15 research outputs found

    A 3rd-order Continuous-Time Low-Pass Sigma-Delta Analog-to-Digital Converter for Wideband Applications

    Get PDF
    This thesis presents the design of a 20 MHz bandwidth 3rd-order continuous-time low-pass sigma-delta analog-to-digital converter with low-noise and low-power consumption using TSMC 0.18 μm CMOS technology. The bandwidth of the system is selected to be able to accommodate WiMAX and other wireless network standards. A 3rd-order filter with feed-forward architecture is selected to achieve low-power consumption as well as less complexity. The system uses 3-bit flash quantizer to provide fast data conversion. The current-steering DAC not only achieves low-power and less current sensitivity, but also it helps directly inject the feedback signal without additional circuitries. In order to avoid degradation of the overall performance, cross-coupled transistors are adopted to reduce the current glitches. The proposed system achieves a peak SNDR of 65.9 dB in 20 MHz bandwidth, and consumes 31.735 mW from a 1.8 V supply. The entire circuit is driven by a sampling rate at 500 MHz. The measured in-band IM3 of this thesis is -69 dB with 600 mVp-p two tone signal peak-to-peak voltage

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    Multi-Stage Noise-Shaping Continuous-Time Sigma-Delta Modulator

    Get PDF
    The design of a single-loop continuous-time ∑∆ modulator (CT∑∆M) with high resolution, wide bandwidth, and low power consumption is very challenging. The multi-stage noise-shaping (MASH) CT∑∆M architecture is identified as an advancement to the single-loop CT∑∆M architecture in order to satisfy the ever stringent requirements of next generation wireless systems. However, it suffers from the problems of quantization noise leakage and non-ideal interstage interfacing which hinder its widespread adoption. To solve these issues, this dissertation proposes a MASH CT∑∆M with on-chip RC time constant calibration circuits, multiple feedforward interstage paths, and a fully integrated noise cancellation filter (NCF). The prototype core modulator architecture is a cascade of two single-loop second- order CT∑∆M stages, each of which consists of an integrator-based active-RC loop filter, current-steering feedback digital-to-analog converters, and a four-bit flash quantizer. On-chip RC time constant calibration circuits and high gain multi-stage operational amplifiers are realized to mitigate quantization noise leakage due to process variation. Multiple feedforward interstage paths are introduced to (i) synthesize a fourth-order noise transfer function with DC zeros, (ii) simplify the design of NCF, and (iii) reduce signal swings at the second-stage integrator outputs. Fully integrated in 40 nm CMOS, the prototype chip achieves 74.4 dB of signal-to-noise and distortion ratio (SNDR), 75.8 dB of signal-to-noise ratio, and 76.8 dB of dynamic range in 50.3 MHz of bandwidth (BW) at 1 GHz of sampling frequency with 43.0 mW of power consumption (P). It does not require external software calibration and possesses minimal out-of-band signal transfer function peaking. The figure-of-merit (FOM), defined as FOM = SNDR + 10 log10(BW/P), is 165.1 dB

    Low Noise, Jitter Tolerant Continuous-Time Sigma-Delta Modulator

    Get PDF
    The demand for higher data rates in receivers with carrier aggregation (CA) such as LTE, increases the efforts to integrate large number of wireless services into single receiving path, so it needs to digitize the signal in intermediate or high frequencies. It relaxes most of the front-end blocks but makes the design of ADC very challenging. Solving the bottleneck associated with ADC in receiver architecture is a major focus of many ongoing researches. Recently, continuous time Sigma-Delta analog-to-digital converters (ADCs) are getting more attention due to their inherent filtering properties, lower power consumption and wider input bandwidth. But, it suffers from several non-idealities such as clock jitter and ELD which decrease the ADC performance. This dissertation presents two projects that address CT-ΣΔ modulator non-idealities. One of the projects is a CT- ΣΔ modulator with 10.9 Effective Number of Bits (ENOB) with Gradient Descent (GD) based calibration technique. The GD algorithm is used to extract loop gain transfer function coefficients. A quantization noise reduction technique is then employed to improve the Signal to Quantization Noise Ratio (SQNR) of the modulator using a 7-bit embedded quantizer. An analog fast path feedback topology is proposed which uses an analog differentiator in order to compensate excess loop delay. This approach relaxes the requirements of the amplifier placed in front of the quantizer. The modulator is implemented using a third order loop filter with a feed-forward compensation paths and a 3-bit quantizer in the feedback loop. In order to save power and improve loop linearity a two-stage class-AB amplifier is developed. The prototype modulator is implemented in 0.13μm CMOS technology, which achieves peak Signal to Noise and Distortion Ratio (SNDR) of 67.5dB while consuming total power of 8.5-mW under a 1.2V supply with an over sampling ratio of 10 at 300MHz sampling frequency. The prototype achieves Walden's Figure of Merit (FoM) of 146fJ/step. The second project addresses clock jitter non-ideality in Continuous Time Sigma Delta modulators (CT- ΣΔM), the modulator suffer from performance degradation due to uncertainty in timing of clock at digital-to-analog converter (DAC). This thesis proposes to split the loop filter into two parts, analog and digital part to reduce the sensitivity of feedback DAC to clock jitter. By using the digital first-order filter after the quantizer, the effect of clock jitter is reduced without changing signal transfer function (STF). On the other hand, as one pole of the loop filter is implemented digitally, the power and area are reduced by minimizing active analog elements. Moreover, having more digital blocks in the loop of CT- ΣΔM makes it less sensitive to process, voltage, and temperature variations. We also propose the use of a single DAC with a current divider to implement feedback coefficients instead of two DACs to decrease area and clock routing. The prototype is implemented in TSMC 40 nm technology and occupies 0.06 mm^2 area; the proposed solution consumes 6.9 mW, and operates at 500 MS/s. In a 10 MHz bandwidth, the measured dynamic range (DR), peak signal-to-noise-ratio (SNR), and peak signal-to-noise and distortion (SNDR) ratios in presence of 4.5 ps RMS clock jitter (0.22% clock period) are 75 dB, 68 dB, and 67 dB, respectively. The proposed structure is 10 dB more tolerant to clock jitter when compared to the conventional ΣΔM design for similar loop filter

    Multibit delta sigma modulator with noise shaping dynamic element matching

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A 3-Bit Current Mode Quantizer for Continuous Time Delta Sigma Analog-to-Digital Converters

    Get PDF
    The summing amplifier and the quantizer form two of the most critical blocks in a continuous time delta sigma (CT ΔΣ) analog-to-digital converter (ADC). Most of the conventional CT ΔΣ ADC designs incorporate a voltage summing amplifier and a voltage-mode quantizer. The high gain-bandwidth (GBW) requirement of the voltage summing amplifier increases the overall power consumption of the CT ΔΣ ADC. In this work, a novel method of performing the operations of summing and quantization is proposed. A current-mode summing stage is proposed in the place of a voltage summing amplifier. The summed signal, which is available in current domain, is then quantized with a 3-bit current mode flash ADC. This current mode summing approach offers considerable power reduction of about 80% compared to conventional solutions [2]. The total static power consumption of the summing stage and the quantizer is 5.3mW. The circuits were designed in IBM 90nm process. The static and dynamic characteristics of the quantizer are analyzed. The impact of process and temperature variation and mismatch tolerance as well as the impact of jitter, in the presence of an out-of-band blocker signal, on the performance of the quantizer is also studied

    Design of Highly Efficient Analog-To-Digital Converters

    Get PDF
    The demand of higher data rates in communication systems is reflected in the constant evolution of communication standards. LTE-A and WiFi 802.11ac promote the use of carrier aggregation to increase the data rate of a wireless receiver. Recent DTV receivers promote the concept of full band capture to avoid the implementation of complex analog operations such as: filtering, equalization, modulation/demodulation, etc. All these operations can be implemented in a robust manner in the digital domain. Analog-to-Digital Converters (ADCs) are located at the heart of such architectures and require to have larger bandwidths and higher dynamic ranges. However, at higher data rates the power efficiency of ADCs tends to degrade. Moreover, while the scale of channel length in CMOS devices directly benefits the power, speed and area of digital circuits, analog circuits suffer from lower intrinsic gain and higher device mismatch. Thus, it has been difficult to design high-speed ADCs with low-power operation using traditional architectures without relying on increasingly complex digital calibration algorithms. This research presents three ADCs that introduce novel architectures to relax the specifications of the analog circuits and reduce the complexity of the digital calibration algorithms. A low-pass sigma delta ADC with 15 MHz of bandwidth is introduced. The system uses a low-power 7-bit quantizer from which the four most significant bits are used for the operation of the sigma delta ADC. The remaining three least significant bits are used for the realization of a frequency domain algorithm for quantization noise improvement. The prototype was implemented in 130 nm CMOS technology. For this prototype, the use of the 7-bit quantizer and algorithm improved the SNDR from 69 dB to 75 dB. The obtained FoM was 145 fJ/conversion-step. In a second project, the problem of high power consumption demanded from closed loop operational amplifiers operating at Giga hertz frequency is addressed. Especially the dependency of the power consumption to the closed loop gain. This project presents a low-pass sigma delta ADC with 75 MHz bandwidth. The traditional summing amplifier used for excess loop compensation delay is substituted by a summing amplifier with current buffer that decouples the power consumption dependency with the closed loop gain. The prototype was designed in 40 nm CMOS technology achieving 64.9 dB peak SNDR. The operating frequency was 3.2 GHz, the total power consumption was 22 mW and FoM of 106 fJ/conversion-step. In a third project, the same approach of decoupling the power consumption requirements from the closed loop gain is applied to a pipelined ADC. The traditional capacitive multiplying DAC used in the residual amplifier is substituted by a current mode DAC and a transimpedance amplifier. The prototype was implemented in 40 nm CMOS technology achieving 58 dB peak SNDR and 76 dB SFDR with 200 MHz sampling frequency. The ADC consumes 8.4 mW with a FoM of 64 fJ/Conversion-step

    Design of Analog & Mixed Signal Circuits in Continuous-Time Sigma-Delta Modulators for System-on-Chip applications

    Get PDF
    Software-defined radio receivers (SDRs) have become popular to accommodate multi-standard wireless services using a single chip-set solution in mobile telecommunication systems. In SDRs, the signal is down-converted to an intermediate frequency and then digitalized. This approach relaxes the specifications for most of the analog front-end building blocks by performing most of the signal processing in the digital domain. However, since the analog-to-digital converter (ADC) is located as close as possible to the antenna in SDR architectures, the ADC specification requirements are very stringent because a large amount of interference signals are present at the ADC input due to the removal of filtering blocks, which particularly affects the dynamic range (DR) specification. Sigma-delta (ΣΔ) ADCs have several benefits such as low implementation cost, especially when the architecture contains mostly digital circuits. Furthermore, continuous-time (CT) ΣΔ ADCs allow elimination of the anti‐aliasing filter because input signals are sampled after the integrator. The bandwidth requirements for the amplifiers in CT ΣΔ ADCs can be relaxed due to the continuous operation without stringing settling time requirements. Therefore, they are suitable for high‐speed and low‐power applications. In addition, CT ΣΔ ADCs achieve high resolution due to the ΣΔ modulator’s noise shaping property. However, the in-band quantization noise is shaped by the analog loop filter and the distortions of the analog loop filter directly affect the system output. Hence, highly linear low-noise loop filters are required for high-performance ΣΔ modulators. The first task in this research focused on using CMOS 90 nm technology to design and fabricate a 5^(TH)–order active-RC loop filter with a cutoff frequency of 20 MHz for a low pass (LP) CT ΣΔ modulator. The active-RC topology was selected because of the high DR requirement in SDR applications. The amplifiers in the first stage of the loop filter were implemented with linearization techniques employing anti-parallel cancellation and source degeneration in the second stage of the amplifiers. These techniques improve the third-order intermodulation (IM3) by approximately 10 dB; while noise, area, and power consumption do not increase by more than 10%. Second, a current-mode adder-flash ADC was also fabricated as part of a LP CT ΣΔ modulator. The new current-mode operation developed through this research makes possible a 53% power reduction. The new technology also lessens existing problems associated with voltage-mode flash ADCs, which are mainly related to voltage headroom restrictions, speed of operation, offsets, and power efficiency of the latches. The core of the current-mode adder-flash ADC was fabricated in CMOS 90 nm technology with 1.2 V supply; it dissipates 3.34 mW while operating at 1.48 GHz and consumes a die area of 0.0276 mm^(2). System-on chip (SoC) solutions are becoming more popular in mobile telecommunication systems to improve the portability and competitiveness of products. Since the analog/RF and digital blocks often share the same external power supply in SoC solutions, the on-chip generation of clean power supplies is necessary to avoid system performance degradation due to supply noises. Finally, the critical design issues for external capacitor-less low drop-out (LDO) regulators for SoC applications are addressed in this dissertation, especially the challenges related to power supply rejection at high frequencies as well as loop stability and transient response. The paths of the power supply noise to the LDO output were analyzed, and a power supply noise cancellation circuit was developed. The power supply rejection (PSR) performance was improved by using a replica circuit that tracks the main supply noise under process-voltage-temperature variations and all operating conditions. Fabricated in a 0.18 μm CMOS technology with 1.8 V supply, the entire proposed LDO consumes 55 μA of quiescent current while in standby operation, and it has a drop-out voltage of 200 mV when providing 50 mA to the load. Its active core chip area is 0.14 mm2. Compared to a conventional uncompensated LDO, the proposed architecture presents a PSR improvement of 34 dB and 25 dB at 1 MHz and 4 MHz, respectively

    Novel design strategies and architectures for continuous-time Sigma-Delta modulators

    Get PDF

    Blocker Tolerant Radio Architectures

    Get PDF
    Future radio platforms have to be inexpensive and deal with a variety of co- existence issues. The technology trend during the last few years is towards system- on-chip (SoC) that is able to process multiple standards re-using most of the digital resources. A major bottle-neck to this approach is the co-existence of these standards operating at different frequency bands that are hitting the receiver front-end. So the current research is focused on the power, area and performance optimization of various circuit building blocks of a radio for current and incoming standards. Firstly, a linearization technique for low noise amplifiers (LNAs) called, Robust Derivative Superposition (RDS) method is proposed. RDS technique is insensitive to Process Voltage and Temperature (P.V.T.) variations and is validated with two low noise transconductance amplifier (LNTA) designs in 0.18µm CMOS technology. Measurement results from 5 dies of a resistive terminated LNTA shows that the pro- posed method improves IM3 over 20dB for input power up to -18dBm, and improves IIP_(3) by 10dB. A 2V inductor-less broadband 0.3 to 2.8GHz balun-LNTA employing the proposed RDS linearization technique was designed and measured. It achieves noise figure of 6.5dB, IIP3 of 16.8dBm, and P1dB of 0.5dBm having a power consumption of 14.2mW. The balun LNTA occupies an active area of 0.06mm2. Secondly, the design of two high linearity, inductor-less, broadband LNTAs employing noise and distortion cancellation techniques is presented. Main design issues and the performance trade-offs of the circuits are discussed. In the fully differential architecture, the first LNTA covers 0.1-2GHz bandwidth and achieves a minimum noise figure (NFmin) of 3dB, IIP_(3) of 10dBm and a P_(1dB) of 0dBm while dissipating 30.2mW. The 2^(nd) low power bulk driven LNTA with 16mW power consumption achieves NFmin of 3.4dB, IIP3 of 11dBm and 0.1-3GHz bandwidth. Each LNTA occupy an active area of 0.06mm2 in 45nm CMOS. Thirdly, a continuous-time low-pass ∆ΣADC equipped with design techniques to provide robustness against loop saturation due to blockers is presented. Loop over- load detection and correction is employed to improve the ADC’s tolerance to blockers; a fast overload detector activates the input attenuator, maintaining the ADC in linear operation. To further improve ADC’s blocker tolerance, a minimally-invasive integrated low-pass filter that reduces the most critical adjacent/alternate channel blockers is implemented. An ADC prototype is implemented in a 90nm CMOS technology and experimentally it achieves 69dB dynamic range over a 20MHz bandwidth with a sampling frequency of 500MHz and 17.1mW of power consumption. The alternate channel blocker tolerance at the most critical frequency is as high as -5.5dBFS while the conventional feed-forward modulator becomes unstable at -23.5dBFS of blocker power. The proposed blocker rejection techniques are minimally-invasive and take less than 0.3µsec to settle after a strong agile blocker appears. Finally, a new radio partitioning methodology that gives robust analog and mixed signal radio development in scaled technology for SoC integration, and the co-design of RF FEM-antenna system is presented. Based on the proposed methodology, a CMOS RF front-end module (FEM) with power amplifier (PA), LNA and transmit/receive switch, co-designed with antenna is implemented. The RF FEM circuit is implemented in a 32nm CMOS technology. Post extracted simulations show a noise figure < 2.5dB, S_(21) of 14dB, IIP3 of 7dBm and P1dB of -8dBm for the receiver. Total power consumption of the receiver is 11.8mW from a 1V supply. On the trans- mitter side, PA achieves peak RF output power of 22.34dBm with peak power added efficiency (PAE) of 65% and PAE of 33% with linearization at -6dB power back off. Simulations show an efficiency of 80% for the miniaturized dipole antenna
    corecore