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ABSTRACT 

 

High Performance Class-AB Output Stage Operational Amplifiers for Continuous-time 

Sigma-delta ADC. (August 2011) 

Lakshminarasimhan Krishnan, B. E., Anna University, Chennai 

Chair of Advisory Committee: Dr. Jose Silva-Martinez 

 

 One of the most critical blocks in a wide-band continuous time sigma delta 

(CTSD) analog-to-digital converter (ADC) is the loop filter. For most loop filter 

topologies, the performance of the filter depends largely on the performance of the 

operational amplifiers (op-amps) used in the filter. The op-amps need to have high 

linearity, low noise and large gain over a wide bandwidth.  

In this work, the impact of op-amp parameters like noise and linearity on system 

level performance of the CTSD ADC is studied, and the design specifications are 

derived for the op-amps. A new class-AB bias scheme, which is more robust to process 

variations and has an improved high frequency response over the conventional 

Monticelli bias scheme, is proposed. A biquadratic filter which forms the input stage of 

a 5
th

 order low pass CTSD ADC is used as a test bench to characterize the op-amp 

performance. The proposed class-AB output stage is compared with the class-AB output 

stage with Monticelli bias scheme and a class-A output stage with bias current reuse. 

The filter using the new op-amp architecture has lower power consumption than the 

other two architectures. The proposed class AB bias scheme has better process variation 

and mismatch tolerance compared to the op-amp that uses conventional bias scheme. 
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1. INTRODUCTION 

 

1.1 Motivation 

 

 The rapid growth in the wireless communication industry has increased the 

performance expectations from analog and RF circuits. The next generation products are 

aimed at integrating multiple communication standards into a single chip [1]. Digital 

signal processing techniques are gaining large popularity for these implementations. 

Digital circuits occupy smaller area, are more robust to process variations and provide a 

large dynamic range at a low cost. In order for the digital circuits to interface with the 

real world analog signals ADCs are needed. Hence the performance of ADCs is 

extremely critical for rapid development of DSP solutions. Figure 1 shows the 

architecture of a generic wireless receiver. While demands from the RF and analog 

circuits are increased, the increase in process variations with each new process 

generation motivates the designer to move the ADC as much closer to the antenna as 

possible. This facilitates in performing filtering and frequency translation in the digital 

domain in a less complex and more reliable fashion. A digital implementation leads to 

easier portability of circuits across process generations. As the ADC is moved closer to 

the receiver antenna, the demands on the speed and dynamic range of the ADC become 

severe. 

 

 

Figure 1 Generic wireless receiver architecture 

  

____________ 

This thesis follows the style of IEEE Journal of Solid-State Circuits. 
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 Continuous-time sigma-delta (CTSD) ADC is considered as a viable solution for 

several wireless receiver applications where large bandwidth (> 10MHz bandwidth) and 

high resolution (≥ 11 bits) are required [2]. Figure 2 shows the block diagram of a 

generic continuous-time sigma-delta ADC. 

 

 

Figure 2 Block diagram of a generic continuous-time sigma-delta ADC 

 

 The loop filter is a critical analog block in the design of a continuous-time sigma-

delta ADC. The transfer function of the loop filter in the CTSD ADC determines the 

noise transfer function of the ADC. The stability of the ADC depends on the locations of 

the poles and zeros of the filter. High bandwidth and high resolution of the ADC 

translates into high bandwidth and high order loop filters. The loop filters used in sigma 

delta ADCs have a pass-band gain greater than unity, hence active filter topologies are 

used to implement the loop filter. 

 The performance of any active filter depends largely on the performance of the 

op-amps used in the filter. The gain-bandwidth product of an op-amp used in an active 

filter needs to be much greater than the gain-bandwidth product of the filter, so that the 

op-amp appears to be ideal over the frequency range of interest. In a wide band, high 

performance ADC, the loop filter has a high pass band gain and a large bandwidth; 

hence the op-amps need to have a very large gain-bandwidth product. 

 Thermal noise and noise due to non-linearity of the circuit blocks in the ADC 

should be well below the quantization noise power of the ADC in-order for the ADC to 
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realize the desired resolution. The loop filter is at the input of the ADC, and any input 

referred noise from the filter adds directly to the input signal and significantly degrades 

the signal to noise ratio of the ADC. Hence the op-amps used in designing the filter need 

to have low input referred noise and a highly linear output swing greater than or equal to 

the full scale swing of the ADC while being loaded by small resistors (larger resistors 

produce more thermal noise). 

 Most of the wireless receivers are portable in nature; this naturally poses a limit 

on the power consumption of the components used. In a CTSD ADC a major portion of 

the power consumption is contributed by the filter. Since in most active filters the 

number of op-amps used increase with the order of the filter, in a higher order filter, 

even a small reduction in power of the individual op-amps could lead to significant 

power savings in the entire filter. Hence the design of such low-power, large gain-

bandwidth, low noise and highly linear op-amps pose a significant challenge. 

 In a wireless receiver, the input signal power received is much smaller than the 

full scale power that the receiver can handle most of the time. The input signal power 

equals the full scale power less frequently. Hence circuits with high power efficiency are 

desired to reduce the static power consumption. In the particular case of op-amps used in 

the loop-filter of a CTSD ADC, the idea of increasing power efficiency motivates us to 

explore the use of class-AB amplifiers in this thesis. 

 In this work, the problem of designing low power, high performance op-amps 

suitable for use in the loop filter of a continuous time sigma delta ADC has been 

addressed. The effects of non-idealities of the loop filter on the performance of the 

CTSD ADC have been studied and the generic design criteria that the op-amps need to 

meet are obtained. An existing loop filter implementation is chosen (from [3]) and the 

design specifications of the op-amps needed are identified. The merits and de-merits of 

using a class-AB output stage in the amplifiers used in the filter is highlighted. A new 

class-AB output stage that is robust to process variations and provides good high-

frequency response is proposed. Op-amps using the new class-AB output stage and the 

conventional class-AB bias technique (Monticelli bias scheme [4]) are designed to match 
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the specifications of the existing amplifiers in [3], and comparisons are made between 

the three amplifiers. Filters are designed using the three amplifier topologies and the 

filter performances are compared. 

 

1.2 Thesis organization 

 

 The organization of this thesis is highlighted next. Section 2 briefly outlines the 

working of an ideal CTSD ADC. It highlights the non-idealities of the loop filter that 

impact the overall performance of the ADC. 

 Section 3 introduces the loop filter that was designed in [3]. Noise contribution 

of each element in the filter is derived. The design criteria for the amplifiers are 

obtained. 

 Section 4 discusses the amplifier topology in detail and analyses the merits and 

de-merits of a class-A output stage and a conventional class-AB output stage with 

Monticelli bias. The new class-AB output stage is introduced and analyzed. A 

comparison between the three output stages are made by embedding them in an 

amplifier. 

 Sections 5 and 6 present a comparison of the amplifiers by embedding them into 

a biquadratic filter. Section 5 presents the schematic-simulation results and Section 6 

presents the post-layout simulation results. 

 Section 7 presents the conclusion of the thesis. 
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2. CONTINUOUS TIME SIGMA DELTA ADC 

 

 This section describes the architecture and working of a continuous time sigma 

delta ADC and emphasizes the performance of the loop filter as the key to enhance the 

performance of the CTSD ADC. The impact of non-idealities in a practical ADC is 

outlined. Finally, the non-idealities of the filter and its effects are discussed. 

 

2.1 Ideal continuous-time sigma-delta modulator 

 

 Analog signals are continuous in time and amplitude, while digital signals are 

associated with discrete time instants and discrete levels of amplitude. An ADC converts 

an analog signal to digital signal by sampling the continuous-time signal at periodic 

instants in time, holding the sampled value over the entire sampling period and mapping 

the sampled value to a corresponding digital code. This is illustrated in Figure 3.  

 

 

Figure 3 Analog to digital conversion 

 

 The sample and hold circuit takes care of discretizing the continuous signal in 

time domain and the quantizer takes care of mapping the sampled values into digital 

codes. According to Nyquist criterion, the sampling frequency, fs, needs to be at least 

twice the signal bandwidth of interest, fb, which needs to be processed. If this criterion is 

not satisfied, the information in the signal bandwidth of interest gets corrupted after 

sampling due to a phenomenon known as aliasing. If the input signal has some unwanted 
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frequency information beyond fb, then it can cause aliasing and corrupt the in-band 

signal. The anti-aliasing filter takes care of filtering out the signals beyond fb. 

 The quantizer maps a signal that is continuous in voltage to discrete levels; hence 

the process of quantization introduces a quantization noise that is uniformly spread from 

–fs/2 to fs/2 in the frequency domain. For an N-bit ADC, quantization noise power 

depends on the quantization step size ∆ (=Vfullscale/N) and is equal to ∆
2
/12. The 

corresponding signal to quantization noise ratio (SQNR) of the ADC is given as, [5] 

 

                        (2.1) 

 

 If the sampling frequency of the ADC is increased beyond the Nyquist value of 

2*fb, then the quantization noise power is now spread over a wider bandwidth and hence 

the noise floor is reduced. This in-turn reduces the quantization noise power present in 

the signal band of interest. This process of increasing the sampling frequency to lower 

the in-band quantization noise is called over-sampling, and the ratio of the sampling 

frequency in the over-sampling case to the Nyquist sampling frequency is called over-

sampling ratio (OSR). For example, an OSR of 2 will reduce the in-band quantization 

noise by 3dB. The spreading of the quantization noise due to over-sampling is illustrated 

in Figure 4. 

 

 

Figure 4 Over-sampling 
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 The improvement in SQNR of the ADC due to over-sampling is given as, 

 

                                     (2.2) 

 

 Sigma-delta modulators employ the over-sampling technique to achieve high 

resolution. Another technique employed to improve the resolution in a sigma-delta ADC 

is noise-shaping. 

 In a sigma-delta modulator the in-band noise is attenuated and pushed out of 

band. This noise shaping can be easily understood from the block diagram shown in 

Figure 5. The loop of a CTSD ADC consists of a loop filter H(s), which defines the 

nature of the ADC – low pass or band pass, a quantizer and a DAC in the feedback path. 

For small signal analysis, the quantizer and the DAC are assumed to have a combined 

gain of unity and the quantization noise, Qnoise, is added at the input of the quantizer. The 

quantization noise is assumed to be additive white Gaussian noise. H(s) represents the 

transfer function of the loop filter. Equations (2.3) and (2.4) give the signal transfer 

function (STF) and noise transfer function (NTF) respectively. 

 

 

Figure 5 Block diagram of ideal CTSD ADC 
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 (2.3) 

 

      
    

      
  

 

      
 (2.4) 

 

 Let’s consider the case of a low pass CTSD ADC, where the transfer function 

H(s) of the loop filter is a low pass transfer function with a pass band gain greater than 

unity. For frequencies, where H(s) is significantly larger than unity, it can be seen that 

the STF is almost unity and the NTF is approximately the reciprocal of the gain provided 

by H(s). As the value of H(s) decreases with increase in frequency, the STF decreases 

from unity and NTF increases towards unity. Hence the STF has a unity gain response 

for in-band frequencies, while the NTF attenuates the in-band quantization noise. This 

attenuation of in-band quantization noise without affecting the STF is the noise-shaping 

effect of sigma-delta modulators. A simple qualitative sketch of STF and NTF is shown 

in Figure 6. 

 

 

Figure 6 Signal transfer function (STF) and noise transfer function (NTF) 

 

 Apart from noise-shaping and over-sampling, the sigma-delta ADC also has an 

inherent anti-aliasing effect from the loop filter H(s). The expression of SQNR for a 

sigma-delta ADC is given by equation (2.5) (from [5]). 
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(2.5) 

 

 In equation (2.5), N indicates the number of bits in the quantizer, L indicates the 

order of the loop filter transfer function (which is the order of the ADC as well) and 

OSR is the over-sampling ratio defined earlier. From equation 2.5 we can see that 

increasing the order of the loop filter L impacts the performance of the ADC 

significantly. Hence the performance of the loop filter is critical to enhance the 

performance of the CTSD ADC. 

 

2.2 Non-idealities in a practical ADC 

 

 From the previous discussion, we saw that the ideal sigma delta modulator can 

realize a very high SQNR and hence achieve high resolution by using a higher order 

filter which has a high pass-band gain and hence greatly attenuates the in-band 

quantization noise. However, in practice there are several circuit non-idealities which 

impact the performance of the ADC. The different non-idealities that impact the 

performance of the CTSD ADC arise from non-idealities in the filter, DAC and 

quantizer, clock jitter, thermal noise of all circuit components [6].  

 Figure 7 highlights the non-idealities that impact the performance of the CTSD 

ADC significantly. The filter non-idealities such as harmonic distortion and thermal 

noise from the filter have been referred to the input of the filter. This is similar to a noise 

that is added to the input of the ADC as it has the same transfer function as the input 

signal information. Hence the filter non-idealities impact the performance of the closed 

loop ADC greatly. Similarly, the non-idealities of the DAC referred to its output and 

clock jitter impact the performance of the ADC greatly. The DAC non-idealities are 

primarily in the form harmonic distortion caused due to mismatch in the DAC elements. 

Clock jitter gets convolved with the out-of-band noise and raises the in-band noise floor. 

The noise introduced due to non-idealities in the quantizer is shaped by the sigma-delta 
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loop, and doesn’t impact the performance of the ADC significantly. Hence it has not 

been shown in Figure 7.  

 

 

Figure 7 Block diagram of CTSD ADC with significant non-idealities 

 

 

 Equation (2.6) shows the output expression of the ADC in presence of non-

idealities. 

 

 

     (                               )  
    

      

         
 

      
 

(2.6) 

 

  It can be seen that the noise voltages due to the non-idealities from the filter, 

DAC and clock jitter have the same transfer function to the output as the input signal, 

Vin. Hence they directly affect the signal to noise ratio of the ADC. 
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2.3 Filter non-idealities 

 

 The non-idealities of the filter impacting the performance of the ADC manifest 

itself as harmonic distortion introduced by the filter, thermal noise of the filter, excess 

phase introduced by amplifiers/transconductors in the filter and the variation of pole-

zero locations due to variation in values of the passives across process corners [6]. The 

excess phase introduced by the filter can cause additional delay to the signal traveling 

through the loop and lead to stability problems. In order to counter this the amplifiers 

used in the filter need to introduce minimal excess phase to the signal. Additionally 

designers resort to several compensation techniques to deal with the problem of loop 

excess phase of the sigma delta modulator [6, 7, 8]. Variation in the value of passive 

values is taken care of by trimming or tuning of the resistors or capacitors used. A bank 

of passive elements is implemented and the value of the passives is tuned by applying a 

digital code. 

 The thermal noise at the input of the ADC consists mostly of the input referred 

thermal noise of the filter, since it is the only input-referred thermal noise present at the 

input of the ADC. Thermal noise from all other circuit components is shaped by the NTF 

of the ADC. When we design a CTSD ADC of a certain resolution, in order to realize 

the signal to noise and distortion ratio (SNDR) corresponding to the resolution, the noise 

introduced by the non-idealities should be smaller than the quantization noise of the 

ADC. Hence the input-referred thermal noise of the filter should be much smaller than 

quantization noise of the ADC, such that the power of thermal noise when added with 

noise power due to other non-idealities is less than or equal to the quantization noise 

power. For instance, if we consider an ADC with 12-bit resolution, which ideally 

promises a SQNR of 74dB, the noise power due to all the non-idealities put together 

should be at least -74dB smaller than the full scale power of the input signal. [2] 

indicates that the thermal noise should be smaller than -80dB with respect to full scale 

power for a 12-bit CTSD ADC. For large bandwidth ADCs, this forms a stringent noise 

specification on the filter. 
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 Another non-ideal effect which is of large focus in this thesis, is the harmonic 

distortion introduced by the filter. In Subsection 2.1, we saw that the filter needs to have 

an in-band gain in-order for the ADC to produce a noise shaping effect. In-order to 

embed, gain in the filter, the filters need to be active filters which contain a gain element 

in them. These gain elements (amplifiers) are inherently non-linear. The distortion 

introduced by the filter should be of the same magnitude as the thermal noise. This 

imposes stringent linearity requirements on the filter design. Fully differential operation 

gets rid of even order harmonics, and only odd harmonics of distortion contribute to 

noise. The linearity of the amplifiers generally relates to linear range of the transistors 

used in them. The linear range can be increased but at the expense of power 

consumption. The loop filter in a CTSD ADC is generally realized using a cascade of 

biquadratic filters and integrators. All the biquadratic filters and integrators possess an 

in-band gain greater than unity. Hence the noise and distortion of the blocks in the 

cascade following the first block is shaped by the gain of the first biquadratic filter or 

integrator (based on the design). The noise and distortion of the first section of the loop 

filter appears directly at the input of the loop filter and hence the ADC and is most 

critical. In most CTSD ADCs the SNDR that can be achieved is often limited by the 

distortion in the first section of the loop filter [3]. 
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3. BIQUADRATIC FILTER DESIGN 

 

 The previous section highlighted the importance of the loop filter in a CTSD 

ADC and indicated that the first section of the loop filter provides the performance bottle 

neck of the loop filter. In this section, an existing design of a loop filter that has been 

published in [3, 9] is introduced. The design of the first section of the filter which is a 

biquadratic filter is explored, and the design constraints that need to be placed on the 

amplifiers used in the biquadratic filter are discussed. 

 

3.1 Loop filter 

 

 In this thesis, our main focus is on developing a new operational amplifier 

topology for a continuous time sigma delta modulator; hence we make use of an existing 

design of a continuous time sigma delta modulator reported in literature, identify the 

specifications of the op-amps in the loop filter and design op-amps using the new 

topology to strike a comparison. We consider the continuous-time sigma-delta ADC 

published in [9], which is 5
th

 order low-pass continuous-time sigma-delta ADC with 12-

bit resolution and 25 MHz bandwidth and 400MHz sampling frequency. The loop filter 

of this ADC is shown in Figure 8. 

 

 

Figure 8 Loop filter in [3, 9] 
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 The 5
th

 order low-pass ADC has a 5
th

 order Chebyshev filter with 25MHz low-

pass bandwidth and 49dB pass band gain. The filter achieves an IM3 of -72dB with a 

full scale swing of 400mVp-p differential swing. The filter consists of two biquadratic 

filter sections and a lossy integrator as shown in Figure 8. From Figure 8, it can be seen 

that the loop filter has a feed-forward topology with each biquadratic filter producing a 

low-pass and band-pass output and the 1
st
 order integrator producing a low-pass output. 

All the three filter sections have an in-band gain, Ki and a cut-off frequency f0. Q 

represents the quality factor of the biquadratic sections, and Ai represents the feed-

forward coefficients from the individual outputs to the loop filter output. The transfer 

function of the overall loop filter, H(s), and the way in which it is split across the three 

sections is shown in equations (3.1) and (3.2) respectively. 
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 By looking at the specifications of the three filter sections indicated in Figure 8, 

it can be easily noted that the first biquadratic filter section has the most stringent 

requirements on the op-amps since it has the highest quality factor and cut-off frequency 

(this will be explained in detail later). Hence we focus only on designing the op-amps for 

the biquadratic filter. In [9], the loop filter is implemented as an active-RC filter. The 
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design and implementation details of the first biquadratic section are discussed in the 

next section.  

 

3.2 Active-RC biquadratic filter 

 

 Active-RC biquadratic filters provide good linearity at high frequencies but at the 

expense of power consumption. In the previous sections, we have seen that the first 

biquadratic section of the loop filter forms the performance bottlenecks of the entire 

ADC with respect to low noise and linearity. Hence the design of the active-RC filters 

become challenging due to the contradicting requirement of low-noise and low-power. 

Also, power savings in the first stage of the sigma-delta ADC contributes to significant 

power savings for the whole ADC. The design challenge of the active-RC filters boils 

down to designing the op-amps since they are the elements responsible for non-linearity 

and power consumption. Figure 9 shows the single-ended equivalent of the active-RC 

filter implemented in [3] ([3] describes in detail the loop-filter implementation of [9]). 

 

 

Figure 9 Active-RC biquadratic filter (single-ended) 

 

 The design equations used for the filter are listed in equations (3.3), (3.4) and 

(3.5). 
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 The transfer function of the filter at the low-pass and band-pass nodes, assuming 

that the op-amps are ideal with an infinite gain, is given by the expressions in equations 

(3.6) and (3.7). The resistor and capacitor values used in the design of the first 

biquadratic section in [3] are shown Table 1. 
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Table 1 Resistor and capacitor values used in the first biquadratic filter 

Parameter Value 

R1 1.083 KΩ 

R2, Rf 6.498 KΩ 

RQ 40 KΩ 

C1, C2 0.7 – 1.4 pF 
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 The capacitors C1 and C2 have been implemented with a tuning range in [3]. In 

our case, since we only need the biquadratic filter as test bench to the new operational 

amplifier topology, the nominal value of 1pF has been used. 

 

3.3 Noise analysis of the active-RC biquadratic filter 

 

 Thermal noise in the active-RC filters arise primarily from the resistors and 

amplifiers. The noise sources present in the biquadratic filter are shown in Figure 10. 

 

 

Figure 10 Noise sources in the biquadratic filter 

 

 In Figure 10, the noise spectral density of the amplifiers, Vn,A1
2
 and Vn,A2

2
 have 

been referred to the positive input of the amplifier to simplify the analysis. The thermal 

noise power spectral density of the resistors is given by      
       . The input-

referred noise of the biquadratic filter can be approximately expressed as 

 

 

     
        (   

  

  
  

  

  
)       |     |

 

  (     
       

 |     |
 ) |

  

  
      |

 

 

(3.8) 

 



 18 

 From equation (3.8), it can be seen that the noise of the filter is primarily 

dominated by the noise due to resistor R1 at low frequencies. The noise due to the first 

amplifier is scaled by the ratio     ⁄ . The noise due to resistor R2 and the second 

amplifier is irrelevant at low frequencies since it is multiplied by the term sC2R2. But at 

high frequencies this noise can become significant. 

 We already saw that for a 12-bit ADC the thermal noise should be at least -74dB 

below full scale power (smaller than quantization noise). Since most of the noise is 

contributed from the first biquadratic filter, we can assume that the noise of the first 

biquadratic filter should be at least -74dB below full scale power. The full-scale power 

(0dBFS) corresponding to 400mVp-p differential swing is -14dBV. Hence the input-

referred noise from the biquadratic filter that can be tolerated is -74dBFS or 40µVrms 

noise. The noise is budgeted so that half the noise comes from R1 and the remaining 

noise arises from other terms in equation (3.8). Since the scaling factor of the first 

amplifiers noise is approximately 1/40, the noise from the amplifier would be 

sufficiently negligible if the amplifier’s noise is of the same order as the resistor R1. So 

we aim for a noise of 20µVrms from the first amplifier. The second amplifier’s noise 

requirement is slightly relaxed since the gain due to the first integrator in the biquadratic 

filter scales the noise, when we refer it to the input of the filter. 

 It should also be noted that the noise fixes the upper-limit on the value of 

resistors that can be used in the filter. Using smaller resistors would decrease the noise 

of the filter, but the load they impose on the amplifiers will necessitate burning a lot of 

current in-order to achieve high gain. 

 

3.4 Distortion analysis of the filter 

 

 The filter is implemented in a fully differential fashion; hence the most 

significant source of distortion is the third harmonic component. We can use IM3 as the 

metric to measure distortion as it directly reflects the level of the 3
rd

 harmonic 

component present at the input of the filter. In this design, an IM3 of -74dB is targeted. 
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Similar to noise, the distortion of the second amplifier is scaled when referred back to 

the input. Hence we need to focus mainly on the linearity of the first amplifier. In order 

to arrive at the linearity requirements, the linearity of a generic inverting amplifier 

shown in Figure 11 is first considered. 

 

 

Figure 11 Inverting amplifier 

 

 The op-amp in an inverting amplifier has been represented using the 

transconductance stage Gm and output impedance ZO. In-order to identify the loading 

effect of the feedback element, the circuit can be redrawn as shown in Figure 12. 

 

 

Figure 12 Inverting amplifier illustrating feedback loading 

 

 In-order to identify the loop gain, the loop is broken in the feedback path as 

shown in Figure 13.  
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Figure 13 Inverting amplifier - Loop gain 
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 We can identify the forward path gain from Figure 12 and the loop gain from 

Figure 13. Hence by applying Mason’s gain formula, the transfer function from Vin to Vo 

can be written as, 
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 The feedback system in equation (3.10) can be modeled as shown in Figure 14. 

 

 

 

Figure 14 Feedback model for the inverting amplifier 
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 The forward gain block A is non-linear due to the presence of Gm’ in its 

expression. The non-linear gain of A can be expanded as shown in equation (3.14). 
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(3.14) 

 

 The coefficients, gi, represent the non-linear expansion coefficients of Gm’ and 

coefficients, ai, represent the non-linear expansion co-efficients of the open-loop gain 

element A. Let bi represent the non-linear co-efficients of the closed loop transfer 

function Vo/Vin1. From [10] we have the expressions for bi in terms of ai and loop gain as 

shown in equations (3.15), (3.16) and (3.17). 

 

 
   

  

    
  

 

(3.15) 

    
  

       
 (3.16) 

 

    
            

  

       
 (3.17) 

 



 22 

 In equation (3.17), if 2a2
2
f << a3(1+Af), then we can rewrite the equation as 

shown in equation (3.18). 

 

    
  

       
 (3.18) 

 

 Since our system is a fully differential system, the even-order non-linearities 

cancel each other and the third order non-linearity becomes the most important non-

linearity. Intermodulation distortion gives a good measure of the linear performance of 

the circuit. Intermodulation distortion is defined as the ratio of the amplitude of the 

intermodulation product in a two-tone test to the amplitude of the fundamental. The 

expression for the 3
rd

 order intermodulation distortion for the closed loop system is 

shown in equation (3.19) [11]. 
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 Substituting the expression for b3 and b1 from equations (3.18) and (3.15) 

respectively, into equation (3.19), we can rewrite the expression for IM3 as shown in 

equation (3.20). 

 

      

 
 
  

  
   

 

       
 (3.20) 

 

 The numerator in equation (3.20) represents the IM3 of the gain element A if it 

was used in open loop with the input Vin directly applied to it. Hence we can generalize 

the relation between IM3 of a gain element used with linear feedback and in open loop 

as shown in equation (3.21).  
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 (3.21) 

 

 In the case of the filter, that is being implemented in this thesis, two factors 

influence the IM3 of the closed loop filter – the open loop IM3 of the op-amps and the 

loop gain of the filter. In-order to attain an IM3 of -74dB, the requirement from the 

open-loop IM3 of the amplifier is relaxed if the loop gain is high. If the loop gain is 

20dB, the open loop IM3 will be diminished by approximately 60dB. Hence in our 

design we aim for the amplifiers to have a gain such that the loop gain is at least 20dB. 

In-order to find the gain requirement of the first amplifier, we break the loop as shown in 

Figure 15. 

 

 

Figure 15 Biquadratic filter with loop broken at first amplifier input 

 

 The resistor R2 is connected to the output of the first amplifier on one end and to 

a virtual ground node on the other end. Hence it can be considered as a load on the first 

amplifier. Figure 15 can be redrawn in a much simpler fashion as shown in Figure 16. 
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Figure 16 Simplified circuit to find loop gain 

 

 Let A1 be the gain of the first amplifier with its load. In Figure 16, R2 forms the 

load, however in an actual CTSD ADC, there may be additional resistor which feeds the 

signal at that node to the summing amplifier which will load the first amplifier (will be 

illustrated later). The expression for the loop gain can now be easily written down as 

shown in equation (3.22). 
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 (3.22) 

 

 Equation (3.22) is used to find the gain requirement of the amplifier A1, which 

guarantees a loop gain of 10. We see in [3] that the first amplifier needs to have at least 

50dB gain at low frequencies and 44dB voltage gain at 25MHz, to guarantee good in-

band linearity. 
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4. AMPLIFIER DESIGN 

 

 In Section 3, an insight was given into the amplifier specifications that are 

required for the amplifiers used in the biquadratic filter. In this section, a summary of the 

specifications are listed and the design of the amplifier is discussed in detail. The merits 

and demerits of operational amplifiers with class-A and class-AB (with conventional 

Monticelli bias) output stages are discussed. A new class-AB bias scheme is proposed 

and is compared with the other two output stages. 

 

4.1 Amplifier specifications 

 

 Table 2 summarizes the design specifications required from the first amplifier of 

the biquadratic filter. 

 

Table 2 Amplifier specifications 

Parameter Value 

DC Gain ≥ 52.26 dB 

Gain up to 25MHz ≥ 44 dB 

Gain-bandwidth product 3.96 GHz 

Output linear range (fully-

differential) 
≥ 400mV 

Power minimal 

Input referred noise in 25MHz ≤ 20µVrms 

Load 1.34 KΩ 

 

 

 In Section 3, it was discussed that the design specifications on amplifier 1 are 

more challenging than the second amplifier; hence this amplifier is chosen to illustrate 

design topology. From the specifications it can be seen that the amplifier needs to have a 
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very large gain-bandwidth product running to few GHz. Also, the op-amp is loaded by a 

small resistor and needs to achieve a high gain; hence reducing the power consumption 

of this amplifier is a significant challenge. 

 

4.2 Amplifier topology 

 

 A key observation that needs to be made based on the application is that the 

amplifier never going to be operated up to its unity gain frequency which is of the order 

of few GHz, as the sampling frequency is only 400MHz for the CTSD ADC. Hence this 

property can be exploited to reduce power consumption. The high gain and high 

bandwidth requirement can be achieved by using a multi-stage amplifier using several 

compensation techniques like nested Gm-C compensation [12], nested Miller 

compensation [13], etc. But as we increase the number of stages, the power consumption 

increases. Hence using a two-stage amplifier with a suitable compensation technique 

would the ideal solution in this case. Also, most of the compensation techniques are 

based on Miller compensation, which achieves stability at the expense of bandwidth as it 

pushes the dominant pole to lower frequencies. Using Miller compensation would 

consume large power in this case as the amplifier requires a high gain and high 

bandwidth. 

 In this design, we make use of feed-forward compensation [14]. This technique 

provides a fast path for the signals. The technique is explained briefly using Figure 17. 

 

 

Figure 17 Feed-forward Gm compensation technique 
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 The amplifier in Figure 17 has two-gain stages with transconductance GM1 and 

GM2 respectively. GM3 is a feed-forward stage. Ri and Ci represent the resistance and 

capacitance present at the output of the i
th 

stage.  GM3 provides a fast path and creates a 

phantom zero to compensate for the negative phase shift introduced by the stages GM1 

and GM2. Since this technique does not the push the dominant pole at the first stage 

output to lower frequencies (which is the case in Miller compensation technique), this 

scheme can be used to realize amplifiers that need a large bandwidth. 
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 If GM2 = GM3, we can simplify equation (4.1) as: 
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(4.2) 

 

 From equation (4.2) we can see that, having an additional path to the output 

through the feed-forward stage creates a LHP zero. The position of the zero can be 

moved by varying GM3 relative to GM2. If GM3 is increased with respect to GM2, then the 

zero introduced moves to lower frequencies and improves the phase margin, and vice 

versa. One of the key features of this technique is that it allows one or more non-

dominant pole to exist within the unity gain frequency of the amplifier, as long as the 

zero is close enough to the pole to cancel its effect. 

 In this design, the first stage of the amplifier needs to provide low input noise 

and high bandwidth (since the dominant pole is at the output of the first stage). The gain 
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requirement from the first stage is fairly high, since the output stage of the amplifier is 

loaded by a small resistance. In-order to meet these requirements, we use a conventional 

differential pair input stage with current source load. The feed-forward stage, needs to be 

a low-noise stage, since its noise directly adds to the amplifier’s input referred noise. 

Additionally, the feed forward stage should have a large bandwidth. Hence the feed-

forward stage is also a differential pair with current source load. The output stage of the 

amplifier needs to be highly linear in the presence of a small resistive load. The output 

stage can have high output impedance, since the small resistive load will take care of 

pushing the pole to high frequencies and the feed-forward compensation doesn’t require 

the pole to be outside the unity gain frequency of the amplifier. In the next few 

subsections, we will explore the different output stages that can be used. 

 

4.3 Class-A output stage 

 

 Since the op-amps need to be very linear, class-A output stage is a popular 

solution [9, 15, 16]. In class-A operation, the amplifier is always ON for the entire 

excursion of the signal. This is achieved by biasing using a fixed current source. Figure 

18 shows a simple class-A output stage and its small signal iOUT versus vin 

characteristics. 

 

 

Figure 18 Class-A output stage and its I-V characteristics 
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 The output stage is a transconductance stage which delivers the current iOUT into 

an output load. The expression for output current can be written as shown in equation 

(4.3). 

 

            (4.3) 

 

 When vin >-VDSAT and the drain-source voltage VDS ≥ VGS – VT, the transistor is 

in saturation and equation (4.3) can be rewritten as shown below. 
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 From equation (4.4) and the I-V characteristics, we can see that for small values 

of vin, the output current varies linearly with vin. As vin increases in the positive 

direction, the quadratic term starts dominating. As vin is reduced below -VDSAT the 

transistor enters the cut-off region, and the output current saturates to IB. This 

corresponds to the hard non-linearity shown in the I-V characteristics. The peak current 

that the transistor can sink when vin is increased depends on the load connected at the 

output. In presence of a capacitive load, CL, at the output, the slew rate corresponding to 

the scenario when iOUT increases can be written as shown in equation (4.5). 
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 Since the peak output current is limited to the bias current, for applications that 

require a high peak value of output current, the class-A output stage consumes a lot of 

power. The good thing about class-A amplifiers, apart from providing good linearity for 

small signals is that they are highly robust across process corners, since the current 

source, IB, is generally implemented as a current mirror that mirrors a reference current. 

 

 

Figure 19 Amplifier with class-A output stage and feed-forward compensation 

 

 Figure 19 shows the amplifier implemented in [3]. The amplifier has a feed-

forward Gm compensation scheme similar to the one detailed in Subsection 4.2 and a 

class-A output stage. In-order to reduce power-consumption, the PMOS devices MP2B 

reuse the current in the feed-forward stage to provide additional gain in the second stage, 

and hence the current flowing through the transistors MN2 can be reduced. Also, this 

scheme of complementary transistors at the output stage eliminates the problem of 

swing-limitation as there are two active devices at the output node whose drain current is 

controlled by the input signal. However, there is a possibility of cross-over distortion in 

the case of large swing signals at the output. The other possible problem is that the same 

DC level that biases the output transistors MN2 and MP2B is set by the CMFB of the 
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output stage, which employs resistive shunt feedback. If the signal swing at the output of 

first stage is larger than the over-drive voltage of the output transistors, the devices will 

be pushed out of saturation. Hence careful design is required to guarantee that the 

devices stay in saturation across all process corners. 

 A key observation that can be made from the implementation in [3] is that the 

amplifier is able to meet the stringent linearity requirements of the filter despite having a 

complementary PMOS and NMOS output stage, as long as both the transistors remain in 

saturation for the entire excursion of the output signal. This observation motivates us to 

analyze the possibility of using a class-AB output stage, which is discussed in the next 

section. 

 

4.4 Class-AB output stage 

 

 Class-AB amplifiers can theoretically drive infinite current into the load. This 

motivates designers to choose a class-AB output stage when a large capacitive load or a 

small resistive load needs to be driven. The schematic of the ideal class-AB output stage 

and the output current versus input voltage characteristic is shown in Figure 20. 

 

 

Figure 20 Ideal class-AB output stage schematic and iOUT vs vin characteristic 

 



 32 

 The ideal class-AB output stage shown in Figure 20 has complementary NMOS 

and PMOS output devices which can either “push” current into the load or “pull” current 

from the load. Hence they are also called push-pull output stages. The relationship of 

output current, iOUT, with input voltage, vin, is shown in equations (4.6), (4.7) and (4.8).  
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can rewrite the above equation for iOUT as:  
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 When -VDSAT,N < vin < VSDSAT,P, both the transistors M1P and M1N are in 

saturation. The expression of output current has only a linear term as the quadratic terms 

of iP and iN cancel out as seen in equation (4.6). Hence the output current is very linear in 

this region. When vin ≤ -VDSAT,N, M1N enters the cut-off region and the current is 

provided by M1P, which varies with vin in a quadratic fashion as shown in equation (4.7). 
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Similarly, when vin ≥ VSDSAT,P, M1P enters cut-off region and M1N conducts the output 

current as shown in equation (4.8). If the input signal amplitude is less than over-drive 

voltage of the output transistors, then the output current is extremely linear, else cross-

over distortion is observed. 

 The peak output current delivered in the case of a class-AB output stage depends 

on the input voltage. There is no hard limit on the peak output current as seen in the 

class-A output stage. Since the bias current in the output stage when vin=0 is not related 

to the peak output current delivered, it can be much lower than the peak output current. 

Hence class-AB output stage consumes lesser power than a class-A output stage 

designed to deliver the same output current. In presence of a capacitive load, CL, the 

slew rate of the class-AB output stage is shown in equation (4.9). 
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 The main design challenge in the implementation of a class-AB output stage is 

the implementation of the DC level shifter. The DC level shifter, which is implemented 

using a bias circuit, needs to guarantee the following functions: 

1. Bias the output stage transistors M1P and M1N with a fixed-quiescent current 

across different process corners. 

2. Act as a short-circuit to small-signal variations, so that there is no attenuation of 

small signal information across the level shifter. 

3. It should not impose a limitation on the current the output stage can pull or push 

into the load. 

 Class-AB output stages have been used for amplifiers in the loop filter in [17, 

18]. The small resistors that the op-amps in the filter need to drive form the primary 

motivating factor to use class-AB output stages. From a small signal point of view, 

class-AB output stages inherently have the property of bias current re-use, and hence 

provide larger gain than a conventional class-A stage would using the same bias current. 
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In other words, for a required gain, the class-AB output stage consumes less power than 

its class-A counterpart. In a communication receiver, the signal strength is much smaller 

than full-scale power most of the time. A class-AB amplifier uses a bias current which is 

a fraction of the peak current that it would be delivered and thus saves power. In a class-

A stage a current source that is capable of delivering the peak current biases the 

amplifying device, and hence increases the static power consumption of a class-A output 

stage. All these factors motivate the use of a class-AB output stage. 

 

4.4.1 Existing class-AB schemes 

 

 Several class-AB schemes have been reported in the literature [19, 20, 4, 21, 22, 

23, 24], which focus on the problem of implementing robust DC level shifters which 

efficiently perform the three functions of the bias circuit highlighted earlier. The class-

AB stages reported in [19, 20] suffer from the problem of saturating output current since 

they are current-mirror based. The implementation in [21] is not suitable for low supply 

voltages. [22] proposes a DC level shifter implementation but it relies on additional 

circuitry to fix the output DC level of the previous stage. Monticelli bias [4] is the most 

popular approach used for implementing class-AB output stages in several applications 

and is shown in Figure 21. 

 

 

Figure 21 Class-AB output stage with Monticelli bias 
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 Monticelli bias scheme fixes the bias current in the output stage based on 

quadratic trans-linearity principle [25]. In the Monticelli bias, the bias current IB flowing 

through the head-to-tail connected transistors M2P and M2N act as a DC level shifter. In 

the quiescent condition, the current through transistors M2P and M2N is equal to IB/2. 

When the previous transconductance stage in the op-amp generates a small signal 

current, iin, it flows across the impedance Z1 to generate a voltage, VX, which is copied 

in VY. When iin increases, the voltage VX increases, and hence the gate-source voltage of 

M2N decreases and the current flowing through M2N decreases. Since the small signal 

current circulates between M2N and M2P, the current through M2P increases, and the 

gate-source voltage of M2P has to increase to support this larger current. Since the gate 

voltage is fixed, the source voltage, VY, moves in the direction towards the supply 

voltage. When VX decreases, the current through M2N increases and the current through 

M2P decrease and hence VY is pulled down. Thus small signal variations at the output of 

the first stage are copied on to the gate of M1P. Since the DC bias current of M2N and 

M2P is equal to IB/2, this copying action of VX to VY is valid only when the ac current 

injected in the loop is less than IB/2. The small-signal equivalent of the Monticelli bias 

network is shown in Figure 22. 

 

 

Figure 22 Small signal equivalent of Monticelli bias network 
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 The input impedance from looking into the node X is given in equation (4.10). It 

can be seen that the input impedance depends largely on ZoutCS,P. The expressions for 

voltages VX and VY are shown in equations (4.11) and (4.12). The transfer function of 

the Monticelli bias network VY/VX is shown in equation (4.13). 
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 In order for the transfer function in equation (4.13) to be close to unity, gmM2N 

and gmM2P should be equal to each other and gmM2PZoutCS,P should be much greater than 

unity. We know that the transconductance gmM2P are proportional to square root of the 

bias current IB and ZoutCS,P is inversely proportional to IB, and hence the product 

gmM2PZoutCS,P varies inversely with the square root of IB. In-order to maximize 

gmM2PZoutCS,P, we need to decrease IB. However, the lower limit on IB is fixed by the 

peak value of the ac current injected from the previous stage. Also, it is not always 

possible to match gmM2N and gmM2P in a real implementation; hence the transfer function 

VY/VX never achieves unity. If VX and VY are not identical, the quadratic terms in the 

drain current expression of the output transistors M1N and M1P do not cancel each other 

as they did in equation (4.6). This causes the output current to be non-linear. 

  Another drawback of the Monticelli bias stage can be observed during 

large signal operation. When the input current iin is large enough so that the voltage VX 
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is large enough to turn the transistor M2N off, it no-longer conducts any current and 

current circulation between M2N and M2P stops. M2P now acts as a mere cascoding 

device to the PMOS current source IB, and voltage the node Y gets clamped as shown in 

Figure 23. The expressions for the voltages VX and VY and the transfer function VY/VX 

is shown in equations (4.14) through (4.16). As iin increases further, the voltage VX 

increase more rapidly and eventually the device M2P enters the linear region and acts as 

a resistor. 

 

 

Figure 23 Large signal distortion in Monticelli bias scheme for iin > IB/2 
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 Similarly, when iin is large enough in the negative direction and VX decreases 

sufficiently so that the M2N draws all of the current provided by the current source on top 

and M2P is starved for current, M2P enters the cut-off region. The Monticelli network 
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now acts as a common gate amplifier with M2N as its amplifying device as shown in 

Figure 24. The corresponding expressions for the voltages VX and VY and the transfer 

function VY/VX is shown in equations (4.17) through (4.19). As iin increases further in 

the negative direction, the voltage swing at VX and VY increases and eventually the 

transistor M2N enters triode region. 

 

 

Figure 24 Large signal distortion in Monticelli bias scheme for iin < -IB/2 
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                (4.19) 

 

 From equations, (4.11) through (4.19), it can be observed that there hard 

discontinuities in the transfer function, VY/VX. These discontinuities have been 

illustrated as a function of the input ac current in Figure 25. 
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Figure 25 Voltage transfer function of the Monticelli bias network versus input ac 

current 

 

4.4.2 Proposed class-AB output stage 

 

 In this new technique, the DC level shifters required in a class-AB bias stage are 

realized by sending a fixed current across a resistor as illustrated in Figure 26. 

 

 

Figure 26 DC level shifter implementation - Basic idea 

 

 It is a well-known fact that the current delivered by the current source IB and the 

value of the resistor R varies widely across process corners. Hence we make use of 

feedback loops to provide the appropriate bias voltage for the gates of M1P and M1N as 

shown in Figure 27. The voltage that needs to be applied at the gate of M1P (M1N) is 

compared with a reference voltage VREF,P (VREF,N). The voltage VREF,P (VREF,N) is 
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generated by making the desired output quiescent current through M1P (M1N) flow into a 

diode connected copy of M1P (M1N). The feedback loop makes sure that the voltage at 

the node VG,P (VG,N) matches VREF,P (VREF,N). The accuracy of matching depends on the 

gain in the feed-back loop which consists of an error amplifier and the current source 

transistor. Since the feed-back loops are needed mainly to set the DC operating points of 

the transistor M1P and M1N, they can have a low bandwidth. Hence, the error amplifiers 

can be designed to have a low bandwidth and consume negligible power. 

 

 

Figure 27 Proposed class-AB bias scheme - Basic idea 

 

 This circuit guarantees the DC bias conditions of the transistors M1P and M1N are 

maintained across all process corners by suppressing any variations at the nodes VG,P 

and VG,N. However, it should be noted that the loop will also suppress any useful signal 

information present at the nodes VG,P and VG,N. Hence the signal path should be isolated 

(shown in dotted lines in Figure 27) from the feedback loops that guarantee the required 

DC conditions. This can be done easily in a fully differential implementation, by using a 

common-mode sensing circuit or a circuit that averages DC level as shown in Figure 28. 

Since the useful signal information is fully-differential in nature, the bias control circuit 

is transparent to it. However, the DC bias information is common in both the positive 
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and negative arms and the average of it is compared with VREF,P and VREF,N to provide 

the appropriate current in the output transistors. Figure 29 shows the circuit-level 

implementation of the circuit that averages the DC levels and the error amplifier.  

 

 

Figure 28 Fully differential implementation of proposed class-AB output stage 

 

 

Figure 29 Circuit level implementation of common-mode sense circuit and error 

amplifier 
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 It should be noted that the common-mode sense circuit imposes a limitation on 

the differential swing at the nodes VG+ and VG-, as it has to be less than |VDSAT,N1a| for 

the common-mode sense circuit to be linear. This application does not demand a large 

signal swing at the gates of the output devices, however, if a larger linear range is 

needed, other common-mode sensing circuits with larger linear range can be used.  

 The small signal equivalent of the bias circuit present in one of the two output 

arms of the fully differential output stage is shown in Figure 30.  

 

 

Figure 30 Small signal equivalent of bias arm 

 

 We can see that if the output impedance of the NMOS and PMOS current 

sources are equal then the transfer function from V1 to VP or VN can be written as shown 

in equation (4.20). 

 

 
  

  
 

  

  
 

       

        ( ||
 
  )

 (4.20) 

 

 It can be seen from equation (4.20) that the signal at the nodes VP and VN are 

equal to each other and hence the non-linearity due to asymmetry as observed in the 

conventional bias scheme is absent in the proposed output stage. The capacitor, C, in 

parallel with the resistor, R, in Figure 30, is used to guarantee that the small signal 

transfer function from Vin to VG,P or VG,N is maintained close to unity at high 

frequencies. The resistors and capacitors are chosen so that the transfer function is as 
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close to unity as possible. Another use of the capacitor is that, they introduce LHP zeros 

in the signal path to compensate for the addition of an extra node to the circuit when 

compared with the Monticelli bias scheme where the first stage output connects directly 

to the gate of one of the output transistors. 

 

4.5 Circuit-level implementation and comparison 

 

 The circuit-level implementation of the amplifier using the proposed class-AB 

output stage is shown in Figure 31. The design specifications of the amplifier that were 

obtained from filter design requirements were previously shown in Table 2 in Subsection 

4.1.  The input stage (M1N and M1P) is designed to have a high gain and low input noise. 

The dominant pole is present at the output of the first stage. The output stage (M2N and 

M2P) and the feed forward stage (M3N and M3P) are designed for high bandwidth and 

medium gain performance. The transconductance of the output stage and feed forward 

stage should be increased as much as possible to push the non-dominant poles to high 

frequencies.  The output stage transistors M2N and M2P are designed to have high values 

of VDSAT (≥ 200mV) for better linearity. The feed forward stage and the input stage are 

the main contributors of input-referred thermal noise. The DC level at the gates of the 

output transistors M2N (M2P) is regulated to the reference voltage VREF_N (VREF_P) by the 

common-mode feedback loop consisting of the Error Amplifier, N – M6P, M6Pa and M6N 

(Error Amplifier, P - M5N, M5Na and M5P) and the current source transistor M7N (M7P). 

The DC level at the output of the input stage is set by resistive averaging (RA and RB) of 

the gate voltages of M2N and M2P.  The DC level at the output of the second stage is 

controlled using a common-mode feedback circuit (CMFB) consisting of M4N and M4P. 

The output common mode level is detected using resistive averaging (Rcm) and the 

common-mode error is feedback to the CMFB stage to regulate voltage at the output 

nodes to 900mV. Table 3 lists the component values and bias conditions of the amplifier. 

The amplifier was optimized with respect to stability, noise, linearity and power 

consumption. 
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Figure 31 Circuit level implementation of amplifier using proposed class-AB output 

stage 
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Table 3 Transistor dimensions, device values and bias currents for amplifier in Figure 31 

Device Dimensions/Value Device Dimensions/Value 

M1N (5) 30µm/0.6µm M1P (8) 4µm/0.6µm 

M2N (8) 2µm/0.3µm M2P (8) 9µm/0.3µm 

M3N (5) 12µm/0.3µm M3P (7) 4µm/0.4µm 

M4N (5) 12µm/0.3µm M4P (2) 4µm/0.4µm 

M5N (2) 2µm/0.5µm M5P (1) 4µm/1µm 

M5NA (1) 2µm/0.5µm M6PA (1) 2µm/0.4µm 

M6N (1) 3µm/1.2µm M6P (2) 2µm/0.4µm 

M7N (10) 3µm/3µm M7P (10) 4µm/3µm 

RA 10 kΩ RB 10 kΩ 

CA 200fF CB 200fF 

Itail1 450µA Iout 300µA 

Itail3 350µA Itail,CMFB 200µA 

IBIAS,EA 2µA Rcm||Ccm 80kΩ || 100fF 

 

 

 The error amplifiers are single-ended differential amplifiers. Let’s consider the 

error amplifier, P. One of the two input devices needs to average gate voltages VGP+ and 

VGP-. This done by connecting two similar devices with common-drain and common-

source but the gates connected to VGX+ and VGX-. This drain-source coupled device pair 

generates a current flowing into the common-drain node which is proportional to the 

average of VGX+ and VGX-. This current needs to be compared with the current generated 

proportional to VREF,P by M5N; so the transconductance of M5N should be equal to the 

sum of the transconductances two M5NA devices. 

 The AC response of the amplifier is shown in Figure 32. The DC gain is 57 dB 

and gain at 25MHz is 45dB. The phase margin of the amplifier is 56 degrees. 
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Figure 32 AC response of amplifier in Figure 31 

 

 Figure 33 shows the test setup to observe the transient step response of the 

common mode feedback loop, when a common-mode current in injected at the output 

nodes. Figure 34 shows the step response of the common mode feedback loop when a 

60µA (20% of output stage current) current step is applied at the output nodes of the 

amplifier. The step response shows that the final value settles within an offset less than 

1mV with a settling time less than 4ns. 
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Figure 33 Test setup for common-mode transient step response 

 

 

Figure 34 Step response of CMFB circuit 

 

 For the sake of comparison of topologies, an amplifier with the same topology 

but with the Monticelli output stage is also implemented. The circuit implementation is 

shown in Figure 35. The device dimensions and bias conditions are listed in Table 4. 
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Figure 35 Circuit level implementation of amplifier using class-AB output stage with 

Monticelli bias scheme 
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Table 4 Transistor dimensions, device values and bias currents for amplifier in Figure 35 

Device Dimensions/Value Device Dimensions/Value 

M1N (5) 30µm/0.6µm M1P (7) 9µm/0.4µm 

M2N (10) 11µm/0.3µm M2P (10) 9.5µm/0.3µm 

M3N (5) 12µm/0.3µm M3P (8) 9µm/0.4µm 

M4N (5) 12µm/0.3µm M4P (4) 9/0.4µm 

M5N (1) 3µm/0.3µm M5P (1) 3µm/0.3µm 

Itail1 450µA IBias 25µA 

Itail3 350µA Itail,CMFB 200µA 

Rcm||Ccm 80kΩ || 100fF   

 

 

 A comparison is made between three amplifiers – the amplifier with the proposed 

class-AB output stage, the amplifier with a class-AB output stage using Monticelli bias 

and the amplifier designed in [3], which was shown in Figure 19. Table 5 compares the 

performance of the three amplifiers in detail. From the table it can be seen that the 

amplifiers have comparable performance in terms of both AC and DC characteristics. It 

is also observed that the amplifier using the new class-AB output stage saves power. The 

output stage power consumption is reduced by 25% when compared to the op-amp 

designed in [3], and by 34.78% when compared to the op-amp using the class-AB output 

stage with Monticelli bias. Although the proposed class-AB stage and the Monticelli 

class-AB stage have two active devices using the same bias current, the Monticelli bias 

network is more non-linear, additional current needs to be burnt in the output stage to 

achieve similar linear performance as the other two architectures. The linearity of the 

amplifiers is compared by embedding them in their biquadratic filter test benches. The 

linearity tests and the results are discussed in detail in Section 5. 
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Table 5 Performance comparison of amplifier implementations with different output 

stages 

Parameter 

Op-Amp with 

proposed output 

stage 

Op-Amp with 

class-AB 

output stage 

with 

Monticelli 

bias scheme 

Op-Amp in [3] 

Gain 57.4 dB 56 dB 53.88 dB 

Gain @ 25MHz 45.2 dB 44 dB 45.3 dB 

Gain-bandwidth product 4.55 GHz 3.96 GHz 4.6 GHz 

Phase Margin 61.6
0
 62.5

0
 63.7

0
 

Integrated Noise (in 25MHz) 16.39 µV 19.34 µV 16.09 µV 

Tot. Current Consumption 1.5 mA 2.2 mA 2.5 mA 

Output stage current 300 µA 460 µA 400 µA 

% variation of output current 

across 17 process corners 
3.42% 8.88% 1.69% 

Input common mode range 0.77 V 0.9 V 0.77 V 

Output Swing Range 1.62 V 1.65 V 1.55 V 

Slew Rate 200V/us 222V/us 180V/us 

Supply 1.8 V 1.8 V 1.8 V 

Technology TSMC 0.18um TSMC 0.18um TSMC 0.18um 

 

 

 Another important result is the percentage variation of output current across 

different process corners. Temperature was varied from -25C to 80C, and 17 different 

corners were simulated. The percentage variation in the bias current of the output arm 

for the class-AB stage using Monticelli is found to 8.88% as compared to only 3.42% in 

the proposed class-AB which is very close to the 1.69% variation found in the class-A 

output stage. 
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5. BIQUADRATIC FILTER SIMULATION AND RESULTS 

 

 This section presents the simulation details and schematic level simulation results 

of the biquadratic filter that has been designed to test the performance of the amplifiers. 

Three biquadratic filters that have the same transfer function and same values for the 

passives are implemented. The only difference between the three filters is the amplifiers 

that have been used in them. The three amplifier topologies discussed in the previous 

section have been used in different filters. 

 

5.1 Biquadratic filter implementation 

 

 The single-ended version of the biquadratic filter designed in [3] was shown 

earlier in Figure 9 in Subsection 3.2. Figure 36 shows the fully differential 

implementation of the biquadratic filter used as a test bench. 

 

 

Figure 36 Biquadratic filter implementation 

 

 The design values of the passives other than the load resistors, RL1 and RL2 was 

shown in Table 1 in Subsection 3.2. RL1 is the resistor that connects the band-pass output 
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(VO,BP+ and VO,BP-) of the filter to the summing amplifier. RL2 is a parallel combination 

of the resistor that connects the low-pass output of the filter to the summing amplifier 

and the input resistance of the next stage of the filter. VREF is the common-mode level of 

the filter. The value of the load resistors and VREF is shown in Table 6. 

 

Table 6 Bias and load conditions of the filter 

Parameter Value 

RL1 1.7 kΩ 

RL2 3.03 kΩ || 2.875 kΩ 

VREF 900mV 

 

 

 The design, implementation and performance metrics of amplifier A1 was 

discussed in detail in the Section 4. The performance requirements from amplifier A2 are 

relaxed when compared to the amplifier A1. However, in-order to minimize design 

effort, the same amplifier topology has been used to design A2 as well. Three different 

amplifiers that use different output stages similar to the amplifier A1 have been designed. 

The performance achieved by the three amplifiers is shown in Table 7. 

 

Table 7 Amplifier 2 performance summary 

Parameter 
Op-Amp with 

proposed output 

stage 

Op-Amp with 

class-AB output 

stage with 

Monticelli bias 

scheme 

Op-Amp in [3] 

DC Gain 53.1 dB 52.4 dB 47.3 dB 

Gain at 25MHz 40.66 dB 39 dB 40.65 dB 

Phase Margin 56
0 

57
0 

59
0 

Integrated noise in 

25 MHz 
29.16 µVrms 34.16 µVrms 27.91 µVrms 

Power Consumption 1.6 mW 1.96 mW 1.6 mW 
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5.2 Simulation results 

 

 The three filter implementations which differ only in the amplifiers used are 

compared in this section. Special focus is given to power consumption and linear 

performance of the filter. Since these parameters are influenced mainly the amplifiers, 

they serve as a metric of comparison for the amplifiers. 

 

5.2.1 Comparison of basic filter parameters 

 

 The basic parameters such as pass-band gain, quality factor, cut-off frequency, 

input referred noise and current consumption are shown in Table 8. It can be seen that 

the parameters such as pass-band gain, quality factor and cut-off frequency are set by 

passives and do not depend on the amplifiers. Hence they are very similar. It was 

previously shown in Subsection 3.3 that the noise of the filter is primarily dominated by 

the resistors in the filter, and hence the integrated input referred noise of the three filter 

implementations from DC to 25MHz are almost the same in the three implementations. 

However the power consumption of the filter is entirely due to the amplifiers and hence 

the filter using the proposed op-amps outperforms the other two implementations. 

 

Table 8 Comparison of filter parameters 

Parameter 

Filter with op-

amps using 

proposed class-

AB stage 

Filter with op-

amps from [3] 

Filter with op-

amps using  

Monticelli class-

AB stage 

Cut-off Frequency 24.84 MHz 24.94MHz 24.7 MHz 

Pass band gain 15.93 dB 15.93 dB 15.93 dB 

Peak pass band gain 32.56 dB 32.16 dB 32.91 dB 

Quality factor 6.78 6.49 7.06 

Current consumption 2.5 mA 3.425 mA 3.1 mA 

Integrated noise in 25MHz 38.22 µV 38.28 µV 40.48 µV 
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 The AC response of the filter (using the amplifiers with the proposed output 

stage) at the low-pass and the band-pass outputs are shown in Figure 37 and Figure 38 

respectively. 

 

 

Figure 37 AC response of the filter at the low pass output 

 

 

Figure 38 AC response of the filter at the band pass output 
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 It can be seen from the figures that the gain of the filter in the low-pass output is 

greater than or equal to the gain at the band-pass output in-band frequencies, and vice 

versa for out-of-band frequencies. This is an important observation for conducting tests 

on the linearity of the filter, as it is required to have a full-scale swing at the correct 

output without exceeding the linear range at the other output. Hence in-band linearity 

tests are conducted with full-scale output swing at the low-pass output and out-of-band 

linearity tests are conducted with full-scale output swing at the band-pass output. This is 

the worst case scenario for linearity simulations without exceeding the linear output 

range of the filter. 

 

5.2.2 In-band linearity 

 

 In-order to measure in-band linearity of the filter, two tones that are spaced 

1MHz apart in frequency are swept simultaneously in frequency over the entire pass-

band. The power of the tones is chosen such that the swing at the low-pass output covers 

the entire full scale range of 400mVp-p differential swing at the peak gain of the low-pass 

transfer function, AV,peak. The expression for the input power can be derived as shown in 

equation (5.3). 

 

                        (5.1) 

 

                               (5.2) 

 

                                             (5.3) 

 

 A plot of IM3 versus the average of the two-input frequencies is shown in Figure 

39. 
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Figure 39 Comparison of in-band IM3 vs the average frequency of the two input tones 

(that have 1MHz spacing) 

 

 It can be seen that the IM3 of the three filters are quite similar. The worst case 

value of IM3 corresponds to the case when the input tones are applied at 21MHz and 

22MHz; this drops an intermodulation product at 23MHz, which corresponds to the peak 

gain frequency. The output swing corresponds to full-scale power for this set of tones. 
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The IM3 corresponding to these two tones is around -70dB for all the three 

implementations. The implementation with the op-amps using the proposed class-AB 

output stage has marginally better IM3 than the other two implementations owing to the 

fact that it has a higher VDSAT in the output transistors producing to a larger linear range. 

 

5.2.3 Out-of-band linearity 

 

 The ADC designed in [9] is tailored for receiving WIMAX applications in digital 

television applications, where there are several adjacent channels. These adjacent 

channels are out-of-band blockers which can have much higher power than the in-band 

channel being down-converted. Since the filter used in a sigma-delta ADC has a pass-

band gain, the gain is greater than unity for frequencies up to three times the cut-off 

frequency of the filter. Hence the adjacent channels in this frequency range are amplified 

by the filter. Due to the non-linear nature of the filter, these out-of-band blockers may 

create intermodulation products that can fall in the in-band frequencies and corrupt the 

useful signal information. The effect of the intermodulation products is greatest when it 

occurs at the peak gain frequency, as it will be amplified greatly. Hence the worst case 

scenario for out-of-band linearity is when two out-of-band tones create an in-band tone 

at the peak gain frequency.  

 In order to obtain a measure of out-of-band linearity, two tones of equal power at 

out-of-band frequencies are chosen such that their intermodulation product appears at the 

peak gain frequency. The power of the two tones is increased until the band-pass output 

has full-scale swing (corresponding to -3dBFS output power). This is the very worst case 

scenario for out-of-band linearity for this set of input tones. This experiment is done for 

two different sets of frequencies – 40MHz & 57MHz and 55MHz & 87MHz. A plot of 

input-referred in-band intermodulation tone power versus the total input power for 

blocker tones at 40MHz & 57MHz is shown in Figure 40. A similar plot for blocker 

tones at 55MHz and 87MHz is shown in Figure 41. 
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Figure 40 Comparison of input referred in-band intermodulation tone RMS power vs 

total input RMS power at the LPF and BPF outputs with 40MHz and 57MHz input tones 
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Figure 41 Comparison of input referred in-band intermodulation tone RMS power vs 

total input RMS power at the LPF and BPF outputs with 55MHz and 87MHz input tones 
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 The input tones chosen in the first case – 40MHz and 57MHz - are such that both 

the blocker tones are in the transition band of the filter. This is the most critical case for 

linearity. The input power cannot be increased beyond -16dBFS, as -16dBFS input 

power causes a full scale output swing at the band pass node. Similarly in the case of 

55MHz and 87MHz blockers (one of the two blockers are in the transition band), the 

maximum input power that can be applied is -11.4dBFS. 

 The input referred in-band intermodulation tone power at the peak gain 

frequency (23MHz) is plotted in y-axis in all the 4 graphs. This gives a direct idea of the 

unwanted intermodulation tone power that will appear at the input of ADC. It is seen 

that the intermodulation tone power is well below the ADC quantization noise power (-

74dBFS). 

 

5.2.4 Even-order distortion 

 

 In the in-band and out-of-band linearity simulations done in Subsection 5.2.3 and 

Subsection 5.2.4, the amplifier is assumed to be purely differential with a fully 

differential output, hence the third harmonic component was considered to be the most 

important component of harmonic distortion. The even-order terms were assumed to 

cancel out. However in a practical scenario, due to mismatch the even-order harmonics 

don’t cancel out perfectly, and the second-order harmonic component forms the 

significant even-order component for distortion. 

 In order to find the effect of even-order distortion, Monte-Carlo simulations 

modeling mismatch are run and the power of the input referred second-order 

intermodulation product tone is observed. Both in-band and out-of-band characterization 

is done. Two tones are applied at 25MHz & 2MHz and 35MHz & 58MHz, so that the 

second-order intermodulation product appears at 23MHz (peak gain frequency of the 

pass-band). The input power of the tones are set to such a value that the output power of 

the tones is swinging full scale at the low pass output for in-band input tones or at the 

band pass output for out-of-band input tones. The mismatch models from the process 
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vendor are used. For a device area of 1µm x 1µm, the mismatch in area is approximately 

1% and the mismatch in the threshold voltage of the devices is 2%. The percentage of 

mismatch introduced is inversely proportion to the square root of device area. The total 

number of runs for Monte-Carlo simulations was 50.  

 

 

Figure 42 Mean of input-referred second-order intermodulation product power for the 

three filter implementations with 2 sets of input tones - 2MHz & 25MHz and 35MHz & 

57MHz 

 

 

Figure 43 Standard deviation of input-referred second-order intermodulation product 

power for the three filter implementations with 2 sets of input tones - 2MHz & 25MHz 

and 35MHz & 57MHz 
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 The plot of mean and standard deviation of input-referred second-order 

intermodulation product power for the three different implementations are shown side by 

side in Figure 42 and Figure 43 respectively. From the figures, we can see that the filter 

using amplifier with the proposed output stage is more tolerant to mismatch when 

compared to the one using amplifiers with class-AB output stage using Monticelli bias. 

It was previously explained in Subsection 4.4.2  that the bias information present at the 

gates of the output stage transistors are extracted using a common-mode sensing circuit 

and regulated to match a reference voltage by using a feedback loop. Hence the bias 

circuit provides the function of an additional common-mode feedback circuit in the 

signal path, which explains the better mismatch tolerance of the proposed output stage. 

From the figures, it also evident that the tolerance to mismatch of the proposed 

amplifiers is comparable to the mismatch tolerance of class-A amplifiers in [3]. 
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6. LAYOUT AND POST-LAYOUT SIMULATION RESULTS 

 

 This section shows the layout of two biquadratic filter implementations, namely, 

the filter using amplifiers with the proposed class-AB output stage and the filter using 

amplifiers with conventional class-AB output stage. Since we have already established 

from the results in the previous section that the three amplifier topologies achieve 

comparable performance and our aim is to propose a new class-AB output stage, only 

the class-AB output stage amplifiers have been chosen for post-layout simulations. The 

list of pins on the layout and details of bias conditions that are required are mentioned 

and the post-layout simulation results are presented. 

 

6.1 Layout implementation 

 

 The layout of the filter implemented using the op-amps with the proposed class-

AB bias stage is shown in Figure 44. The layout occupies an area of 0.4mm x 0.28mm. 

 

 

Figure 44 Filter layout with op-amps using proposed class-AB output stage 
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 The implementation was done in TSMC 0.18µm technology. The list of pins on 

the filter and the corresponding connections that need to be made are tabulated in Table 

9. For the currents listed in Table 9, a positive value of current indicates that a current 

source sourcing current needs to be connected to the pin and a negative value of current 

indicates that a current sink needs to be connected to the pin. 

 

Table 9 Pin connections for filter with op-amps using proposed class-AB output stage 

Pin Connection Pin Connection 

Vin+ Input stimulus Vout_LP+ Probe 

Vin- Input stimulus Vout_LP- Probe 

Vref 900mV Vout_BP+ Probe 

Vdd 1.8V Vout_BP- Probe 

Amp1_50uA 50µA Amp1_2u 2µA 

Amp2_50uA 50µA Amp2_2u 2µA 

Amp1+_Iout 300µA Amp1-_Iout -300µA 

Amp2+_Iout 150µA Amp2-_Iout -150µA 

Gnd 0V   

 

 

 The layout of the filter implemented using Monticelli output stage based op-amps 

is shown in Figure 45. The layout dimensions are 0.35µm x 0.25µm. It can be seen that 

the new op-amps occupy more area than the Monticelli op-amps due to the additional 

capacitors that were used in the bias network as shown in Figure 31. The list of pins and 

the corresponding connections that need to be made are shown in Table 10. 
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Figure 45 Filter layout with op-amps using Monticelli based class-AB output stage 

 

 

Table 10 Pin connections for filter with op-amps using Monticelli based class-AB output 

stage 

Pin Connection Pin Connection 

Vin+ Input stimulus Vout_LP+ Probe 

Vin- Input stimulus Vout_LP- Probe 

Vref 900mV Vout_BP+ Probe 

Vdd 1.8V Vout_BP- Probe 

Amp1_50uA 50µA Amp2_50u 50µA 

Gnd 0V   

 

  

 



 66 

6.2 Post-layout simulation results 

 

6.2.1 Amplifier parameters 

 

 The post-layout simulation results of the two amplifiers using the proposed class-

AB output stage are shown in Table 11. Similarly the post-layout simulation results of 

the two amplifiers using conventional class-AB output stage are shown in Table 12. 

 

Table 11 Post-layout simulation results for amplifiers with proposed output stage 

Parameter Amplifier 1 Amplifier 2 

DC Gain 57.4 dB 53.1 dB 

Gain at 25MHz 44.44 dB 39.73 dB 

Phase Margin 52.8
0 

52
0 

Integrated noise in 

25MHz 
16.82 µVrms 30.08 µVrms 

Current Consumption 1.5 mA 0.9 mA 

 

 

Table 12 Post-layout simulation results for amplifiers with conventional class-AB output 

stage 

Parameter Amplifier 1 Amplifier 2 

DC Gain 56 dB 52.37 dB 

Gain at 25MHz 43.08 dB 38.76 dB 

Phase Margin 50.6
0 

49
0 

Integrated noise in 

25MHz 
19.97 µVrms 34.76 µVrms 

Current Consumption 2.2 mA 1.09 mA 

 

 From the results of the amplifier simulations we can observe that the DC and low 

frequency parameters such as DC gain and current consumption remain unaffected in the 
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post-layout simulations. However, the gain of the amplifiers at 25MHz is lower than the 

value obtained in schematic simulations. This is due to the presence of parasitics in the 

layout which reduces the frequency of the dominant pole. The decrease in phase margin 

indicates that the non-dominant pole at the output node has also been pushed to lower 

frequencies due to the presence of layout parasitics. The marginal increase in input-

referred noise can be attributed to the decrease in gain at high frequencies, while 

referring the noise to the input. 

 

6.2.2 Comparison of basic filter parameters 

 

 The basic parameters of the filter such as pass-band gain, cut-off frequency, 

quality factor, input referred noise and current consumption are shown in Table 13. It 

can be seen that the cut-off frequency and quality factor are slightly affected by the 

addition of parasitics of the layout and hence show a small difference in values when 

compared to the schematic simulations. But process-variations are likely to cause up to 

30% variations in these values; hence these minor differences can be ignored. The other 

values are fairly consistent with schematic level simulations. 

 

Table 13 Post-layout simulation results - Comparison of filter parameters 

Parameter 

Filter with op-

amps using 

propose class-AB 

output stage 

Filter with op-

amps using 

Monticelli based 

class-AB output 

stage 

Cut-off Frequency 24.31 MHz 22.58 MHz 

Pass band gain 16.17 dB 16.17 dB 

Peak pass band gain 32.29 dB 31.15 dB 

Quality factor 6.4 5.62 

Current consumption 2.5 mA 3.1 mA 

Integrated noise in 25MHz 39.53µV 43.2 µV 
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 The AC responses of the two filters are shown in Figure 46 and Figure 47. Each 

figure shows the AC response at both the low-pass and band-pass outputs. It can be seen 

that they are fairly consistent with their schematic-level simulation counterparts. 

 

 

  

Figure 46 Post-layout results - AC response of filter using op-amps with proposed class-

AB output stage 
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Figure 47 Post-layout results - AC response of filter using op-amps with Monticelli 

based class-AB output stage 
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6.2.3 In-band linearity 

 

 The two tone test explained in Subsection 5.2.2 is repeated. The power of the 

input tones is different from the ones used in schematic level simulations, since the peak 

gain has dropped in the layout. However the criterion to set the input power of the two 

tones is the same as the one described in Subsection 5.2.2. The plots are shown in Figure 

48. 

 

 

Figure 48 Post-layout results - Comparison of in-band IM3 versus average frequency of 

input tones (which are spaced 1MHz apart) 
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 From Figure 48 we can see that both the filters have a worst case in-band IM3 of 

-72dB when the output is swinging full-scale (output power is -3dBFS), which is the 

same value of IM3 reported for the filter in [3] as well. 

 

6.2.4 Out-of-band linearity 

 

 For analyzing the linearity performance of the filters in the presence of out-of-

band blockers the experiment explained in Subsection 5.2.3 is repeated. However in this 

case the frequencies of blockers need to be adjusted so that the intermodulation product 

appears at the peak-gain frequency of that filter. For the case of the filter using the op-

amps with proposed output stage, the peak gain frequency is the almost same as the case 

of schematic simulations (23MHz), but in the other filter, the peak gain frequency occurs 

at 21MHz. Hence one of the blocker frequencies is adjusted and we use 40MHz & 

59MHz as one set of tones and 55MHz & 89MHz as the other set of tones for the filter 

using op-amps with Monticelli-based class-AB output stage. The filter using op-amps 

with proposed class-AB output stage is tested with the same tones as in Subsection 5.2.3, 

which are 40MHz & 57MHz and 55MHz & 87MHz. 

 The plot of input-referred 3
rd

 order intermodulation product power versus input 

power is shown in Figure 49. The input power is swept until the output power is -3dBFS 

at the band pass node. The peak input power that can be applied in the case of 40MHz & 

57MHz blockers is -16dBFS. It can also be observed that the power of the 

intermodulation product generated is almost the same in both cases, and well below the 

quantization noise level. 

 Similarly, a plot of input referred 3
rd

 order intermodulation product versus input 

power is shown in Figure 50. In this case, the input power is swept up to -11.4dBFS to 

obtain -3dBFS output power at the band-pass output. 
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Figure 49 Comparison of input-referred in-band intermodulation tone RMS power vs 

total input RMS power at the LPF and BPF outputs with 40MHz and 57MHz tones 

(59MHz for Monticelli) at biquad input 
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Figure 50 Comparison of input referred in-band intermodulation tone RMS power vs 

total input RMS power at the LPF and BPF outputs with 55MHz and 87MHz tones 

(89MHz for Monticelli) at biquad input 
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performance is slightly worse in the post-layout simulations compared to schematic-

simulations. This can be attributed to the role played by parasitics at high frequencies. 
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7. CONCLUSION 

 

 In this thesis work, an amplifier using a new class-AB output stage has been 

proposed and a high-performance biquadratic filter used in a continuous-time sigma-

delta ADC with 25MHz low-pass bandwidth and 12-bit resolution was used as a test 

bench to test the performance of the amplifier. The need for high-performance amplifiers 

in continuous-time sigma delta ADCs was discussed and the design requirements of the 

amplifiers were calculated from the performance requirements of the ADC in a top-

down fashion. The particular case of a class-AB output stage amplifier has been 

considered and an improved bias stage for class-AB circuits in general has been 

proposed. The new bias scheme has good tolerance to process and mismatch variations, 

along with the ability to perform well over a wide range of frequencies. The new bias 

scheme has been tested in a realistic environment by using it to design a biquadratic 

filter and the results have been compared against similar amplifiers with class-A output 

stage and conventional class-AB output stage reported in literature. Apart from the 

variation tolerance and mismatch tolerance, the new scheme promises a significant 

saving in power consumption. The implementation has been carried out in TSMC 

0.18µm. 
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