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ABSTRACT 

 

 

A robust watertight mesh generation framework for urban cityscape and waterscape is 

proposed. The framework, consisting of a set of algorithms implemented in MATLAB, uses 

geospatial data available from OpenStreetMap and United States Geological Survey repositories, 

and incorporates Triangle - a popular two-dimensional Delaunay triangulation software - to 

develop the mesh. For the cityscape component, the facades of the buildings are meshed as 

structured triangular grids while the roofs and terrains are meshed as unstructured triangular 

grids using Triangle. For the waterscape component, quadrilateral cells are created based on the 

requirements of Environmental Fluids Dynamics Code (EFDC) model – a popular modeling 

platform for environmental fluid flow analysis. The resulting mesh generated is watertight with 

little human intervention and can serve as a significant preprocessing tool in environmental 

computational fluid dynamics. Although, there are a few existing methodologies in the literature, 

most are limited in capacity and are difficult to implement.  

 

Keywords: Grid (or mesh) generation, Cityscape, Waterscape, OpenStreetMap 
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CHAPTER I 

 

INTRODUCTION 

 

 

For decades, numerical simulations have been used to solve complex problems in many 

different fields including engineering, medicine, physical sciences, earth sciences, life sciences 

as well as urban physics, by solving equations that represent the physical processes. In urban 

physics – the science and engineering of physical processes in urban areas, although there has 

been growing urbanization and modernization which has, in turn, constantly created many 

complex challenges for scientists and researchers to analyze, it has equally been possible to 

simulate and understand these complex problems with the use of various computational methods, 

including numerical simulations. Numerical simulations constitute one and, in fact, most 

powerful, of three major approaches of tackling problems in urban physics, with the other two 

approaches including field measurements and wind-tunnel measurements (Blocken, 2015).  

Numerical simulations or modeling can provide detailed information on the essential physical 

variables but careful consideration is required in the geometrical implementation of the model, 

mesh generation, solution techniques and interpretation of the results (Blocken, 2015). 

Mesh (or grid) generation is an integral part and, in fact, the first process of numerical 

simulations. A mesh is a discretization of a geometry into small, and simple, shapes such as 

triangles and quadrilaterals for two dimensions, or tetrahedra and hexahedra in three dimensions 

(Bern & Plassmann, 1997). It can also be defined as a preprocessing tool on which different 

physical continuous quantities are described by discrete functions for approximation of 
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differential equations using algebraic relations for discrete values that are then analyzed 

numerically (Liseikin, 2009). As an illustration, Figure 1.1 depicts a physical geometry of a 

simple bar and the corresponding mesh representation. 

 

Figure 1.1 A simple bar geometry and its mesh form (drawn using ABAQUS) 

 

Meshes (or grids) are needed because the mathematical models for physical problems 

such as finite element method, finite volume method and finite difference method actually solve 

the variables at the discrete nodes and/or cells making up the mesh (LearnCAx, "n.d."). 

Moreover, the efficiency of any numerical solution depends on the quality and quantity of the 

mesh (Liseikin, 2009).  While the quality of mesh, measured by shape and size of cells, impacts 

the overall accuracy of the analysis, the quantity of mesh, measured by number of mesh nodes, 

determines the overall computational cost (i.e. runtime and memory demand) which can easily 

become extremely high for complex geometries with very fine details (Kaijima, Bouffanais, 
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Willcox, & Naidu, 2013). Hence, a well-constructed mesh is one that uses appropriate shape in 

reasonable quantity to idealize the physical geometry.  

Furthermore, mesh generation is labor intensive (Kaijima et al., 2013) and can take 

considerable time of the entire simulation process. According to Kim (2014), the time required to 

generate efficiently high-resolution mesh for CFD  analysis of buildings considered in their study 

constituted significant part (approximately 80 percent) of the computational time for the entire 

modeling process. As such, it is desirable that the meshes are generated within considerable time 

since the runtime is usually a crucial factor for measuring the efficiency of simulations.  

 

1.1 Basic Concepts in Mesh Generation 

The following discussion of fundamental concepts related to mesh generation are based 

on the explanations in  (Liseikin, 2006, 2009, 2017) and is presented for understanding of this 

thesis. 

 

Grid Cells and Nodes 

Grid nodes are specified points of the meshed domain which connects the grid cells. A 

group of nodes (grid points) defines cells. Grid cells are collections of small standard 

dimensional volumes called control volumes that make up the mesh by covering the entire 

domain or surface without gaps or overlaps. In one dimension, the cell is a closed line or 

segment with boundaries consisting of two points called vertices. In two-dimension, the cell is a 

two-dimensional simply connected domain, usually in form of triangles or quadrilaterals, whose 

boundaries are divided into a finite number of one-dimensional cells called edges (e.g. three 

segments for triangular cells). In three-dimension, the cell is defined as a simply connected three-
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dimensional polyhedron (usually tetrahedrons or hexahedrons), whose boundary is divided into 

finite number of two-dimensional cells called faces (e.g. four triangular cells for tetrahedron and 

six for hexahedrons). Table 1.1 presents the cells in one, two and three dimensions. 

 

Table 1.1 Typical grid cells (Liseikin, 2017) 

Level Shape Straight Form Curved Form 

One-

Dimensional 

Line 

 

 

 

 

 

 

 

Two-

Dimensional 

 

 

Triangle 

 
 

 

 

Square 

(Quadrilateral) 

 
 

 

 

 

 

 

Three-

Dimensional 

 

 

 

 

 

 

Polyhedrons 

 

 

 

 

Cell Faces and Edges 

Cell faces are boundaries of a three-dimensional cell. Cell edges, on the other hand, are 

boundaries of two-dimensional cells or of cell faces of three-dimensional cells. 
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Figure 1.2 Illustration of grid terminology in (a) two-dimension, and (b) three-dimension (Fluent  

 Inc., 2003) 

 

Grid Sizes and Cell Sizes 

These are properties of grids that define the accuracy of the mesh. Grid size is indicated 

by the number of nodes, while cell size is defined as the maximum length value of the cell edges 

in all directions. It is desirable that the mesh generation process utilizes techniques that increase 

the number of nodes while reducing the edge lengths in such a way that they approach zero as 

the number of grids approaches infinity. In fact, small cells are desired to achieve accurate 

approximation of the equations and to study the convergence of numerical codes. 

 

Grid Consistency with Geometry 

This is a measure of the extent of compatibility of the mesh with the geometry of the 

physical domain. The accuracy of the numerical solution of partial differential equation as well 

as of the interpolation of a discrete function is greatly affected by the consistency of mesh with 
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geometry. As such, the nodes must approximate the original geometry appropriately by ensuring 

that the distance between any point of the domain and the nearest grid node is not too large. 

Also, the grid should be boundary-fitting (or boundary conforming) by ensuring that there is 

enough number of nodes along the boundary so that the edges (in two dimensional cells) and 

faces (in three dimensional cells) formed by the nodes model the boundary of the physical 

domain efficiently to enable easily and correct application of boundary conditions.  

 

Grid Consistency with Solution 

This is a measure of the extent to which the mesh representation of the geometry yields 

accurate solution. In fact, the arrangement of the nodes and form of the cells should be dependent 

on the features of the physical solution. Usually, the nodes are arranged in some preferred and 

consistent directions such as vector fields. In cases where a nonuniform variation of the solution 

exist, clustering of the nodes in regions of high gradients may be required such that these areas 

have finer resolution. Furthermore, such clustering may also be required because uniform 

refinement of the entire domain may have significant computational cost (i.e. runtime and disk 

space) for complex multidimensional problems. This is the case for problems whose solutions 

have very rapid variations of localized regions in which without grid clustering in such localized 

regions, there may be loss of significant features and hence a compromise to the accuracy of the 

solution. 

 

Grid Organization 

Grid organization defines the arrangement of the nodes and cells of grids and it facilitates 

the procedure for formulating and solving the algebraic equations substituted for the differential 
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equations. Organization of grids should identify neighboring points and cells. Depending on the 

local organization of grid nodes, they can be classified fundamentally as structured and 

unstructured grids. Further subdivisions to these two classes, which combine features of both, are 

block-structure, overset, and hybrid. 

 

Structured and Unstructured Grids 

A grid is considered structured (Figure 1.3a) if the local organization of the grid nodes 

and the form of the cells do not depend on their position but rather determined by a general rule, 

and the connectivity of the grid is implicitly taken into consideration. On the other hand, 

unstructured grid (Figure 1.3b) is one whose neighboring nodes, constituting the g rid, have 

varying connections from point to point and the connectivity of the grid is explicitly defined by a 

suitable data structuring procedure.  Unstructured grids are used in many applications, especially 

those involving very complex geometries, since they can better approximate the physical 

geometry than structured grids which lack the flexibility for complicated geometries. However, 

unstructured grids are relatively disadvantaged algorithmically because of more computational 

work involved creating them as well as data management problem in organizing and numbering 

the nodes, edges, faces and cells of the grid which also requires more cost (memory) to store the 

connectivity. 
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Figure 1.3 Mesh Types: (a) Structured, (b) Unstructured, and (c) Block-structured (Bern &  

 Plassmann, 1997) 

 

Hybrid, Block and Overset Grids 

These kinds of grids are formed by combining small structured meshes in varying 

arrangement thereby yielding unstructured grids. Block-structured or multi-block grids are 

formed by dividing the physical domain into subdomains, without holes or overlaps, which may 

be considered as the cells of a coarse unstructured grid but with each subdomain or block meshed 

as a structured grid. The resulting block-structured grid is regarded as locally structured at the 

level of each block, but globally unstructured as a collection of all blocks. This concept enables 

the use of different structured grids in different regions, thus allowing the most suitable grid 

configuration to be used in each region and providing more flexibility in complex geometries, 

especially for those involving heterogeneous or non-uniform physical problem, than ordinary 

structured grids would. Overset grids are like block-structured except that unlike in block-

structured, the blocks are made to overlap in overset grids thus simplifying the problem of 
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selection of the blocks covering the physical domain. Hybrid grids are developed through the 

combination of properties of both structured and unstructured grids for complex geometry by 

joining structured and unstructured grids in different regions without overlap. 

 

1.2 Problem Statement 

For Computational Fluids Dynamics (CFD) simulations, there are existing grid 

generation software and programming packages such as MESH2D and GMSH, and modelling 

software equipped with generation programs such as ANSYS and FLUENT. However, these 

programs are limited in extent, especially for works requiring multiple complex geometries to be 

meshed concurrently within limited time. In most cases, researchers are compelled to create 

mesh generation programs that best represent their simulation domains. For urban environmental 

simulations, creating meshes for the numerous complex geometries of the cityscape is a major 

challenge but very few methodologies exist in literature and even these few methodologies are 

often expensive due to the cost of acquiring needed data, time-consuming because of the time for 

sourcing the different data components for the geometry, painstaking due to difficulties in 

extracting details from such data especially because implementing the procedure often require 

high level of craftmanship by the user.  

 

1.3 Objectives of the Thesis 

The objective of this thesis is to develop programming framework for mesh 

representation of urban cityscape (i.e. a landscape of the hard features including buildings and 

land) and waterscape (i.e. a landscape with water as a major feature). The aim is to utilize 

existing mesh generation techniques and tools to develop algorithms that can be implemented in 
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programs such as MATLAB for automatically generating mesh representation of any arbitrary 

city- or water-scape using cheaply available resources (i.e. geospatial data) such that the meshes 

can then be used for relevant applications like computational environmental fluids dynamics 

analysis or any other applications where mesh representations of environmental geometric 

arrangements are desired.  

 

1.4 Motivation and Scope of the Thesis 

This thesis is the culminating output of the first part of a research at the Department of 

Civil Engineering which seeks to develop an optimization framework for energy-aware 

deployment of drones for civil applications. The underlying motivation for the thesis is the need 

for a watertight mesh representation of urban cityscape for CFD simulation of wind around 

buildings to establish regions of wakes such that can be used to develop an energy-optimized 

path planning framework for flying drones. Additionally, it became necessary to create mesh for 

waterscape for another research on hydrodynamic flood modeling in the City of Chattanooga. 

While the motivation for these researches is to develop simulation frameworks to solve urban 

fluid dynamics problems, the scope of this thesis is limited to the generation of meshes only and 

does not include details of the computational fluid dynamics analysis.  

 

1.5 Thesis Overview 

This thesis focuses on the generation of watertight mesh for urban environment fluid 

dynamics simulations. Chapter I presents research background, objectives and motivation, as 

well as brief discussions of basic concepts of mesh generation pertinent to this research. Chapter 

II presents the literature review of existing methodologies for mesh representation of urban 
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environments. Chapter III discusses the mesh generation programming framework developed for 

the thesis. In chapter IV, illustrations of the major procedures in the algorithms are first 

presented. Thereafter, outputs of the program when tested with OpenStreetMap cityscape data of 

a part of Nashville, Tennessee and waterscape data of a part of the Tennessee River near 

Chattanooga are presented. Then a brief discussion is presented on the applications of the 

program. Finally, in Chapter V, summary, challenges, as well as, conclusions from the thesis are 

discussed. 
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CHAPTER II  

 

LITERATURE REVIEW 

 

 

Representing urban geometries in the form of computational meshes is a very important 

part of numerical simulations such as computational fluid dynamics modeling for urban 

environment. However, different researchers tend to adopt mesh generation methodologies that 

suit their unique applications. For example, Pointwise Inc, a commercial mesh generation 

software company, asserts that the focus of their research and development of meshing software 

are customer purpose driven (Karman, Wyman, & Steinbrenner, 2017).  Regardless of the 

motivation and approach adopted, many developers of mesh generation framework for 

environmental simulations are often concerned with the determination of the most suitable data 

sources, as well as the features, that significantly affect the solution most. According to 

Gargallo-Peiró, Folch, and Roca (2016), computational meshes for urban flow simulations, for 

example, require idealized geometrical description of the domain of interest so as to reach an 

equilibrium between simplicity and realism. In other words, the geometric model should reflect 

the major aspects influencing the flow, such as streets, terrain, buildings, while removing smaller 

features, such as fire hydrants, that cannot be physically modeled (Gargallo-Peiró et al., 2016). 

Typically, cityscape model generation often depends on Geospatial Information System (GIS) 

data for building footprints, height and other relevant information as needed.  Furthermore, the 

resulting mesh developed from the model are required to be watertight, well defined around 

buildings, and composed of well-shaped elements (Gargallo-Peiró et al., 2016). By watertight, it 
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is inferred that the meshes should not have overlapping nodes such that would cause error in the 

simulations. 

In an attempt to develop a framework for urban flow mesh generation, Gargallo-Peiró et 

al. (2016) proposed a three-step methodology for representing urban geometries for unstructured 

mesh generation with data obtained from three sources including the city cadaster (i.e. an 

information system containing a record of land parcels including geometric description of land 

parcels and record of interest such as the ownership), a Digital Elevation Model (DEM) of the 

desired domain within the cadaster, and Light Detection and Ranging (LiDAR) of the domain 

defined by the cadaster. A method for generating idealized surface geometry of a city landscape 

for computational meshes was developed. Two main geometrical features were targeted namely: 

the city blocks and terrain (i.e. the spaces surrounded by streets on which buildings are situated). 

A two-dimensional mesh of the cadaster is first generated such that all elements are tagged 

according to street and block regions. Then, the terrain surface mesh is generated, using a Digital 

Elevation Model (DEM) of the city landscape and lastly, the block facades is extruded to the 

respective heights retrieved from the LiDAR data of the city. The resulting tetrahedral mesh of 

the urban geometry representation was used for non-viscous flow or transport simulations of the 

city of Barcelona in Spain. Figure 2.1 summarizes the procedure. This procedure is limited by 

the expensive cost of acquirng DEM and LiDAR information. 
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Figure 2.1 Main steps of the geometry definition and mesh generation process by Gargallo-Peiró  

 et al. (2016); (a) 2D Cadaster mesh (b) topography surface mesh conformal with the  

 cadaster blocks (c) geometry definition with topography and blocks d) final  

 tetrahedral mesh 

 

In another work, Van Hooff and Blocken (2010) proposed a CFD modelling approach for 

urban wind flow and indoor natural ventilation modelling using the Amsterdam Arena Stadium 

in Netherlands as a case study. The framework involves an automatic modelling of complex 

geometries with full control over grid quality and resolution while also providing a way to easily 

implement changes in the model geometry and grid for parametric studies such as the case study. 

The computational meshing utilized a unique procedure that efficiently generates the geometry 
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and mesh simultaneously thereby improving the quality of mesh in the vicinity near to the 

stadium which is considered highly essential for the simulations of urban wind flow and indoor 

natural ventilation. The mesh generation procedure consists of a series of extrusions which 

involves creation of the geometry and grid based on geometrical translations and rotations of a 

pre-meshed 2D cross-sections (Van Hooff & Blocken, 2010). Figure 2.2 shows a mesh 

representation generated by this procedure. The procedure may be labor intensive and requires 

high skilled understanding of geometric modeling and meshing techniques. 

 

 

Figure 2.2 Typical geometry and mesh representation by Van Hooff and Blocken (2010) 
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Coirier, Fricker, Furmanczyk, and Kim (2005) also developed meshes in their work 

involving the use of a computational fluid dynamics approach to investigate and model urban 

area transport and dispersion. Their work focused on modeling of wind fields, turbulence fields 

and dispersion of chemical biological radiological and nuclear substances in urban areas on the 

building to city blocks scale by solving the Reynolds-Average Navier-Stokes equations. The 

meshes were developed by adopting a specially crafted cityscape CFD volume mesh framework 

based on a commercially available mesh software called CFD-Micromesh. According to (Coirier 

et al., 2005), CFD-Micromesh is an automated program for building three-dimensional 

geometries and generating mesh from given layouts. By customizing the program and GIS data 

import, CFD volume meshes of cityscapes were created using a four-step framework. In this 

framework, the GIS data is first used to construct a voxel solid model whose resolution can be 

easily controlled by changing the voxel sizes. A voxel is a single data point on a regular grid 

within a three-dimensional space. Once the solid model is established, the boundaries across 

which voxel properties changes are projected onto a constant z plane in such a way that the 

boundaries are vectorized, hence yielding sets of polygons representing the projections. 

Thereafter, the vectorized model is tessellated (i.e. meshed) into sets of triangular and 

quadrilateral faces. And finally, the tessellated constant z plane is then extruded along z, yielding 

volume meshes in forms of prisms and hexahedra. Figure 2.3 presents the illustration of a given 

region as well as an overview of ground plane tessellation from their approach.  
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Figure 2.3 Illustration of selected region and overview of ground plane tessellation by Coirier et  

 al. (2005) with modeled region enclosed within the dashed lines while the solid closed  

 line encloses the resolved regions 

 

Exploring computational fluid dynamics for architectural design, Kaijima et al. (2013) 

identified mesh generation as one of two bottlenecks of their framework for indoor analysis of 

wind or airflow in buildings during the conceptual design phase. In this framework, a hybrid 

mesh (i.e. a combination of structured and unstructured mesh) generation technique was adopted 

to ensure acceptable level of accuracy while enabling the meshing of complicated shapes and 

fine geometries. The hybrid mesh adopted facilitated simple and reduced number of iterations of 

a single conceptual design with reduced mesh cells, and hence increasing efficiency in terms of 

accuracy and cost. The mesh was used for a bus-stop canopy case study and the results were 

satisfactory. However, it was hinted that, even though the hybrid mesh in the framework reduced 
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the number of nodes to approximately 4 percent of the original unstructured mesh, the meshing 

remained time-consuming to some extent. Figure 2.4 depicts the mesh generation procedure for 

mesh generation of inner and outer surrounding of a building. 

 

 

Figure 2.4 Hybrid mesh generated by Kaijima et al. (2013) 

 

In another study, Lafarge and Mallet (2012) developed a robust method for city 

modelling by reconstructing concurrently the buildings, trees and topologically complicated 

grounds from three-dimensional point cloud data. For the buildings, the approach involved a 

hybrid representation combining geometric three-dimensional primitives such as planes, 

cylinders, spheres or cones for the standard roof sections, and mesh-patches describing the 

irregular roof components. While the primitive geometries were represented by polyhedral 

structures obtained from a label map, the mesh-patches were created by triangulating the cells 

labelled as roof with a Z- component associated to the XY-center of the cells. A standard mesh 
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simplification algorithm by Garland and Heckbert (1997) was then used  to obtain more coarse 

and compact mesh representations of buildings and the facades were obtained as a vertical 

projection of the building contours on the ground. Figure 2.5 shows the simplification of the 

mesh patches of an irregular roof by Lafarge and Mallet (2012). 

 

 

Figure 2.5 Simplification of mesh patches on an irregular roof by Lafarge and Mallet (2012) 

 

For the ground, however, a unique meshing procedure was adopted such that the surface 

is continuous. A grid of 3D-points were created from spatial sub-sampling of the cells labeled as 

ground, and the mesh is simplified using the same algorithm (Garland & Heckbert, 1997) used 

for mesh-plates of the buildings and non-planar primitives (Lafarge & Mallet, 2012). Figure 2.6 

shows the complete object representation with ground meshing. 
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Figure 2.6 A typical object representation using mesh-patches by Lafarge and Mallet (2012). 

 

For hydrodynamic applications, mesh representations of water bodies are also significant 

for several modeling problems. The use of numerical modeling to solve the intricate 

hydrodynamic processes in water problem can provide very useful information such as 

description of circulation, water levels, velocity, temperature variations and stratification 

processes and their effects on the transport of pollutants and water quality within a water body 

(Cedillo, 2015). Examples of hydrodynamics models that has been used in recent times are 

CH3D-z, MIKE 3, Princeton Ocean Model (POM), HEC-RAS and EFDC (Cedillo, 2015). 

Environmental Fluid Dynamics Code (EFDC) model has remained popular amongst 

researchers and has featured in many different applications since its development in 1992 (Liu, 

2007). The EFDC model is a comprehensive three-dimensional tool, widely recognized 

simulation platform and a multi-task, highly integrated modular computational environmental 

fluid dynamics package which can be used for understanding and predicting the environmental 
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fluid flows with transportation and mixing associated dissolved or suspended materials, as well 

as for modeling pollutants and pathogenic organism transport from point and non-point sources 

(Cunanan & Salvacion, 2016; Wang et al., 2014). The model, originally developed at the 

Virginia Institute of Marine Science, comprises of an advanced three-dimensional surface water 

modeling system for hydrodynamic and reactive transport simulations of rivers, lakes, reservoirs, 

wetland systems, estuaries, and the coastal ocean (Cunanan & Salvacion, 2016; J. M. Hamrick & 

Mills, 2000). Although the model is an open source code in the public domain (Cedillo, 2015; 

Cunanan & Salvacion, 2016), it is used widely by universities, governmental agencies and 

engineering consultants within and outside the USA and is maintained and continuously 

developed by Tetra Tech Inc. with primary support from the United States Environmental 

Protection Agency (Cunanan & Salvacion, 2016; J. Hamrick, 2002). 

As with any numerical simulation solver, hydrodynamic model involves three stages 

including the pre-processing phase which includes development and organization of input data 

such as grids, processing phase where the main simulation occurs, and post-processing phase 

which basically involves visualization of the outputs of the simulation. Thus, the role of grid 

generation is also very crucial to the realization of accurate simulation of the problem.  

Creating and assessing a suitable grid generation program for EFDC model has been 

quite challenging. In fact, according to Tetra Tech Inc, the maintainer of EFDC, existing grid 

generation software generally requires a lots of user experience and artistry to support the 

mathematical grid generation program (Xiong, 2010). Moreover, existing tools can in certain 

cases be erroneous or even expensive for personal or non-commercial use.  

A popular grid generation software for Environmental Fluid Dynamics Code is GEFDC 

grid generation program. This program is simply a FORTRAN code which is developed and 
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capable of producing structured rectangular and curvilinear meshes (Alarcon, McAnally, & 

Pathak, 2012; Tetra Tech Inc, 2002) and it was originally designed by Tetra Tech Inc as the 

complementary grid generation tool for EFDC models. However, the GEFDC usually requires 

modification to suit the model and the success of this depends on the level of skills and 

experience of the user (Xiong, 2010). 

Another existing grid generation, the visual orthogonal grid generation (VOGG), involves 

a FORTRAN implementation of a novel physical domain grid generation algorithm, a Windows/ 

GIS based interface for creating necessary input files and displaying output results, and several 

utility programs (Xiong, 2010). It was developed as a component of the United States 

Environmental Protection Agency (US EPA) Region 4 Total Maximum Daily Load (TMDL) 

modeling toolbox and specifically supports curvilinear-orthogonal grid generation for the 

Environmental Fluid Dynamics Code (EFDC) (Xiong, 2010). But, a variety of ASCII text output 

files are created which readily allow grid information to be processed and reformatted for other 

hydrodynamic and transport models employing both orthogonal and non-orthogonal curvilinear 

grid formulations (Tetra Tech Inc, 2002). Although the VOGG is popularly known and adopted, 

it is considered unstable and errors occur often according to Xiong (2010) .  

Another grid generation software that exists, and in fact, has been a more dominantly 

used is the EFDC Explorer. Created by Dynamic Solutions LLC, the program has a user 

interface and a grid generation tool (Xiong, 2010) thus making it simple and easier for users to 

work with. However, this tool is a commercial software and may not always be affordable to 

non-commercial (i.e. industrial) users.  

Apart from developing computational grids for EFDC models, grids can generally be 

created for other models as necessary since other modeling platforms exist that are different from 
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EFDC. Schubert, Sanders, Smith, and Wright (2008) developed unstructured mesh generation 

framework for hydrodynamic modeling for urban flooding. Their methodology focuses on 

strategies for effective integration of geospatial data for unstructured mesh generation, building 

representation and flow resistance parameterization. Mesh generation was done using Triangle to 

generate Delaunay triangle meshes with inputs to Triangle including a polygon defining the outer 

boundary of the domain being considered, additional polygons defining interior boundaries 

called mesh holes, polylines that fix break-lines in the mesh, and points that fix vertices. In the 

development of the meshes, three data sources were utilized. These include Light Detection and 

Ranging (LiDAR) terrain height surveys, aerial imagery, and vector datasets which includes the 

building footprint polygons. Three unique unstructured meshing techniques were developed, 

namely building-hole method (BH), building-block method (BB), and no-building method (NB), 

all according to the authors can be viewed as three options for urban flooding with different pre-

processing demands. In the building-hole method, the first step is the outer boundary definition, 

from LiDAR data, that follows the course of the river such that is extended beyond the 

floodplain, to avoid interference between boundary and actual river flow. Thereafter, the interior 

hole definition is done by extracting location and shape of buildings from Digital Surface Models 

(DSMs) or aerial photography and converted to vector data structures or polygons using GIS 

software or platform. With the interior and exterior boundary defined, the data are used as input 

by Triangle to generate the required meshes. Finally, a Digital Terrain Model (DTM) is used to 

interpolate terrain heights at mesh nodes or vertices. For building-block (BB) method, only 

exterior boundary is considered as input to Triangle but the building footprints and heights (or 

blocks) are burnt into the Digital Terrain Models (DTM) prior to mesh interpolation. Similarly, 

in no-building (NB) method, only the exterior boundary data is considered for mesh generation 
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while a bare-earth Digital Terrain Model (DTM)is considered for mesh interpolation. The BH 

method is mostly used while NB is used least. To complement the capabilities of Triangle for 

mesh generation, building shape data is output to a CAD Digital Exchange Format (DXF) and a 

utility is created to convert the created ASCII DXF file into ASCII format required by Triangle. 

Similarly, in cases where vector datasets of the buildings are not available, Digital Surface 

Models can be processed to represent building footprints followed by preparation a similar 

conversion utility for input to Triangle. Figure 2.7 depicts the meshing framework described by 

the authors. 

 

 

Figure 2.7 Meshes based on building-hole (BH) and building-block (BB) approaches by 

(Schubert et al., 2008) 
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CHAPTER III 

 

METHODOLOGY 

 

 

In this chapter, the programming framework of grid generation for urban environment is 

discussed. This framework consists of a set of algorithms, presented in Appendix A and B, 

implemented in MATLAB, that can generate meshes for any given cityscape and waterscape. 

The cityscape features considered are the buildings and terrain occupying a desired domain. 

However, for the waterscape, a land area with water as the most obvious feature is inferred. 

The procedure involves, first, the acquisition of required geospatial data from 

OpenStreetMap and United State Geological Survey repository. Then, the data is parsed from its 

raw form into a “.txt” format which is compatible with the meshing program. Once the data is 

processed, it is extracted into the program and the mesh is created for the domain defined by the 

points in the data. This program is designed to be economical using tools including MATLAB, 

Triangle, and OpenStreetMap, all of which are readily available to users of the program. 

 

3.1 Geospatial Data 

The role of geospatial data for any urban study or simulation cannot be over-emphasized. 

As it can be deduced from chapter two, most existing mesh generation approaches for the urban 

environment depend on geospatial data (such as latitude and longitude) for accurate geometric 

representation of the urban features (mostly buildings) considered. Although, there are several 

sources from which the required geospatial data could be obtained, in this thesis, an online user-
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generated open-source repository of geospatial data known as OpenStreetMap (OSM) is adopted 

as the basic source of data and it is complemented by the United States Geological Survey 

topographic repository, both of which are free to users. Specifically, the OpenStreetMap, is an 

open-source repository available online at the official OSM website. Using OSM, the data for 

any part of a city, state or country can easily be downloaded from the website by either manually 

selecting the region or entering the coordinates, if known. 

OpenStreetMap (OSM) database is used here due to its growing popularity amongst 

researchers. It is also rapidly evolving and has attained significant feats in the last decade as it 

has featured in many interesting works in literature. Lastly, using OSM, as in this thesis, can help 

eliminate difficulties in data accessibility and the expensive cost of LiDAR for individual usage 

which is a major source of the information for geometry and height of the buildings as it exists in 

literature. It is worth mentioning that, although OSM is used in this thesis, any other repository 

can be utilized provided the required information, especially height, can be obtained and 

formatted accordingly.  

 

3.2 Triangle 

Triangle is a C-program developed by Shewchuk (1996). It is used for two-dimensional 

mesh generation and construction of Delaunay triangulations, constrained Delaunay 

triangulations, and Voronoi diagrams (Shewchuk, 1996). The program is fast, robust, efficient in 

memory use and can create quality meshes with exact triangulations. It also affords the user the 

chance to specify constraints on angles and areas of triangles to improve robustness (Shewchuk, 

1996). Just like the OpenStreetMap, Triangle is freely available for downloading by users.  
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Triangle is used in this project as an embedded program for generating unstructured 

triangular grids as a part of the meshing algorithm since it offers great meshing advantage for 

geometries with hollow sections. Specifically, Triangle is used for executing the procedure in 

algorithm 8, algorithm 9, algorithm 10, algorithm 18 and algorithm 19. Triangle’s source code is 

first downloaded, compiled and run in the program (see algorithm 12). The input file to Triangle 

is the coordinates and edge connectivity of the plane to be meshed with the centroid of each 

building or segment as holes. This input file is an “s.poly” file format which is created by 

algorithm 13. 

 

3.3 The Meshing Framework for Cityscape  

The mesh generation framework for urban cityscape is depicted in Figure 3.1. The 

process first involves downloading the geospatial data of the city. The required data, again, 

include the heights of the buildings, the footprints’ coordinates and the corresponding elevations 

at the terrain level. This raw data is extracted into a file holder in the program. Thereafter, the 

mesh is obtained as follows. Using Triangle, unstructured triangular grids are developed for the 

terrain (i.e. the spaces between the buildings) since it is difficult to create structured grids for a 

plane with several holes such as the case here. Then, the buildings are meshed as structured 

triangular grids. Lastly, by assuming a flat plane, the roofs are meshed as triangular unstructured 

grids. Flat roofs are assumed for simplicity in this thesis. Although not very important, an 

imaginary envelope is created and meshed to enclose the active cells (cells made up of buildings 

and roofs, and the terrains between them). This envelope is defined in such a way that it is wider 

than the total area covered by the buildings and higher than all the buildings. Once these grids 

are developed independently, they are stacked as a single unit and this single grid structure is 
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inspected for duplicate nodes which are eventually filtered to keep the structure watertight. The 

resulting watertight structure is output as an input file for the numerical simulation. 

 

 

Figure 3.1 Flowchart of the cityscape mesh representation 

 

Get Geospatial Data 

In this stage, both the OSM and USGS data are obtained using an existing C-

programming algorithm developed by Dr Arash Ghasemi at the University of Tennessee at 
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Chattanooga. The OSM component of the geospatial data for a domain, such as city, of interest is 

downloaded from the website by either manually selecting the region or entering the coordinates 

of the boundary points, if known, using the panel shown in Figure 3.2. The data in its raw “.xml” 

format is parsed through the C-program and it is converted to a “.txt” format which can then be 

input into the mesh generation program. The terrain elevation is also downloaded from the 

USGS website and parsed in a similar way into the C-program. 

 

 

Figure 3.2 Screenshot of the data export panel on the OpenStreetMap (OSM) website. 

 

Extract Building Data and Terrain Elevation 

The structure of the new “.txt” format is such that can enable the information to be 

extracted easily by the mesh generation program. The first line of the “.txt” file obtained in the 

previous stage contains the total number of buildings, Nbld, within the domain. By looping over 
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the number of buildings, the heights, Hibld, of each building, the number of points, Nnodes, 

constituting the footprints and the coordinates, x, y of those points are retrieved in this order. 

With the x, y coordinates known, the points are simultaneously searched within the USGS data 

and the corresponding terrain elevation, z, is obtained. Note that, just like there is an iteration 

over the number of buildings, the number of points constituting footprints are iterated over to 

obtain the coordinates. This enables the program to determine the beginning of the data for new 

building. 

 

 

Figure 3.3 Typical “.txt” file format of parsed OSM data 

 

Figure 3.3 typifies a simple input data structure parsed from raw file to text format. In 

this structure, the number of buildings to be represented in mesh form is two. The first building 

has a height of 3 units, and its footprint has 8 nodes or points. The coordinates (latitude, 

longitude, and terrain elevation) of these points are the three-column spacebar-delimiting nine-
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line data starting after the line containing the number of nodes (i.e.8) noting that the first node is 

repeated on the ninth line to form a closed loop for the building. The second building has a 

height of 5 units, 8 nodes on footprint and coordinates as described for the first building. This 

procedure is achieved in the program by algorithm 3. 

 

Mesh Terrain 

In this process, unstructured triangular grids are developed to fill the spaces between the 

polygons defined by the building footprints i.e. the terrain. This is achieved as part of algorithm 

2 by calling algorithm 9 which has Triangle embedded. In this algorithm, the coordinates and 

connectivities of the building footprints as well as the centroids of the polygons formed by the 

footprints (i.e. holes) serve as input to Triangle. The resulting grids from this process, regarded 

as the active cells, are assigned “tags=1” value.  

 

Mesh Buildings and Roofs 

In this process, the buildings are first meshed using algorithm 8 as structured triangular 

grids defined using a regular algebraic method for grid generation. The procedure simply utilizes 

the buildings’ footprint coordinates and the height of the buildings as obtained from the 

geospatial database. Using algorithm 5, the footprints are first extruded from base, z, to the 

height, H, of the building by gradually stepping level-by- level at a size defined by algorithm 6, 

with the structured triangular grids generated at each step. Algorithm 6 is similar to the extrusion 

technique adopted by Ghasemi, Taylor, and Newman (2016). 

At the top of the meshed building surfaces is the roof surface. For simplicity, flat roof 

planes are considered in the project. Using the same footprint coordinates for the building, but 
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with elevation replaced with the height of the building, unstructured triangular grids are 

developed to fill the roof surface with algorithm 8. 

The resulting grids from this process, regarded as the active cells, are assigned “tags=1” 

value and stored with the node coordinates and connectivity defined as fields in the grid 

structure. 

 

Remove Duplicate Grid Nodes 

This phase is required to check the overall grid structure and delete overlapping nodes. 

Two or more nodes with different numbers are said to be overlapping if they share the same 

coordinates. These overlapping nodes may not be captured in the visualization phase but would 

have an impact on the simulation process.  When overlapping nodes occur, the mesh is said to be 

non-watertight. In this program, there is a tendency for duplicate nodes to occur at the 

intersection of the terrain and the base of the building, as well as the intersection of the roof and 

the top of the building. To eliminate this scenario, the meshing procedure includes a subroutine 

that inspects the coordinates and filters overlapping nodes accordingly. This is achieved using 

algorithm 11. 

 

Write Grid Output 

Just like there is an input file to the program, the output file is required to store the 

generated grid structure which can then be utilized by the numerical simulation solver. In the 

program, the grid structure is written as a Tecplot file format which has a “.dat” file extension. 

The Tecplot format is adopted because it can be visualized in VisIt – a data visualization 

software – which is the preferred choice in our research group.  
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3.4 The Meshing Framework for Waterscape  

The meshing procedure for the waterscape is somewhat like that of the cityscape, except 

that a few changes are made in the algorithms to accommodate for the structure of the output. 

The procedure proposed here would provide a cheaper alternative to the available market-scale 

grid generation programs for Environmental Fluids Dynamics Code (EFDC) discussed in 

Chapter 2. As such, the program is designed to generate quadrilateral cells, as required for the 

EFDC model, instead of the triangular cells used for the cityscape mesh. This is the first and 

basic difference between the two components of the framework.  

Just like the cityscape component, the GIS raw data is downloaded from OpenStreetMap 

or any available GIS repository and the coordinates of the segments (wet and dry areas) within 

the waterscape are extracted into a file holder in a manner as in the cityscape component. The 

wet area is first meshed with triangular grids using Triangle. Thereafter, a large square envelope, 

defined as an imaginary land area over the waterscape being meshed, is created and filled with 

quadrilateral cells. The nodes making up these cells are checked if they exist inside the triangular 

grids to establish that the points fall within a wet area, and a tag of “1” is assigned to the nodes, 

or “0” if otherwise. Depending on the structure of these nodal tags, the cells are assigned values 

0, 1, 2, 3, 4, 5 and 9 which are required for the EFDC model. These EFDC tags, and other 

properties of the cells including cell indices (i, j), coordinates of cell corner points, coordinate of 

midpoint of the cell, and length of cell in both directions defined as (dx, dy) are output as a “.dat” 

file ready to use in EFDC model. Figure 3.4 presents a simple flowchart of the procedure. 
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Figure 3.4 Flowchart of the waterscape mesh representation 

 

Get GIS Data and Extract Coordinates 

This process is implemented in a similar manner as in the cityscape component. The data 

downloaded here, however, are simply the coordinates of points defining boundary of selected 

waterscape. Also, the number of buildings Nbld is replaced with the number of segments Nseg 

(which defines the number of wet and dry area divided into different parts within the waterscape 

domain considered) while the heights of buildings are not applicable here. The procedure for 
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reading the file remains the same with slight modification in the algorithm to take care of the 

changes in the data. This procedure is achieved using algorithm 16. 

 

Get Triangular Grids 

Obtaining triangular grids here is also the same as with the cityscape procedure. Since the 

grids needed for EFDC are quadrilateral, the triangle grids here are only needed to serve as basis 

for establishing cell nodes that fall within the wet area. The procedure is achieved in algorithm 

15 using algorithm 19. 

 

Create Quadrilateral Cells  

This process defines an imaginary square area enclosing the original area defined by the 

triangular grid. This big square is divided into a nx x ny array of cells and the procedure is 

achieved as part of algorithm 15. 

 

Determine Cell Properties and Assign Tags 

In this phase, the properties of the nx x ny cells are determined in a structured grid 

pattern. These values include: cell indices, coordinates of cell vertices, coordinate of centroids 

and cell sizes (dx, dy). Once the points are determined, the points are checked whether they fall 

inside the wet area, now represented with unstructured triangular grid, or dry area with a value of 

1 or 0 assigned respectively to the nodes using algorithm 17. The values are then used to 

determine the tags of the cell. With algorithm 20, tags are assigned to the cells according to the 

definitions for EFDC model as shown in Figure 3.5 and Figure 3.6. 
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Figure 3.5 Description of cell tags foe EFDC model 
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Figure 3.6 Typical mesh of quadrilateral cells with EFDC tags 

 

Write Grid Output 

Once the cell values have been determined, they are output in a “.dat” file. This process 

is the same as that for cityscape meshing procedure. 

 

3.5 Applications of the Program 

In order to demonstrate the significance, and efficiency, of this mesh generator, the grid 

structures generated from both cityscape and waterscape mesh generation programs can be used 

as input to computational fluid dynamics solvers. Current research exercises within the Civil 
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Engineering Department at the University of Tennessee - Chattanooga are utilizing this program. 

The cityscape meshing procedure has been used to mesh a part of Nashville, Tennessee as input 

to a computational fluid dynamic solver to establish the wind flow pattern around a flying 

Unmanned Aerial Vehicle (i.e. drone) within the buildings in the cityscape. Similarly, the 

waterscape meshing component has been used to obtain grids for a part of the Tennessee River 

near Chattanooga to study the flow and distribution of Nano-particles in the river. While the 

meshes have been created for these two studies using the program, simulation outputs could not 

be obtained because of time limitation and, as such, it is difficult to ascertain the acceptability of 

the meshes beyond the confirmation through visualization. However, once completed, the results 

from these simulations, while establishing the basis for which they were conducted would 

equally validate the efficiency of the mesh generation program for subsequent applications such 

as in disaster and extreme-event modeling, urban air pollution distribution studies, flood 

modeling, and wind modeling. 
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CHAPTER IV 

 

RESULTS  

 

 

In this section, the outputs from the program, visualized using a software called Visit 

(Childs, 2012), are presented. The MATLAB program was run on a 64-bit GPU-based computer 

with Linux operating system having processor speed of 4 x AMD FX Quad-Core, memory of  

8 GB RAM and solid-state disk capacity of 85GB. 

 

4.1 Cityscape Mesh Representation 

In order to illustrate the process of execution of the program, consider a file, named 

input_file1.txt, containing city data formatted as described in Chapter 3, Figure 3.3. The number 

of buildings (which is 2), as well as, coordinates of points on the building footprints and heights 

of buildings can be extracted from this file with all other required input parameters set in the 

program. Figure 4.1 is an illustration of a meshed terrain of the spaces between the building. 

Notice how the terrain elevation changes are captured. The number of nodes in the meshed 

terrain is 20 and the time required for generation the grid data is 0.1121 seconds. 
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Figure 4.1 Unstructured triangle meshes for the terrain (Grid size = 20 nodes; Runtime = 0.1121  

 secs) 

 

Figures 4.2 – 4.4 illustrate the stepwise process of generating the building and roof grids. 

Figure 4.2 depicts the first step of the extrusion with 56 nodes generated in 0.1623 seconds. 

Figure 4.3 depicts the second step of the extrusion with 73 nodes generated in 0.1689 seconds. 

This step-wise extrusion continues until the top of the building is reached and the roof plane is 

added. Figure 4.4 shows that the entire building has been meshed with the meshed roof plane 

consisting of 121 nodes generated in 0.1737added. 
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Figure 4.2 Extrusion of building meshes one step from the footprint - Step1 (Grid size =56  

 nodes; Run time = 0.1623 secs) 
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Figure 4.3 Extrusion of building meshes two steps from the footprint - step=2 (Grid size = 73  

 nodes; Run time = 0.1689 secs) 
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Figure 4.4 Building and roof meshes (Grid size = 121 nodes; Run time = 0.1737 secs) 

 

The cityscape program is used with different combination of inputs to determine its 

robustness for random geometric arrangement of buildings in any city. A randomly generated city 

data in MATLAB, formatted as described in Chapter III, containing an array of 10 x 10 buildings 

(i.e. 100) was supplied as input to the program. The resulting mesh consists of grid size of 
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17,298 nodes and total cells of 34,477 elements generated in just 1 minute, 20 seconds. Figure 

4.5 depicts the corresponding mesh representation of the random city.  

 

 

Figure 4.5 Watertight mesh for a randomly generated city (Number of nodes = 17,298; Number  

 of cells = 34,477; Run time = 1 minutes, 20 seconds) 

 

 

As shown in Figure 4.5, the program appears to be working as designed. For further 

validity, the program was tested with actual OpenStreetMap and USGS data. Figure 4.6 is a 

satellite view of a part of Nashville, Tennessee consisting of 459 randomly selected buildings for 

meshing. The resulting mesh consists of grid size of 48,726 nodes and total cells of 89,999 

elements generated in just 10 minutes, 53 seconds. Figure 4.7 depicts the corresponding mesh 

representation of the random city.  
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Figure 4.6 Google earth view of layout of 459 buildings in Nashville, Tennessee, USA 

 

 

Figure 4.7 Mesh representation of 459 buildings, and terrains, in Nashville, Tennessee, USA  

 (Number of nodes = 48,726; Number of cells = 89,999; Run time = 10 minutes, 53  

 seconds) 
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4.2 Waterscape Mesh Representation 

The waterscape meshing procedure is illustrated with a section of the Tennessee River 

shown in Figure 4.8. The unstructured triangular grids representing the wet area (i.e. river) only 

is depicted by Figure 4.9 and the quadrilateral (square) cells representing the entire waterscape 

(i.e. wet and dry areas) is shown in Figure 4.10. A superposition of both grid structures, depicted 

by Figure 4.11, enables node and cell property assignments. As shown in the Figure 4.12, tags 

are first assigned to individual nodes. These tags indicate regions that are within or outside the 

river. Tag 1 (red area) means the points are within the river, while tag 0 (blue area) implies 

otherwise. With these nodal tag definitions, the EFDC tags for each of the cells are determined 

depending on the configuration of the corner nodes for each cell as defined in Chapter III.  

 

 

Figure 4.8 Google earth view of a part the Tennessee River 
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Figure 4.9 Unstructured triangular grids for wet area of waterscape 

 

 

 

Figure 4.10 Quadrilateral cells representing the waterscape 
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Figure 4.11 Super-imposed mesh representation of the Tennessee River (Grid size = 40,000 

quadrilateral cells, 1,553 triangle cells (Total 41,553), Run Time = 7 minutes, 29 

seconds) 

 

As shown in Figure 4.11, there are a total of 41,553 cells, out of which 40,000 are active 

(quadrilateral) cells which are needed for EFDC modeling. The total time taken is 7 minute, 29 

seconds. Again, the triangular grids have only been generated for nodal tag assignment and are 

not actually needed for EFDC simulation. In other words, only the properties of the square cells 

are exported as output of the procedure. Figure 4.12 is a blown-out view of a section of the 

meshed waterscape while Figure 4.13 depicts a part of the EFDC tag formation of the meshed 

waterscape. 
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Figure 4.12 A blown-out section of the meshed waterscape 

 

 

 

Figure 4.13 An array of EFDC tags for a part of the waterscape mesh 
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CHAPTER V 

 

SUMMARY AND CONCLUSION 

 

 

5.1 Summary 

Solutions to complex urban problems require computational simulations of the physical 

environments. However, the simulations, because they often utilize numerical approaches such 

as approximation of partial differential equations representing these physical problems need 

efficient grid technologies that discretize the physical domain into smaller components called 

meshes. An efficiently constructed mesh must satisfy several conditions but ultimately must be 

one that allows a convergence of the numerical equations for the problem with reasonable 

computational demand.  

In this thesis, a programming framework, implemented in MATLAB, is developed for 

mesh representation of the environment. This framework generates hybrid mesh for any given 

cityscape and waterscape. The framework, unlike other approaches in literature, is cheap since it 

utilizes tools including MATLAB, Triangle, and geospatial data from OpenStreetMap and 

United States Geological Survey repositories, all easily available for free. It does not use data 

sources such as construction drawings and layouts of existing features which may be difficult to 

access in some cases, neither does it utilize Digital Elevation Model (DEM) and Light Detection 

and Ranging (LiDAR) which can be very costly. Although, it may be argued that both OSM and 

USGS repository are LiDAR data, the process of having to generate LiDAR data for individual 
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use is by-passed in this program since the user can simply download the data from the afore-

mentioned repositories. 

The program consists of two meshing components. The first component generates mesh 

representation for a cityscape, with buildings and terrains as the main features. The resulting 

mesh is made watertight using a unique algorithm developed in this thesis. The second 

component generates mesh representation of a given waterscape such as a river, including any 

island that may exist. The resulting mesh is such that can be used in Environmental Fluid 

Dynamics Code, a popular computational platform for environmental fluid modeling and 

simulations. The framework is validated by creating mesh representation for a part of Nashville, 

Tennessee, and the Tennessee River. 

Although, there remain some challenges with efficiency of the program, especially in 

terms of computational demand, the work presented here is an alternative to existing urban 

environments mesh representation methods. As a matter of fact, the issues with computational 

demand can be mitigated with high-skilled programming techniques, such as effective pre-

locations of arrays as well as improved organization of the algorithms, which are currently not 

being adequately explored. Nevertheless, the time of implementation is still very low compared 

with existing approaches in literature. Similarly, OpenStreetMap which is the major geospatial 

repository is still developing and the needed data is currently not available for all locations on the 

globe. This means that the program is currently limited to areas for which OpenStreetMap data 

has been generated, though it is envisaged that the OSM repository would become much 

developed in a few years considering the current rate of development of the database and its 

growing popularity, especially amongst researchers. This thesis can equally play a role in that 

regard by serving as a motivation for the OSM developers. Lastly, the framework presented for 
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cityscape is currently designed to generate flat roof surfaces for the buildings. Since, in reality, 

the roofs of buildings have varied geometries with varying complexities, it is necessary that the 

framework be improved to incorporate such complexities in the future. This is not explored now 

but can constitute future works. 

 

5.2 Conclusion 

This thesis has utilized established grid generation techniques to develop an automatic 

meshing program for important urban problems involving cityscape and riverscape. The program 

is crucial to environmental computational fluids dynamics and the framework presented in this 

thesis can help eliminate or reduce the painstaking, time-exhausting and costly acquisition of 

data such as LiDAR for individual usage as well as existing layouts of the built environment that 

are used in current trends thus by-passing the need for creating preliminary three-dimensional 

geometric representation of the building.  

Although there is no such work that uses OSM data, as this thesis, for mesh 

representation of urban environment, no claim is made on whether this is the best approach to 

urban environments’ meshing. It is simply hoped that this work can alleviate the meshing 

procedure for researchers involved in environmental fluids dynamics modeling.  
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