19 research outputs found

    Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure Detection

    Get PDF
    About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively. This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals. The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2. The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2. The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    An high-speed parametric ADC and a co-designed mixer for CMOS RF receivers

    Get PDF
    Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe rapid growth of wireless communications and the massive use of wireless end-user equipments have created a demand for low-cost, low-power and low-area devices with tight specifications imposed by standards. The advances in CMOS technology allows, nowadays, designers to implement circuits that work at high-frequencies, thus, allowing the complete implementation of RF front ends in a single chip. In this work, a co-design strategy for the implementation of a fully integrated CMOS receiver for use in the ISM band is presented. The main focus is given to the Mixer and the ADC blocks of the presented architecture. The traditional approach used in RF design requires 50 matching buffers and networks and AC coupling capacitors between Mixer inputs and LNA and LO outputs. The codesign strategy avoids the use of DC choke inductors for Mixer biasing, because it is possible to use the DC level from the output of the LNA and the LO to provide bias to the Mixer. Moreover, since the entire circuit is in the same chip and the Mixer inputs are transistors gates, we should consider voltage instead of power and avoid the 50 matching networks. The proposed ADC architecture relies on a 4-bit flash converter. The main goals are to achieve low-power and high sampling frequency. To meet these goals, parametric amplification based on MOS varactors is applied to reduce the offset voltage of the comparators, avoiding the traditional and power-consuming approach of active pre-amplification gain stages

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Low-power Wearable Healthcare Sensors

    Get PDF
    Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors

    Adaptive Receiver Design for High Speed Optical Communication

    Get PDF
    Conventional input/output (IO) links consume power, independent of changes in the bandwidth demand by the system they are deployed in. As the system is designed to satisfy the peak bandwidth demand, most of the time the IO links are idle but still consuming power. In big data centers, the overall utilization ratio of IO links is less than 10%, corresponding to a large amount of energy wasted for idle operation. This work demonstrates a 60 Gb/s high sensitivity non-return-to-zero (NRZ) optical receiver in 14 nm FinFET technology with less than 7 ns power-on time. The power on time includes the data detection, analog bias settling, photo-diode DC current cancellation, and phase locking by the clock and data recovery circuit (CDR). The receiver autonomously detects the data demand on the link via a proposed link protocol and does not require any external enable or disable signals. The proposed link protocol is designed to minimize the off-state power consumption and power-on time of the link. In order to achieve high data-rate and high-sensitivity while maintaining the power budget, a 1-tap decision feedback equalization method is applied in digital domain. The sensitivity is measured to be -8 dBm, -11 dBm, and -13 dBm OMA (optical modulation amplitude) at 60 Gb/s, 48 Gb/s, and 32 Gb/s data rates, respectively. The energy efficiency in always-on mode is around 2.2 pJ/bit for all data-rates with the help of supply and bias scaling. The receiver incorporates a phase interpolator based clock-and-data recovery circuit with approximately 80 MHz jitter-tolerance corner frequency, thanks to the low-latency full custom CDR logic design. This work demonstrates the fastest ever reported CMOS optical receiver and runs almost at twice the data-rate of the state-of-the-art CMOS optical receiver by the time of the publication. The data-rate is comparable to BiCMOS optical receivers but at a fraction of the power consumption

    Energy-Efficient Circuit Designs for Miniaturized Internet of Things and Wireless Neural Recording

    Full text link
    Internet of Things (IoT) have become omnipresent over various territories including healthcare, smart building, agriculture, and environmental and industrial monitoring. Today, IoT are getting miniaturized, but at the same time, they are becoming more intelligent along with the explosive growth of machine learning. Not only do IoT sense and collect data and communicate, but they also edge-compute and extract useful information within the small form factor. A main challenge of such miniaturized and intelligent IoT is to operate continuously for long lifetime within its low battery capacity. Energy efficiency of circuits and systems is key to addressing this challenge. This dissertation presents two different energy-efficient circuit designs: a 224pW 260ppm/°C gate-leakage-based timer for wireless sensor nodes (WSNs) for the IoT and an energy-efficient all analog machine learning accelerator with 1.2 µJ/inference of energy consumption for the CIFAR-10 and SVHN datasets. Wireless neural interface is another area that demands miniaturized and energy-efficient circuits and systems for safe long-term monitoring of brain activity. Historically, implantable systems have used wires for data communication and power, increasing risks of tissue damage. Therefore, it has been a long-standing goal to distribute sub-mm-scale true floating and wireless implants throughout the brain and to record single-neuron-level activities. This dissertation presents a 0.19×0.17mm2 0.74µW wireless neural recording IC with near-infrared (NIR) power and data telemetry and a 0.19×0.28mm2 0.57µW light tolerant wireless neural recording IC.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169712/1/jongyup_1.pd

    Power-Efficient and High-Performance Cicruit Techniques for On-Chip Voltage Regulation and Low-Voltage Filtering

    Get PDF
    This dissertation focuses on two projects. The first one is a power supply rejection (PSR) enhanced with fast settling time (TS) bulk-driven feedforward (BDFF) capacitor-less (CL) low-dropout (LDO) regulator. The second project is a high bandwidth (BW) power adjustable low-voltage (LV) active-RC 4th -order Butterworth low pass filter (LPF). As technology improves, faster and more accurate LDOs with high PSR are going to be required for future on-chip applications and systems.The proposed BDFF CL-LDO will accomplish an improved PSR without degrading TS. This would be achieved by injecting supply noise through the pass device’s bulk terminal in order to cancel the supply noise at the output. The supply injection will be achieved by creating a feedforward path, which compared to feedback paths, that doesn’t degrade stability and therefore allows for faster dynamic performance. A high gain control loop would be used to maintain a high accuracy and dc performance, such as line/load regulation. The proposed CL-LDO will target a PSR better than – 90 dB at low frequencies and – 60 dB at 1 MHz for 50 mA of load current (IvL). The CL-LDO will target a loop gain higher than 90 dB, leading to an improved line and load regulation, and unity-gain frequency (UGF) higher than 20 MHz, which will allow a TS faster than 500 ns. The CL-LDO is going to be fabricated in a CMOS 130 nm technology; consume a quiescent current (IQ) of less than 50 μA; for a dropout voltage of 200 mV and an IvL of 50 mA. As technology scales down, speed and performance requirements increase for on-chip communication systems that reflect the current demand for high speed data-oriented applications. However, in small technologies, it becomes harder to achieve high gain and high speed at the same time because the supply voltage (VvDvD) decreases leaving no room for conventional high gain CMOS structures. The proposed active-RC LPF will accomplish a LV high BW operation that would allow such disadvantages to be overcome. The LPF will be implemented using an active RC structure that allows for the high linearity such communication systems demand. In addition, built-in BW and power configurability would address the demands for increased flexibility usually required in such systems. The proposed LV LPF will target a configurable cut-off frequency (ƒо) of 20/40/80/160 MHz with tuning capabilities and power adjustability for each ƒо. The filter will be fabricated in a CMOS 130 nm technology. The filter characteristics are as following: 4th -order, active-RC, LPF, Butterworth response, VDD = 0.6 V, THD higher than 40 dB and a third-order input intercept point (IIP3) higher than 10 dBm

    Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements

    Get PDF
    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s–1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors
    corecore