
DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach∗

Sebastian Sardina
RMIT University

Melbourne, Australia

ssardina@cs.rmit.edu.au

Lavindra de Silva
RMIT University

Melbourne, Australia

ldesilva@cs.rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia

linpa@cs.rmit.edu.au

ABSTRACT
This paper provides a general mechanism and a solid theoretical
basis for performing planning within Belief-Desire-Intention (BDI)
agents. BDI agent systems have emerged as one of the most widely
used approaches to implementing intelligent behavior in complex
dynamic domains, in addition to which they have a strong theo-
retical background. However, these systems either do not include
any built-in capacity for “lookahead” type of planning or they do
it only at the implementation level without any precise defined se-
mantics. In some situations, the ability to plan ahead is clearly
desirable or even mandatory for ensuring success. Also, a pre-
cise definition of how planning can be integrated into a BDI sys-
tem is highly desirable. By building on the underlying similari-
ties between BDI systems and Hierarchical Task Network (HTN)
planners, we present a formal semantics for a BDI agent program-
ming language which cleanly incorporates HTN-style planning as
a built-in feature. We argue that the resulting integrated agent pro-
gramming language combines the advantages of both BDI agent
systems and hierarchical offline planners.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent Agents,Languages and structures

Keywords
BDI agent-oriented programming, HTN plannning

1. INTRODUCTION
The BDI (Belief-Desire-Intention) model is a popular and well-

studied architecture of agency for intelligent agents situated in com-
plex and dynamic environments. The model has its roots in philos-
ophy with Bratman’s [2] theory of practical reasoning and Den-
nett’s theory of intentional systems [9]. There are a numberof
agent programming languages in the BDI tradition, such as PRS

[13], AGENTSPEAK [19], 3APL [12], JACK [3], CAN [24].

∗We would like to acknowledge the support of Agent Oriented
Software and of the Australian Research Council under the grant
“Learning and Planning in BDI Agents” (number LP0560702).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

BDI agent-oriented systems are extremely flexible and respon-
sive to the environment, and as a result, well suited for complex ap-
plications with real-time reasoning and control requirements. How-
ever, a limitation of these systems is that they normally do no looka-
head or planning in the traditional sense; execution is based on
a user-provided “plan library” to achieve goals. BDI frameworks
rely entirely on context sensitive subgoal expansion, acting as they
go. In some circumstances, however, lookahead deliberation (i.e.,
hypothetical reasoning) about the effects of one choice of expan-
sion over another is clearly desirable, or even mandatory inorder
to guarantee goal achievability and to avoid undesired situations.
In general, this is the case when (a) important resources maybe
used in taking actions that do not lead to a successful outcome; (b)
actions are not always reversible and may lead to states fromwhich
there is no successful outcome; (c) execution of actions take sub-
stantially longer than “thinking” (or planning); and (d) actions have
side effects which are undesirable if they turn out not to be useful.

In this paper, we develop a traditional BDI-style agent program-
ming language that includes anon-demand planning mechanismin
the style of Hierarchical Task Networks (HTN), whose semantics
and implementations are well understood in the planning commu-
nity [11]. The language we propose, named CANPLAN , provides a
flexible approach regarding when to perform full lookahead,and is
provably more expressive than either BDI or HTN systems alone.
CANPLAN is based on CAN [24] and AGENTSPEAK [19]. One
could argue, of course, that it is always possible, in critical situa-
tions, to explicitly program lookahead within existing BDIsystems.
However, such code would generally be domain dependent, can
be fairly complex, and would lie outside the infrastructuresupport
provided by the BDI agent platform. Alternatively, there are many
frameworks that attempt to interleave BDI-type execution with of-
fline planning (e.g., [1, 23, 10, 17, 14]). Still, these are mostly
implemented systems with no precise semantics and with little pro-
grammer control over when to plan. Our approach, instead, isto
provide a formal specification of planning as abuilt-in featureof
the BDI infrastructure that the programmer can use as appropriate.

The contributions of this paper are threefold. Firstly, a precise
account of planning within a typical BDI agent programming lan-
guage is provided. Secondly, the intrinsic relationship between
lookahead planning in the context of BDI agents and the HTN ap-
proach to planning is formally explored. Lastly, the semantics of
CAN given in [24] is substantially improved and simplified.

The rest of the paper is organised as follows. In section 2, we
provide a brief overview of BDI agent programming languagesand
HTN planners; we also provide an informal discussion on their sim-
ilarities. In section 3, we describe the basic BDI agent language
we will use, namely the CAN notation described in [24], but with
some modifications to include actions with preconditions and ef-

E79927
Typewritten Text
Citation: Sardina, S, De Silva, L and Padgham, L 2006, 'Hierarchical planning in BDI agent programming languages: A formal approach', in P. Stone & G. Weiss (ed.) Proceedings of the fifth international joint conference on autonomous agents and multi agent systems (AAMAS 2006), Hakodate, Japan, 2006.

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text
© ACM, 2006 This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in "Proceedings of the fifth international joint conference on autonomous agents and multi agent systems (AAMAS 2006)" http://doi.acm.org/10.1145/1160633.1160813

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

fects, multiple variable bindings, and a simpler, though equivalent,
account of declarative goals. We chose CAN from the numerous
available options because it has the desirable features of (a) com-
bining a declarative and procedural view ofgoals, and (b) captur-
ing the semantics of BDI failure recovery and goal persistence. In
section 4, we develop CANPLAN , our new integrated account of
planning and BDI execution. Besides showing some intuitively ex-
pected properties for the combined framework, we prove that, un-
der suitable assumptions, CANPLAN ’s planning module reduces to
HTN planning. In section 5, a brief discussion on a prototypeim-
plementation is given. Section 6 discusses related work. Finally, in
section 7, we draw conclusions and outline future lines of research.

2. BDI AND HTN SYSTEMS
There are a number of BDI agent languages and HTN systems.

We provide a brief abstract overview of these in order to comment
on their similarities, as background for our integrated approach.

2.1 BDI Agent Programming Languages
Generally speaking, BDI agent-oriented programming languages

are built around an explicit representation of beliefs, desires, and
intentions. A BDI architecture addresses how these components
are represented, updated, and processed to determine the agent’s
actions. There are a substantial number of implemented BDI sys-
tems, as well as a number of formally specified languages.

An agent consists, basically, of a belief baseB, a set of recorded
pending events (goals), a plan libraryΠ, and an intention baseΓ.
The belief baseencodes the agent’s knowledge about the world.
Theplan library containsplan rulesof the forme : ψ ← P encod-
ing aplan-bodyor programP for handling an event-goale when
contextconditionψ is believed to hold. Theintention basecon-
tains the current, partially instantiated, plans the agenthas already
committed to in order to handle or achieve some event-goal.

A BDI system responds toevents, the inputs to the system, by
committing to handle one pending event-goal, selecting a plan rule
from the library, and placing its plan-body/program into the inten-
tion base. The execution of this program may, in turn, post new
sub-goal events to be achieved. If at any point a program fails, then
an alternative plan rule is found and its plan-body is placedinto
the intention base for execution. This process repeats until a plan
succeeds completely or until there are no more applicable plans, in
which case failure is propagated to the event-goal.

In section 3, we shall discuss in detail one formal BDI language
of this sort, namely, CAN [24].

2.2 HTN Planning
Hierarchical Task Network (HTN) planning is an approach to

planning based on the decomposition of (high-level)tasksin order
to accomplish an (initial)task network. Two examples of HTN
systems include SHOP [15] and its successor SHOP2 [16]. Below,
we mostly follow the definitions of HTN-planning from [11].

Tasks can be of two types. Aprimitive taskis an actionact(~x)
that can be directly executed by the agent (e.g.,drive(x1, x2)). A
(high-level)compound taske(~x) is one that cannot be executed di-
rectly (e.g.,build trip(origin, dest)). A task networkd = [T, φ]
is a collection of tasksT that need to be accomplished and a boolean
formula of constraintsφ. Constraints impose restrictions on the or-
dering of the tasks(e ≺ e′), on the binding of variables(x = x′)
and(x = c) (c is a constant), and on what literals must be true be-
fore or after each task(l, e), (e, l), and(e, l, e′). A method(e,ψ, d)
encodes a way of decomposing a high-level compound taske into
lower-level tasks using task networkd whenψ holds. Methods
provide the procedural knowledge of the domain.

An HTN planning domainD = (Π,Λ) consists of a libraryΠ of
methods and a libraryΛ of primitive tasks. Each primitive task inΛ
is a STRIPS style action with corresponding preconditions and ef-
fects in the form ofaddanddeletelists. An HTNplanning problem
P is the triple〈d,B,D〉 whered is the task network to accomplish,
B is the initial belief state (i.e., a set of all ground atoms that are
true inB), andD is a planning domain. Aplan σ is a sequence
act1 · . . . · actn of ground actions (that is, ground primitive tasks).

Given a planning problem instanceP, the planning process in-
volves selecting and applying an applicable reduction method from
D to some compound task ind. This results in a new, and typi-
cally more “primitive,” task networkd′. This reduction process is
repeated until only primitive tasks (i.e., actions) remain. If no appli-
cable reduction can be found for a compound task at any stage,the
planner “backtracks” and tries an alternative reduction for a com-
pound task previously reduced. If all compound tasks can eventu-
ally be reduced, a plan solutionσ is obtained

In [11], a clear operational semantics for HTN planning was
given. The set of planssol(d,B,D) that solves a planning instance
P = 〈d,B,D〉 is defined assol(d,B,D) =

S

n<ω soln(d,B,D),
wheresoln(d′,B,D) is, in turn, defined as follows:

sol1(d,B,D) = comp(d,B,D),

soln+1(d,B,D) = soln(d,B,D) ∪
[

d′∈red(d,B,D)

soln(d′,B,D).

Intuitively, comp(d,B,D) is the set of all plancompletionof a
networkd containing only primitive tasks (i.e., plans for which the
constraint formulaφ in d is satisfied), andred(d,B,D) is the set
of all reductionsof d in B by methods inD. We refer to [11] for
more details on HTN and its formal semantics.

2.3 Similarities Between HTN and BDI
As stated in [7], BDI agent programming languages and HTN

planners share many similarities despite their different purposes.
The similarities come from the knowledge used by both systems as
well as from how this knowledge is manipulated to create solutions.

First of all, HTN systems and BDI languages assume an explicit
representation of the agent’s knowledge (i.e., the belief base) and a
set of primitive tasks or actions that the agent can directlyexecute
in the world. Secondly, procedural knowledge about the domain
is available in both HTN and BDI systems in the form of reduc-
tion methods and plan rules, respectively. Thirdly, and most im-
portantly, both systems create solutions by reducing higher-level
entities into lower-level ones by appealing to a given set ofreduc-
tion recipes. Whereas a BDI system “reduces” an event into an
plan-body/program using a plan rule from the plan library, an HTN
planner reduces a compound task into a task network using a re-
duction method from the method library.

The following table gives an indication of the mapping between
HTN and BDI entities.

BDI SYSTEMS HTN SYSTEMS

belief base state
plan library method library
event compound task
action primitive task
plan-body/program network task
plan rule method
plan rule context method precondition
test?l in plan-body state constraints
sequence in plan-body ordering constraint≺
parallelism in plan-body no ordering constraint

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

The above table is not complete—while some entities have a straight-
forward mapping some others require a more elaborate translation
(we refer to [7, 22] for a more detailed mapping).

BDI agent systems and HTN planners, despite their close rela-
tionship, differ fundamentally in their objectives. The former are
focused on theexecutionof agent programs where “backtracking”
can only happen in the real world. The latter, in contrast, are con-
cerned withhypothetical reasoningabout actions and their poten-
tial interactions within a whole plan for achieving a goal/task.

3. THE BASIC BDI LANGUAGE
The CAN (ConceptualAgentNotation) notation [24] is a high-

level plan language in the style of typical agent languages,both in
the BDI tradition and elsewhere (e.g., AGENTSPEAK [19], 3APL
[12, 21], and even CONGOLOG [5, 6]). Its syntax and semantics
attempt to extract the essence of a class of implementable agent
platforms and could be considered as a superset of AGENTSPEAK

(see [24]). Unlike AGENTSPEAK, though, the semantics for CAN

includes bothfailure handlinganddeclarative goals—two appeal-
ing features for our planning agents.

An agent is created by the specification of a set of base beliefsB
and a set of plansΠ. Thebelief baseof an agent is a set of formu-
las from some (knowledge representation) logical language. The
programmer may choose any logical language; all that is required
is for operations to exist that check whether a conditionφ—a logi-
cal formula over the agent’s beliefs—follows from a belief set (i.e.,
B |= φ), and to add and delete a beliefb to and from a belief base
(i.e.,B ∪ {b} andB \ {b}, respectively). In practice, however, the
belief base contains ground beliefatomsin a first-order language.

As explained in section 2, an agentplan library Π consists of
a collection of plan rules of the forme : ψ ← P , wheree is an
event andψ is the context condition which must be true in order
for the plan-bodyP to be applicable.1 Theplan-bodyor program
P is built from primitive actionsact that the agent can execute
directly, operations to add+b and delete−b beliefs, tests for con-
ditions?φ, and events or (internal) achievement goals!e. Complex
plans can be specified using sequencingP1;P2, parallelismP1‖P2,
and declarative goalsGoal(φs, P, φf) (explained later). Hence, the
user languageis described by the following grammar:

P ::= act | +b | −b |?φ | !e | P1;P2 | P1‖P2 | Goal(φs, P1, φf).

There are also a number of auxiliary plan forms which are usedin-
ternally when assigning semantics to constructs: basic (termating)
programnil; and compound plans likeP1 ⊲ P2, which executesP1

and then executesP2 only if P1 failed, andLψ1 : P1, . . . , ψn : PnM,
which is used to encode a set of (relevant) guarded plans. Thefull
languageis therefore described by the following grammar:

P ::= nil | act | ?φ | P1 ⊲ P2 | Lψ1 : P1, . . . , ψn : PnM |
+b | −b | !e | P1;P2 | P1‖P2 | Goal(φs, P1, φf).

In contrast with [19, 24], we take actions as the usual basic means
of the agent to change its environment and, hence, actions may
have preconditions and effects. One possibility would be tofol-
low [12] and assume that apartial functionT specifying the up-
date semantics of basic actions is given: ifT (act,B) is defined, it
yields the new updated belief baseB′; otherwise, we say that the
action’s precondition is not met inB. However, for simplicity, we
shall restrict ourselves to agents that are equipped with a (simple)
STRIPS-likeaction description libraryΛ containing rules of the
form act : ψact ← Φ−act; Φ

+
act, one for each action type in the do-

main. Formulaψact corresponds to the action’s precondition, and
Φ+
act andΦ−act stand for the add and delete lists of atoms, respec-

tively.2 For example, actionmove(x, y, z), which moves objectx
1An omittedψ is equivalent tonil. Notice thate, ψ, andP may
contain free variables; a plan rule is of the forme(~x) : ψ(~x, ~y) ←
P (~x, ~y, ~z), where~x, ~y and~z are vectors of (distinct) variables.
2Free variables inψact,Φ−act andΦ+

act are free inact too.

from y to z, could be represented inΛ as follows:

move(x, y, z) : Free(z)∧ At(x, y)←−
{Free(z), At(x, y)}; {Free(y), At(x, z)}.

Next, we show the operational semantics for the above language
along the lines of [24]. Atransition relation−→ on so-calledcon-
figurations is defined by a set of derivation rules. A transition
C −→ C′ specifies that executing configurationC a single step
yields configurationC′. We writeC −→ to state that there ex-
istsC′ such thatC −→ C′, and

∗−→ to denote the usual reflexive
transitive closure of−→. A derivation rule consists of a, possibly
empty, set of premises, which are transitions together withsome
auxiliary conditions, and a single transition conclusion derivable
from these premises. (see [18] for more on operational semantics).

Two types of transitions will be used to define the semantics of
our agents. The first type defines what it means to execute a sin-
gle intention and is defined in terms ofbasicconfigurations. The
second type of transition is defined in terms of the first type and
defines what it means to execute an agent. Abasic configuration
is a tuple〈B,A, P 〉 consisting of the current belief baseB of the
agent, the sequenceA of primitive actions executed so far, and the
plan-bodyP being executed (i.e., the current intention).3

Here are some of the core derivation rules for the language:

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B,A, !e〉 −→ 〈B,A, L∆M〉 Event

ψi : Pi ∈ ∆ B |= ψiθ

〈B,A, L∆M〉 −→ 〈B,A, Piθ ⊲ L∆ \ PiM〉
Sel

〈B,A, P1〉 6 bdi−→

〈B,A, (P1 � P2)〉 bdi−→ 〈B,A, P2〉
�f

B |= φθ

〈B,A, ?φ〉 −→ 〈B,A, nil〉 ?

a : ψ ← Φ+; Φ− ∈ Λ aθ = act B |= ψθ

〈B,A, act〉 −→ 〈(B \ Φ−θ) ∪ Φ+θ,A · act, nil〉
act

〈B,A, P1〉 −→ 〈B′, A′, P ′〉
〈B,A, (P1;P2)〉 −→ 〈B′, A′, (P ′;P2)〉

Seq

RuleEvent handles achievement goal events by collecting allrel-
evantplans for the event in question. RuleSel selects oneap-
plicable plan from a set of (remaining) relevant plans: program
P � L∆M states that programP should be tried first, falling back to
the remaining alternatives in∆ if required. Notice that plan rules’
context conditions are handled in a lazy manner. Rule? deals with
test goals by checking that the condition follows from the current
belief base, whereas ruleact handles the case of primitive actions
by using the domain action description libraryΛ. RuleSeq han-
dles sequencing of programs in the usual way. Rule�f is used
along with ruleSel for failure handling: if the current planPiθ for
a goal fails (i.e., at some point the precondition of an action or a
test goal is not met), rule�f applies first, and eventually, ruleSel
may select anotherapplicablealternative for the event-goal, if any.

A central distinguishing feature of CAN is its Goal(φs, P, φf)
goal construct, which provides a mechanism for representing both
declarative and procedural aspects of goals. Intuitively,a goal-
programGoal(φs, P, φf) states that we should achieve the (declar-
ative) goalφs by using (procedural) planP ; failing if φf becomes
3Strictly speaking, the plan and action librariesΠ and Λ should
also be part of basic configurations. For legibility purposes, we
omit them as they are assumed to be static entities. Configurations
must also include a variable substitutionθ for keeping track of all
bindings done so far during the execution of a plan-body. Again, for
legibility, we keep substitutions implicit in places wherethey need
to be carried across multiple rules. See [12] on how substitutions
are propagated across derivation rules for 3APL.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

true. The execution of a goal-program is consistent with some de-
sired properties of declarative goals (namely, persistent, possible,
and unachieved). For instance, ifP is fully executed butφs is still
not true,P will be re-tried; and ifφs becomes true duringP ’s exe-
cution, the whole goal will succeed immediately.

In order to capture the desired behaviour of goal-programs,a
sophisticated operational semantics was given in [24], based on ex-
plicit exceptions, a set of conditions being “watched,” andderiva-
tion rules with priorities. Here, we provide an alternativemuch
simplersemantics that is equivalent to the original one. The fol-
lowing is the new set of rules for goal-programs:

P 6= P1 � P2 B 6|= φs ∨ φf
〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A,Goal(φs, P � P, φf)〉 GI

B |= φs

〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A, nil〉 Gs

B |= φf

〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A, ?false〉
Gf

P = P1 � P2 B 6|= φs ∨ φf 〈B,A, P1〉 −→ 〈B′,A′, P ′〉
〈B,A,Goal(φs, P, φf)〉 −→ 〈B′,A′,Goal(φs, P ′ � P2, φf)〉 GS

P = P1 � P2 B 6|= φs ∨ φf 〈B,A, P1〉 6−→
〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A,Goal(φs, P2 � P2, φf)〉 GR

When a goal-program is first encountered during execution, rule
GI applies: GI “initialises” the execution of a goal-program by
setting the program in the goal toP � P , where the firstP is to
be executed and the secondP is just used to carry theoriginal plan
P for (potential) use later on by ruleGR. The second and third
rules handle the cases where either the success conditionφs or the
failure conditionφf become true. The fourth ruleGS is the one
responsible for performing a single step on an already initialised
goal-program. Notice that the second part in the pairP1 � P2

remains constant. Finally, ruleGR restarts the original program
(stored as the second program in pairP1 � P2) whenever the cur-
rent program has finished, but the desired, and still possible, goal
has not been achieved yet.

The above semantics forGoal is substantially simpler than the
original one in [24] in that we do not appeal to explicit exceptions,
“watched” conditions, or special prioritised derivation rules. Al-
though it is not hard to prove that this alternative semantics is equiv-
alent to the original one, due to lack of space, we do not do that
here. Finally, we point out that, in the original semantics of CAN,
an agent included also a goal baseG to account for the declarative
goals the agent has already committed to via goal-programs.Al-
though not done in CAN, the goal base couldpotentiallybe used to
perform (meta)reasoning about goals at the agent level execution,
such as goal conflict detection/resolution ([20]). Since weare also
not concerned in this paper with this type of reasoning, we com-
pletely omit the goal base from our agents.

Agent Level Execution
On top of the above basic rules, we define the evolution of an
agent. Anagent configuration, or just an agent, is a tuple of the
form 〈N ,Λ,Π,B,A,Γ〉 whereN is the agent name,Λ is an ac-
tion description library,Π is a plan library,B is a belief base,A is
the sequence of actions already performed by the agent, andΓ is
the set of current intentions (i.e., plan-bodies). Transitions between
agent configurations are dictated by the following three rules:

P ∈ Γ 〈B,A, P 〉 −→ 〈B′,A′, P ′〉
〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B′,A′, (Γ \ {P}) ∪ {P ′}〉

Astep

e is a new external event
〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B,A,Γ ∪ {!e}〉 Aevent

P ∈ Γ 〈B,A, P 〉 6−→
〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B,A,Γ \ {P}〉 Aclean

The first rule performs a single step in one intention; the second
rule creates a new intention from an external event; and the last
rule removes a completed intention from the intention base (i.e., an
intentionnil or one that is blocked and cannot make a transition).

Next, we define the meaning of an agent execution and two re-
lated notions that will be used later in the paper.

DEFINITION 1 (BDI EXECUTION). A BDI executionE of an
agentC0 = 〈N ,Λ,Π,B0,A0,Γ0〉 is a, possibly infinite, sequence
of agent configurationsC0 ·C1 ·. . .·Cn ·. . . such thatCi =⇒ Ci+1,
for everyi ≥ 0. A terminatingexecution is a finite executionC0 ·
. . . ·Cn whereCn = 〈N ,Λ,Π,Bn,An, {}〉. An environment-free
execution is one in which ruleAevent has not been used.

Sometimes we will be only interested in those steps of an execu-
tion where changes occur in either the executed actions or the belief
of the agent—agent steps where the belief base and the executed ac-
tions remain unchanged can be disregarded. So, ifE = C0 ·. . .·Cn
is a (finite) execution, then thederived executionE is the sequence
of configurations obtained fromE by deleting all configurations
Cj of the sequence such thatBj = Bj+1 andAj = Aj+1.

In addition, we give the following notation to track an intention
during an execution. IfC0 · . . . · Cn is a normal or derived execu-
tion andP is an intention inC0 (i.e.,P ∈ Γ0), then the sequence
P0 = P, P1, . . . , Pn denotesP ’s evolution within the execution
and either (i)Pi ∈ Γi; or (ii) Pi = ǫ, if the intention has already
been removed from the intention base at someCj , wherej ≤ i.

DEFINITION 2. Two, possibly derived, agent executions
C0 · . . . ·Cn andC′0 · . . . ·C′n are equivalent modulo intentionsiff
C′i = 〈N i,Λi,Πi,Bi,Ai,Γ′i〉, for every0 ≤ i ≤ n. Also, the two
executions are equivalent modulo intentionsP0 ∈ Γ0 andP ′0 ∈ Γ′0
if they are equivalent modulo intentions and for every0 ≤ i ≤ n,
(Γ′i \ {P ′i }) = (Γi \ {Pi}) (wherePi (P ′i) isP0’s (P ′0’s) evolution
in configurationCi (C′i)).

Lastly, we define what we mean by the execution of an intention
and by a program (weakly) simulating another program.

DEFINITION 3 (INTENTION EXECUTION). Let E be a BDI
executionC0·C1·. . .·Cn for an agentC0 = 〈N ,Λ,Π,B0,A0,Γ0〉,
whereΓ0 = Γ′0∪{P0}. IntentionP0 in C0 has been fullyexecuted
in E if Pn = ǫ; otherwiseP0 is currently executingin E. In ad-
dition, intentionP0 in C0 has been successfullyexecuted inE if
Pi = nil, for somei ≤ n; intentionP0 has failedin E if it has
been fully but not successfully executed inE.

DEFINITION 4 (PROGRAM SIMULATION). LetE be an exe-
cution ofC = 〈N ,Λ,Π,B,A,Γ ∪ {P}〉. ProgramP ′ simulates
programP in executionE iff there is an executionE′ of configura-
tionC′ = 〈N ,Λ,Π,B,A,Γ ∪ {P ′}〉 such that (a)E andE′ are
equivalent moduloP andP ′; and (b) if P has been successfully
executed inE, so hasP ′ in E′. We say thatP ′ simulatesP iff P ′

simulatesP in every execution of any configuration.

We have, so far, defined the necessary technical foundationsfor
adding HTN-style planning into the CAN BDI agent language, in-
cluding substantially polishing and simplifying the original CAN ’s
semantics from [24], incorporating extra representation for actions,
and providing the necessary definitions of agent execution that were
not addressed in [24]. Let us now move on to the core of the paper.

4. PLANNING IN BDI SYSTEMS
In this section, we shall integrate hierarchical planning into the

BDI architecture of section 3. To do so, several issues need to

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

be addressed. Firstly, we want to keep the language asuniform
as possible. Secondly, we allow control over when and on what
planning is to be performed within the BDI architecture. Thirdly,
we need to decide what domain information the planner will use—
we want the planner to re-use as much information as possiblefrom
an existing BDI specification. Lastly, the result of the planning
process ought to be carried on, and possibly monitored, within the
BDI execution cycle in a uniform manner.

To address the above issues, we extend the CAN language by
introducing a new language constructPlan for offline lookahead
planning, so thatPlan(P), whereP is a plan-body, means “plan for
P offline, searching for a complete hierarchical decomposition.” In
this way, the BDI agent onPlan does a full lookahead search before
committing to even the first step.

As with other constructs in the language, we need to provide
the operational rules for thePlan construct. To do this, we shall
distinguish, from now on, between two types of transitions on ba-
sic configurations, namely,bdi andplan (labelled) transitions. We
write C

t−→ C′ to specify a single step transition of typet (when
no label is stated, both types apply). Intuitively,bdi-type steps will
be used to model the normal BDI execution cycle, whereasplan-
type transitions will be used to model (internal) deliberation steps
within a planningcontext.

Following [6], the main operational rule states that configuration
〈B,A,Plan(P)〉 can evolve to〈B′,A′,Plan(P ′)〉 provided that
〈B,A, P 〉 can evolve to〈B′,A′, P ′〉 from where it is possible to
reach afinal configuration in a finite number ofplanningsteps:

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉 〈B′,A′, P ′〉 plan
∗−→ 〈B′′,A′′, nil〉

〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P ′)〉
Plan

There are also three extra simpler rules associated with construct
Plan that are shown in Figure 1. RulePlanf handles the case
where no planning solution can be found; rulePlant deals with the
trivial case of planning on programnil; and, lastly,PlanP handles
thePlan construct within a planning context.

In addition to these three derivation rules forPlan, we need to re-
strict the two derivation rules�f andGR from section 3 to thebdi
context only. This is because failure handling and goal restarting
should not be made available during planning—they are features of
the BDI execution cycle only. Hence, planning isnot merely doing
lookahead on the BDI execution cycle. We refer to the new ver-
sions of the rules as�bdi

f andGbdi
R , respectively. Also, since we

now have two types of transition for basic configurations, weneed
to slightly modify the top-level agent rulesAstep andAclean to be
defined in terms ofbdi-type transitions. We only show here rules
�
bdi
f andAstep (rulesGbdi

R andAclean should be obvious):

〈B,A, P1〉 6 bdi−→

〈B,A, (P1 � P2)〉 bdi−→ 〈B,A, P2〉
�
bdi
f

P ∈ Γ 〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉
〈N ,Λ,Π,B,A,Γ〉 =⇒ 〈N ,Λ,Π,B′,A′, (Γ \ {P}) ∪ {P ′}〉

Astep

Observe that, with the alternative rule�bdi
f , only the BDI execu-

tion cycle would be allowed to re-try alternative plans for an event
upon the failure of some failed alternative. Indeed, a program of
the form (?false� L∆M) has no transition within aplan context,
whereas programL∆M would be tried within abdi context.

In [24], it was required that the success and failure conditions in a
goal-program be mutually exclusive. There is also another sensible
restriction on goal-programs, namely, that the programP provided
as a method for achieving a (declarative) goalφs does not make the
failure conditionφf true by itself.

DEFINITION 5. A goal-programGoal(φs, P, φf) is coherent
(relative to a plan library and an action library) if for every be-
lief basesB,B′,B′′ and sequences of actionsA,A′,A′′ such that

〈B,A, P 〉 bdi∗−→ 〈B′,A′, P ′〉 bdi∗−→ 〈B′′,A′′, nil〉, it is the case that
B′ 6|= φf . An agent is coherentif every goal-program mentioned in
its plan library is coherent.

From now on, we assume that agents arecoherent—only the en-
vironment or other concurrent intentions may make the failure con-
dition of a goal-program true.4 As expected, if the agent’s only in-
tentionPlan(P) is able to start executing, then there is at least one
full successful BDI execution for such intention, providedthere is
no intervention from the outside environment. Equally important,
under the same provisions, no execution of the agent will endup
failing the intention.

THEOREM 1. LetC = 〈N ,Λ,Π,B,A, {Plan(P)}〉 such that

〈B,A,Plan(P)〉 bdi−→. If E is an environment-free agent execution
of C, then intentionPlan(P) is either executing or has been suc-
cessfully executed inE. Moreover, there is an executionEs of C
in which intentionPlan(P) has been successfully executed inEs.

PROOF. This relies on the following lemma: if〈B,A, P 〉 plan
∗−→

〈Bf ,Af , nil〉, then〈B,A,Plan(P)〉 bdi∗−→ 〈Bf ,Af , nil〉.
On the contrary, suppose there is an environment-free execution

E of the formC0 = C · . . . · Ck such〈Bk,Ak,Plan(Pk)〉 6 bdi−→.

Observe, though, that〈B,A,Plan(P)〉 bdik−→ 〈Bk,Ak,Plan(Pk)〉.
By the rulePlan, 〈B,A, P 〉 plank−→ 〈Bk,Ak, Pk〉

plan
∗−→ 〈Bf ,Af , nil〉

and 〈B,A, P 〉 plan
∗−→ 〈Bf ,Af , nil〉 applies. By using the above

lemma, we get that〈B,A,Plan(P)〉 bdi∗−→ 〈Bf ,Af , nil〉. Next,

since〈B,A,Plan(P)〉 6 bdi−→ 〈Bf ,Af , nil〉, there existB′′,A′′, P ′′

such that〈B,A,Plan(P)〉 bdi−→ 〈B′′,A′′, P ′′〉 bdi∗−→ 〈Bf ,Af , nil〉.
Thus,〈B,A,Plan(P)〉 bdi−→ and the aboveE cannot exist.

The second part follows easily from the fact that
plan

∗−→ stands for
a finite chain of transitions: if the agent follows those exact transi-
tions,P will eventually terminate successfully.

Thus, by using the new lookahead constructPlan(P), the program-
mer can make sure—to some extent—thatfailing executions of pro-
gramP will be avoided. This contrasts with the usual (default) BDI
execution ofP which may potentiallyfail programP due to wrong
decisions at choice points. Nonetheless, it should be clearthat the
proposed deliberation module islocal in the sense that it does not
take into account the potential interactions with the external envi-
ronment and other concurrent intentions.

Let us now focus on the relationship between our planning con-
structPlan and existing HTN planners. To that end, we say that a
CANPLAN agent is abounded agentif its belief base and all belief
conditions are defined in a language which follows the same con-
straints as those imposed by HTN planners [11] (e.g., first-order
atoms, finite domains, close world assumption). It is worth point-
ing out that, in practice, most existing BDI programming language
implementations do actualise such constraints and deal only with
bounded agents. We also assume, without loss of generality,that
bounded agents do not make use of+b and−b statements in their
plans—only primitive actions can change the belief base. (+b and
−b statements can always be represented via special BDI actions.)
4This definition is a bit too strong in that it requires a goal-program
to be “sound” w.r.t. the failure condition foreverypossible belief
base andeverychain ofbdi-transitions, including failed recovered
executions. Even though a weaker version could be obtained with a
more involved definition, we stick, for simplicity, to the above one.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

〈B,A, (nil � P ′)〉 −→ 〈B,A, nil〉
�t 〈B,A,+b〉 −→ 〈B ∪ {b},A, nil〉 +b 〈B,A,−b〉 −→ 〈B \ {b},A, nil〉 −b

〈B,A, P1〉 −→ 〈B′,A′, P ′〉
〈B,A, (P1 � P2)〉 −→ 〈B′,A′, (P ′ � P2)〉

�

〈B,A, (nil ;P)〉 −→ 〈B,A, P 〉 Seqt 〈B,A, (P ‖ nil)〉 −→ 〈B,A, P 〉 ‖t2

〈B,A, P1〉 −→ 〈B′,A′, P ′〉
〈B,A, (P1 ‖ P2)〉 −→ 〈B′,A′, (P ′ ‖ P2)〉

‖1
〈B,A, P2〉 −→ 〈B′,A′, P ′〉

〈B,A, (P1 ‖ P2)〉 −→ 〈B′,A′, (P1 ‖ P ′)〉
‖2 〈B,A, (nil ‖ P)〉 −→ 〈B,A, P 〉 ‖t1

〈B,A,Plan(nil)〉 −→ 〈B,A, nil〉 Plant

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉

〈B,A,Plan(P)〉 plan−→ 〈B′,A′,Plan(P ′)〉
PlanP

∆ = {Astep, Aclean, Aevent} ∪ {Event, Sel,+b,−b, act, ?, Seq, Seqt,�,�t,�bdif , ‖1, ‖2, ‖t1 , ‖t2 ,GI ,Gs,GS ,GbdiR ,Plan,Plant,PlanP}.

Figure 1: CANPLAN ’s complete set of rules∆ is built from the rules described in the text plus the ones shown here.

The next theorem establishes, formally, the link between the
Plan construct and HTN planning. First, we prove that the new
constructPlan could indeed be seen as an HTN planner. Second,
we show that executions of programPlan(P) encode HTN plan
solutions. Lastly, and not so surprisingly, we demonstratethat a
straight-line HTN plan solution could be successfully executed by
the BDI execution cycle. For clarity, we keep the translation be-
tween the BDI domain knowledge (i.e., librariesΠ andΛ, and pro-
gram) and the HTN procedural knowledge (i.e., planning domain,
“task network”P) implicit. (the theorem’s proof is based on the
relationship between the BDI’s and HTN’s entities as discussed in
section 2.3.)

THEOREM 2. For any bounded agent,

1. 〈B,A,Plan(P)〉 bdi−→ iff sol(P,B,Π ∪ Λ) 6= ∅.
2. 〈B,A,Plan(P)〉 bdi∗−→ 〈B′,A · act1 · . . . · actk,Plan(P ′)〉

with k ≥ 1 iff there exists a planσ ∈ sol(P,B,Π∪Λ), such
thatσ = act1 · . . . · actk · . . . · actn, for somen ≥ k.

3. If there exists a planσ = act1 ·. . .·actn ∈ sol(P,B,Π∪Λ),

then〈B,A, (act1; . . . ; actn)〉 bdi∗−→ 〈B′,A · σ, nil〉.

Therefore, provided we restrict to the language of HTN [11],our
deliberator constructPlan provides a built-in HTN planner within
the whole BDI framework. The above theorem is an important
practical result as it gives us the rationale for using existing HTN
planner systems, such as SHOP [15] and SHOP2 [16], within cur-
rent BDI implementations (e.g., AGENTSPEAK [19], JACK [3]).

4.1 Planning for Declarative Goals
So far we have seen how lookahead planning can be done on

(procedural) programs. Let us now discuss how (classical) plan-
ning for adeclarativegoalφs using a procedural programP can
be done. There are a few choices for this and the following five
properties that we may be interested in satisfying:

(A) P is used towards the eventual satisfaction of goalφs.
(B) P may execute partially if goalφs is achieved beforeP com-

pletion. That is,P need not be executed completely.
(C) There is a commitment to the goalφs so thatP is reinstanti-

ated and retried until the goal in question is established.
(D) There exists a mechanism for dropping the goal when a fail-

ure conditionφf becomes true.
(E) At planning time,P is solved up to the point where the goal

is met. That is, it may not be required to solveP completely.

The different alternatives that we shall consider togetherwith the
properties satisfied by each one are described in the following table:

ALTERNATIVES A B C D E

Plan(P ; ?φs)
√

Plan(Goal(φs, P, φf))
√ √ √

Goal(φs,Plan(P), φf)
√ √ √

Goal(φs,Plan(P ; ?φs), φf)
√ √ √ √

Goal(φs,Plan(Goal(φs, P, φf)), φf)
√ √ √ √ √

Interestingly, afirst-principlesaccount of planning can easily be
obtained by using the first alternativePlan(P ; ?φ) by takingP =
!seqActions the special eventseqActions can be solved with any
sequence of primitive actions.

Notice that the last four alternatives make use of the the special
Goal construct available in CANPLAN to handle declarative goals
within the BDI execution cycle. Observe also that the last option
is the only one satisfying all five properties combining thenthe
advantages from the BDI execution cycle and the planning mod-
ule. Consequently, it is sensible to define a new language construct
Plan(φs, P, φf) in the following way:

Plan(φs, P, φf)
def
= Goal(φs,Plan(Goal(φs, P, φf)), φf).

Among other results, it can be shown thatPlan(φs, P, φf) sub-
sumes all the executions ofPlan(Goal(φs, P, φf)).

THEOREM 3. For everyφs, φf andP , programPlan(φs, P, φf)
simulates programPlan(Goal(φs, P, φf)).

To recap: combinations of thePlan andGoal constructs suggest
an interesting range of programs for declarative goals. We believe
thatPlan(φs, P, φf) provides a convenient mechanism for dealing
with declarative goals at both planning and execution time.

4.2 Planning vs BDI Execution
We conclude this section by exploring the differences between

the execution of a planning program and the normal BDI execu-
tion. A CANPLAN− agent is a CANPLAN agent whose plan lan-
guage does not include the‖ and Goal constructs. This restric-
tion corresponds to classical BDI agent programming languages
like AGENTSPEAK and to total-order HTN planners like SHOP;
neither system include concurrency and goals natively. Under such
restricted CANPLAN agents, the planning module is no more than
a lookahead mechanism on top of the BDI execution cycle.

THEOREM 4. ProgramP simulates programPlan(P) in every
CANPLAN− agent.

On the other hand, when concurrency or goal-programs are con-
sidered, performing planning may result in extra executions. In
fact, it can be shown that executingPlan(Plan(P1)‖P2) is equiv-
alent to executingPlan(P1‖P2), which in turn, is very different

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

from executing(Plan(P1)‖P2).5 A similar situation arises with
programPlan(Goal(φs,Plan(P), φf)). The reason, technically,
is that aPlan construct is ignored within the context of another
Plan construct—there is no notion of planning within planning.

Surprisingly, also, the BDI execution engine may obtain success-
ful executions that the planner cannot produce.

THEOREM 5. There exists an agent configurationC of the form
〈N ,Λ,Π,B,A,Γ ∪ {P}〉 for which there is an execution where
P is successfully executed, but such that no execution ofC′ =
〈N ,Λ,Π,B,A,Γ∪{Plan(P)}〉 can successfully executePlan(P).

PROOF. Let us build a counter-example. Suppose that all ac-
tions are possible and that actionact1 just makesp true, thatp
and q are both false initially, and that there are only two plan
rules in the plan libraryΠ for handling evente: (i) e : true ←
act1; ?q; act2; and (ii) e : p ← act3; act2. There is no solution
for Plan(!e), but a BDI execution that would successfully execute
!e can be obtained by partially executing plan rule (i) (actionact1)
and then, upon failure, fully executing plan rule (ii).

As one can observe, the proof’s counter-example relies on both
the plan failure handling mechanism built into the BDI execution
cycle and the programmer not having provided a full set of plans.
In fact, if the plan library in the above proof’s counter-example had
included a third rule of the forme : true← act1; ?p; act3; act2,
then the planner would have found a full execution. Still, asagent
programs are often developed incrementally and in modules,the
above situation could well arise.

It follows then that the combined framework of (default) BDI
execution plus local hierarchical planning is strictly more general
than hierarchical planning alone. Furthermore, as discussed after
Theorem 1, by using the new local planning mechanism the pro-
grammer can rule out BDI executions that are bound tofail.

5. IMPLEMENTATION ISSUES
In earlier work [8], we presented an implementation that com-

bined BDI reasoning with HTN planning. We used JACK6 BDI
system and JSHOP7 HTN planner, a Java version of SHOP [15].
Although the integrated framework does not fully realise the opera-
tional semantics presented here, it does incorporate some important
concepts from it. In particular, it allows the programmer tospecify
from within a JACK program the points at which JSHOP should be
called, in a manner similar to thePlan construct. Consistent with
the semantics ofPlan, JSHOP uses the same domain representa-
tion as JACK does (i.e., the plan libraryΠ and belief baseB). In
fact, the framework builds at runtime a JSHOP planning problem
representation automatically from the JACK domain knowledge.

Some differences in the implementation arise from the nature
of the systems chosen for the implementation. Since JSHOP is a
total-order HTN planner, it does not use the‖ construct defined in
P . However, since parallelism has benefits, the integrated frame-
work converts JSHOP’s total-order solutions into partial-order so-
lutions so that JACK can exploit possible parallelism at execution
time. Some other differences exist between the implementation and
semantics for the sake of simplicity. For example, we exclude the
Goal(φs, P, φf) construct in our system, as this construct does not
have a direct matching concept in JACK or JSHOP. Including this

5A framework wherePlan(Plan(P1)‖P2) is not equivalent to
Plan(P1‖P2) would require an account of HTN planning within
an HTN planner. This framework can be obtained by dropping rule
PlanP and making rulePlan also available within theplan context.
6www.agent-software.com.au
7www.cs.umd.edu/projects/shop/description.html

goal construct and using SHOP2 [16] to accommodate parallel ex-
ecution of sub-goals natively are left for future work.

The main difference, however, is that the implementationdoes
not re-planat every step, as indicated by thePlan rule defined
in the semantics. This would clearly be unnecessarily inefficient.
Instead, JSHOP was modified to return the relevant methods and
bindings (rather than simply the actions); the BDI execution en-
gine then follows step-by-step the decomposition suggested by the
planner. Relevant environmental changes are detected by virtue of a
step in the returned plan no longer being applicable within the BDI
cycle. At that point, the planner is then called once again toprovide
an updated plan, and if none is available failure will occur in the
BDI system. A disadvantage of this is that environmental changes
leading to failure may be detected later in the implemented version
than in the semantic rules. However, this drawback is offsetby the
much greater efficiency in what can be expected to be the major-
ity of cases. This approach also has the benefit that an intention
produced by a call toPlan will, in fact, terminate—successfully if
there is no environmental interference. This is stronger than what
Theorem 1 states, in which we needed to account for the strange,
but potentially possible, situation where thePlan module continu-
ally returns a new and different plan prior to termination.

6. RELATED WORK
Except for INDIGOLOG [6], which is notper sea typical BDI

agent programming language (see below), we are not aware of any
otherformalBDI-style agent programming language (e.g., AGENTS-
PEAK [19], 3APL [12], PRS [13]) providing a clean account of
planning as we do here with CANPLAN . There are however a num-
ber of (implemented)systemsor frameworkswhich do, in some
way or another, mix planning and BDI-style execution. Some of
these areplanners, such as IPEM [1] and SAGE [14], that allow
for the interleaving of action execution during the planning pro-
cess. Others areagent architectures, such as RETSINA [17], CY-
PRESSand CPEF [23], and PROPICE-PLAN [10]; they are able to
do lookahead planning. CYPRESSis based on the ACT [22] for-
malism that provides a uniform representation framework for BDI
execution systems and hierarchical planners, hence supporting the
type of mapping we have proposed in section 2.2. PROPICE-PLAN

is perhaps the most similar system to ours, in that it is a typical BDI
agent system that is able to call a planning module to find a solution
for a particular problem. Like CANPLAN , a unified representation
is used by both the planner and the BDI system. The work done
in this paper differs, at least, in two ways form the above systems.
First of all, we are particularly concerned with theformal specifi-
cationof a BDI agent with built-in planning capabilities as well as
with the formal relation between BDI systems and HTN planners.
To our knowledge, none of the above systems come with a precise
formal semantics. In some sense, however, our work was much
motivated by the existence of these systems in an analogous way to
how AGENTSPEAK [19] was motivated by systems like PRS [13].
Secondly, CANPLAN provides a mechanism for local deliberation
on-demandthat the programmer can use, as opposed to a fixed in-
tegration of planning within the execution engine (e.g., planning
always [17] or just on (goal) failure [10, 23]).

Our work is possibly most related to that of De Giacomo and
Levesque [6] in which INDIGOLOG, an incremental version of CON-
GOLOG [5] with a local deliberation moduleΣ, is proposed in the
context of the situation calculus. Several ideas are taken from that
work and applied to the BDI context. Our work is however dif-
ferent in that (i) INDIGOLOG is a cognitive agent language, with
no explicit notions of events, plan library, plan selection, failure
handling, intention base, etc., whereas our approach is linked to a

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

whole family of typical BDI languages and systems; (ii) our plan-
ning mechanism is provably linked to a well understood approach
in the planning community, namely HTN planning, whereas, as
far as we know, the INDIGOLOG deliberator module is very gen-
eral and is not directly related to any planning system; (iii) the
integration of the planning module with the notion of declarative
goals in CANPLAN has no counterpart in INDIGOLOG. In some
ways, our approach has a more practical orientation than that of
INDIGOLOG. It would be interesting to investigate the relations
between INDIGOLOG and CANPLAN (e.g., identify the BDI sub-
class of agents that could be written and executed in INDIGOLOG).

7. CONCLUSION AND FUTURE WORK
We have proposed a mechanism for planning within BDI systems

based on the intrinsic requirements of the BDI architecture. To do
so, we provided an operational semantics that substantially simpli-
fies and extends that presented in [24] to incorporate a newplan-
ningconstructPlan. The new construct offers power and flexibility
to the BDI programmer for specifying lookahead planning points
in programs. We described results showing that the integration be-
tween the planning module and the whole BDI execution is the one
intuitively expected, and proved that, under suitable assumptions,
the planning task reduces to HTN planning. Lastly, we showedthat
the combined system allows a larger set of “good” executionsthan
the planning module alone and discussed an implementation that
incorporates many of the concepts from the semantics. We believe
the work presented here is a significant step towards incorporating
lookahead deliberation into BDI-type agent systems in a principled
manner. More importantly, it provides a firm foundation for arange
of interesting further work.

The fact that we have chosen to provide planning via a new con-
struct is very much in the spirit of BDI systems, namely, allowing
for direct encoding of programmer or domain expertise. In this
case, the knowledge about when planning would be beneficial.It
may be argued, though, that an intelligent agent should (also) make
its own decisions as to when to plan. It is therefore worth investi-
gating a more general account in which the agent could itselftake
the initiative to plan; for example, when all plans for a goalfail or
when there is substantial spare time.Re-planningfollowing failure
of a plan produced by the planner module is also a topic we have
not explored here and which deserves further work (see [23]).

We have already started exploring how to accommodate exten-
sions to classical HTN planning within our formal framework. For
instance, decoupling the hierarchical structure of BDI plans and us-
ing a planning account more akin to first principles would allow for
potential discovery of new plan structures. This, in turn, could pro-
vide the basis for the agent to “learn” new plans that could beadded
to the plan library. Also, it can be useful to plan only to a certain
level of abstraction or detail, leaving further remaining decomposi-
tions to execution time or until absolutely necessary as done in [4].
Both above generalisations are likely to require (or benefitfrom)
extra representation of effects for high-level plans. Suchextra rep-
resentation would also provide support for reasoning aboutinterac-
tions of the plan being explored with other goals and intentions of
the agent [4, 20]. In particular, we would like to extend our current
local lookahead mechanism so that the agent considers, at least, all
of its own active intentions when performing planning.

The framework presented here provides a basis for exploringthe
interaction between declarative goals [24, 21]—preliminary results
were given in section 4.1 but further investigation is needed.

Lastly, it would be interesting to developresource-boundedver-
sion of our planning module. To that end, we are considering de-
veloping ananytimeor incrementalversion of thePlan construct.

8. REFERENCES

[1] J. Ambros-Ingerson.IPEM: Integrated Planning, Execution, and
Monitoring. PhD thesis, Dept. of Computer Science, University of
Essex, U.K., 1987.

[2] M. Bratman.Intentions, Plans, and Practical Reason. Harvard
University Press, 1987.

[3] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents - Components for Intelligent Agents in Java,
AgentLink News Letter, Agent Oriented Software Pty. Ltd.,
Melbourne, January 1999.

[4] B. J. Clement and E. H. Durfee. Theory for Coordinating Concurrent
Hierarchical Planning Agents Using Summary Information. In Proc.
of AAAI-99, pages 495–502, 1999.

[5] G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog, A
Concurrent Programming Language Based on the Situation Calculus.
Artificial Intelligence, 121(1–2):109–169, 2000.

[6] G. De Giacomo and H. Levesque. An Incremental Interpreter for
High-Level Programs with Sensing. In H. Levesque and F. Pirri,
editors,Logical Foundation for Cognitive Agents: contr. in honor of
Ray Reiter, pages 86–102. Springer, 1999.

[7] L. P. de Silva and L. Padgham. A Comparison of BDI Based
Real-Time Reasoning and HTN Based Planning. InProc. of
Australian Joint Conference on AI, pages 1167–1173, 2004.

[8] L. P. de Silva and L. Padgham. Planning on Demand in BDI Systems.
In Proc. of ICAPS-05 (Poster), 2005.

[9] D. Dennett.The Intentional Stance. MIT Press, 1987.
[10] O. Despouys and F. F. Ingrand. Propice-Plan: Toward a Unified

Framework for Planning and Execution. InProc. of European
Conference on Planning, pages 278–293, 1999.

[11] K. Erol, J. Hendler, and D. S. Nau. HTN Planning: Complexity and
Expressivity. InProc. of AAAI-94, pages 1123–1228, 1994.

[12] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer.
Agent Programming in 3APL.Autonomous Agents and Multi-Agent
Systems, 2(4):357–401, 1999.

[13] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for
Real-Time Reasoning and System Control.IEEE Expert: Intelligent
Systems and Their Applications, 7(6):34–44,1992.

[14] C. A. Knoblock. Planning, Executing, Sensing, and Replanning for
Information Gathering. InProc. of IJCAI-95, pages 1686–1693,
1995.

[15] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP: Simple
Hierarchical Ordered Planner. InProc. of IJCAI-99, pages 968–973,
1999.

[16] D. S. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell.
Total-Order Planning with Partially Ordered Subtasks. InProc. of
IJCAI-01, pages 425–430, 2001.

[17] P. Paolucci, O. Shehory, K. P. Sycara, K. P. Kalp, and A. Pannu. A
Planning Component for RETSINA Agents. InProc. of ATAL-99,
pages 147–161, 1999.

[18] G. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI-FN-19, Dept. of Computer Science
Department, Aarhus University, Denmark, 1981.

[19] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical
Computable Language. In W. V. Velde and J. W. Perram, editors,
Agents Breaking Away (LNAI), volume 1038 ofLNAI, pages 42–55.
Springer-Verlag, 1996.

[20] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting&
Exploiting Positive Goal Interaction in Intelligent Agents. InProc. of
AAMAS-03, pages 401–408, 2003.

[21] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of
Declarative Goals in Agent Programming. InProc. of AAMAS-05,
pages 133–140, 2005.

[22] D. E. Wilkins and K. L. Myers. A Common Knowledge
Representation for Plan Generation and Reactive Execution. Journal
of Logic and Computation, 5(6):731–761, 1995.

[23] D. E. Wilkins and K. L. Myers. A Multiagent Planning Architecture.
In Proc. of AIPS-98, pages 154–162, 1998.

[24] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & Procedural Goals in Intelligent Agent Systems. In
Proc. of KR-02, pages 470–481, 2002.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

APPENDIX

A. COMPLETE OPERATIONAL SEMANTICS FOR CANPLAN

〈B,A, P 〉 bdi−→ 〈B′′,A′, P ′〉
〈N ,Π,Λ,B,A,Γ〉 =⇒ 〈N ,Π,Λ,B′′,A′, (Γ \ {P}) ∪ {P ′}〉

Astep
e is a new external event

〈N ,Π,Λ,B,A,Γ〉 =⇒ 〈N ,Π,Λ,B,A,Γ ∪ {!e}〉 Aevent

P ∈ Γ P = nil
〈N ,Π,Λ,B,A,Γ〉 =⇒ 〈N ,Π,Λ,B,A,Γ \ {P}〉

Aclean1

P ∈ Γ 〈B,A, P 〉 6 bdi−→
〈N ,Π,Λ,B,A,Γ〉 =⇒ 〈N ,Π,Λ,B,A,Γ \ {P}〉

Aclean2

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B,A, !e〉 −→ 〈B,A, L∆M〉 Event

ψi : Pi ∈ ∆ B |= ψiθ

〈B,A, L∆M〉 −→ 〈B,A, Piθ � L∆ \ PiM〉
Sel

〈B,A,+b〉 −→ 〈B ∪ {b},A, nil〉 +b 〈B,A,−b〉 −→ 〈B \ {b},A, nil〉 −b

a : ψ ← Φ+; Φ− ∈ Λ aθ = act B |= ψθ

〈B,A, act〉 −→ 〈(B \ Φ−θ) ∪ Φ+θ,A · act, nil〉 act
B |= φθ

〈B,A, ?φ〉 −→ 〈B,A, nil〉 ?

〈B,A, P1〉 −→ 〈B′′,A′, P ′〉
〈B,A, (P1;P2)〉 −→ 〈B′′,A′, (P ′;P2)〉

Seq
〈B,A, (nil;P)〉 −→ 〈B,A, P 〉 Seqt

〈B,A, P1〉 −→ 〈B′′,A′, P ′〉
〈B,A, (P1 ‖ P2)〉 −→ 〈B′′,A′, (P ′ ‖ P2)〉

‖1
〈B,A, P2〉 −→ 〈B′′,A′, P ′〉

〈B,A, (P1 ‖ P2)〉 −→ 〈B′′,A′, (P1 ‖ P ′)〉
‖2

〈B,A, (nil ‖ P)〉 −→ 〈B,A, P 〉 ‖t1 〈B,A, (P ‖ nil)〉 −→ 〈B,A, P 〉 ‖t2

〈B,A, P1〉 −→ 〈B′′,A′, P ′〉
〈B,A, (P1 � P2)〉 −→ 〈B′′,A′, (P ′ � P2)〉

�

〈B,A, (nil � P)〉 −→ 〈B,A, nil〉
�t

〈B,A, P1〉 6 bdi−→

〈B,A, (P1 � P2)〉 bdi−→ 〈B,A, P2〉
�
bdi
f

P 6= P1 � P2 B 6|= φs ∨ φf
〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A,Goal(φs, P � P, φf)〉

GI

B |= φs

〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A, nil〉 Gs
B |= φf

〈B,A,Goal(φs, P, φf)〉 −→ 〈B,A, ?false〉
Gf

B 6|= φs ∨ φf 〈B,A, P1〉 −→ 〈B′,A′, P ′〉
〈B,A,Goal(φs, P1 � P2, φf)〉 −→ 〈B′,A′,Goal(φs, P ′ � P2, φf)〉 GS

B 6|= φs ∨ φf 〈B,A, P1〉 6 bdi−→

〈B,A,Goal(φs, P1 � P2, φf)〉 bdi−→ 〈B,A,Goal(φs, P2 � P2, φf)〉
GbdiR

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉 〈B′,A′, P ′〉 plan
∗−→ 〈B′′,A′′, nil〉

〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P ′)〉
Plan

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉

〈B,A,Plan(P)〉 plan−→ 〈B′,A′,Plan(P ′)〉
PlanP

〈B,A,Plan(nil)〉 −→ 〈B,A, nil〉 Plant

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

B. AUXILIARY DEFINITIONS
DEFINITION 6 (REMOVE Plan TRANSFORMATIONRP (P1, P2) AND RPA(P1)). LetRP (P1, P2) be a relation that holds iffP2 is exactly likeP1

with 0 ≤ m ≤ n occurrences of thePlan construct inP1 removed, wheren is the number of occurrences of thePlan constructs inP1. Finally, letRPA(P1)
be the program obtained from deleting allPlan constructs inP1 (clearlyRPA(P1, RPA(P1))).

B.1 Execution Simulation
DEFINITION 7 (EXECUTION SIMULATION). LetC andC′ be two configurations, probably for different agents. LetE be an execution ofC. Con-

figurationC′ simulates simulatesconfigurationC in executionE iff there is an executionE′ of C′ such that (a)E andE′ are equivalent, and (b) ifE is
terminating, so isE′. ConfigurationC′ simulatesC iff C′ simulatesC in every execution ofC.

DEFINITION 8 (DERIVED TRANSITIONS). An internal step transition relation−→i is obtained by restricting−→: R −→i R
′ iff R −→ R′ and

O(R) = O(R′). The visible transition relation−→v is defined by:R −→v R
′ iff there existsR∗ such thatR

∗−→i R
∗ andR∗ −→ R′ butR∗ 6−→i R

′

(i.e.,O(R∗) 6= O(R′)).

DEFINITION 9 (SIMULATION RELATION). A binary relationSim between programs is a simulation relationw.r.t. transition−→ iff for everyP1 and
P2 such thatSim(P1, P2), it is the case that for everyB,A:

1. if 〈B,A, P2〉 ∗−→i 〈B′,A′, nil〉, then〈B,A, P1〉 ∗−→i 〈B′,A′, nil〉.
2. if 〈B,A, P2〉 −→ 〈B′,A′, P ′2〉, there existsR′, R′′, P ′1 such that (a)〈B,A, P1〉 ∗−→i R

′, R′ −→ R′′ or R′ = R′′, andR′′
∗−→i 〈B′,A′, P ′1〉;

and (b)Sim(P ′1, P
′

2).

C. AUXILIARY RESULTS
The following Lemma states thathtn-type transitions completely ignore the second plan in programs of the formP1 � P2.

LEMMA 6 (PROPERTIES OF� IN plan-TYPE TRANSITIONS). For everyB,A andP1, P2:

1. 〈B,A, P1 � P2〉
plan

∗−→ 〈B′′,A′, nil〉 iff 〈B,A, P1〉
plan

∗−→ 〈B′′,A′, nil〉;
2. If 〈B,A, P1〉 6 plan−→, then〈B,A, fail � P2〉 6 plan−→;

3. 〈B,A,Goal(φs, P1 � P2, φf)〉 plan
∗−→ 〈B′′,A′, nil〉 iff 〈B,A,Goal(φs, P1, φf)〉 plan

∗−→ 〈B′′,A′, nil〉;

4. If 〈B,A, P1〉 6 plan−→ andB 6|= φs ∨ φf , then〈B,A,Goal(φs, P1 � P2, φf)〉 6 plan−→

PROOF. Direct from the fact that rules�bdif andGbdiR are not available within theplan context.

LEMMA 7. If 〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉 without using thePlanP derivation rule, then〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉.
PROOF. Direct from the fact that anyplan-type derivation rule except forPlanP is also available as abdi-type.

LEMMA 8. LetP1 andP2 = RPA(P1). Then,〈B,A,Plan(P1)〉 bdi−→ 〈B′,A′,Plan(P ′1)〉 iff A′ = A andP2 = RPA(P ′1) or (ii) 〈B,A,Plan(P2)〉 bdi−→
〈B′,A′,Plan(RPA(P ′1))〉.

PROOF. By assumption we know that (a)〈B,A, P1〉 plan−→ 〈B′,A′, P ′1〉, and (b)〈B′,A′, P ′1〉
plan−→ 〈Bf ,Af , nil〉. Let us consider the following two cases

on (a). If transition (a) is supported by derivation rulePlant, then clearlyB′ = B,A′ = A andRP (P1, P
′

1) (that.is, some subprogramPlan(nil) in P1 was
reduced to just nil). In this case, we it is obvious thatP2 = RPA(P ′1) and (i) applies. Now suppose transition (a) is not supportedby rulePlant and let us

takeP ′2 = RPA(P ′1). Becuase anyPlan construct inP1 is completely ignored due to rulePlanP, it follows that〈B,A,Plan(P2)〉 bdi−→ 〈B′,A′,Plan(P ′2)〉

C.1 Properties ofPlan
The following Lemma states that the planning module on a program of the formP1 � P2 is fully commited to the first programP1 only.

LEMMA 9 (� IN Plan). For everyB,A, P1, P2: 〈B,A,Plan(P1 � P2)〉 bdi∗−→ 〈B′′,A′, nil〉 iff 〈B,A,Plan(P1)〉 bdi∗−→ 〈B′′,A′, nil〉.
PROOF. This is a direct consequence of point (1) in Lemma 6.

THEOREM 10 (NESTEDPlan). The following are some axuliarly properties ofPlan:

1. 〈B,A,Plan(Plan(P))〉 bdi−→ 〈B′,A′,Plan(Plan(P ′))〉 iff 〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P ′)〉.
2. 〈B,A,Plan(Plan(P))〉 bdi−→ 〈B′,A′,Plan(nil)〉 iff 〈B,A,Plan(P)〉 bdi−→ 〈B′,A′, nil〉.
PROOF. For the first part we have:

〈B,A,Plan(Plan(P))〉 bdi−→ 〈B′,A′,Plan(Plan(P ′))〉
iff

〈B,A,Plan(P)〉 plan−→ 〈B′,A′,Plan(P ′)〉 and〈B′,A′,Plan(P ′)〉 plan
∗−→ 〈B′′,A′′, nil〉

iff

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉 and〈B′,A′, P ′〉 plan
∗−→ 〈B′′,A′′, nil〉

iff

〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P ′)〉
For the second part we have:

〈B,A,Plan(Plan(P))〉 bdi−→ 〈B,A,Plan(nil)〉 iff 〈B,A,Plan(P)〉 plan−→ 〈B′,A′, nil〉 iff P = nil iff 〈B,A,Plan(P)〉 bdi−→ 〈B,A, nil〉.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

C.1.1 Interaction betweenPlan andGoal

THEOREM 11. LetR = 〈B,A,Plan(Goal(φs, P, φf))〉 such thatB 6|= φs ∧ φf . Then,

• if B |= φs, then there existsR′ = 〈B,A,Plan(nil)〉 such thatR
bdi−→ R′, and for everyR∗ such thatR

bdi−→ R∗,R∗ = R′.

• if B |= φf , thenR 6 bdi−→.

PROOF. If B |= φs, then the only applicable derivation rule isGs andR′ = 〈B,A,Plan(nil)〉. Similarly, if B |= φf , then for everyR′ such that

〈B,A,Goal(φs, P, φf)〉 plan−→ R′, it is the case thatR′ = 〈B,A, ?false〉.

THEOREM 12 (PROPERTIES OFPROGRAM Plan(φs, P, φf)). LetC0 = 〈N ,Λ,Π,B,A,Γ0∪{P0}〉 be an agent configuration withP0 = Plan(φs, P, φf)

(P is a user program). LetE = C0 · . . . · Ck be an execution whereP0 is currently executing and letP# = Plan(Goal(φs, P, φf)). Then,
Pk ∈ {P0,Goal(φs,Plan(Goal(φs, P ∗ � P, φf)) � P#, φf), nil, ?false}.

If P bk = Goal(φs,Plan(Goal(φs, P ∗ � P, φf)) � P#, φf), then〈Bk,Ak , P bk〉
bdi−→,Cbk =⇒, and the following hold:

Suppose〈Bk,Ak, P bk〉
bdi−→ R. If B |= φs, thenR = 〈Bk,Ak , nil〉. If B |= φf , thenR = 〈Bk,Ak, ?false〉.

SupposeB 6|= φs ∨ φf . Then:

〈Bk ,Ak, P ∗〉
plan−→ 〈B′,A′, P ′〉 plan

∗−→ 〈B′′,A′′, P ′′〉, B′′ |= φs
iff

〈Bk,Ak, P bk〉
plan−→

〈B′,A′,Goal(φs,Plan(Goal(φs, P ′ � P, φf)) � P#, φf)〉
there is noR such that

〈Bk,Ak , P ∗〉
plan−→ R

plan
∗−→ 〈B′′,A′′, P ′′〉, B′′ |= φs
iff

〈Bk,Ak, Pk〉
plan−→ 〈Bk,Ak,Goal(φs, P#

� P#, φf)〉.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

D. PROOF OF THEOREM 1

LEMMA 13. For everyB,A andP , if 〈B,A, P 〉 plan
∗−→ 〈Bf ,Af , nil〉, then〈B,A,Plan(P)〉 bdi∗−→ 〈Bf ,Af , nil〉.

PROOF. We prove this by induction on the lengthn of theplan-type derivation.

Base case: Supposen = 0. ThenP = nil, Bf = B, andAf = A. By using derivation rulePlant, we get〈B,A,Plan(P)〉 bdi−→ 〈Bf ,Af , nil〉.
Inductive Case: Supposen = k + 1. Then, there existsR∗ = 〈B∗,A∗, P ∗〉 such that (a)〈B,A, P 〉 plan−→ R∗ and (b)R∗

plank−→ 〈Bf ,Af , nil〉.
Using (a) and (b), we can use derivation rulePlan to obtain〈B,A,Plan(P)〉 bdi−→ 〈B∗,A∗,Plan(P ∗)〉. Moreover, by (b) and the induction hypothesis,

〈B∗,A∗,Plan(P ∗)〉 bdi∗−→ 〈Bf ,Af , nil〉. Thus,〈B,A,Plan(P)〉 bdi∗−→ 〈Bf ,Af , nil〉 follows.

Using the above auxiliarly lemma, we now prove the main result.

PROOF OFTHEOREM 1: LetC = 〈N ,Λ,Π,B,A, {Plan(P)}〉 such that〈B,A,Plan(P)〉 bdi−→. If E is an environment-free agent execution ofC, then
intentionPlan(P) is either executing or has been successfully executed inE. Moreover, there is an executionEs ofC in which intentionPlan(P) has been
successfully executed inEs.

First Claim: On the contrary, assume thatPlan(P) failed in some execution. Then, there is an environment-free executionE of the formC0 =

C,C1, . . . , Ck , such thatk ≥ 1, Ck = 〈N ,Λ,Π,Bk,Ak, {Plan(Pk)}〉, and 〈Bk,Ak,Plan(Pk)〉 6 bdi−→. That is, the execution ofC ended up in
configurationCk where the original intentionPlan(P) is stuck.

We know that〈Bk−1,Ak−1,Plan(Pk−1)〉 bdi−→ 〈Bk,Ak,Plan(Pk)〉 which means that (a)〈Bk−1,Ak−1, Pk−1〉
plan−→ 〈Bk ,Ak, Pk〉; and (b) there ex-

istsBf ,Af such that〈Bk,Ak, Pk〉
plan

∗−→ 〈Bf ,Af , nil〉. By Lemma 13,〈Bk,Ak ,Plan(Pk)〉
bdi∗−→ 〈Bf ,Af , nil〉. BecausePlan(Pk) 6= nil, 〈Bk,Ak,Plan(Pk)〉 bdi−→

follows (i.e., there is at least on possible next transition).

Second Claim: By assumption, there existBf andAf such that〈B,A, P 〉 plan
∗−→ 〈Bf ,Af , nil〉 hold. By Lemma 13, we know that〈B,A,Plan(P)〉 bdi∗−→

〈Bf ,Af , nil〉. It is not hard to see that we can use this basicbdi-type derviation to construct an environment-free agent executionEs for C such that the
original intentionPlan(P) is successfully executed in it.

An immediate consequence of this theorem is the following corollary.

COROLLARY 14. LetE be a terminating environment-free execution of agent〈N ,Λ,Π,B,A, {Plan(P)}〉. Furthermore, suppose that〈B,A,Plan(P)〉 bdi−→.
Then, intentionPlan(P) has been successfully executed inE.

PROOF. From Theorem 1 and the fact that ifE is terminating, then it is the case that intentionPlan(P) has either been successfully executed inE or it
has failed inE.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

E. TRANSLATION OF BDI LIBRARIES TO HTN DOMAIN KNOWLEDGE: THE OREM 2
Here, we show how to translate a CANPLAN plan libraryΠ and action description libraryΛ into a planning domainD = 〈Op(Λ),Me(Π)〉.

DEFINITION 10 (BOUNDED BDI A GENTS). We say that aCANPLAN agent is a bounded agentif its belief base and all belief conditions are defined
in a language which follows the same constraints as those imposed by HTN planners [11] (e.g., first-order atoms, finite domains, close world assumption).
Moreover, a plan-body in a bounded agent cannot include explicit addition or deletion of belief statements (i.e.,+b and−b statements).

From now on, we assume that CANPLAN agents are bounded. In what follows, we will show two theorems which are specific version of Theorem 2.
Theorem 15 is the most trivial version where the translationfrom the BDI language to the HTN one is almost trivial. However, such theorem holds only for
agents that do not make use of theGoal construct. Theorem 17 extends Theorem 15 to accommodateGoal-programs and relies on a complex transformation
for such specific programs. Finally, we discuss how such transformation can be avoided all together if we slightly changethe semantics of HTN planning.

E.1 Converting BDI Belief Conditions into HTN Constraints
Given a formulaφ, we defineφ∗ and(φ, n)∗ inductively as follows:

1. if φ = l, thenφ∗ = l and(φ, n)∗ = (l, n).

2. if φ = l1 ∧ l2, thenφ∗ = l1 ∧ l2 and(φ, n)∗ = (l1, n) ∧ (l2, n).

3. if φ = l1 ∨ l2, thenφ∗ = l1 ∨ l2 and(φ, n)∗ = (l1, n) ∨ (l2, n).

4. if φ = ¬¬φ1, thenφ∗ = φ∗1 and(φ, n)∗ = (φ1, n)∗.

5. if φ = ¬(φ1 ∧ φ2), thenφ∗ = (¬φ1 ∨ ¬φ1)∗ and(φ, n)∗ = (¬φ1 ∨ ¬φ1, n)∗.

6. if φ = ¬(φ1 ∨ φ2), thenφ∗ = (¬φ1 ∧ ¬φ1)∗ and(φ, n)∗ = (¬φ1 ∧ ¬φ1, n)∗.

The definitions of(n, φ)∗ and(n1, φ, n2)∗ are analogous.

E.2 Converting BDI Action Description Libraries into HTN Op erators: Op(Λ)
Suppose that the (bounded) CANPLAN agent contains an action description libraryΛ with actions of the following form:

act(~x) : l1(~x) ∧ . . . ∧ ln(~x)← {a−1 (~x), . . . , a−m(~x)}−; {a+1 (~x), . . . , a+p (~x)}+,

whereli are literals, anda−i , a
+
i are atoms. Given a library of actionsΛ, we define the corresponding set of HTN primitive tasks/operatorsOp(Λ) as follows:

Op(Λ) = {[act(~x), (pre : l1(~x), . . . , ln(~x)), (post : ¬a−1 (~x), . . . ,¬a−m(~x), a+1 (~x), . . . , a+p (~x))] |
act(~x) : l1(~x) ∧ . . . ∧ ln(~x)← {a−1 (~x), . . . , a−m(~x)}−; {a+1 (~x), . . . , a+p (~x)}+ ∈ Λ}.

E.3 Converting Goal-free BDI Plan Libraries into BDI Method Libraries: Me(Π)
In this section, we show how a BDI plan libraryΠ that contains noGoal-program can be mapped into an HTN method libraryMe(Π). We shall later

consider libraries that make use ofGoal-programs. In the simple case, the mapping is quite straightforward.
Below, |P (~x)| refers to the size of programP (~x) meassured as the number of compex constructs in it. We shall also use a special operator (or primitive

task)dummyTask, which is always possible and has no effects whatsoever whenexecuted. Whenσ is an HTN plan,clean(σ) stands for planσ with all actions
“dummyTask” operators (primitive tasks) deleted.

Given a bounded BDI CANPLAN library Π mentioning no goal-programs, we define its corresponding HTN method-libraryMe(Π) as follows:

Me(Π) =
[

(e(~x):ψ(~x,~y)←P (~x,~y,~z))∈Π

{(e(~x), ψ(~x, ~y)∗,T 1(P (~x, ~y, ~z), 0))} ∪ T 2(P (~x, ~y, ~z), 0).

FunctionT (P, n) maps a plan-bodyP and a natural numbern into a pair〈T,M〉, whereT is an HTN task-network andM is a set of methods. We write
T 1(P, n) to refer to the first argumentT of the pair, andT 2(P, n) to refer to the second argumentM—that is, ifT (P, n) = 〈T,M〉 thenT 1(P, n) = T
andT 2(P, n) = M . FunctionT (P, n) is defined inductively on the structure ofP as follows:

Base Cases:In this case, the program can be a primitive action, a test condition, an event, or the trivial programnil:

• If P (~x) = act(~x), thenT (P (~x), n) = 〈[{n : act(~x)}, nil], ∅〉.
• If P (~x) =?φ(~x), thenT (P (~x), n) = 〈[{n : dummyTask}, (φ(~x), n)∗], ∅〉.
• If P (~x) = e(~x), thenT (P (~x), n) = 〈[{n : e(~x)}, nil], ∅〉.
• If P (~x) = nil, thenT (P (~x), n) = 〈[{n : dummyTask}, nil], ∅〉.

Inductive Cases: SupposePb(~x) is any of the programs in the above base cases, that is,Pb(~x) = act(~x) |?φ(~x) | nil | e(~x). Then,

• If P (~x) = (Pb(~x);P
′(~x)), then

T (P (~x), n) = 〈[Tb ∪ T ′, (n < n+ 1) ∧ Cb ∧ C′], ∅〉,
whereT (Pb(~x), n) = 〈Tb, Cb〉 andT (P ′(~x), n+ 1) = 〈T ′, C′〉.

• If P (~x) = (P1(~x) ‖ P2(~x)), then
T (P (~x), n) = 〈[T1 ∪ T2, C1 ∧C2], ∅〉,

whereT (P1(~x), n) = 〈T1, C1〉 andT (P2(~x), n+ |P1(~x)|+ 1) = 〈T2, C2〉.
• If P (~x) = (P1(~x) � P2(~x)), thenT (P (~x), n) = T (P1(~x), n).
• If P (~x) = Lψ1(~x) : P1(~x), . . . , ψk(~x) : Pk(~x)M, then

T (P (~x), n) = 〈[n : choiceP (~x), nil],
k

[

i=1

{(choiceP (~x), ψi(~x)
∗,T 1(Pi(~x), 0))} ∪ T 2(Pi(~x), 0)〉.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

THEOREM 15 (Plan AND HTN-PLANNING IN Goal-FREE PROGRAMS). Let〈N ,Λ,Π,B,A,Γ∪{Plan(P)}〉 be a bounded agent, whereΠ is a goal-
free plan library andP is a goal-free plan-body. LetD = 〈Op(Λ) ∪ {dummyTask},Me(Π)〉 be the corresponding HTN problem domain and letTP =
T 1(P, 0) be the network task obtained fromP (see as defined in Appendixes E.2 and E.3). Then,

1. 〈B,A,Plan(P)〉 bdi−→ iff sol(TP ,B,D) 6= ∅.
2. 〈B,A,Plan(P)〉 bdi∗−→ 〈B′,A · act1 · . . . · actk ,Plan(P ′)〉 with k ≥ 1 iff there exists a planσ ∈ sol(TP ,B,D), such thatclean(σ) = act1 · . . . ·
actk · . . . · actn, for somen ≥ k.

3. 〈B,A, (act1; . . . ; actn)〉 bdi∗−→ 〈B′,A · σ, nil〉, for everyσ ∈ sol(TP ,B,D) such thatclean(σ) = act1 · . . . · actn.

PROOF. This is a laborious proof showing thatplan-type transitions perform no more than the task decomposition done by HTN planners. The proof is
based on the relationship between BDI’s and HTN’s entities as discussed in section 2.3.

E.4 Converting Full BDI Plan Libraries into BDI Method Libra ries: Me+(Π)
We shall nos consider BDI plan libraries and plan-bodies that may mentionGoal-programs. To that end, we will extend the transformation given in

Appendix E.3 to includeGoal-programs; this transformation is a bit more involved giventhat HTN does not accommodate naturally an construct of thatsort.
We start by converting a BDI plan library into one that isGoal-free.

E.4.1 MappingGoal-programs toGoal-free Programs
Now, let us consider goal-programs of the formGoal(φs, P, φf). Informally, we will construct a libraryΠ∗ from an original libraryΠ in such a way that

executing goal-programGoal(φs, P, φf) w.r.t. library Π is equivalent to executing programP w.r.t. library Π∗. We observe this transformation does not
complain with the notion ofeliminability (see [?]) as it substantially changes the structure of the agent.

DEFINITION 11 (PROGRAM AND L IBRARY TRANSFORMATIONSP γ AND Πγ). LetP be a plan-body and letγ(~w) be a belief condition. The plan
bodyP γ is the plan body obtained fromP as follows:

1. Every evente(~t) mentionedP is replaced with the (new) eventeγ(~t, ~w) in P γ .

2. Every test conditionφ(~t) mentioned inP is replaced with the test conditionφ(~t) ∨ γ(~w) in P γ .

3. Every actionact(~t) mentioned inP is replaced with the (new) eventeγact(~t, ~w) in P γ .

WhenΠ is a plan library, we build the new libraryΠγ fromΠ, as follows:

1. Every plan-rule of the forme(~x) : ψ(~x, ~y)← P (~x, ~y, ~z) is replaced with the following two plan-rules:

eγ(~x, ~w) : ¬γ(~w) ∧ ψ(~x, ~y)← P γ ,
eγ(~x, ~w) : γ(~w)← nil.

2. For every actionact(~x) in the domain, the following two plan-rules are included:

e
γ
act(~x, ~w) : ¬γ(~w)← act(~x),
e
γ
act(~x, ~w) : γ(~w)← nil.

Relation
∗−→φ stands for the reflexive transitive closoure of

∗−→ whereφ holds at every configuration. More concretely,C1
∗−→φ Cn (n ≥ 2) iff there

existsC2, . . . , Cn−1 such thatCi −→ Ci+1 andBi |= φ , for 1 ≤ i ≤ n− 1.

THEOREM 16. For everyB,A,Π, and programGoal(φs, P, φf),

1. 〈Π,B,A,Goal(φs, P, φf)〉 bdi∗−→ 〈Π,B′,A′, nil〉 iff 〈Π ∪ Πφs ,B,A, Pφs〉 bdi∗−→¬φf
〈Π ∪ Πφs ,B′,A′, nil〉

2. 〈Π ∪Πφs ,B,A, Pφs〉 bdi∗−→¬φf
〈Π ∪ Πφs ,B′,A′, nil〉 iff 〈Πφs ,B,A, Pφs〉 bdi∗−→¬φf

〈Πφs ,B′,A′, nil〉

PROOF. Point (2) follows directly from the fact that there is no planrule for any of the events mentioned in programPφ or library Πφ. Let us know prove
then point (1):

(⇒)
(⇐)

Once again, this theorem is a veryweaknotion of eliminability for theGoal-construct. However, we only need that for our purposes, namely, that

E.4.2 Obtaining an HTN Method Library from a BDI Library withGoal-programs
We now extend the transformationMe(Π) given in Appendix E.3 to accommodate plan-bodies mentioning Goal-programs. To that end, we define the

transformationMe+(Π) to be exactly likeMe(Π) with the following extra inductive case in the definition ofT :

• If P (~x) = Goal(φs, P, φf), then

T (P (~x), n) = 〈[{n : dummyTask, n+ 1 : achieveφs
P , n+ 2 : dummyTask}, C],Me({achieveφs

P : nil ← Pφs} ∪ Π′
φs)〉,

whereC = (n < n+ 1) ∧ (n+ 1 < n+ 2) ∧ (n,¬φf , n+ 2)∗, andΠ′ is Π with all Goal(φs, P, φf) programs replaced withP .

Next, we generalize Theorem 15 for any kind of BDI plan library.

THEOREM 17 (Plan AND HTN-PLANNING IN FULL PROGRAMS). Let 〈N ,Λ,Π,B,A,Γ ∪ {Plan(P)}〉 be a bounded agent, whereΠ is a goal-
free plan library andP is a goal-free plan-body. LetD = 〈OpΛ ∪ {dummyTask},Me(Π) ∪ MP 〉 be the corresponding HTN problem domain where
T (P, 0) = 〈TP ,MP 〉 (see Appendixes E.2 and E.3, and the extension ofT above). Then,

1. 〈B,A,Plan(P)〉 bdi−→ iff sol(TP ,B,D) 6= ∅.
2. 〈B,A,Plan(P)〉 bdi∗−→ 〈B′,A · act1 · . . . · actk ,Plan(P ′)〉 with k ≥ 1 iff there exists a planσ ∈ sol(TP ,B,D), such thatclean(σ) = act1 · . . . ·
actk · . . . · actn, for somen ≥ k.

3. 〈B,A, (act1; . . . ; actn)〉 bdi∗−→ 〈B′,A · σ, nil〉, for everyσ ∈ sol(TP ,B,D) such thatclean(σ) = act1 · . . . · actn.

PROOF. Follows from Theorems 15 and 16.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

E.5 An Extension of HTN Semantics for Partial Plans
Here we explain that is actually cleaner and more practical to slightly change the semantics of HTN planning to accommodate a success condition.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

F. PROOF OF THEOREM 3

THEOREM 18. LetSim be a simulation relation w.r.t. relation
bdi−→ such thatSim(P ∗, P). Then, programP ∗ simulates programP .

PROOF. Informally,P ∗ simulatesP because: (i) wheneverP can be terminate with internal steps,P ∗ can also be terminated in the same way; and (ii)
wheneverP performs abdi-step,P ∗ can perform the same step result, possibly by also doing someextra internal steps.

Let E = C1 · . . . · Cn, n ≥ 1, be an execution of a configurationC1 = 〈N ,Λ,Π,B1,A1,Γ′1 ∪ {P}〉. We shall obtain an executionE∗ of
C∗1 = 〈N ,Λ,Π,B1,A1,Γ′1 ∪ {P}〉 such thatE andE∗ are equivalent moduloP andP ∗, and ifP has been successfuly executed inE so hasP ∗ in E∗.

Suppose|E| = 1 and henceE = C1. If P has not been successfuly executed yet inE, then we takeE∗ = C∗1 which is trivially equivalent toE

moduloP andP ∗ and the thesis follows. IfP has been executed inE, thenP = nil and 〈B,A, P 〉 bdi∗−→i 〈B′,A′, nil〉. By point (1) in Definition 9,

〈B,A, P ∗〉 bdi∗−→i 〈B′,A′, nil〉. We can then use these internal transitions to build an execution E∗ = C∗1 · . . . C∗k , k ≥ 1, such thatP ∗k = nil and

O(C∗i) = O(C∗1), for i = 1..k. Clearly,E∗ = C∗k is equivalent toE andP ∗ has been executed inE∗.
Next suppose then|E| = n = k + 1, k ≥ 0. Then, there exist an executionE′ = C2 · . . . such that|E′| = k andC1 =⇒ C2. We consider then the

following two cases:

1. If agent transitionC1 =⇒ C2 is not a transition on intentionP itself, then it is clear that the same agent transition can beperformed fromC∗1 to obtain
C∗2 . That is, ifC2 = 〈N ,Λ,Π,B2,A2,Γ′2 ∪ {P}〉 thenC∗2 = 〈N ,Λ,Π,B2,A2,Γ′2 ∪ {P ∗}〉 such thatC∗1 =⇒ C∗2 . By the induction hypothesis,

there exists an executionE′∗ ofC∗2 such thatE′ andE′∗ are equivalent moduloP andP ∗, and ifP has been successfuly executed inE′ so hasP ∗

in E′∗. Then, it follows thatC1 · E′ andC∗1 ·E′∗ are equivalent moduloP andP ∗, and ifP has been successfuly executed inC1 · E′ so hasP ∗ in
C∗1 · E′∗.

2. Suppose the agent transitionC1 =⇒ C2 is a transition on intentionP itself. Then,C2 = 〈N ,Λ,Π,B2,A2,Γ′1 ∪ {P ′}〉 such that〈B1,A1, P 〉 bdi−→
〈B2,A2, P

′〉. Then, there has to existR′, R′′, P ′1 such that (a)〈B1,A1, P
∗〉 bdi∗−→i R

′, R′
bdi−→ R′′ or R′ = R′′, andR′′

bdi∗−→i 〈B2,A2, P
∗′〉;

and (b)Sim(P ∗1
′, P ′). We use all the basic transitions from (a) to obtain an execution E∗a = C∗1 · Ci1 . . . · Cij · C∗2 of C∗1 , wherej ≥ 0 and

C∗2 = 〈N ,Λ,Π,B2,A2,Γ′1 ∪ {P ∗′}〉
Because,Sim(P ∗1

′, P ′) and the induction hypothesis, there exists an executionE′
∗ ofC∗2 such thatE′ andE′∗ are equivalent moduloP ′ andP ∗1

′,

and ifP ′ has been successfuly executed inE′ so hasP ∗1
′ in E′∗. Then, it follows thatC1 ·E′ andC∗1 · Ci1 . . . · Cij ·E′∗ are equivalent moduloP

andP ∗, and ifP has been successfuly executed inC1 · E′ so hasP ∗ in C∗1 · Ci1 . . . · Cij · E′
∗.

PROOF OFTHEOREM3: For everyφs, φf andP , programPlan(φs, P, φf) simulates programPlan(Goal(φs, P, φf)).

LetSim(,) be any relation satisfying, at least, the following conditions for everyP,P ′, φs, φf :

1. Sim(Goal(φs,Plan(Goal(φs, P, φf)), φf),Plan(Goal(φs, P, φf))).

2. Sim(Goal(φs,Plan(Goal(φs, P � P, φf)) � Plan(Goal(φs, P, φf)), φf), Plan(Goal(φs, P � P, φf))).

3. Sim(Goal(φs,Plan(Goal(φs, P ′ � P, φf)) � Plan(Goal(φs, P, φf)), φf), Plan(Goal(φs, P ′ � P, φf))).

4. Sim(nil,Plan(nil)).

5. Sim(nil, nil).

It is not hard to verify that the above relationSim is indeed a simulation relation w.r.t. relation
bdi−→ as defined in Definition 9. By Theorem 18, the thesis

follows.

LEMMA 19. For everyB,A andP1, P2 such thatRP (P1, P2):

1. 〈B,A,Plan(P1)〉 plan−→ 〈B′,A′, P ′1〉 iff 〈B,A, P1〉 plan−→ 〈B′,A′, P ′1〉.

2. If 〈B,A,Plan(P1)〉 bdi−→ 〈B′,A′, P ′1〉, then there existsP ′2 such that〈B,A,Plan(P2)〉 bdi−→ 〈B′,A′, P ′2〉 andRP (P ′1, P
′

2).

3. If 〈B,A,Plan(P2)〉 bdi−→ 〈B′,A′, P ′2〉, then there existsP ′1 such that〈B,A,Plan(P1)〉 bdi−→ 〈B′,A′, P ′1〉 andRP (P ′1, P
′

2).

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

G. PROOF OF THEOREM 4

LEMMA 20. For every agent free of‖ andGoal, if 〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P ′)〉, 〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉.

PROOF. By assumption, we know that rulePlan was used and : (a)〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉; and (b) 〈B′,A′, P ′〉 plan
∗−→ 〈Bf ,Af , nil〉. Given (a)

and (b), we shall prove, by induction on the number ofplan-type derivation rules involved in (a), that〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉.
Suppose then that only one derivation rule is required to prove (a). Then, we have the following cases:

• SupposeP = act, P =?φ, P = +b or P = −b. In this case,P ′ = nil, and〈B,A, P 〉 bdi−→ 〈B′,A′, nil〉 follows trivially.

• SupposeP = (nil;P a). In this case,P ′ = P a and〈B,A, P 〉 bdi−→ 〈B′,A′, P a〉 follows trivially.

• SupposeP = (nil � P a). In this case,P ′ = nil and 〈B,A, P 〉 bdi−→ 〈B′,A′, nil〉 follows trivially.

• SupposeP =!e. In this case,P ′ = L∆M, and〈B,A, P 〉 bdi−→ 〈B′,A′, L∆M〉 follows trivially.

• SupposeP = L∆M. In this case,P ′ = Piθ � L∆ \ PiM due to ruleSel and〈B,A, P 〉 bdi−→ 〈B′,A′, P ′iθ � L∆ \ P ′i M〉 holds too.

• SupposeP = Plan(nil). In this case,P ′ = nil and 〈B,A, P 〉 bdi−→ 〈B′,A′, nil〉 follows directly from derivation rulePlant.

Next, suppose thatk + 1 derivation rules are used for (a). We then have the followingcases:

• SupposeP = (P1;P2). In this case,P 6= nil andP ′ = (P ′1;P2) such that〈B,A, P1〉 plan−→ 〈B′,A′, P ′1〉
plan

∗−→ 〈B′′,A′′, nil〉. By the induction

hypothesis,〈B,A, P1〉 bdi−→ 〈B′,A′, P ′1〉 and〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉 holds due to ruleSeq.

• SupposeP = (P1 � P2). In this case,P 6= nil andP ′ = (P ′1 � P2) such that〈B,A, P1〉 plan−→ 〈B′,A′, P ′1〉
plan

∗−→ 〈B′′,A′′, nil〉. By the induction

hypothesis,〈B,A, P1〉 bdi−→ 〈B′,A′, P ′1〉 and〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉 holds due to rule�.

• SupposeP = Plan(P1). In this case,P ′ = P ′1 such that〈B,A, P1〉 plan−→ 〈B′,A′, P ′1〉
plan

∗−→ 〈B′′,A′′, nil〉. By directly applying rulePlan, we know

that 〈B,A,Plan(P1)〉 bdi−→ 〈B′,A′, P ′1〉 and thus〈B,A, P 〉 bdi−→ 〈B′,A′, P ′〉.
This concludes the proof of the Theorem.

LEMMA 21. LetSim(,) be any relation satisfying, at least, the following conditions for every programP that does not mention constuct‖:
1. Sim(P,Plan(P)).

2. Sim(nil,Plan(nil)).

3. Sim(nil, nil).

Then,Sim is a simulation relation w.r.t. transition
bdi−→ for any agent that is free of concurrency.

PROOF. Take a programP 6= nil.

PROOF OFTHEOREM4: ProgramP simulates programPlan(P) in everyCANPLAN− agent.

LetSim(,) be any relation satisfying, at least, the following conditions for every programP that does not mention constucts‖ andGoal:

1. Sim(P,Plan(P)).

2. Sim(nil,Plan(nil)).

3. Sim(nil, nil).

We also prove the following result.

THEOREM 22. LetC = 〈N ,Λ,Π,B,A,Γ ∪ {Plan(P)}〉 be aCANPLAN agent. LetC′ = 〈N ,Λ′,Π,B,A,Γ′ ∪ {P ′}〉 whereΛ′,Γ′ andP ′ are
obtained fromΛ,Γ andP by deleting allPlan contructs from plan-bodies. Then, configurationC′ simulates configurationC.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

H. OTHER STUFF
LEMMA 23 (EQUAL INITIALIZATION). LetPa = Plan(Goal(φs, P, φf)), Pb = Goal(φs,Plan(P), φf), andP ∗ = Goal(φs, Pa, φf), whereP

is a user program. Suppose that〈B,A, Pa〉 bdi−→ Ca, 〈B,A, Pb〉 bdi−→ Cb, and〈B,A, P ∗〉 bdi−→ C∗. Then,

1. Ca = 〈B′,A′, nil〉 iff Cb = C∗ = 〈B′,A′, nil〉 (here,B |= φs).

2. Ca does not actually exist iffCb = C∗ = 〈B,A, ?false〉 (here,B |= φf).

3. Ca = 〈B′,A′, P ′a〉, whereP ′a = Plan(Goal(φs, P�P,φf)) iff Cb = 〈B′,A′,Goal(φs,Plan(P)�Plan(Po), φf)〉 iff C∗ = 〈B′,A′,Goal(φs, Pa�

Pa, φf)〉 and for everyC∗∗ such thatC∗
bdi−→ C∗∗,C∗∗ = 〈B′,A′,Goal(φs, P ′a � Pa, φf)〉

4. One of the above three cases must apply forCa.

LEMMA 24. LetPa = Plan(Goal(φs, P � Po, φf)) andP ∗ = Goal(φs, Pa � Po, φf) be two programs. Then, for everyB,A:

1. 〈B,A, Pa〉 bdi−→ 〈B,A,Plan(nil)〉 iff 〈B,A, P ∗〉 bdi−→ 〈B,A, nil〉.
2. If 〈B,A, Pa〉 bdi−→ 〈B,A, P ′a〉, whereP ′a = Plan(Goal(φs, P ′ � Po, φf)), then〈B,A, P ∗〉 bdi−→ 〈B,A,Goal(φs, P ′a � Po, φf)〉.

3. If 〈B,A, Pa〉 6 bdi−→ and〈B,A, P ∗〉 bdi−→ C, thenC = 〈B,A,Goal(φs, Po � Po, φf)〉 or C = 〈B,A, ?false〉 andB |= φf .

4. If 〈B,A, Pa〉 bdi−→ C, thenC = 〈B,A,Plan(nil)〉 or C = 〈B′,A′,Plan(Goal(φs, P ′ � Po, φf))〉 for some programP ′.

PROOF. (1) Follows directly from the fact that if〈B,A, Pa〉 bdi−→ 〈B,A,Plan(nil)〉 or 〈B,A, P ∗〉 bdi−→ 〈B,A, nil〉, thenB |= φs.

(2) Suppose that〈B,A, Pa〉 bdi−→ 〈B,A, P ′a〉whereP ′a = Plan(Goal(φs, P ′�Po, φf). Then,〈B,A,Goal(φs, P�Po, φf)〉 plan−→ 〈B,A,Goal(φs, P ′�

Po, φf)〉 due to ruleGS and thereforeB 6|= φs ∨ φf . Then, by applying ruleGS , 〈B,A, P ∗〉 bdi−→ 〈B,A,Goal(φs, P ′a � Po, φf)〉 follows.

(3) Suppose that〈B,A, Pa〉 6 bdi−→ and that there existsC such that〈B,A, P ∗〉 bdi−→ C. The transition toC may be due to rulesGs,Gf ,GS or

GbdiR . Because〈B,A, Pa〉 6 bdi−→, there are noB′ andA′ such that〈B,A,Goal(φs, P � Po, φf)〉 plan
∗−→ 〈B′,A′, nil〉. Clearly, B 6|= φs or otherwise,

〈B,A,Goal(φs, P � Po, φf)〉 plan−→ 〈B,A, nil〉 would hold. As a result, ruleGs may not apply. Similarly, ruleGS may not apply either or otherwise

〈B,A, Pa〉 bdi−→.
Now, ifB |= φf , then ruleGf applies and the thesis follows trivially. Otherwise, ifB 6|= φf , then the only rule that may apply isGbdiR and the thesis

follows as well.
(4) Trivial since the only derivation rules that may apply for making aPlan-transition on programPa areGs, Gbdi or GS .

H.1 Goal and Plan Text
A central feature of CAN and CANPLAN is the Goal construct for handlingdeclarativegoals. It is important then to understand the interaction of

goal-programs with the new planning constructPlan. That is, we want to explore the differences and similarities between “having the goal to plan” (i.e.,
Goal(φs,Plan(P), φf) and “planning for a declarative goal” (i.e.,Plan(Goal(φs, P, φf))).

To begin with, it is easy to prove that both programs are “initialised” in equivalent ways: the first goal-plan-program isinitialised to programGoal(φs,Plan(P)�
Plan(P), φf) iff the second plan-goal program is initialised to programPlan(Goal(φs, P � P, φf)).

Now, a goal-plan program of the formGoal(φs,Plan(P), φf) has the same meaning as the one provided in CAN: executePlan(P) until the goalφs is
achieved or the failure conditionφf applies. Note that nothing precludes solvingP completely without achievingφs. Still, due to thepersistenceproperty of
Goal, the whole goal will be retried ifPlan(P) fails or does not achieveφs. In addition,P needs to be executed completely, that is, a partial execution ofP
that would achieveφs would not work.

Consider next its plan-goal counterpartPlan(Goal(φs, P, φf)). Such a program is closer to aclassical planning problem: plan for achieving the declarative
goalφs (by using the given programP). If P cannot be solved or it is not able to achieveφs, then the whole plan-goal will fail. Thus, we are not merely
interested in solving programP , but also doing it in a way that will in fact achieve the desired goalφs. In addition, programP need not be executed completely
but only to the point whereφs is realized. This type of behaviour on (declarative) goals does not exist in CAN. It is thus sensible, for convenience, to define

a new language constructPlan(φ, P)
def
= Plan(Goal(φ, P, false)): plan for achievingφ usingP . Notice thatPlan(φ, P) is close but more expressive than

program(P ; ?φ)—the latter requiresP to becompletelyexecuted.
We summarize the differences between goal-plan and plan-goal programs as follows:

Goal(φs,Plan(P), φf) Plan(Goal(φs, P, φf))

BDI excecution driven
√

classical planning driven
√

P may achieveφs P must achieveφs
√

P may be re-tried
√

P is never re-tired
P must execute fully P may execute partially

√
Fails if φf holds Fails ifφf holds

What we would like is a program that combines the advantages of both versions. That is, we may want to deliberate and act towards a clear goalφs using a

programP and be commited to the goal until it is either achieved or impossible. Interestingly, programPlanGoal(φs, P, φf)
def
=Goal(φs,Plan(Goal(φs, P, φf)), φf)

has such properties and it willl (a) always execute towards goalφs; (b) terminate when the goal is achieved or is impossible; and (c) re-try and insist on program
P if necessary.

THEOREM 25. LetC0 = 〈N ,Λ,Π,B,A,Γ0 ∪ {PX0 }〉 be an agent configuration withX ∈ {a, b}, where (P is a user program)

P a0 = Plan(Goal(φs, P, φf)), P b0 = Goal(φs,Plan(P), φf),

LetE = C0·. . .·Cn be an execution ofC0 such thatPX0 is currently executing inE (i.e.,PXn 6= ǫ). Next, let us considerC∗0 = 〈N ,Λ,Π,B,A,Γ0∪{P ∗0 }〉,
whereP ∗0 = Goal(φs, P a0 , φf).

Then, there exists an executionE∗ = C∗0 · . . . · C∗m of C∗0 such that (a)|E| and |E∗| are equivalent modulo intentionsPX0 andP ∗0 ; and (b) intention
PX0 has been successfuly executed inE iff intentionP ∗0 has been successfuly executed inE∗.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

PROOF. LetP a = Plan(Goal(φs, P, φf)) and letP b = Goal(φs,Plan(P), φf). SupposeE = C0, . . . , Cn is an execution ofC0 = 〈N ,Λ,Π,B,A,Γ∪
{P a}〉 such thatP a is currently executing inE. Then, there exists an executionE′ = C′0, . . . , C

′
n ofC′0 = 〈N ,Λ,Π,B,A,Γ ∪ {P b}〉 such thatE′ and

E are equivalent and

1. Γn = Γ∗ ∪ {P an} iff Γ′n = Γ∗ ∪ {P bn};
2. if P an = Plan(Goal(φs, P ′ � P, φf)), thenP bn = Goal(φs,Plan(P ′) � Plan(P), φf);

3. if P an = Plan(nil), thenP bn = nil;

4. if 〈Bn,An, P an 〉 6
bdi−→ andP an 6= nil, thenP an = Plan(Goal(φs, P ′ � P, φf)) and〈Bn,An,Plan(P ′)〉 6 bdi−→.

The proof relies on a few lemmas; the most important of them states that for anyB,A, Po, φs, φf , andP 6= nil: if 〈B,A,Plan(Goal(φs, P � Po, φf))〉
can make abdi-type transition to〈B′,A′,Plan(Goal(φs, P ′ � Po, φf))〉, then it is the case that〈B,A,Goal(φs,Plan(P) � Plan(Po), φf)〉 can make a
bdi-type transition to〈B′,A′,Goal(φs,Plan(P ′) � Plan(Po), φf)〉.

The reader may wonder if it is possible to combine the features of both type of programs. That is, one may want to deliberateon, possibly partially, doing
P in a way that will indeed achieveφs while allowing for the possibility of re-tryingP if an external event interferes with the solution found at planning time.
Interestingly, the program we are looking for isGoal(φs,Plan(Goal(φs, P, φf)), φf). To show this, we first need to abstract away from some irrelevant
internal steps in an agent execution. IfE = C0 · . . . · Cn, n ≥ 0, is an agent execution, thenC0 · . . . · Cn is the sequence obtained fromE by deleting all
elementsCj of the sequence such that theCj =⇒ Cj+1 step used inE is due to the agent derivation ruleAstep and either of the basic derivation rulesGI
or Plant.

