5 research outputs found

    Power-efficient high-speed interface circuit techniques

    Get PDF
    Inter- and intra-chip connections have become the new challenge to enable the scaling of computing systems, ranging from mobile devices to high-end servers. Demand for aggregate I/O bandwidth has been driven by applications including high-speed ethernet, backplane micro-servers, memory, graphics, chip-to-chip and network onchip. I/O circuitry is becoming the major power consumer in SoC processors and memories as the increasing bandwidth demands larger per-pin data rate or larger I/O pin count per component. The aggregate I/O bandwidth has approximately doubled every three to four years across a diverse range of standards in different applications. However, in order to keep pace with these standards enabled in part by process-technology scaling, we will require more than just device scaling in the near future. New energy-efficient circuit techniques must be proposed to enable the next generations of handheld and high-performance computers, given the thermal and system-power limits they start facing. ^ In this work, we are proposing circuit architectures that improve energy efficiency without decreasing speed performance for the most power hungry circuits in high speed interfaces. By the introduction of a new kind of logic operators in CMOS, called implication operators, we implemented a new family of high-speed frequency dividers/prescalers with reduced footprint and power consumption. New techniques and circuits for clock distribution, for pre-emphasis and for driver at the transmitter side of the I/O circuitry have been proposed and implemented. At the receiver side, new DFE architecture and CDR have been proposed and have been proven experimentally

    Quadrature Frequency Synthesis for Wideband Wireless Transceivers

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2014. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 112 pages.In this thesis, three different techniques pertinent to quadrature LO generation in high data rate and wideband RF transceivers are presented. Prototype designs are made to verify the performance of the proposed techniques, in three different technologies: IBM 130nm CMOS process, TSMC 65nm CMOS process and IBM 32nm SOI process. The three prototype designs also cover three different frequency bands, ranging from 5GHz to 74GHz. First, an LO generation scheme for a 21 GHz center-frequency, 4-GHz instantaneous bandwidth channelized receiver is presented. A single 1.33 GHz reference source is used to simultaneously generate 20 GHz and 22 GHz LOs with quadrature outputs. Injection locking is used instead of conventional PLL techniques allowing low-power quadrature generation. A harmonic-rich signal, containing both even and odd harmonics of the input reference signal, is generated using a digital pulse slimmer. Two ILO chains are used to lock on to the 10th and 11th harmonics of the reference signal generating the 20 GHz and the 22 GHz quadrature LOs respectively. The prototype design is implemented in IBM's 130 nm CMOS process, draws 110 mA from a 1.2 V supply and occupies an active area of 1.8 square-mm. Next, a wide-tuning range QVCO with a novel complimentary-coupling technique is presented. By using PMOS transistors for coupling two VCOs with NMOS gm-cells, it is shown that significant phase-noise improvement (7-9 dB) can be achieved over the traditional NMOS coupling. This breaks the trade-off between quadrature accuracy and phase-noise, allowing reasonable accuracy without a significant phase-noise hit. The proposed technique is frequency-insensitive, allowing robust coupling over a wide tuning range. A prototype design is done in TSMC 65nm process, with 4-bits of discrete tuning spanning the frequency range 4.6-7.8 GHz (52% FTR) while achieving a minimum FOM of 181.4dBc/Hz and a minimum FOMT of 196dBc/Hz. Finally, a wide tuning-range millimeter wave QVCO is presented that employs a modified transformer-based super-harmonic coupling technique. Using the proposed technique, together with custom-designed inductors and metal capacitors, a prototype is designed in IBM 32nm SOI technology with 6-bits of discrete tuning using switched capacitors. Full EM-extracted simulations show a tuning range of 53.84GHz to 73.59GHz, with an FOM of 173 dBc/Hz and an FOMT of 183 dBc/Hz. With 19.75GHz of tuning range around a 63.7GHz center frequency, the simulated FTR is 31%, surpassing all similar designs in the same band. A slight modification in the tank inductors would enable the QVCO to be employed in multiple mm-Wave bands (57-66 GHz communication band, 71-76 GHz E-band, and 76-77 GHz radar band)

    Analysis and design of an 80 Gbit/sec clock and data recovery prototype

    Get PDF
    La demande croissante de toujours plus de dĂ©bit pour les tĂ©lĂ©communications entraine une augmentation de la frĂ©quence de fonctionnement des liaisons sĂ©ries. Cette demande se retrouve aussi dans les systĂšmes embarquĂ©s du fait de l'augmentation des performances des composants et pĂ©riphĂ©riques. Afin de s'assurer que le train de donnĂ©es est bien rĂ©ceptionnĂ©, un circuit de restitution d'horloge et de donnĂ©es est placĂ© avant tout traitement du cotĂ© du rĂ©cepteur. Dans ce contexte, les activitĂ©s de recherche prĂ©sentĂ©es dans cette thĂšse se concentrent sur la conception d'une CDR (Clock and Data Recovery). Nous dĂ©taillerons le comparateur de phase qui joue un rĂŽle critique dans un tel systĂšme. Cette thĂšse prĂ©sente un comparateur de phase ayant comme avantage d'avoir une mode de fenĂȘtrage et une frĂ©quence de fonctionnement rĂ©duite. La topologie spĂ©ciale utilisĂ©e pour la CDR est dĂ©crite, et la thĂ©orie relative aux oscillateurs verrouillĂ©s en injection est expliquĂ©e. L'essentiel du travail de recherche s'est concentrĂ©e sur la conception et le layout d'une restitution d'horloge dans le domaine millimĂ©trique, Ă  80 Gbps. Pour cela plusieurs prototypes ont Ă©tĂ© rĂ©alisĂ©s en technologie BiCMOS 130 nm de STMicrolectronics.The increasing bandwidth demand for telecommunication leads to an important rise of serial link operating frequencies. This demand is also present in embedded systems with the growth of devices and peripherals performances. To ensure the data stream is well recovered, a clock and data recovery (CDR) circuit is placed before any logical blocks on the receiver side. The research activities presented in this thesis are related to the design of such a CDR. The phase detector plays a critical role in the CDR circuit and is specially studied. This thesis presents a phase comparator that provides an enhancement by introducing a windowed mode and reducing its operating frequency. The used CDR has a special topology, which is described, and the injection locked oscillator theory is explained. Most of the research of this study has focused on the design and layout of a 80 Gbps CDR. Several prototypes are realized in 130 nm SiGe process from STMicroelectronics.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Conception et Ă©tude d’une synthĂšse de frĂ©quence innovante en technologies CMOS avancĂ©es pour les applications en bande de frĂ©quence millimĂ©trique

    Get PDF
    The 60-GHz unlicensed band is a promising alternative to perform the high data rate required in the next generation of wireless communication systems. Complex modulations such as OFDM or 64-QAM allow reaching multi-gigabits per second throughput over up to several tens of meters in standard CMOS technologies. This performance rely on the use of high performance millimeter-wave frequency synthesizer in the RF front-end. In this work, an original architecture is proposed to generate this high performance millimeter-wave frequency synthesizer. It is based on a high order (several tens) multiplication of a low frequency reference (few GHz), that is capable of copying the low frequency reference spectral properties. This high order frequency multiplication is performed in two steps. Firstly, a multi-harmonic signal which power is located around the harmonic of interest is generated from the low frequency reference signal. Secondly, the harmonic of interest is filtered out from this multi-harmonic signal. Both steps rely on the specific use of oscillators. This work deals with the circuit design on advanced CMOS technologies (40 nm CMOS, 55 nm BiCMOS) for the proof of concept and on the theoretical study of this system. This novel technique is experimentally validated by measurements on the fabricated circuits and exhibit state-of-the-art performance. The analytical study of this high order frequency multiplication led to the discovery of a particular kind of synchronization in oscillators and to approximated solutions of the Van der Pol equation in two different practical cases. The perspectives of this work include the design of the low frequency reference and the integration of this frequency synthesizer in a complete RF front-end architecture.La bande de frĂ©quence non-licensĂ©e autour de 60 GHz est une alternative prometteuse pour couvrir les besoins en bande passante des futurs systĂšmes de communication. L'utilisation de modulations complexes (comme OFDM ou 64-QAM) Ă  ces frĂ©quences permet d'atteindre, en utilisant une technologie CMOS standard, des dĂ©bits de plusieurs gigabits par seconde sur quelques mĂštres voire quelques dizaines de mĂštres. Pour atteindre ces performances, la tĂȘte d'Ă©mission-rĂ©ception RF (front-end RF) doit ĂȘtre dotĂ©e d'une rĂ©fĂ©rence de frĂ©quence haute performance. Dans ce travail, une architecture originale est proposĂ©e pour gĂ©nĂ©rer cette rĂ©fĂ©rence de frĂ©quence haute performance. Elle repose sur la multiplication de frĂ©quence d'ordre Ă©levĂ© (plusieurs dizaines) d'un signal de rĂ©fĂ©rence basse frĂ©quence (moins de quelques GHz), tout en recopiant les propriĂ©tĂ©s spectrales du signal basse frĂ©quence. Cette multiplication est rĂ©alisĂ©e en combinant la production d'un signal multi-harmonique dont la puissance est concentrĂ©e autour de la frĂ©quence Ă  synthĂ©tiser. L'harmonique d'intĂ©rĂȘt est ensuite extraite au moyen d'un filtrage. Ces deux Ă©tapes reposent sur l'utilisation d'oscillateurs dans des configurations spĂ©cifiques. Ce travail porte Ă  la fois sur la mise en Ă©quation et l'Ă©tude du fonctionnement de ce systĂšme, et sur la conception de circuits dans des technologies CMOS avancĂ©es (CMOS 40 nm, BiCMOS 55 nm). Les mesures sur les circuits fabriquĂ©s permettent de valider la preuve de concept ainsi que de montrer des performances Ă  l'Ă©tat de l'art. L'Ă©tude du fonctionnement de ce systĂšme a conduit Ă  la dĂ©couverte d'une forme particuliĂšre de synchronisation des oscillateurs ainsi qu'Ă  l'expression de solutions approchĂ©es de l'Ă©quation de Van der Pol dans deux cas pratiques particuliers. Les perspectives de ce travail sont notamment l'intĂ©gration de cette synthĂšse innovante dans un Ă©metteur-rĂ©cepteur complet
    corecore