7 research outputs found

    A New Transmitted Reference Pulse Cluster Based Ultra-Wideband Transmitter Design

    Full text link
    An energy efficient ultra-wideband (UWB) transmitter based on the novel transmitted reference pulse cluster (TRPC) modulation scheme is presented. The TRPC-UWB transmitter integrates, namely, wideband active baluns, wideband I-Q modulator based up-conversion mixer, and differential to single-ended converter. The integrated circuits of TRPC-UWB front end is designed and implemented in the 130-nm CMOS process technology. the measured worst-case carrier leakage suppression is 22.4 dBc, while the single sideband suppression is higher than 31.6 dBc, operating at the frequency from 3.1 GHz to 8.2 GHz. With adjustable data rate of 10 to 300 Mbps, the transmitter achieves a high energy efficiency of 38.4 pJ/pulse.Comment: 4 page, 8 figure

    Area and Power Efficient Ultra-Wideband Transmitter Based on Active Inductor

    Get PDF
    This paper presents the design of an impulse radio ultra-wideband (IR-UWB) transmitter for low-power, short-range, and high-data rate applications such as high density neural recording interfaces. The IR-UWB transmitter pulses are generated by modulating the output of a local oscillator. The large area requirement of the spiral inductor in a conventional on-chip LC tank is overcome by replacing it with an active inductor topology. The circuit has been fabricated in a UMC CMOS 180 nm technology, with a die area of 0.012 mm2. The temporal width of the output waveform is determined by a pulse generator based on logic gates. The measured pulse is compliant with Federal Communications Commission (FCC) power spectral density limits and within the frequency band of 3-6 GHz. For the minimum pulse duration of 1 ns, the energy consumption of the design is 20 pJ per bit, while transmitting at a 200 Mbps data rate with an amplitude of 130 mV

    Study and design of an impulse radio UWB synthesizer for 3.1-10.6 GHz band in 28 NM CMOS FD-SOI technology

    Get PDF
    Orientador: Prof. Ph.D. André Augusto MarianoCoorientador: Prof. Ph.D. Rémy VaucheDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 21/03/2022Inclui referências: p. 107-110Resumo: Este trabalho de dissertação de mestrado apresenta o estudo e desenvolvimento de sintetizador de pulsos de radio ultra banda larga para a banda 3,1-10,6 GHz em tecnologia 28 nm CMOS FD-SOI. A primeira utilização dessa banda de frequência foi autorizada pela comissão federal de comunicações dos Estados Unidos em 2002. Visando a explorar essa banda de frequência, o padrão IEEE 802.15.4 escolheu as comunicações baseadas em pulsos de radio em detrimento das comunicações tradicionais de banda estreita. Uma linha importante de pesquisa e o estudo e desenvolvimento de um transmissor ultra banda larga, capaz de endereçar múltiplas bandas e múltiplos padrões diferentes, que e consistido em um sintetizador de pulsos de radio devendo ter a capacidade de cobrir a banda 3,1-10,6 GHz. Para atingir tal objetivo, visa-se a implementação de uma arquitetura versátil baseada em um gerador de pulsos constituído principalmente por um oscilador controlado por tensão, e um circuito de formatação da envoltória do pulso, em que e possível fazer ajuste da duração e da frequência central dos pulsos, e compensar variações PVT (Processo, Tensão e Temperatura). O objetivo principal deste trabalho de dissertação de mestrado e estudo e desenvolvimento de um sintetizador de pulsos baseado nessa arquitetura em tecnologia 28 nm CMOS FD-SOI, de maneira que esse circuito seja capaz de cobrir toda banda 3.1-10.6 GHz e ao mesmo tempo cumprir os requerimentos espectrais estabelecidos pelos padrões IEEE 802.15.4 e IEEE 802.15.6. No projeto do circuito proposto, utilizou-se a técnica de síntese de pulso por transposição de frequência, constituído principalmente por um oscilador local comutado, permitindo a redução do consumo de energia, em que o sinal produzido pelo oscilador e modulado por um pulso em banda base. Em relação a metodologia do projeto, trata-se de um projeto totalmente personalizado, em que se utilizou as logicas CMOS e CML (Logica Diferencial), e se considerou capacitâncias parasitas estimadas no intuito de melhorar o dimensionamento dos transistores. A arquitetura do oscilador escolhida neste projeto foi o oscilador em anel, a qual permite de se obter uma banda de frequência suficientemente alta. Acerca da formatação do pulso, escolheu-se uma envoltória possível de se implementar com circuito digital reprogramável, visando a endereçar os diferentes canais do padrão IEEE 802.15.4 e IEEE 802.15.6. O sistema implementado, em nível de esquemático de transistor considerando capacitâncias parasitas estimadas, apresenta um desempenho satisfatório sobre a toda a banda de frequência de interesse, em que os pulsos gerados respeitam os gabaritos espectrais impostos pelos padrões IEEE, evidenciando a capacidade do circuito prosposto de ser multi-banda e cobrir toda a banda de frequência de interesse. Em relação ao consumo de potência, esse e influenciado pela duração do pulso e sua frequência central. Ademais, obteve-se um consumo de potencia estática 14 µW e um consumo de energia por pulso emitido máximo de 308 pJ, em que para esse caso, o pulso apresenta um energia transmitida de 11,7 pJ por pulso, assim apresentando uma eficiência de 3,8 %.Abstract: This dissertation work concerns the study and design of an impulse radio ultra-wide band synthesizer for 3.1-10.6 GHz frequency band in 28 nm CMOS FD-SOI technology. Indeed, this frequency band exploitation was initially authorized by the federal communications commission of United States in 2002. Targeting to exploit this frequency band, the IEEE 802.15.4 standard has chosen the communications based on impulse radio instead of the traditional narrowband communications. Besides, the impulse radio communications should respect communications standards, like the IEEE 802.15.4 for wireless personal networks, or IEEE 802.15.6 for wireless body networks. These IEEE standards define the generated pulse bandwidth and its central frequency. An important line of research is the study and design of a multi-standard or multi-band UWB transmitter, consisted by a pulse synthesizer that should be able to address all the standardized channels. To accomplish this, a proposed solution reposes on design of versatile architecture based on pulse generator and an envelope shaping circuit, where it is possible to tune the pulse duration and central frequency, and also to compensate PVT variations (Process, Voltage and Temperature). The dissertation work main goal is the study and design of a pulse synthesizer based on this architecture in 28 nm CMOS FD-SOI technology, such that the designed system is capable to cover all the 3.1-10.6 GHz and at same time to comply the spectral requirements established by IEEE 802.15.4 and 802.15.6 standards. In relation of the proposed circuit design, it is applied the pulse synthesis technique based on frequency transposition, that is mainly composed by a local oscillator that can be turned on and off, which allows to reduce the power consumption. The generated oscillation is modulated by a baseband pulse. Concerning the design methodology, it is a full-custom project, where CMOS and CML logics were used, and estimated parasitic capacitances were considered to achieve more reliable transistor sizing. The oscillator architecture chosen is based on ring oscillator, which allows to reach a frequency range sufficiently large. For the pulse shaping, it was chosen a envelope that is feasible to implement with fully digital circuit, targeting to address all IEEE 802.15.4 and IEEE 802.15.6 standard channels. The implemented system presents, in schematic levels considering parasitic capacitances, a satisfactory performance over all the 3.1-10.6 GHz band, where the generated pulses respect the spectral requirements imposed by the IEEE standards, therefore indicating that the proposed circuit is multi-band and able to cover all frequency band of interest. In terms of power consumption, it was achieved a power leakage of 14 µW and a maximal energy per pulse consumption of 308 pJ, where for this case, the pulse has an emitted energy of 11.7 pJ per pulse, therefore a efficiency of 3.8 %
    corecore