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Abstract

Ma and Sonka proposed a fully parallel 3D thinning
algorithm which does not always preserve topology. We
propose an algorithm based on P -simple points which
automatically corrects Ma and Sonka’s Algorithm. As
far as we know, our algorithm is the only fully parallel
curve thinning algorithm which preserves topology.

Keywords: 3D thinning algorithm, curve skeleton,
digital topology, topology preservation.

1 Introduction

In the image processing field, thinning is a technique
which extracts skeletons from objects. Such a repre-
sentation has the advantage of being compact while
conserving important features of objects like topology
and geometry. Thinning has many applications such
as compression, analysis and recognition [1].

Thinning can be achieved by different approaches.
For instance, in the field of digital topology, we find
thinning algorithms based on parallel deletion of vox-
els [2–11], or of surfels [12], or guided by the notion of
distance [13–15]. In the field of algorithmical geometry,
we find thinning algorithms based on Delaunay trian-
gulation and Voronöı diagram notions [16]. In the field
of mathematical morphology, we find thinning algo-
rithms based on erosion or skeleton by influence zones
notions [17]. In the field of algebraical topology, we
find works based on cellular complexes [18], homotopy
chains [19], or critical kernels [20]. In this paper, we
only deal with thinning algorithms for 3D binary ima-
ges by parallel deletions of voxels, in the case of digital
topology.

In a binary image, objects are represented by black
points. The complement is represented by white
points. Thinning consists in deleting black points i.e.
changing black points to white. It is generally done in
successive iterations of deletions. Removing a point
should preserve certain properties such as topology.
This leads to the essential notion of a simple point: a
simple point is a point which can be removed without
changing topology [21]. We may notice that a 3×3×3
neighborhood of a point x is necessary and sufficient

to decide whether x is simple or not. Since we consider
parallel algorithms, we face a major problem: the si-
multaneous removal of simple points may change the
topology of an object. This is the case, for example, of
an object constituted of two adjacent voxels.

To solve this problem, three different solutions may
be considered:

• giving a set of 3 × 3 × 3 masks or templates (a
3 × 3 × 3 neighborhood centered around a con-
sidered point) to determine whether a point is
deletable. In other words, all points matching
at least one of the templates are removed. Note
that the templates should be conceived in such a
way that the algorithm preserves topology. This
leads to algorithms performing deletion iterations.
Each iteration is divided into several subiterations
based, for example, on directions [4–6, 22–24] or
on subgrids [5, 25, 26];

• accessing an extended neighborhood (i.e. a neigh-
borhood which strictly includes the 3×3×3 neigh-
borhood) to obtain more information. Such a
strategy may lead to fully parallel thinning al-
gorithms [2, 3] (which use specific directions) or
to symmetrical thinning algorithms [7] (which are
isometrically invariant);

• using another class of points that ensures that the
deletion of all points of the class does not affect
topology. This is what P -simple points accomplish
[27]. In fact, this notion is very general and leads
to different thinning schemes according to different
strategies [28], for example, directional [8, 9, 12,
27, 29] or symmetrical [10] (in this case, since the
deleting process is symmetrical, skeleton centering
is automatic therefore the notion of distance is not
required).

In [3], Ma and Sonka propose a fully parallel thinning
algorithm based on 38 templates. In [30], Lohou gives
an object whose topology is not preserved by Ma and
Sonka’s algorithm. In [31], Chaturvedi and Lee found
that Ma and Sonka’s algorithm disconnects some ob-
jects. In [32], Wang and Basu propose a correction of
Ma and Sonka’s algorithm. Their correction consists
in changing 12 templates of the original algorithm by
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Figure 1: (a) The 6-, 18-, and 26-neighbors of x

are respectively represented by black triangles, black
squares, and black discs. (b) The six major directions:
up (u), down (d), north (n), south (s), west (w) and
east (e).

36 new templates. However, this correction makes the
algorithm more difficult to implement and to analyse.
Furthermore, the topology of the object given in [30]
is still not preserved by the algorithm.

Topology preservation of the previous parallel thin-
ning algorithms is not automatic and has to be proven,
which is difficult. On the contrary, parallel thinning al-
gorithms removing P -simple points have the property
of preserving topology. In this paper, we propose a
correction of a templates-based parallel thinning algo-
rithm using P -simple points, which automatically en-
sures topology preservation.

This paper is organized as follows. Section 2 gives
some basic notions of digital topology and presents P -
simple points. Section 3 recalls Ma and Sonka’s thin-
ning algorithm. Section 4 shows how to use P -simple
points in a thinning algorithm. In Section 5, we pro-
pose such an algorithm correcting Ma and Sonka’s al-
gorithm. Section 6 gives some results and Section 7
concludes.

2 Basic notions of digital topo-

logy

2.1 Neighborhoods, connected compo-

nents and holes

A point x ∈ Z
3 is defined by (x1, x2, x3) with xi ∈ Z.

We consider the three neighborhoods: N26(x) = {x′ ∈
Z

3 : Max[|x1 − x′

1|, |x2 − x′

2|, |x3 − x′

3|] ≤ 1}, N6(x) =
{x′ ∈ Z

3 : |x1 − x′

1| + |x2 − x′

2| + |x3 − x′

3| ≤ 1}, and
N18(x) = {x′ ∈ Z

3: |x1 − x′

1|+ |x2 − x′

2|+ |x3 − x′

3| ≤
2} ∩ N26(x). We define N∗

n(x) = Nn(x) \ {x}. We
call respectively 6-, 18-, 26-neighbors of x the points
of N∗

6 (x), N∗

18(x)\N∗

6 (x), N∗

26(x)\N∗

18(x), such points
are represented in Fig. 1 (a). The 6-neighbors of x

determine six major directions (Fig. 1 (b)). The points
belonging to X (resp. X) are called black points (resp.
white points).

Two points x and y are said to be n-adjacent if y ∈
N∗

n
(x) (n = 6, 18, 26). An n-path is a sequence of

points x0, . . . , xk, with xi n-adjacent to xi−1 for any
1 ≤ i ≤ k. If x0 = xk, the path is closed. Let X ⊆
Z

3. Two points x ∈ X and y ∈ X are n-connected

in X if they can be linked by an n-path included in
X . The equivalence classes relative to this relation are

the n-connected components of X . In order to have a
correspondence between the topology of X and that of
X, we have to consider two different kinds of adjacency
for X and for X [21]: if we use an n-adjacency for X ,
we have to use another n-adjacency for X. In this
paper, we only consider (n, n) = (26, 6).

Let X ⊂ Z
3. A hole (sometimes called a tunnel

[21,33]) in X is detected when there is a closed path in
X which cannot be deformed in X into a single point
(see [21, 34, 35] for further details).

2.2 Simple points and topological num-

bers

Let X ⊆ Z
3. A point x ∈ X is said to be simple if its

removal does not “change the topology” of the image,
in the sense that there is a one-to-one correspondence
between the components, the holes of X (resp. X) and
the components, the holes of X \ {x} (resp. X ∪ {x}),
see [34] for a precise definition.

The set composed of all n-connected components
of X which are n-adjacent to a point x is denoted
by Cx

n(X). Let #X denote the number of elements
which belong to X . The topological numbers relative
to X and x are the two numbers [35]: T6(x, X) =
#Cx

6 [N∗

18(x) ∩ X ] and T26(x, X) = #Cx
26[N

∗

26(x) ∩ X ].
These numbers lead to a very concise characterization
of 3D simple points [36]: x ∈ X is simple for X if and
only if T26(x, X) = 1 and T6(x, X) = 1.

For example, in Fig. 2 (a), the points y and z both
belong to N∗

18(x) ∩ X but there is no 6-path of white
points included in N∗

18(x)∩X which joins them. Thus,
T26(x, X) = 1 and T6(x, X) = 2 therefore x is not sim-
ple. In Fig. 2 (b), there is a single black 26-connected
component in N∗

26(x) ∩ X therefore T26(x, X) = 1; w

does not belong to N∗

18(x) ∩X therefore T6(x, X) = 1;
thus x is simple.

2.3 P-simple points

In the following, we consider a subset X of Z
3, a subset

P of X , and a point x of P . The point x is P -simple for
X if for each subset S of P \ {x}, x is simple for X \S.
A subset of X is P -simple if it is composed of solely
P -simple points. We have the property that any algo-
rithm removing only P -simple subsets is guaranteed to
keep the topology unchanged [27].

We give a local characterization of a P -simple point
[37]. Let R denote the set X \ P . The point x is P -
simple for X if and only if:






























T26(x, R) = 1;
T6(x, X) = 1;
∀y ∈ N∗

26(x) ∩ P, ∃z ∈ R

such that z is 26-adjacent to x and to y;
∀y ∈ N∗

6 (x) ∩ P, ∃z ∈ X and ∃t ∈ X

such that {x, y, z, t} is a unit square.
For example, in Fig. 2 (c), N∗

26(x) ∩ P = {y1, y2},
there is no point of R which is 26-adjacent to both x

and y1 therefore the third condition is not verified and
x is not P -simple. In Fig. 2 (d), all conditions are
verified for x therefore x is P -simple.
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Figure 2: In (a) and (b), points belonging to X and X are respectively represented by black discs and white
discs. In (c) and (d), points belonging to R, P and X are respectively represented by black discs, black stars
and white discs.

x x x x

A B C D

Figure 3: The four basic template cores of MS96. Each unmarked point is either a black point or a white point.
For D, x must be simple.

y

x

Figure 4: MS96 changes the topology of this object.
For convenience sake, points of X are not represented.

3 Ma and Sonka’s algorithm

Ma and Sonka’s algorithm (denoted by MS96 in the
following) is a fully parallel curve thinning algorithm,
based on templates requiring access to up to 50 points
to decide whether a point is deletable or not [3] (see
below). The templates can be obtained from four given
subsets of template cores (classes A, B, C and D) and
additional directional conditions. The template cores
are depicted in Fig. 3. The deleting templates are
the set of all reflections and all 90◦ rotations around
any one of the three major axes of the four template
cores. Thus, a point satisfies a template if it matches
at least one of the deleting templates Ti and verifies all
the conditions (see Fig. 1 (b) for directions):

1. if Ti is isomorphic to any template core A, B or
C:

(a) s(x) is black in Ti ⇒ s(s(x)) is black;

(b) w(x) is black in Ti ⇒ w(w(x)) is black;

(c) d(x) is black in Ti ⇒ d(d(x)) is black.

2. if Ti is isomorphic to the template core D:

(a) x is a simple point;

(b) y = s(u(x)) is black in Ti ⇒ at least one
of s(s(x)), s(y), s(u(y)), u(y) and u(u(x)) is
black;

(c) y = s(d(x)) is black in Ti ⇒ at least one
of s(s(x)), s(y), s(d(y)), d(y) and d(d(x)) is
black;

(d) y = s(e(x)) is black in Ti ⇒ at least one
of s(s(x)), s(y), s(e(y)), e(y) and e(e(x)) is
black;

(e) y = s(w(x)) is black in Ti ⇒ at least one of
s(s(x)), s(y), s(w(y)), w(y) and w(w(x)) is
black;

(f) y = w(u(x)) is black in Ti ⇒ at least one of
w(w(x)), w(y), w(u(y)), u(y) and u(u(x)) is
black;

(g) y = w(d(x)) is black in Ti ⇒ at least one of
w(w(x)), w(y), w(d(y)), d(y) and d(d(x)) is
black.

Now, we give additional definitions and describe
MS96. Let x be a black point of a 3D image, then

• x is a line-end point if x is 26-adjacent to exactly
a single point of the object;

• x is a near-line-end point if x is 26-adjacent to
exactly two points of the object which are:

– either s(x) and e(x), or s(x) and u(x) but not
both;

– either n(x) and w(x), or u(x) and w(x) but
not both;

– or n(x) and d(x), or e(x) and d(x) but not
both.

• x is called a tail point if it is either a line-end
point or a near-line-end point; otherwise it is

3



called a nontail point.

MS96

1: repeat

2: parallel delete every nontail object point which
satisfies at least one deleting template of classes
A, B, C or D

3: until no points are deleted

It has been showed that MS96 does not always pre-
serve topology. Indeed, let us consider the object stud-
ied in [30] and depicted in Fig. 4. Applying MS96 to
this object only removes x and y (they match templates
of class D), which disconnects the object i.e. changes
its topology.

As mentioned before, in [32], Wang and Basu pro-
posed a correction of MS96 by changing several tem-
plates. However, applying their algorithm (denoted by
WB07 in the following) to the previous object also
removes x and y (x satisfies template D11.3 and y sat-
isfies template D12.2, notations given in [32]) therefore
changes the topology too.

4 Thinning algorithms based on

P -simple points

Now, let us consider an algorithm which removes
P -simple points in parallel, in successive iterations.
A skeleton is obtained when no more points can be
removed. Since removing P -simple sets is guaranteed
to keep the topology unchanged [27], this algorithm
is a topology-preserving thinning algorithm. Such an
algorithm is given below:

Thin(X : object, C: condition)→ X : object

1: repeat

2: {parallel labelling of points which belong to P}
3: P ← ∅
4: for each point x in X , in parallel, do

5: if C(x, X) then

6: put x in P

7: end if

8: end for

9: {parallel deletion of P -simple points}
10: X ′ ← X

11: for each point x in P , in parallel, do

12: if x is P -simple for X ′ then

13: delete x in X

14: end if

15: end for

16: until no points are deleted

where C denotes the condition a point of an ob-
ject should satisfy to belong to P (intuitively, the set
of candidate points to deletion). Each iteration is
composed of two passes. Thanks to P -simple points,
the algorithm can examine points in parallel. Fur-
thermore, using the local characterization of P -simple
points given in Section 2.3, the algorithm can consider

limited neighborhoods. It is thus well-suited for paral-
lel machines.

The major difficulty of such an algorithm is to pro-
vide an appropriate condition C to determine P , the
set of candidate points to deletion. On the one hand,
if P contains a few points, only a few points may be
P -simple therefore deleted. On the other hand, if P

contains a lot of points, each point of P has very little
chance to be P -simple therefore deleted.

P -simple points have already been used by Lohou
and Bertrand to conceive thinning algorithms. In
[8], they take Palagyi and Kuba’s 12-subiteration sur-
face thinning algorithm (PaKu12) [6] to derive a 12-
subiteration surface thinning algorithm based on P -
simple points. Their algorithm deletes at least the
same points as PaKu12 therefore their algorithm is
more powerful than PaKu12 (in the sense that, for
a given object, it deletes at least all points deleted by
PaKu12 during the first deleting iteration). Moreover,
this automatically proves that PaKu12 preserves to-
pology well. In [9], Lohou and Bertrand proposed a 6-
subiteration curve thinning algorithm based on Palagyi
and Kuba’s 6-subiteration curve thinning algorithm [4].
Here, the aim was to show that their method can be
applied to different kinds of algorithms, for instance,
a thinning algorithm which preserves curves. Finally,
in [10], they proposed a curve thinning algorithm and a
surface thinning algorithm by using two different condi-
tions of end points. This study did not aim to enhance
a given algorithm but to propose isometric-invariant
thinning algorithms, also classified as symmetrical.

In the current study, the objective is completely dif-
ferent and is new in the literature: using P -simple
points to automatically correct a failing algorithm.
Thus, the obtained algorithm is ensured to preserve to-
pology. No deep examination of templates is required.

5 A correction of Ma and

Sonka’s algorithm

To correct Ma and Sonka’s algorithm, we propose
to parallely remove P -simple points in successive
iterations where P is the set of points which would be
deleted by Ma and Sonka’s algorithm. This algorithm
(denoted by LD MS96 in the following) can be
described as:

LD MS96(X : object)→ X : object

1: X ← Thin(X,C MS96)

where:

C MS96(x: point, X : object)→ b: boolean

1: if x is a nontail point which satisfies at least one
template of classes A, B, C or D in X (Fig. 3)
then

2: b← true
3: else

4: b← false

4



5: end if

Thus, during an iteration, LD MS96 deletes the
points which are removed by MS96 such that the par-
allel deletion of any subset of these points does not
affect topology. Any point deleted by LD MS96 is
also deleted by MS96. Since the characterization of
P -simple points is linear [27], any iteration is bounded
by O(N) where N is the size of the image (number of
points).

By the definition of P -simple points, there is no am-
biguity: once P is defined, any algorithm which deletes
in parallel P -simple points is ensured to preserve to-
pology. The main interest of our present work is to
precisely define P as the set of points deleted by Ma
and Sonka’s algorithm. Thus, since LD MS96 deletes
only P -simple points where P is defined as mentioned
previously, it automatically preserves topology. Nei-
ther additional proof nor deep template examination
is required.

Let us consider again the object depicted in Fig. 4.
This time, LD MS96 states that P = {x, y} therefore
neither x nor y is P -simple (the first condition is not
verified for x and y). Therefore, no points are deleted
and the topology is well preserved.

We may notice that LD MS96 brings us many ques-
tions. For example, does the use of P -simple points
make the simplicity condition of the class D templates
unnecessary? If we change the place of the tail point
evaluation, can we obtain a more efficient or power-
ful algorithm? What can we expect of using other
tail point conditions? All these questions are beyond
the scope of this paper and are part of our current
work [38].

6 Results and analysis

We compared MS96, WB07 and LD MS96 using var-
ious objects. Some of these objects and their skeletons
(obtained with MS96, WB07 and LD MS96) are de-
picted Fig. 5. Note that the letterD object is used
by Ma and Sonka in [3] to illustrate MS96. We ap-
plied LD MS96 (and WB07) to this object and found
exactly the same results as with MS96. Among our
7 objects, MS96 disconnects all the objects but let-

terD. In the same way, WB07 disconnects three ob-
jects (bull , knot and vertebra). On the contrary,
LD MS96 preserves the topology of all the 7 objects,
which agrees with the topology preservation property
of any thinning algorithms based on P -simple point
deletion and illustrates the relevance of our method.
Note that LD MS96 produces thin and centered skele-
tons and therefore is a pertinent thinning algorithm.

Some statistics concerning our results are given in
Table 1. We found that during the first iteration,
MS96 and LD MS96 delete the same number of
points. In fact, by its conception, LD MS96 can-
not delete, during the first iteration, more points of a
given object than MS96. Indeed, P is the set of points
deleted by MS96 and the set of P -simple points (which

is deleted by LD MS96) is included into P . However,
we can prove nothing else from this because even if
both algorithms are applied to the same initial object,
an iteration may come where LD MS96 removes fewer
points than MS96. Thus, the next iteration happens
on different objects which makes final results (deleted
points, iterations) difficult to predict. For example,
the number of iterations performed by MS96 can be
less (bull and vertebra), equal (dolphin, knot,
letterD and venus) or greater (3L) than the one
performed by LD MS96.

Since the templates of WB07 are more restrictive
than the templates of MS96, we verify that, during the
first iteration, the number of points deleted by WB07

is less or equal than the number of points deleted by
MS96. On the other hand, the number of iterations
performed by WB07 is greater or equal to the number
of iterations performed by MS96.

7 Conclusion

Using P -simple points, a thinning algorithm is guar-
anteed to preserve topology. Ma and Sonka proposed
a templates-based curve thinning algorithm which fails
to preserve topology. In this paper, we have proposed
an automatic correction of this algorithm, using P -
simple points. We tested and compared our algorithm
with the original algorithm of Ma and Sonka and with
the correction proposed by Wang and Basu. Our al-
gorithm also extracts curve skeletons therefore it can
be used for the same applications as the original al-
gorithm. Since our algorithm preserves topology, it
can make these applications more reliable. As far as
we know, our algorithm is the only fully parallel curve
thinning algorithm which preserves topology.

Symmetrical thinning algorithms using distance
yield well centered but thick skeletons. On the con-
trary, other approaches results in thin but non-centered
skeletons. The initial idea of Ma and Sonka is to use
directions without performing subiteration to give a
proof of topology preservation. In fact, their algorithm
is a good compromise to obtain well centered as well
as thin curve skeletons therefore was worth correction.
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