62 research outputs found

    Analysis and Design of Silicon based Integrated Circuits for Radio Frequency Identification and Ranging Systems at 24GHz and 60GHz Frequency Bands

    Get PDF
    This scientific research work presents the analysis and design of radio frequency (RF) integrated circuits (ICs) designed for two cooperative RF identification (RFID) proof of concept systems. The first system concept is based on localizable and sensor-enabled superregenerative transponders (SRTs) interrogated using a 24GHz linear frequency modulated continuous wave (LFMCW) secondary radar. The second system concept focuses on low power components for a 60GHz continuous wave (CW) integrated single antenna frontend for interrogating close range passive backscatter transponders (PBTs). In the 24GHz localizable SRT based system, a LFMCW interrogating radar sends a RF chirp signal to interrogate SRTs based on custom superregenerative amplifier (SRA) ICs. The SRTs receive the chirp and transmit it back with phase coherent amplification. The distance to the SRTs are then estimated using the round trip time of flight method. Joint data transfer from the SRT to the interrogator is enabled by a novel SRA quench frequency shift keying (SQ-FSK) based low data rate simplex communication. The SRTs are also designed to be roll invariant using bandwidth enhanced microstrip patch antennas. Theoretical analysis is done to derive expressions as a function of system parameters including the minimum SRA gain required for attaining a defined range and equations for the maximum number of symbols that can be transmitted in data transfer mode. Analysis of the dependency of quench pulse characteristics during data transfer shows that the duty cycle has to be varied while keeping the on-time constant to reduce ranging errors. Also the worsening of ranging precision at longer distances is predicted based on the non-idealities resulting from LFMCWchirp quantization due to SRT characteristics and is corroborated by system level measurements. In order to prove the system concept and study the semiconductor technology dependent factors, variants of 24GHz SRA ICs are designed in a 130nm silicon germanium (SiGe) bipolar complementary metal oxide technology (BiCMOS) and a partially depleted silicon on insulator (SOI) technology. Among the SRA ICs designed, the SiGe-BiCMOS ICs feature a novel quench pulse shaping concept to simultaneously improve the output power and minimum detectable input power. A direct antenna drive SRA IC based on a novel stacked transistor cross-coupled oscillator topology employing this concept exhibit one of the best reported combinations of minimum detected input power level of −100 dBm and output power level of 5.6 dBm, post wirebonding. The SiGe stacked transistor with base feedback capacitance topology employed in this design is analyzed to derive parameters including the SRA loop gain for design optimization. Other theoretical contributions include the analysis of the novel integrated quench pulse shaping circuit and formulas derived for output voltage swing taking bondwire losses into account. Another SiGe design variant is the buffered antenna drive SRA IC having a measured minimum detected input power level better than −80 dBm, and an output power level greater than 3.2 dBm after wirebonding. The two inputs and outputs of this IC also enables the design of roll invariant SRTs. Laboratory based ranging experiments done to test the concepts and theoretical considerations show a maximum measured distance of 77m while transferring data at the rate of 0.5 symbols per second using SQ-FSK. For distances less than 10m, the characterized accuracy is better than 11 cm and the precision is better than 2.4 cm. The combination of the maximum range, precision and accuracy are one of the best reported among similar works in literature to the author’s knowledge. In the 60GHz close range CW interrogator based system, the RF frontend transmits a continuous wave signal through the transmit path of a quasi circulator (QC) interfaced to an antenna to interrogate a PBT. The backscatter is received using the same antenna interfaced to the QC. The received signal is then amplified and downconverted for further processing. To prove this concept, two optimized QC ICs and a downconversion mixer IC are designed in a 22nm fully depleted SOI technology. The first QC is the transmission lines based QC which consumes a power of 5.4mW, operates at a frequency range from 56GHz to 64GHz and occupies an area of 0.49mm2. The transmit path loss is 5.7 dB, receive path gain is 2 dB and the tunable transmit path to receive path isolation is between 20 dB and 32 dB. The second QC is based on lumped elements, and operates in a relatively narrow bandwidth from 59.6GHz to 61.5GHz, has a gain of 8.5 dB and provides a tunable isolation better than 20 dB between the transmit and receive paths. This QC design also occupies a small area of 0.34mm² while consuming 13.2mW power. The downconversion is realized using a novel folded switching stage down conversion mixer (FSSDM) topology optimized to achieve one of the best reported combination of maximum voltage conversion gain of 21.5 dB, a factor of 2.5 higher than reported state-of-the-art results, and low power consumption of 5.25mW. The design also employs a unique back-gate tunable intermediate frequency output stage using which a gain tuning range of 5.5 dB is attained. Theoretical analysis of the FSSDM topology is performed and equations for the RF input stage transconductance, bandwidth, voltage conversion gain and gain tuning are derived. A feasibility study for the components of the 60GHz integrated single antenna interrogator frontend is also performed using PBTs to prove the system design concept.:1 Introduction 1 1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Functional Specifications . . . . . . . . . . . . . . . . . 4 1.3 Objectives and Structure . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Features and Fundamentals of RFIDs and Superregenerative Amplifiers 9 2.1 RFID Transponder Technology . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Chipless RFID Transponders . . . . . . . . . . . . . . . . . 10 2.1.2 Semiconductor based RFID Transponders . . . . . . . . . . 11 2.1.2.1 Passive Transponders . . . . . . . . . . . . . . . . 11 2.1.2.2 Active Transponders . . . . . . . . . . . . . . . . . 13 2.2 RFID Interrogator Architectures . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interferometer based Interrogator . . . . . . . . . . . . . . . 19 2.2.2 Ultra-wideband Interrogator . . . . . . . . . . . . . . . . . . 20 2.2.3 Continuous Wave Interrogators . . . . . . . . . . . . . . . . 21 2.3 Coupling Dependent Range and Operating Frequencies . . . . . . . 25 2.4 RFID Ranging Techniques . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.0.1 Received Signal Strength based Ranging . . . . . 28 2.4.0.2 Phase based Ranging . . . . . . . . . . . . . . . . 30 2.4.0.3 Time based Ranging . . . . . . . . . . . . . . . . . 30 2.5 Architecture Selection for Proof of Concept Systems . . . . . . . . 32 2.6 Superregenerative Amplifier (SRA) . . . . . . . . . . . . . . . . . . 35 2.6.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . 42 2.6.3 Frequency Domain Characteristics . . . . . . . . . . . . . . 45 2.7 Semiconductor Technologies for RFIC Design . . . . . . . . . . . . 48 2.7.1 Silicon Germanium BiCMOS . . . . . . . . . . . . . . . . . 48 2.7.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . 48 3 24GHz Superregenerative Transponder based Identification and Rang- ing System 51 3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 SRT Identification and Ranging . . . . . . . . . . . . . . . . 51 3.1.2 Power Link Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Non-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.4 SRA Quench Frequency Shift Keying for data transfer . . . 61 3.1.5 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Low Power Direct Antenna Drive CMOS SRA IC . . . . . . 66 3.2.1.1 Circuit analysis and design . . . . . . . . . . . . . 66 3.2.1.2 Characterization . . . . . . . . . . . . . . . . . . . 69 3.2.2 Direct Antenna Drive SiGe SRA ICs . . . . . . . . . . . . . 71 3.2.2.1 Stacked Transistor Cross-coupled Quenchable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2.1.1 Resonator . . . . . . . . . . . . . . . . . . 72 3.2.2.1.2 Output Network . . . . . . . . . . . . . . 75 3.2.2.1.3 Stacked Transistor Cross-coupled Pair and Loop Gain . . . . . . . . . . . . . . . . . 77 3.2.2.2 Quench Waveform Design . . . . . . . . . . . . . . 85 3.2.2.3 Characterization . . . . . . . . . . . . . . . . . . . 89 3.2.3 Antenna Diversity SiGe SRA IC with Integrated Quench Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3.1 Circuit Analysis and Design . . . . . . . . . . . . 91 3.2.3.1.1 Crosscoupled Pair and Sampling Current 94 3.2.3.1.2 Common Base Input Stage . . . . . . . . 95 3.2.3.1.3 Cascode Output Stage . . . . . . . . . . . 96 3.2.3.1.4 Quench Pulse Shaping Circuit . . . . . . 96 3.2.3.1.5 Power Gain . . . . . . . . . . . . . . . . . 99 3.2.3.2 Characterization . . . . . . . . . . . . . . . . . . . 102 3.2.4 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 106 3.3.1 Superregenerative Transponders . . . . . . . . . . . . . . . 106 3.3.1.1 Bandwidth Enhanced Microstrip Patch Antennas 108 3.3.2 FMCW Radar Interrogator . . . . . . . . . . . . . . . . . . 114 3.3.3 Chirp Z-transform Based Data Analysis . . . . . . . . . . . 116 4 60GHz Single Antenna RFID Interrogator based Identification System 121 4.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1 Quasi-circulator ICs . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1.1 Transmission Lines based Quasi-Circulator IC . . 126 4.2.1.2 Lumped Elements WPD based Quasi-Circulator . 130 4.2.1.3 Characterization . . . . . . . . . . . . . . . . . . . 134 4.2.1.4 Knowledge Gained . . . . . . . . . . . . . . . . . . 135 4.2.2 Folded Switching Stage Downconversion Mixer IC . . . . . 138 4.2.2.1 FSSDM Circuit Design . . . . . . . . . . . . . . . 138 4.2.2.2 Cascode Transconductance Stage . . . . . . . . . . 138 4.2.2.3 Folded Switching Stage with LC DC Feed . . . . . 142 4.2.2.4 LO Balun . . . . . . . . . . . . . . . . . . . . . . . 145 4.2.2.5 Backgate Tunable IF Stage and Offset Correction 146 4.2.2.6 Voltage Conversion Gain . . . . . . . . . . . . . . 147 4.2.2.7 Characterization . . . . . . . . . . . . . . . . . . . 150 4.2.2.8 Knowledge Gained . . . . . . . . . . . . . . . . . . 151 4.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 154 5 Experimental Tests 157 5.1 24GHz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 Ranging Experiments . . . . . . . . . . . . . . . . . . . . . 157 5.1.2 Roll Invariance Experiments . . . . . . . . . . . . . . . . . . 158 5.1.3 Joint Ranging and Data Transfer Experiments . . . . . . . 158 5.2 60GHz System Detection Experiments . . . . . . . . . . . . . . . . 165 6 Summary and Future Work 167 Appendices 171 A Derivation of Parameters for CB Amplifier with Base Feedback Capac- itance 173 B Definitions 177 C 24GHz Experiment Setups 179 D 60 GHz Experiment Setups 183 References 185 List of Original Publications 203 List of Abbreviations 207 List of Symbols 213 List of Figures 215 List of Tables 223 Curriculum Vitae 22

    Active Reconfigurable Intelligent Surface Aided Wireless Communications

    Full text link
    Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. {However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver.} An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget

    Nanoscale Single-Photon Detectors

    Get PDF
    Photodetectors are universal sensors employed in telecommunication technologies, telescopes for astronomy, optical imaging, environmental monitoring, and spectroscopy. The Avalanche Photodiode (APD) is widely used in these areas due to its CMOS integration and high sensitivities in linear operation. Demand for higher sensitivity detectors has steadily increased as technology has improved, with many fields requiring low light and single photon detection levels, such as quantum communications. APDs can achieve single photon sensitivities. However they require very high bias (100 -300 V) to operate. In lab environments and special use equipment superconducting single photon nanowire detectors have been employed for their high detection efficiencies, though their cryogenic cooling makes them bulky and inconvenient. A new CMOS compatible detector based on the cycling excitation process (CEP) has demonstrated improved performance from APDs with 30 dB of photocurrent gain and excess noise factors (ENF) of 2 at room temperature operations. Fabrication process flows are developed and employed to create CEP detectors that demonstrate a responsivity greater than 1 in linear operation at 14 V operating bias and gain equivalent to previous works in both DC and AC operation. Low light and single photon signals suffer disproportionately from optical losses, where losses from reflected light, unabsorbed light, and non-ideal absorption make up a significant proportion of detection events. Solar cell technology has developed several approaches to achieve high optical efficiencies, such as antireflection coatings, photonic crystals (PC) and plasmonics. PCs have high flexibility in their design parameters and are easily configurable to desired wavelengths, making them an appealing solution. In this work, we propose and simulate different photonic crystal (PC) structures to enhance the optical efficiency of CEP detectors and develop fabrication process flows to realise them

    Sensores passivos alimentados por transmissão de energia sem fios para aplicações de Internet das coisas

    Get PDF
    Nowadays, the Wireless Sensor Networks (WSNs) depend on the battery duration of the sensors and there is a renewed interest in creating a passive sensor network scheme in the area of Internet of Things (IoT) and space oriented WSN systems. The challenges for the future of radio communications have a twofold evolution, one being the low power consumption and, another, the adaptability and intelligent use of the available resources. Specially designed radios should be used to reduce power consumption, and adapt to the environment in a smart and e cient way. This thesis will focus on the development of passive sensors based on low power communication (backscatter) with Wireless Power Transfer (WPT) capabilities used in IoT applications. In that sense, several high order modulations for the communication will be explored and proposed in order to increase the data rate. Moreover, the sensors need to be small and cost e ective in order to be embedded in other technologies or devices. Consequently, the RF front-end of the sensors will be designed and implemented in Monolithic Microwave Integrated Circuit (MMIC).Atualmente, as redes de sensores sem fios dependem da duração da bateria e,deste modo, existe um interesse renovado em criar um esquema de rede de sensores passivos na área de internet das coisas e sistemas de redes de sensores sem fios relacionados com o espaço. Os desafios do futuro das comunicações de rádio têm uma dupla evolução, sendo um o baixo consumo de energia e, outro, a adaptação e o uso inteligente dos recursos disponíveis. Rádios diferentes dos convencionais devem ser usados para reduzir o consumo de energia e devem adaptar-se ao ambiente de forma inteligente e eficiente, de modo a que este use a menor quantidade de energia possível para estabelecer a comunicação. Esta tese incide sobre o desenvolvimento de sensores passivos baseados em comunicação de baixo consumo energético (backscatter) com recurso a transmissão de energia sem fios de modo a que possam ser usados em diferentes aplicações inseridas na internet das coisas. Nesse sentido, várias modulações de alta ordem para a comunicação backscatter serão exploradas e propostas com o objectivo de aumentar a taxa de transmissão de dados. Além disso, os sensores precisam de ser reduzidos em tamanho e económicos de modo a serem incorporados em outras tecnologias ou dispositivos. Consequentemente, o front-end de rádio frequência dos sensores será projetado e implementado em circuito integrado de microondas monolítico.Programa Doutoral em Engenharia Eletrotécnic

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Advanced Microwave Circuits and Systems

    Get PDF
    corecore