II, and programGoal(¢s, P, ¢ ¢),

1. (1, B, A, Goal(¢s, P,ép)) °5 (I, B/, A/, nil) iff ([TUTI%, B, A, P?+) 225, (ITUTI%, B/, A/, nil)

2. (TTUTI%s, B, A, P) ™05 (ITUTI®®, B/, A/ nil) iff (1195, B, A, P#s) 25, (1%, B/, A, nil)

PROOF. Point (2) follows directly from the fact that there is no plare for any of the events mentioned in progréi or library T1%. Let us know prove
then point (1):

(=)

(=) U

Once again, this theorem is a vemgaknotion of eliminability for theGoal-construct. However, we only need that for our purposes gharthat

E.4.2 Obtaining an HTN Method Library from a BDI Library withal-programs
We now extend the transformatia e(II) given in Appendix E.3 to accommodate plan-bodies ment@@oal-programs. To that end, we define the
transformationM e (I1) to be exactly likeM e(TT) with the following extra inductive case in the definitionDf

o If P(Z) = Goal(¢s, P, ¢y), then
T(P(Z),n) = ([{n : dummyTaskn + 1 : achieve%,n + 2 : dummyTask, C, Me({achieve$’ : nil « P®s}uU l'['qbs))7
whereC' = (n <n+1)A(n+1<n+2)A(n,~ds,n+2)* andll’ is IT with all Goal(¢s, P, ¢ ¢) programs replaced witk.
Next, we generalize Theorem 15 for any kind of BDI plan ligrar

THEOREM17 (Plan AND HTN-PLANNING IN FULL PROGRAMS). Let (M, A,I1, B, A,T" U {Plan(P)}) be a bounded agent, wheié is a goal-
free plan library andP is a goal-free plan-body. LeD = (Opa U {dummyTask Me(II) U Mp) be the corresponding HTN problem domain where
T(P,0) = (Tp, Mp) (see Appendixes E.2 and E.3, and the extensiah atbove). Then,

1. (B, A,Plan(P)) 2% iff sol(Tp,B, D) # 0.

2. (B, A,Plan(P)) bdiy (B', A -acty -...-actg,Plan(P’)) with k > 1 iff there exists a plaw € sol(Tp, B, D), such thattlean(o) = acty - ... -
acty, - ... - acty, for somen > k.
3. (B, A, (acti;...;acty)) bdiy (B’, A - o,nily, for everyo € sol(Tp, B, D) such thatclean (o) = acty - ... - actp.

PrROOF. Follows from Theorems 15 and 16.]

E.5 An Extension of HTN Semantics for Partial Plans
Here we explain that is actually cleaner and more pract@alightly change the semantics of HTN planning to accomrtedauccess condition.

F. PROOF OF THEOREM 3

THEOREM 18. Let Sim be a simulation relation w.r.t. relatiof’®: such thatSim(P*, P). Then, programP* simulates progranP.

PrROOF Informally, P* simulatesP because: (i) wheneveP can be terminate with internal stepB;* can also be terminated in the same way; and (ii)
wheneverP performs abdi-step,P* can perform the same step result, possibly by also doing ssineinternal steps.

LetE = Cp-...-Cn, n > 1, be an execution of a configuratiof; = (N,A,II, By, A1, T} U {P}). We shall obtain an executioR™* of
Cy = (N, A1, By, A, T U{P}) such thatEl and E* are equivalent modul@ and P*, and if P has been successfuly executediso hasP* in E*.

SupposgE| = 1 and henceE = C;. If P has not been successfuly executed yeEjrthen we takeZ* = C} which is trivially equivalent toF
modulo P and P* and the thesis follows. [P has been executed 8, then P = nil and (B, A, P) ﬂfi (B', A’,nil). By point (1) in Definition 9,
(B, A, P*) i"fi (B’, A’,nil). We can then use these internal transitions to build an @i@Twe* = Cf - ...C}, k > 1, such thatP; = nil and
O(Cy) = O(Cy), fori = 1..k. Clearly, E* = C}: is equivalent taF? and P* has been executed ii*.

Next suppose thefE| = n = k + 1, k > 0. Then, there exist an executid®/ = C» - ... such tha{ E'| = k andC; = C>. We consider then the
following two cases:

1. Ifagent transitionC1 = C- is not a transition on intentiotP itself, then it is clear that the same agent transition capeégormed fronC’; to obtain
C3. Thatis, ifCy = (N, A 11, B2, A2, T, U {P}) thenCy = (N, A, 11, B2, A2, T, U {P*}) such thatC; = C;. By the induction hypothesis,
there exists an executiali’* of C3 such thatE” and E/* are equivalent moduld and P*, and if P has been successfuly executedzihso hasP*
in E’*. Then, it follows thatC; - B/ andCy - E'* are equivalent modulé and P*, and if P has been successfuly executed’in- E’ so hasP* in

Ccr B

2. Suppose the agent transitioh = C' is a transition on intentiorP itself. ThenC> = (N, A, 11, B2, A2, T, U {P’}) such that(B1, A1, P) bdi,
(B2, Az, P’). Then, there has to exi®t’, R, P{ such that (a)B1, A1, P*) ﬂfi R, R M R or R = R",and R" ﬂfi (B2, Az, P*');
and (b) Sim(P;’, P'). We use all the basic transitions from (a) to obtain an execuE: = C; - C% ... - C]? - C3 of CF, wherej > 0 and

C5 = (N, AL Ba, Az, T U {P*'})

BecauseSim(P;’, P’) and the induction hypothesis, there exists an execuihof C3 such thatE” and E’* are equivalent moduld’ and P/,
and if P’ has been successfuly executediiso hasP;’ in E’*. Then, it follows that; - £/ and Cy- C{ cees C]? - E’* are equivalent modul@
and P*, and if P has been successfuly executed’in- £’ so hasP* in C{ - C} ... C% - E'".

O

PROOF OFTHEOREM3: For every¢s, ¢ ¢ and P, programPlan(¢s, P, ¢) simulates progranilan(Goal(¢s, P, ¢)).

Let Sim(-,) be any relation satisfying, at least, the following corutit for everyP, P’, ¢, ¢ ¢:

. Sim(Goal(¢s, Plan(Goal(¢s, P, ¢5)), ¢5), Plan(Goal(¢s, P, ¢5))).

. Sim(Goal(¢s, Plan(Goal(¢s, P > P, ¢¢)) > Plan(Goal(¢s, P, ¢)), ¢5), Plan(Goal(¢s, P > P, ¢5))).

. Sim(Goal(¢s, Plan(Goal(¢s, P’ > P, ¢¢)) > Plan(Goal(¢s, P, ¢5)), ¢), Plan(Goal(¢s, P’ > P, ¢¢))).
. Sim(nil, Plan(nil)).

5. Sim(nil, nil).

A W N P

It is not hard to verify that the above relatigfim is indeed a simulation relation w.r.t. relatioR%: as defined in Definition 9. By Theorem 18, the thesis
follows.

LEMMA 19. For every3, A and P1, P> such thatRP (P, P2):

plan plan

1. (B, A,Plan(Py)) 228 (B, A7, Pl) iff (B, A, Py) 228 (B, A7, PI).
2. 1f (B, A, Plan(Py)) 2% (B, A’, P!), then there exist®, such that(B3, A, Plan(P,)) 2% (B, A’, P4y and RP(P], P}).
3. If (B, A, Plan(Py)) 2% (B, A’, P}), then there exist®] such that(B, A, Plan(Py)) 2% (B', A’, P!y and RP(P}, P}).

G. PROOF OF THEOREM 4

LEMMA 20. For every agent free df andGoal, if (B, A, Plan(P)) &, (B', A’,Plan(P")), (B, A, P) &, (B', A", P").

plan plan,

PROOF. By assumption, we know that ruidan was used and : (a}3, A, P) — (B’, A’, P’); and (b) (', A’, P") — (By, Ay, nil). Given (a)

and (b), we shall prove, by induction on the numbeplah-type derivation rules involved in (a), thés, A, P) LLN (B', A’, P").

Suppose then that only one derivation rule is required tow@r@). Then, we have the following cases:

e Suppose® = act, P =7¢, P = +bor P = —b. In this case P’ = nil, and (3, A, P) i, (B, A’, nil) follows trivially.

e Suppose® = (nil; P*). In this caseP’ = P® and (B, A, P) i, (B, A’, P%) follows trivially.

e Suppose® = (nil > P%). In this case,P’ = nil and (5, A, P) bdi, (B', A’, nil) follows trivially.

e Suppose” =le. In this caseP’ = (A), and(B, A, P) bdi, (B, A’, (A)) follows trivially.

e Suppose® = (A). Inthis caseP’ = P;0 > (A \ P;) due to ruleSel and (B, A, P) bdi, (B', A, P!6 > (A \ P/)) holds too.
e Suppose” = Plan(nil). In this case,P’ = niland (B3, A, P) Ldi, (B', A, nil) follows directly from derivation rul®lan;.
Next, suppose thdt+ 1 derivation rules are used for (a). We then have the follovaages:

plan plan,

e Suppose” = (Pyi; P,). Inthis case,P # nil and P’ = (P{; P») such that(B, A, P1) — (B', A", P{) — (B”, A", nil). By the induction
hypothesis(B, A, P1) LN (B, A’, P{) and (B, A, P) Ldi, (B', A’, P') holds due to ruléSeq.

e SupposeP = (P > P»). In this caseP # nil and P’ = (P] 1> P,) such that(3, A, 1) plar, (B, A", P{) Plany (B”, A” nil). By the induction
hypothesis(B, A, P1) 2% (B, A’ PJ)yand(B, A, P) 24, (B, A’, P'y holds due to rule>.

e Suppose’ = Plan(Py). Inthis caseP’ = P; such that(B, A, P1) Plar, (B, A", P{) il (B"”, A", nil). By directly applying rulePlan, we know
that (B, A, Plan(Py)) 2% (B/, A’, P/) and thus(B, A, P) 2% (B/, A’ P').

This concludes the proof of the Theorem. |

LEMMA 21. LetSim(-,-) be any relation satisfying, at least, the following corutit for every progran® that does not mention constugt
1. Sim(P,Plan(P)).

2. Sim(nil, Plan(nil)).

3. Sim(nil, nil).

Then,Sim is a simulation relation w.r.t. transition™® for any agent that is free of concurrency.

PrROOF. Take a programP # nil. [

PROOF OFTHEOREM4: Program P simulates progran®lan(P) in everyCANPLAN — agent.

Let Sim(-,) be any relation satisfying, at least, the following coruti for every progran® that does not mention constudtsind Goal:
1. Sim(P,Plan(P)).

2. Sim(nil, Plan(nil)).

3. Sim(nil, nil).

O

We also prove the following result.

THEOREM 22. LetC = (N, A, 11, B, A,T U {Plan(P)}) be aCANPLAN agent. LetC’ = (N, A/, 11, B, A, TV U {P’}) whereA’,T” and P’ are
obtained fromA, I and P by deleting allPlan contructs from plan-bodies. Then, configurati6h simulates configuratiod'.

H. OTHER STUFF

LEMMA 23 (EQUAL INITIALIZATION). Let P, = Plan(Goal(¢s, P, ¢y)), P, = Goal(¢s, Plan(P), ¢), and P* = Goal(¢s, Pa, ¢), whereP
is a user program. Suppose thidt, A, Py) bdi, Ca, (B, A, Py) bdi, Cy, and(B, A, P*) LLNoLS Then,
1. Cu = (B, A" nily iff Cy = C* = (B, A',nil) (here,B = ¢s).
2. C, does not actually exist iff, = C* = (B, A, ?false) (here,B |= ¢f).
3. Cq = (B', A’, P}), whereP = Plan(Goal(¢s, Pr>P, ¢y)) iff Cy, = (B, A’, Goal(¢s, Plan(P)>Plan(P,), ¢)) iff C* = (B, A’, Goal(¢s, Pal>
P,, ¢y)) and for everyC** such thatC* 2, ox, 0% = (B, A’,Goal(¢s, P, > Pa, g))

4. One of the above three cases must applyCipr

LEMMA 24. Let P, = Plan(Goal(¢s, P > Po, ¢5)) and P* = Goal(¢s, Po > Po, ¢ ¢) be two programs. Then, for evely; A:
1. (B, A, Pa) 2% (B, A, Plan(nil)) iff (B, A, P*) 2% (B, A, nil).
(B, A, Pa) 25 (B, A, P}), whereP, = Plan(Goal(¢s, P’ > Py, ¢5)), then(B, A, P*) 2% (B, A, Goal(¢s, P, 1> Po, ¢ 5)).

2
3. If (B, A, Po) 2% and (B, A, P*) 2% C, thenC = (B, A, Goal(¢s, Po > Po, é5)) or C = (B, A, ?false) andB = ¢ .
4

. (B, A, P,) 24, &, thenC' = (B, A, Plan(nil)) or C = (B’, A’, Plan(Goal(¢s, P’ > P,, ¢#))) for some programP’.

PROOF. (1) Follows directly from the fact that if3, .4, Po) =2 (B, A, Plan(nil)) or (B, A, P*) 2% (B, A, nil), thenB = ¢s.

(2) Suppose thai3, A, P,) i, (B, A, P}) whereP) = Plan(Goal(¢s, P'>P,, ¢5). Then(B, A, Goal(¢s, Pr>Po, ¢)) plan, (B, A, Goal(¢s, P't>

P,,¢y)) due to ruleGs and therefore3 [~ ¢s v ¢ ¢. Then, by applying rul&s, (B, A, P*) o, (B, A, Goal(¢s, P, > Po, ¢¢)) follows.

(3) Suppose thatB, A, Py) 9, and that there exist&’ such that(B, A, P*) b4 ¢, The transition toC may be due to rule€;,Gy,Gg or

plan,,

GY'. Becausel3, A, Py) ﬂ», there are noi3’ and A’ such that(B3, A, Goal(¢s, P > Po,¢y)) — (B, A’,nil). Clearly, B = ¢ or otherwise,

plan

(B, A,Goal(¢s, P > Po,¢y)) — (B, A, nil) would hold. As a result, rul&s may not apply. Similarly, rul&s may not apply either or otherwise

(B, A, Pg) 25,

Now, if B |= ¢y, then ruleG applies and the thesis follows trivially. OtherwiseBifi= ¢, then the only rule that may apply G%di and the thesis
follows as well. _
(4) Trivial since the only derivation rules that may apply forkivay a Plan-transition on programP, are G, G orGg. O

H.1 Goal and Plan Text

A central feature of @GN and CANPLAN is the Goal construct for handlingleclarativegoals. It is important then to understand the interaction of
goal-programs with the new planning constr@tan. That is, we want to explore the differences and similaitietween “having the goal to plan” (i.e.,
Goal(¢s, Plan(P), ¢) and “planning for a declarative goal” (i.&lan(Goal(¢s, P, ¢))).

To begin with, itis easy to prove that both programs areiéhgted” in equivalent ways: the first goal-plan-progranmnialised to progranGoal(¢,, Plan(P)r>
Plan(P), ¢) iff the second plan-goal program is initialised to progratan(Goal(¢s, P > P, ¢f)).

Now, a goal-plan program of the for@oal(¢s, Plan(P), ¢ ;) has the same meaning as the one providedAn :GexecutePlan(P) until the goalgs is
achieved or the failure conditiop; applies. Note that nothing precludes solviRgzompletely without achieving.. Still, due to thepersistenceoroperty of
Goal, the whole goal will be retried iPlan(P) fails or does not achievé,. In addition, P needs to be executed completely, that is, a partial execofid
that would achievebs would not work.

Consider next its plan-goal counterpBtan(Goal(¢s, P, ¢¢)). Such a program is closer takssical planning problerplan for achieving the declarative
goal ¢ (by using the given progran®). If P cannot be solved or it is not able to achievg, then the whole plan-goal will fail. Thus, we are not merely
interested in solving prograif, but also doing it in a way that will in fact achieve the dedigoal® . In addition, progranP need not be executed completely

but only to the point where; is realized. This type of behaviour on (declarative) goaesdnot exist in @N. It is thus sensible, for convenience, to define

a new language construbtan(¢, P) 4y Plan(Goal(¢, P, false)): plan for achievingp using P. Notice thatPlan(¢, P) is close but more expressive than

program(P; ?¢)—the latter requires® to becompletelyexecuted.
We summarize the differences between goal-plan and plahpgograms as follows:

Goal(¢s, Plan(P), ¢¢) Plan(Goal(¢s, P, ¢))
BDI excecution driven,/ classical planning driver/
P may achievebs P must achieve)s /

P may be re-tried/ P is never re-tired

P must execute fully P may execute partially
Fails if ¢ s holds Fails if¢ ; holds

What we would like is a program that combines the advantafjeeth versions. That is, we may want to deliberate and acatdsva clear goaps using a

programP and be commited to the goal until it is either achieved or isgilde. Interestingly, prograPlanGoal(¢s, P, ¢f-)d:efGoal(¢S, Plan(Goal(¢s, P, ¢5)), d5)

has such properties and it willl (a) always execute towaods @< ; (b) terminate when the goal is achieved or is impossibld;(@pre-try and insist on program
P if necessary.

THEOREM 25. LetCy = (N, A,I1, B, A, T U {P;X}) be an agent configuration with' € {a, b}, where (° is a user program)
P§ = Plan(Goal(¢s, P, ¢¢)), Pé’ = Goal(¢s, Plan(P), ¢),

LetE = Cp-...-Cy be an execution af such thatP;¥ is currently executing it (i.e., P;X # €). Next, letus considefy = (N, A, 11, B, A, ToU{ P }),
where Py = Goal(¢s, P§, ¢y).

Then, there exists an executi = Cj - ... - Cy, of Cg such that () E| and |E*| are equivalent modulo intentiong;¥ and Pg; and (b) intention
P§X has been successfuly executedtiiff intention P has been successfuly executedsin

PROOF. LetP® = Plan(Goal(¢s, P, ¢5)) and letP® = Goal(¢s, Plan(P), ¢#). Supposés = Cy, ..., Cp isan execution afy = (N, A, II, B, A, TU
{P2}) such thatP is currently executing iE. Then, there exists an executiélf = C, ..., C}, of C) = (N, A, 11, B, A,T' U {P*}) such thatE’ and
E are equivalent and

1. Ty, =T*U{Pe}iff T/, =T*U{P’};

2. if P2 = Plan(Goal(¢s, P’ 1> P, ¢4)), thenP? = Goal(¢s, Plan(P’) > Plan(P), ¢ £);

3. if P¢ = Plan(nil), thenP? = nil;
4

i (Bn, An, P2) 7% and P2 +# nil, then P2 = Plan(Goal(¢s, P’ > P, ¢¢)) and (By,, Ay, Plan(P’)) 7.

The proof relies on a few lemmas; the most important of themesthat for any3, A, Py, ¢s, ¢5, and P # nil: if (B, A, Plan(Goal(¢s, P > Po, ¢5)))
can make adi-type transition to{3’, A’, Plan(Goal(¢s, P’ > Po, ¢ ¢))), then itis the case thgt3, A, Goal(¢s, Plan(P) > Plan(P,), ¢5)) can make a
bdi-type transition to{53’, A’, Goal(¢s, Plan(P’) t> Plan(P,), ¢)). O

The reader may wonder if it is possible to combine the featoféoth type of programs. That is, one may want to delibevatgossibly partially, doing
P in away that will indeed achievé, while allowing for the possibility of re-tryind if an external event interferes with the solution found ahpling time.
Interestingly, the program we are looking for@al(¢s, Plan(Goal(¢s, P, ¢5)), ¢). To show this, we first need to abstract away from some iraglev
internal steps in an agent executionHf= Cj - ... - Cp,, n > 0, is an agent execution, ther, - ... - C), is the sequence obtained frafby deleting all
elementsC’; of the sequence such that the = C; 1 step used irf is due to the agent derivation rules.., and either of the basic derivation rul€s
or Plang.

