943 research outputs found

    Automated 3D scene reconstruction from open geospatial data sources: airborne laser scanning and a 2D topographic database

    Get PDF
    Open geospatial data sources provide opportunities for low cost 3D scene reconstruction. In this study, based on a sparse airborne laser scanning (ALS) point cloud (0.8 points/m2) obtained from open source databases, a building reconstruction pipeline for CAD building models was developed. The pipeline includes voxel-based roof patch segmentation, extraction of the key-points representing the roof patch outline, step edge identification and adjustment, and CAD building model generation. The advantages of our method lie in generating CAD building models without the step of enforcing the edges to be parallel or building regularization. Furthermore, although it has been challenging to use sparse datasets for 3D building reconstruction, our result demonstrates the great potential in such applications. In this paper, we also investigated the applicability of open geospatial datasets for 3D road detection and reconstruction. Road central lines were acquired from an open source 2D topographic database. ALS data were utilized to obtain the height and width of the road. A constrained search method (CSM) was developed for road width detection. The CSM method was conducted by splitting a given road into patches according to height and direction criteria. The road edges were detected patch by patch. The road width was determined by the average distance from the edge points to the central line. As a result, 3D roads were reconstructed from ALS and a topographic database

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    Approximating Nearest Neighbor Distances

    Full text link
    Several researchers proposed using non-Euclidean metrics on point sets in Euclidean space for clustering noisy data. Almost always, a distance function is desired that recognizes the closeness of the points in the same cluster, even if the Euclidean cluster diameter is large. Therefore, it is preferred to assign smaller costs to the paths that stay close to the input points. In this paper, we consider the most natural metric with this property, which we call the nearest neighbor metric. Given a point set P and a path γ\gamma, our metric charges each point of γ\gamma with its distance to P. The total charge along γ\gamma determines its nearest neighbor length, which is formally defined as the integral of the distance to the input points along the curve. We describe a (3+ε)(3+\varepsilon)-approximation algorithm and a (1+ε)(1+\varepsilon)-approximation algorithm to compute the nearest neighbor metric. Both approximation algorithms work in near-linear time. The former uses shortest paths on a sparse graph using only the input points. The latter uses a sparse sample of the ambient space, to find good approximate geodesic paths.Comment: corrected author nam

    Automatic mesh representation of urban environments

    Get PDF
    A robust watertight mesh generation framework for urban cityscape and waterscape is proposed. The framework, consisting of a set of algorithms implemented in MATLAB, uses geospatial data available from OpenStreetMap and United States Geological Survey repositories, and incorporates Triangle - a popular two-dimensional Delaunay triangulation software - to develop the mesh. For the cityscape component, the facades of the buildings are meshed as structured triangular grids while the roofs and terrains are meshed as unstructured triangular grids using Triangle. For the waterscape component, quadrilateral cells are created based on the requirements of Environmental Fluids Dynamics Code (EFDC) model – a popular modeling platform for environmental fluid flow analysis. The resulting mesh generated is watertight with little human intervention and can serve as a significant preprocessing tool in environmental computational fluid dynamics. Although, there are a few existing methodologies in the literature, most are limited in capacity and are difficult to implement

    PlaneSLAM: Plane-based LiDAR SLAM for Motion Planning in Structured 3D Environments

    Full text link
    LiDAR sensors are a powerful tool for robot simultaneous localization and mapping (SLAM) in unknown environments, but the raw point clouds they produce are dense, computationally expensive to store, and unsuited for direct use by downstream autonomy tasks, such as motion planning. For integration with motion planning, it is desirable for SLAM pipelines to generate lightweight geometric map representations. Such representations are also particularly well-suited for man-made environments, which can often be viewed as a so-called "Manhattan world" built on a Cartesian grid. In this work we present a 3D LiDAR SLAM algorithm for Manhattan world environments which extracts planar features from point clouds to achieve lightweight, real-time localization and mapping. Our approach generates plane-based maps which occupy significantly less memory than their point cloud equivalents, and are suited towards fast collision checking for motion planning. By leveraging the Manhattan world assumption, we target extraction of orthogonal planes to generate maps which are more structured and organized than those of existing plane-based LiDAR SLAM approaches. We demonstrate our approach in the high-fidelity AirSim simulator and in real-world experiments with a ground rover equipped with a Velodyne LiDAR. For both cases, we are able to generate high quality maps and trajectory estimates at a rate matching the sensor rate of 10 Hz

    From Point Cloud to Textured Model, the Zamani Laser Scanning Pipeline in Heritage Documentation

    Get PDF
    The paper describes the stages of the laser scanning pipeline from data acquisition to the final 3D computer model based on experiences gained during the ongoing creation of data for the African Cultural Heritage Sites and Landscapes database. The various processes are briefly discussed and challenges are highlighted which need to be addressed to develop the full potential of laser scanning. Experiences with fieldwork, scan registration, hole-filling, data cleaning, modelling and texturing are reported. The potential strengths and weaknesses of the emerging tool of “Structure from Motion” are briefly explored for their potential use in combination with laser scanning

    From point cloud to textured model the Zamani laser scanning pipeline in heritage documentation

    Get PDF
    The paper describes the stages of the laser scanning pipeline from data acquisition to the final 3D computer model based on experiences gained during the ongoing creation of data for the African Cultural Heritage Sites and Landscapes database. The various processes are briefly discussed and challenges are highlighted which need to be addressed to develop the full potential of laser scanning. Experiences with fieldwork, scan registration, hole-filling, data cleaning, modelling and texturing are reported. The potential strengths and weaknesses of the emerging tool of “Structure from Motion” are briefly explored for their potential use in combination with laser scanning

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods
    • …
    corecore