research

Algorithms and Adaptivity Gaps for Stochastic k-TSP

Abstract

Given a metric (V,d)(V,d) and a rootV\textsf{root} \in V, the classic \textsf{k-TSP} problem is to find a tour originating at the root\textsf{root} of minimum length that visits at least kk nodes in VV. In this work, motivated by applications where the input to an optimization problem is uncertain, we study two stochastic versions of \textsf{k-TSP}. In Stoch-Reward kk-TSP, originally defined by Ene-Nagarajan-Saket [ENS17], each vertex vv in the given metric (V,d)(V,d) contains a stochastic reward RvR_v. The goal is to adaptively find a tour of minimum expected length that collects at least reward kk; here "adaptively" means our next decision may depend on previous outcomes. Ene et al. give an O(logk)O(\log k)-approximation adaptive algorithm for this problem, and left open if there is an O(1)O(1)-approximation algorithm. We totally resolve their open question and even give an O(1)O(1)-approximation \emph{non-adaptive} algorithm for this problem. We also introduce and obtain similar results for the Stoch-Cost kk-TSP problem. In this problem each vertex vv has a stochastic cost CvC_v, and the goal is to visit and select at least kk vertices to minimize the expected \emph{sum} of tour length and cost of selected vertices. This problem generalizes the Price of Information framework [Singla18] from deterministic probing costs to metric probing costs. Our techniques are based on two crucial ideas: "repetitions" and "critical scaling". We show using Freedman's and Jogdeo-Samuels' inequalities that for our problems, if we truncate the random variables at an ideal threshold and repeat, then their expected values form a good surrogate. Unfortunately, this ideal threshold is adaptive as it depends on how far we are from achieving our target kk, so we truncate at various different scales and identify a "critical" scale.Comment: ITCS 202

    Similar works