4,066 research outputs found

    Location-aware computing: a neural network model for determining location in wireless LANs

    Get PDF
    The strengths of the RF signals arriving from more access points in a wireless LANs are related to the position of the mobile terminal and can be used to derive the location of the user. In a heterogeneous environment, e.g. inside a building or in a variegated urban geometry, the received power is a very complex function of the distance, the geometry, the materials. The complexity of the inverse problem (to derive the position from the signals) and the lack of complete information, motivate to consider flexible models based on a network of functions (neural networks). Specifying the value of the free parameters of the model requires a supervised learning strategy that starts from a set of labeled examples to construct a model that will then generalize in an appropriate manner when confronted with new data, not present in the training set. The advantage of the method is that it does not require ad-hoc infrastructure in addition to the wireless LAN, while the flexible modeling and learning capabilities of neural networks achieve lower errors in determining the position, are amenable to incremental improvements, and do not require the detailed knowledge of the access point locations and of the building characteristics. A user needs only a map of the working space and a small number of identified locations to train a system, as evidenced by the experimental results presented

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    An original application of image recognition based location in complex indoor environments

    Get PDF
    This paper describes the first results of an image recognition based location (IRBL) for a mobile application focusing on the procedure to generate a database of range images (RGB-D). In an indoor environment, to estimate the camera position and orientation, a prior spatial knowledge of the surroundings is needed. To achieve this objective, a complete 3D survey of two different environments (Bangbae metro station of Seoul and the Electronic and Telecommunications Research Institute (ETRI) building in Daejeon, Republic of Korea) was performed using a LiDAR (Light Detection and Ranging) instrument, and the obtained scans were processed to obtain a spatial model of the environments. From this, two databases of reference images were generated using specific software realised by the Geomatics group of Politecnico di Torino (ScanToRGBDImage). This tool allows us to generate synthetically different RGB-D images centred in each scan position in the environment. Later, the external parameters (X, Y, Z, ω, ϕ, and κ) and the range information extracted from the retrieved database images are used as reference information for pose estimation of a set of acquired mobile pictures in the IRBL procedure. In this paper, the survey operations, the approach for generating the RGB-D images, and the IRB strategy are reported. Finally, the analysis of the results and the validation test are described

    Mixed Reality on Mobile Devices

    Get PDF
    corecore