38 research outputs found

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most mkm-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every ϵ>0\epsilon>0, removes at most mkm-k demands and has cost no more than O(1/ϵ2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1ϵ)(mk)(1-\epsilon)(m-k) demands

    Lagrangian Relaxation and Partial Cover

    Full text link
    Lagrangian relaxation has been used extensively in the design of approximation algorithms. This paper studies its strengths and limitations when applied to Partial Cover.Comment: 20 pages, extended abstract appeared in STACS 200

    Approximation Algorithms for Union and Intersection Covering Problems

    Get PDF
    In a classical covering problem, we are given a set of requests that we need to satisfy (fully or partially), by buying a subset of items at minimum cost. For example, in the k-MST problem we want to find the cheapest tree spanning at least k nodes of an edge-weighted graph. Here nodes and edges represent requests and items, respectively. In this paper, we initiate the study of a new family of multi-layer covering problems. Each such problem consists of a collection of h distinct instances of a standard covering problem (layers), with the constraint that all layers share the same set of requests. We identify two main subfamilies of these problems: - in a union multi-layer problem, a request is satisfied if it is satisfied in at least one layer; - in an intersection multi-layer problem, a request is satisfied if it is satisfied in all layers. To see some natural applications, consider both generalizations of k-MST. Union k-MST can model a problem where we are asked to connect a set of users to at least one of two communication networks, e.g., a wireless and a wired network. On the other hand, intersection k-MST can formalize the problem of connecting a subset of users to both electricity and water. We present a number of hardness and approximation results for union and intersection versions of several standard optimization problems: MST, Steiner tree, set cover, facility location, TSP, and their partial covering variants

    Lagrangian Relaxation and Partial Cover (Extended Abstract)

    Get PDF
    Lagrangian relaxation has been used extensively in the design of approximation algorithms. This paper studies its strengths and limitations when applied to Partial Cover. We show that for Partial Cover in general no algorithm that uses Lagrangian relaxation and a Lagrangian Multiplier Preserving (LMP) alphaalpha-approximation as a black box can yield an approximation factor better than~frac43alphafrac{4}{3} alpha. This matches the upper bound given by K"onemann et al. (ESA 2006, pages 468--479). Faced with this limitation we study a specific, yet broad class of covering problems: Partial Totally Balanced Cover. By carefully analyzing the inner workings of the LMP algorithm we are able to give an almost tight characterization of the integrality gap of the standard linear relaxation of the problem. As a consequence we obtain improved approximations for the Partial version of Multicut and Path Hitting on Trees, Rectangle Stabbing, and Set Cover with ho ho-Blocks

    Algorithms and Adaptivity Gaps for Stochastic k-TSP

    Get PDF
    Given a metric (V,d)(V,d) and a rootV\textsf{root} \in V, the classic \textsf{k-TSP} problem is to find a tour originating at the root\textsf{root} of minimum length that visits at least kk nodes in VV. In this work, motivated by applications where the input to an optimization problem is uncertain, we study two stochastic versions of \textsf{k-TSP}. In Stoch-Reward kk-TSP, originally defined by Ene-Nagarajan-Saket [ENS17], each vertex vv in the given metric (V,d)(V,d) contains a stochastic reward RvR_v. The goal is to adaptively find a tour of minimum expected length that collects at least reward kk; here "adaptively" means our next decision may depend on previous outcomes. Ene et al. give an O(logk)O(\log k)-approximation adaptive algorithm for this problem, and left open if there is an O(1)O(1)-approximation algorithm. We totally resolve their open question and even give an O(1)O(1)-approximation \emph{non-adaptive} algorithm for this problem. We also introduce and obtain similar results for the Stoch-Cost kk-TSP problem. In this problem each vertex vv has a stochastic cost CvC_v, and the goal is to visit and select at least kk vertices to minimize the expected \emph{sum} of tour length and cost of selected vertices. This problem generalizes the Price of Information framework [Singla18] from deterministic probing costs to metric probing costs. Our techniques are based on two crucial ideas: "repetitions" and "critical scaling". We show using Freedman's and Jogdeo-Samuels' inequalities that for our problems, if we truncate the random variables at an ideal threshold and repeat, then their expected values form a good surrogate. Unfortunately, this ideal threshold is adaptive as it depends on how far we are from achieving our target kk, so we truncate at various different scales and identify a "critical" scale.Comment: ITCS 202

    Revisiting Garg's 2-Approximation Algorithm for the k-MST Problem in Graphs

    Full text link
    This paper revisits the 2-approximation algorithm for kk-MST presented by Garg in light of a recent paper of Paul et al.. In the kk-MST problem, the goal is to return a tree spanning kk vertices of minimum total edge cost. Paul et al. extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the kk-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.Comment: Proceedings of SIAM Symposium on Simplicity in Algorithms (SOSA) 202

    Pruning 2-Connected Graphs

    Get PDF
    Given an edge-weighted undirected graph GG with a specified set of terminals, let the emph{density} of any subgraph be the ratio of its weight/cost to the number of terminals it contains. If GG is 2-connected, does it contain smaller 2-connected subgraphs of density comparable to that of GG? We answer this question in the affirmative by giving an algorithm to emph{prune} GG and find such subgraphs of any desired size, at the cost of only a logarithmic increase in density (plus a small additive factor). We apply the pruning techniques to give algorithms for two NP-Hard problems on finding large 2-vertex-connected subgraphs of low cost; no previous approximation algorithm was known for either problem. In the kv problem, we are given an undirected graph GG with edge costs and an integer kk; the goal is to find a minimum-cost 2-vertex-connected subgraph of GG containing at least kk vertices. In the bv problem, we are given the graph GG with edge costs, and a budget BB; the goal is to find a 2-vertex-connected subgraph HH of GG with total edge cost at most BB that maximizes the number of vertices in HH. We describe an O(lognlogk)O(log n log k) approximation for the kv problem, and a bicriteria approximation for the bv problem that gives an O(frac1epslog2n)O(frac{1}{eps}log^2 n) approximation, while violating the budget by a factor of at most 3+eps3+eps
    corecore