916 research outputs found

    An automatic correction of Ma's thinning algorithm based on P -simple points

    Get PDF
    International audienceThe notion of P -simple points has been introduced by Bertrand to conceive parallel thinning algorithms. In 'A 3D fully parallel thinning algorithm for generating medial faces', Ma has proposed an algorithm for which there exists objects whose topology is not preserved. In this paper, we propose a new application of P -simple points: to automatically correct Ma's algorithm

    Improved 3D thinning algorithms for skeleton extraction

    Full text link
    In this study, we focused on developing a novel 3D Thinning algorithm to extract one-voxel wide skeleton from various 3D objects aiming at preserving the topological information. The 3D Thinning algorithm was testified on computer-generated and real 3D reconstructed image sets acquired from TEMT and compared with other existing 3D Thinning algorithms. It is found that the algorithm has conserved medial axes and simultaneously topologies very well, demonstrating many advantages over the existing technologies. They are versatile, rigorous, efficient and rotation invariant.<br /

    Automatic correction of Ma and Sonka's thinning algorithm using P-simple points

    Get PDF
    International audienceMa and Sonka proposed a fully parallel 3D thinning algorithm which does not always preserve topology. We propose an algorithm based on P-simple points which automatically corrects Ma and Sonka's Algorithm. As far as we know, our algorithm is the only fully parallel curve thinning algorithm which preserves topology

    Extracting curve-skeletons from digital shapes using occluding contours

    Get PDF
    Curve-skeletons are compact and semantically relevant shape descriptors, able to summarize both topology and pose of a wide range of digital objects. Most of the state-of-the-art algorithms for their computation rely on the type of geometric primitives used and sampling frequency. In this paper we introduce a formally sound and intuitive definition of curve-skeleton, then we propose a novel method for skeleton extraction that rely on the visual appearance of the shapes. To achieve this result we inspect the properties of occluding contours, showing how information about the symmetry axes of a 3D shape can be inferred by a small set of its planar projections. The proposed method is fast, insensitive to noise, capable of working with different shape representations, resolution insensitive and easy to implement

    Medial faces from a concise 3D thinning algorithm

    Full text link

    ARTIST-DRIVEN FRACTURING OF POLYHEDRAL SURFACE MESHES

    Get PDF
    This paper presents a robust and artist driven method for fracturing a surface polyhedral mesh via fracture maps. A fracture map is an undirected simple graph with nodes representing positions in UV-space and fracture lines along the surface of a mesh. Fracture maps allow artists to concisely and rapidly define, edit, and apply fracture patterns onto the surface of their mesh. The method projects a fracture map onto a polyhedral surface and splits its triangles accordingly. The polyhedral mesh is then segmented based on fracture lines to produce a set of independent surfaces called fracture components, containing the visible surface of each fractured mesh fragment. Subsequently, we utilize a Voronoi-based approximation of the input polyhedral mesh’s medial axis to derive a hidden surface for each fragment. The result is a new watertight polyhedral mesh representing the full fracture component. Results are aquired after a delay sufficiently brief for interactive design. As the size of the input mesh increases, the computation time has shown to grow linearly. A large mesh of 41,000 triangles requires approximately 3.4 seconds to perform a complete fracture of a complex pattern. For a wide variety of practices, the resulting fractures allows users to provide realistic feedback upon the application of extraneous forces
    • …
    corecore