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Abstract. Lagrangian relaxation has been used extensively in the design of approxima-
tion algorithms. This paper studies its strengths and limitations when applied to Partial
Cover.

We show that for Partial Cover in general no algorithm that uses Lagrangian relaxation
and a Lagrangian Multiplier Preserving (LMP) α-approximation as a black box can yield an
approximation factor better than 4

3
α. This matches the upper bound given by Könemann

et al. (ESA 2006, pages 468–479).
Faced with this limitation we study a specific, yet broad class of covering problems:

Partial Totally Balanced Cover. By carefully analyzing the inner workings of the LMP
algorithm we are able to give an almost tight characterization of the integrality gap of
the standard linear relaxation of the problem. As a consequence we obtain improved
approximations for the Partial version of Multicut and Path Hitting on Trees, Rectangle
Stabbing, and Set Cover with ρ-Blocks.

1. Introduction

Lagrangian relaxation has been used extensively in the design of approximation algo-
rithms for a variety of problems such as k-MST [12, 7, 11], k-median [21, 5], MST with
degree constraints [27] and budgeted MST [31].

In this paper we study the strengths and limitations of Lagrangian relaxation applied
to the Partial Cover problem. Let S be collection of subsets of a universal set U with cost
c : S → R+ and profit p : U → R+, and let P be a target coverage parameter. A set C ⊆ S
is a partial cover if the overall profit of elements covered by C is at least P . The objective
is to find a minimum cost partial cover.

The high level idea behind Lagrangian relaxation is as follows. In an IP formulation
for Partial Cover, the constraint enforcing that at least P profit is covered is relaxed : The
constraint is multiplied by a parameter λ and lifted to the objective function. This relaxed
IP corresponds, up to a constant factor, to the prize-collecting version of the underlying
covering problem in which there is no requirement on how much profit to cover but a penalty
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of λ p(i) must be paid if we leave element i ∈ U uncovered. An approximation algorithm
for the prize-collecting version having the Lagrangian Multiplier Preserving (LMP) prop-
erty1 is used to obtain values λ1 and λ2 that are close together for which the algorithm
produces solutions C1 and C2 respectively. These solutions are such that C1 is inexpensive
but unfeasible (covering less than P profit), and C2 is feasible (covering at least P profit)
but potentially very expensive. Finally, these two solutions are combined to obtain a cover
that is both inexpensive and feasible.

Broadly speaking there are two ways to combine C1 and C2. One option is to treat
the approximation algorithm for the prize-collecting version as a black box, only making
use of the LMP property in the analysis. Another option is to focus on a particular LMP
algorithm and exploit additional structure that it may offer. Not surprisingly, the latter
approach has yielded better approximation guarantees. For example, for k-median compare
the 6-approximation of Jain and Vazirani [21] to the 4-approximation of Charikar and Guha
[5]; for k-MST compare the 5-factor to the 3-factor approximation due to Garg [12].

The results in this paper support the common belief regarding the inherent weakness of
the black-box approach. First, we show a lower bound on the approximation factor achiev-
able for Partial Cover in general using Lagrangian relaxation and the black-box approach
that matches the recent upper bound of Könemann et al. [26]. To overcome this obstacle,
we concentrate on Kolen’s algorithm for Prize-Collecting Totally Balanced Cover [25]. By
carefully analyzing the algorithm’s inner workings we identify structural similarities between
C1 and C2, which we later exploit when combining the two solutions. As a result we derive
an almost tight characterization of the integrality gap of the standard linear relaxation for
Partial Totally Balanced Cover. This in turn implies improved approximation algorithms
for a number of related problems.

1.1. Related Work

Much work has been done on covering problems because of both their simple and elegant
formulation, and their pervasiveness in different application areas. In its most general form
the problem, also known as Set Cover, cannot be approximated within (1− ε) ln |U | unless

NP ⊆ DTIME(|U |log log |U |) [9]. Due to this hardness, easier, special cases have been studied.
A general class of covering problems that can be solved efficiently are those whose

element-set incidence matrix is balanced. A 0, 1 matrix is balanced if it does not contain
a square submatrix of odd order with row and column sums equal to 2. These matrices
were introduced by Berge [4] who showed that if A is balanced then the polyhedron {x≥
0 : Ax ≥ 1} is integral. A 0, 1 matrix is totally balanced if it does not contain a square
submatrix with row and column sums equal to 2 and no identical columns. Kolen [25] gave
a simple primal-dual algorithm that solves optimally the covering problem defined by a
totally balanced matrix. A 0,±1 matrix is totally unimodular if every square submatrix
has determinant 0 or ±1. Although totally balanced and totally unimodular matrices are
subclasses of balanced matrices, the two classes are neither disjoint nor one is included in
the other.

Beyond this point, even minor generalizations can make the covering problem hard.
For example, consider the vertex cover problem: Given a graph G = (V,E) we are to
choose a minimum size subset of vertices such that every edge is incident on at least one
of the chosen vertices. If G is bipartite, the element-set incidence matrix for the problem

1The definition of the LMP property is outlined in Section 2.
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is totally unimodular; however, if G is a general graph the problem becomes NP-hard [24].
Numerous approximation algorithms have been developed for vertex cover [19]. The best
known approximation factor for general graphs is 2− o(1) [3, 16, 23]; yet, after 25 years of
study, the best constant factor approximation for vertex cover remains 2 [8, 2, 18]. This
lack of progress has led researchers to seek generalizations of vertex cover that can still be
approximated within twice of optimum. One such generalization is the multicut problem
on trees: Given a tree T and a collection of pairs of vertices, a cover is formed by a set of
edges whose removal separates all pairs. The problem was first studied by Garg et al. [13]
who gave an elegant primal-dual 2-approximation.

A notable shortcoming of the standard set cover formulation is that certain hard-to-
cover elements, also known as outliers [6], can render the optimal solution very expensive.
Motivated by the presence of outliers, the unit-profit partial version calls for a collection
of sets covering not all but a specified number k of elements. Partial Multicut, a.k.a. k-
Multicut, was recently studied independently by Levin and Segev [28] and by Golovin et al.
[15], who gave a 8

3
+ε approximation algorithm. This scheme was generalized by Könemann

et al. [26] who showed how to design a 4
3
α+ε approximation for any covering problem using

Lagrangian relaxation and an α-LMP approximation as a black box. (Their algorithm runs

in time polynomial on |U |, |S|
1

ε and the running time of the α-LMP approximation.)

1.2. Our Results and Outline of the Paper

Section 3 shows that for Partial Cover in general no algorithm that uses Lagrangian
relaxation and an α-LMP approximation as a black box can yield an approximation factor
better than 4

3
α. In Section 4 we give an almost tight characterization of the integrality

gap of the standard LP for Partial Totally Balanced Cover, settling a question posed by
Golovin et al. [15]. Our approach is based on Lagrangian relaxation and Kolen’s algorithm.
We prove that IP ≤

(
1 + 1

3k−1

)
LP + k cmax for any k≥1, where IP and LP are the costs of

the optimal integral and fractional solutions respectively and cmax is the cost of the most
expensive set in the instance. The trade-off between additive and multiplicative error is
not an artifact of our analysis or a shortcoming of our approach. On the contrary, this is
precisely how the integrality gap behaves. More specifically, we show a family of instances
where IP >

(
1 + 1

3k−1

)
LP + k

2
cmax. In other words, there is an unbounded additive gap in

terms of cmax but as it grows the multiplicative gap narrows exponentially fast.
Finally, we show how the above result can be applied, borrowing ideas from [14, 17, 15],

to get a ρ+ ε approximation or a quasi-polynomial time ρ-approximation for covering prob-
lems that can be expressed with a suitable combination of ρ totally-balanced matrices. This
translates into improved approximations for a number of problems: a 2 + ε approximation
for the Partial Multicut on Trees [28, 15], a 4+ ε approximation for Partial Path Hitting on
Trees [30], a 2-approximation for Partial Rectangle Stabbing [14], and a ρ approximation for
Partial Set-Cover with ρ-blocks [17]. In addition, the ε can be removed from the first two
approximation guarantees if we allow quasi-polynomial time. It is worth noting that prior
to this work, the best approximation ratio for all these problems could be achieved with
the framework of Könemann et al. [26]. In each case our results improve the approximation
ratio by a 4

3
multiplicative factor. Due to lack of space these results only appear in the full

version2 of the paper.

2Full version available at http://arxiv.org/abs/0712.3936
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2. Lagrangian relaxation

Let S = {1, . . . ,m} be a collection of subsets of a universal set U = {1, . . . , n}. Each
set has a cost specified by c ∈ Rm

+ , and each element has a profit specified by p ∈ Rn
+.

Given a target coverage P , the objective of the Partial Cover problem is to find a minimum
cost solution C ⊆ S such that p(C) ≥ P , where the notation p(C) denotes the overall profit
of elements covered by C. The problem is captured by the IP below. Matrix A = {aij} ∈
{0, 1}n×m is an element-set incidence matrix, that is, aij = 1 if and only if element i ∈ U
belongs to set j ∈ S; variable xj indicates whether set j is chosen in the solution C; variable
ri indicates whether element i is left uncovered.

Lagrangian relaxation is used to get rid of the constraint bounding the profit of un-
covered elements to be at most p(U) − P . The constraint is multiplied by the parameter
λ, called Lagrange Multiplier, and is lifted to the objective function. The resulting IP
corresponds, up to the constant λ (p(U)− P ) factor in the objective function, to the prize-
collecting version of the covering problem, where the penalty for leaving element i uncovered
is λpi.

min c · x

Ax + Ir ≥ 1

p · r ≤ p(U)− P

ri, xj ∈ {0, 1}

Lagrangian
Relaxation

min c · x + λp · r − λ (p(U) − P )

Ax + Ir ≥ 1

ri, xj ∈ {0, 1}

Let OPT be the cost of an optimal partial cover and OPT-PC(λ) be the cost of an
optimal prize-collecting cover for a given λ. Let A be an α-approximation for the prize-
collecting variant of the problem. Algorithm A is said to have the Lagrangian Multiplier
Preserving (LMP) property if it produces a solution C such that

c(C) + αλ
(
p(U)− p(C)

)
≤ α OPT-PC(λ). (2.1)

Note that OPT-PC(λ) ≤ OPT + λ (p(U)− P ). Thus,

c(C) ≤ α
(
OPT + λ

(
p(C)− P

))
. (2.2)

Therefore, if we could find a value of λ such that C covers exactly P profit then C is
α-approximate. However, if p(C) < P , the solution is not feasible, and if p(C) > P , equation
(2.2) does not offer any guarantee on the cost of C. Unfortunately, there are cases where
no value of λ produces a solution covering exactly P profit. Thus, the idea is to use binary
search to find two values λ1 and λ2 that are close together and are such that A(λ1) covers
less, and A(λ2) covers more than P profit. The two solutions are then combined in some
fashion to produce a feasible cover.

3. Limitations of the black-box approach

A common way to combine the two solutions returned by the α-LMP is to treat the
algorithm as a black box, solely relaying on the LMP property (2.1) in the analysis. More
formally, an algorithm for Partial Cover that uses Lagrangian relaxation and an α-LMP
approximation A as a black box is as follows. First, we are allowed to run A with as many
different values of λ as desired; then, the solutions thus found are combined to produce a
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feasible partial cover. No computational restriction is placed on the second step, except
that only sets returned by A may be used.

Theorem 3.1. In general, the Partial Cover problem cannot be approximated better than
4
3
α using Lagrangian relaxation and an α-LMP algorithm A as a black box.

Let A1, . . . Aq and B1, . . . Bq be sets as depicted on the

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�
�
�

	
	
	








�
�
�

�
�
�





�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

��B1

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

 

 

!

!

"
"
"

#
#
#

$
$
$

%
%
%

&
&
&

'

'

(

(

)

)

*
*
*

+
+
+

,
,
,

-
-
-

.
.
.

/

/

0

0

1

1

23B2

4
4
4

5
5
5

6
6
6

7
7
7

8
8
8

9

9

:

:

;

;

<
<
<

=
=
=

>
>
>

?
?
?

@
@
@

A

A

B

B

C

C

D
D
D

E
E
E

F
F
F

G
G
G

H
H
H

I

I

J

J

K

K

LMBq

A1 A2 Aq. . .

..
.

right. For each i and j the intersection Ai∩Bj consists of a
cluster of q elements. There are q2 clusters. Set Ai is made
up of q clusters; set Bi is made up of q clusters and two
additional elements (the leftmost and rightmost elements
in the picture.) Thus |Ai| = q2 and |Bi| = q2 + 2. In
addition, there are sets O1, . . . , Oq, which are not shown in
the picture. Set Oi contains one element from each cluster
and the leftmost element of Bi. Thus |Oi| = q2 + 1. The
cost of Oi is 1

q
, the cost of Ai is 2 α

3 q
, and the cost of Bi is

4 α
3 q

. Every element has unit profit and the target coverage

is P = q3 + q. It is not hard to see that O1, . . . , Oq is an optimal partial cover with a cost
of 1.

The α-LMP approximation algorithm we use has the unfortunate property that it never
returns sets from the optimal solution.

Lemma 3.2. There exists an α-LMP approximation A that for the above instance and any
value of λ outputs either ∅ or A1, . . . , Aq or B1, . . . , Bq.

The proof that such an algorithm exists is given in the full version of the paper. Hence,
if we use A as a black box we must build a partial cover with the sets A1, . . . , Aq and
B1, . . . , Bq. Note that in order to cover q2 + q elements either all A-sets, or all B-sets
must be used. In the first case q

2
additional B-sets are needed to attain feasibility, and

the solution has cost 4
3
α; in the second case the solution is feasible but again has cost 4

3
α.

Theorem 3.1 follows.
One assumption usually made in the literature [1, 10, 26] is that cmax = maxj cj ≤

εOPT, for some constant ε > 0, or more generally an additive error in terms of cmax is
allowed. This does not help in our construction as cmax can be made arbitrarily small by
increasing q.

Admittedly, our lower bound example belongs to a specific class of covering problem
(every element belongs to at most three sets) and although the example can be embedded
into a partial totally unimodular covering problem (see full version), it is not clear how to
embed the example into other classes. Nevertheless, the 4

3
α upper bound of Koneman et

el. [26] makes no assumption about the underlying problem, only using the LMP property
(2.1) in the analysis. It was entirely conceivable that the 4

3
α factor could be improved using

a different merging strategy—Theorem 3.1 precludes this possibility.

4. Partial Totally Balanced Cover

In order to overcome the lower bound of Theorem 3.1, one must concentrate on a specific
class of covering problems or make additional assumptions about the α-LMP algorithm. In
this section we focus on covering problems whose IP matrix A is totally balanced. More
specifically, we study the integrality gap of the standard linear relaxation for Partial Totally
Balanced Cover (P-TBC) shown below.
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Theorem 4.1. Let IP and LP be the cost of the optimal integral and fractional solutions
of an instance of P-TBC. Then IP ≤

(
1 + 1

3k−1

)
LP + k cmax for any k ∈ Z+. Furthermore,

for any large enough k ∈ Z+ the exists an instance where IP >
(
1 + 1

3k−1

)
LP + k

2
cmax.

min c · x

Ax + Ir ≥ 1

p · r ≤ p(U)− P

ri, xe ≥ 0
LP Duality

max 1 · y − (p(U)− P )λ

AT y ≤ c

y ≤ λp

yi, λ ≥ 0

The rest of this section is devoted to proving the upper bound in Theorem 4.1, the
lower bound is left for the full version of the paper. Our approach is based on Lagrangian
relaxation and Kolen’s algorithm for Prize-Collecting Totally Balanced Cover (PC-TBC).
The latter exploits the fact that a totally balanced matrix can be put into greedy standard
form by permuting the order of its rows and columns; in fact, the converse is also true [20].
A matrix is in standard greedy form if it does not contain as an induced submatrix[

1 1
1 0

]
(4.1)

There are polynomial time algorithms that can transform a totally balanced matrix into
greedy standard form [32] by shuffling the rows and columns of A. Since this transformation
does not affect the underlying covering problem, we assume that A is given in standard
greedy form.

4.1. Kolen’s algorithm for Prize-Collecting Totally Balanced Cover

For the sake of completeness we describe Kolen’s primal-dual algorithm for PC-TBC.
The algorithm finds a dual solution y and a primal solution C, which is then pruned in

a reverse-delete step to obtain the final solution Ĉ. The linear and dual relaxations for
PC-TBC appear below.

min c · x + λp · r

Ax + Ir ≥ 1

ri, xe ≥ 0
LP Duality

max 1 · y

AT y ≤ c

y ≤ λp

yi ≥ 0

The residual cost of the set j w.r.t. y is defined as c′j = cj −
∑

i:aij=1 yi. The algorithm

starts from the trivial dual solution y = 0, and processes the elements in increasing column
order of AT . Let i the index of the current element. Its corresponding dual variable, yi,
is increased until either the residual cost of some set j containing i equals 0 (we say set j
becomes tight), or yi equals λpi (Lines 3-5).

Let C = {j | c′j = 0} be the set of tight sets after the dual update is completed. As
it stands the cover C may be too expensive to be accounted for using the lower bound
provided by 1 ·y because a single element may belong to multiple sets in C. The key insight
is that some of the sets in C are redundant and can be pruned.
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Kolen((A, c, p, λ))
1 // Dual update

2 y ← 0, C ← ∅, Ĉ ← ∅
3 for i← 1 to n
4 do δ ← min{c′j | aij = 1}
5 yi ← min{λpi, δ}
6 C ← {j | c′j = 0}

()
7 // Reverse delete
8 while C 6= ∅
9 do j ← largest set index in C

10 Ĉ ← Ĉ + j
11 C ← C \ { j′ | j dominates j′ or j = j′ }

12 return (Ĉ, y)

Definition 4.2. Given sets j1, j2 we say that j1 dominates j2 in y if j1 > j2 and there
exists an item i such that yi > 0 and i belongs to j1 and j2, that is, aij1 = aij2 = 1.

The reverse-delete step iteratively identifies the largest index j in C, adds j to Ĉ, and
removes j and all the sets it dominates. This is repeated until no set is left in C (Lines
8–11).

Notice that all sets j ∈ C are tight, thus we can pay for set j by charging the dual
variables of items that belong to j. Because of the reverse-delete step if yi > 0 then i

belongs to at most one set in Ĉ; thus in paying for Ĉ we charge covered items at most once.
Using the fact A is in standard greedy form, it can be shown [25] that if i was left uncovered

then we can afford its penalty, i.e., yi = λpi. The solution Ĉ is optimal for PC-TBC since
∑

j∈ bC

cj +
∑

i∈U s.t.

@ j∈ bC : aij=1

λpi =
∑

i∈U s.t.

∃ j∈ bC : aij=1

yi +
∑

i∈U s.t.

@ j∈ bC :aij=1

yi =
∑

i∈U

yi. (4.2)

If we could find a value of λ such that Kolen(A, c, p, λ) returns a solution (Ĉ, y)
covering exactly P profit, we are done since from (4.2) it follows that

∑

j∈ bC

cj =
∑

i∈U

yi − λ (p(U)− P ). (4.3)

Notice that (y, λ) is a feasible for the dual relaxation of P-TBC and its cost is precisely the
right hand side of (4.3). Therefore for this instance IP=DL=LP and Theorem 4.1 follows.

Unfortunately, there are cases where no such value of λ exists. Nonetheless, we can
always find a threshold value λ such that for any infinitesimally small δ > 0, λ− = λ − δ
and λ+ = λ + δ produce solutions covering less and more than P profit respectively. A
threshold value can be found using Megiddo’s parametric search [29] by making O(n log m)
calls to the procedure Kolen.

Let y (y−) be the dual solution and C (C−) the set of tight sets when Kolen is run on

λ (λ−). Without loss of generality assume Ĉ covers more than P profit. (The case where Ĉ
covers less than P profit is symmetrical: we work with y+ and C+ instead of y− and C−.)

Our plan to prove Theorem 4.1 is to devise an algorithm to merge Ĉ and Ĉ− in order
to obtain a cheap solution covering at least P profit.

4.2. Merging two solutions

Before describing the algorithm we need to establish some important properties regard-
ing these two solutions and their corresponding dual solutions.
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For any i, the value of y−
i is a linear function of δ for all i. This follows from the fact

that δ is infinitesimally small. Furthermore, the constant term in this linear function is yi.

Lemma 4.3. For each i ∈ U there exists a ∈ Z, independent of δ, such that y−
i = yi + aδ.

Proof. By induction on the number of iteration of the dual update step of kolen, using the
fact that the same property holds for the residual cost of the sets.

A useful corollary of Lemma 4.3 is that C− ⊆ C, since if the residual cost of a set is
non-zero in y it must necessarily be non-zero in y−. The other way around may not hold.

At the heart of our approach is the notion of a merger graph G = (V,E). The vertex

set of G is made up of sets from the two solutions, i.e., V = Ĉ ⊕ Ĉ−. The edges of G are
directed and given by

E =

{
(j1, j2)

j1 ∈ Ĉ− \ Ĉ, j2 ∈ Ĉ \ Ĉ− s.t. j1 dominates j2 in y−, or

j1 ∈ Ĉ \ Ĉ−, j2 ∈ Ĉ− \ Ĉ s.t. j1 dominates j2 in y

}
(4.4)

This graph has a lot of structure that can be exploited when merging the solutions.

Lemma 4.4. The merger graph G = (V,E) of Ĉ− and Ĉ is a forest of out-branchings.

Proof. First note that G is acyclic, since if (j1, j2) ∈ E then necessarily j1 > j2. Thus, it is
enough to show that the in-degree of every j ∈ V is at most one. Suppose otherwise, that

is, there exist j1, j2 ∈ V such that (j1, j), (j2, j) ∈ E. Assume that j1 < j2 and j ∈ Ĉ (the
remaining cases are symmetrical).

By definition (4.4), we know that j1 (j2) ∈ Ĉ− and that
i1 i2 i2 i1

j 1 1 1 1

j1 1 1 1

j2 1 1 1

there exists i1 (i2) that belongs to j and j1 (j2) such that
y−i1 > 0 (y−i2 > 0). Since AT is in standard greedy form we
can infer that i2 belongs to j1 if i1 < i2, or i1 belongs to j2 if
i1 > i2: The diagram on the right shows how, using the fact
that AT does not contain (4.1) as an induced submatrix, we
can infer that the boxed entries must be 1. In either case we get that j2 dominates j1 in

y−, which contradicts the fact that both belong to Ĉ−.

merge((Ĉ−, Ĉ))

1 let G be the merger graph for Ĉ− and Ĉ

2 D ← Ĉ−

3 for each root r in G
4 do if p(D ⊕ Tr) ≤ P
5 then then D ← D ⊕ Tr

6 else return increase(r, D)

The procedure merge starts from the unfeasible solution D = Ĉ− and guided by the
merger graph G, it modifies D step by step until feasibility is attained. The operation used
to update D is to take the symmetric difference of D and a subtree of G rooted at a vertex
r ∈ V , which we denote by Tr. For each root r of an out-branchings of G we set D ← D⊕Tr,
until p(D ⊕ Tr) > P . At this point we return the solution produced by increase(r,D).

Notice that after setting D ← D ⊕ Tr in Line 5, the solution D “looks like” Ĉ within

Tr. Indeed, if all roots are processed then D = Ĉ. Therefore, at some point we are bound
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to have p(D ⊕ Tr) > P and to make the call increase(r,D) in Line 6. Before describing
increase we need to define a few terms. Let the absolute benefit of set j, which we denote
by bj , be the profit of elements uniquely covered by set j, that is,

bj = p
({

i ∈ U | ∀ j′ ∈ Ĉ ∪ Ĉ− : aij′ = 1 iff j′ = j
})

. (4.5)

Let D ⊆ Ĉ ∪ Ĉ−. Note that if j ∈ D, the removal of j decreases the profit covered by D by
at least bj ; on the other hand, if j /∈ D, its addition increases the profit covered by at least
bj . This notion of benefit can be extended to subtrees,

∆(Tj, D) =
∑

j′∈Tj\D

bj′ −
∑

j′∈Tj∩D

bj′ . (4.6)

We call this quantity the relative benefit of Tj with respect to D. It shows how the profit of
uniquely covered elements changes when we take D ⊕ Tj. Note that ∆(Tj , D) can positive
or negative.

Everything is in place to explain increase(j,D). The algorithm assumes the input
solution is unfeasible but can be made feasible by adding some sets in Tj ; more precisely,
we assume p(D) ≤ P and P < p(D) + ∆(Tj , D). If adding j to D makes the solution
feasible then return D + j (Lines 2-3). If there exists a child c of j that can be used to
propagate the call down the tree then do that (Lines 4-5). Otherwise, split the subtree Tj :
Add j to D and process the children of c, setting D ← D ⊕ Tc until D becomes feasible
(Lines 6-9). At this point p(D) > P and p(D⊕Tc) ≤ P . If P − p(D⊕Tc) < p(D)−P then
call increase(c,D ⊕ Tc) else call decrease(c,D) and let D′ be the cover returned by the
recursive call (Lines 10-12). Finally, return the cover with minimum cost between D and
D′.

increase((j, D))
1 // assume p(D) ≤ P < p(D) + ∆(Tj , D)
2 if p(D + j) ≥ P
3 then return D + j
4 if ∃ child c of j : p(D) + ∆(Tc, D) > P
5 then return increase(c, D)
6 D ← D + j
7 while p(D) ≤ P
8 do c← child of j maximizing ∆(Tc, D)
9 D ← D ⊕ Tc

10 if P − p(D ⊕ Tc) < p(D)− P
11 then D′ ← increase(c, D ⊕ Tc)
12 else D′ ← decrease(c, D)
13 return min cost {D, D′}

decrease((j, D))
1 // assume p(D) ≥ P > p(D) + ∆(Tj , D)
2 if p((D ⊕ Tj) + j) ≥ P
3 then return (D ⊕ Tj) + j
4 if ∃ child c of j : p(D) + ∆(Tc, D) < P
5 then return decrease(c, D)
6 D ← D + j
7 while p(D) ≥ P
8 do c← child of j minimizing ∆(Tc, D)
9 D ← D ⊕ Tc

10 if p(D ⊕ Tc)− P < P − p(D)
11 then D′ ← increase(c, D)
12 else D′ ← decrease(c, D ⊕ Tc)
13 return min cost {D ⊕ Tc, D

′}

The twin procedure decrease(j,D) is essentially symmetrical: Initially the input is
feasible but can be made unfeasible by removing some sets in Tj ; more precisely p(D) ≥ P
and P < p(D) + ∆(Tc, D).

At a very high level, the intuition behind the increase/decrease scheme is as follows.
In each call one of three things must occur:
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(i) A feasible cover with a small coverage excess is found (Lines 2-3), or

(ii) The call is propagated down the tree at no cost (Lines 4-5), or

(iii) A subtree Tj is split (Lines 6-9). In this case, the cost cj cannot be accounted
for, but the offset in coverage |P − p(D)| is reduced at least by a factor of 3.

If the increase/decrease algorithms split many subtrees (incurring a high extra cost)
then the offset in coverage must have been very high at the beginning, which means the
cost of the dual solution is high and so the splitting cost can be charged to it. In order to
flesh out these ideas into a formal proof we need to establish some crucial properties of the
merger graph and the algorithms. Proofs are omitted due to lack of space.

Lemma 4.5. If yi < λpi then there exist j ′ ∈ Ĉ and j′′ ∈ Ĉ− such that either j ′ = j′′ or
(j′, j′′) ∈ E or (j′′, j′) ∈ E.

Lemma 4.6. Let (j,D) be the input of increase/decrease. Then at the beginning of
each call we have j ′ ∈ D or j′′ ∈ D for all (j ′, j′′) ∈ E. Furthermore, if j ′ ∈ D and j′′ ∈ D
then j′ or j′′ must have been split in a previous call.

Lemma 4.7. Let (j,D) be the input of increase/decrease. For increase we always
have p(D) ≤ P < p(D) + ∆(Tj , D), and for decrease we have p(D) ≥ P > p(D) +
∆(Tj , D).

Recall that y is also a feasible solution for the dual relaxation of P-TBC and its cost
is given by DL =

∑n
i=1 yi − (p(U)− P )λ. The following lemma proves the upper bound of

Theorem 4.1.

Lemma 4.8. Suppose merge outputs D. Then c(D) ≤
(
1 + 1

3k−1

)
DL + k cmax for all

k ∈ Z+.

Proof. Let us digress for a moment for the sake of exposition. Suppose that in Line 6 of
merge, instead of calling increase, we return D ′=D⊕Tr. Notice every arc in the merger
graph has exactly one endpoint in D′. By Lemma 4.5, any element i not covered by D ′ must
have yi = λ pi. Furthermore, if yi > 0 then there exists at most one set in D ′ that covers
i; if two such sets exist, one must dominate the other in y and y−, which is not possible.
Hence,

c(D) =
∑

j∈D′

∑

i:aij=1

yi =
∑

i s.t.
∃ j∈D′ :aij=1

yi =
∑

i∈U

yi − (p(U)− p(D′))λ ≤ DL + (p(D′)− P )λ (4.7)

In the fortunate case that (p(D′)− P )λ ≤ kcmax, the lemma would follow. Of course, this
need not happen and this is why we make the call to increase instead of returning D ′.

Let jq be the root of the qth subtree split by increase/decrease. Also let Dq the
solution right before splitting Tjq , and D′

q and D′′
q be the unfeasible/feasible pair of solutions

after the splitting, which are used as parameters in the recursive calls (Lines 11-12). Suppose
Lines 7-9 processed only one child of jq, this can only happen in increase, in which case
p(D′′

q ) > P but p(D′′
q )− bjq < P . The same argument used to derive (4.7) gives us

c
(
D′′

q \ {j≤q}
)
≤

∑

i∈U

yi −
(
p(U)− p(D′′

q ) + bjq

)
λ ≤ DL (4.8)

The cost of the missing sets is c({j≤q}) ≤ q cmax, thus if q ≤ k the lemma follows. A similar

bound can be derived if the recursive call ends in Line 3 before splitting the k th subtree.
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Finally, the last case to consider is when Lines 7-9 process two or more children jq for all
q ≤ k. In this case

|p(Dq)− P | ≥ 3min
{
|p(D′

q)− P |, |p(D′′
q )− P |

}
= 3 |p(Dq+1)− P |, (4.9)

which implies |p(D1)−P | ≥ 3k−1|p(Dk)−P | ≥ 3k−1|p(D′′
k)−P |. Also, λ(P − p(D1)) ≤ DL

since all elements i not covered by D1 must be such that yi = λpi. Hence, as before

c
(
D′′

k \ {j≤k}
)
≤ DL +

(
p(D′′

k)− P
)
λ ≤ DL +

P − p(D1)

3k−1
≤

(
1 +

1

3k−1

)
DL (4.10)

Adding the cost of {j≤k} we get the lemma.

5. Concluding remarks and open problems

The results in this paper suggest that Lagrangian relaxation is a powerful technique for
designing approximation algorithms for partial covering problems, even though the black-
box approach may not be able to fully realize its potential.

It would be interesting to extend this study on the strengths and limitation of La-
grangian relaxation to other problems. The obvious candidate is the k-Median problem.
Jain and Vazirani [21] designed a 2α-approximation for k-Median using as a black box an
α-LMP approximation for Facility Location. Later, Jain et al. [22] gave a 2-LMP approxi-
mation for Facility Location. Is the algorithm in [21] optimal in the sense of Theorem 3.1?
Can the algorithm in [22] be turned into a 2-approximation for k-Median by exploiting
structural similarities when combining the two solutions?
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