26 research outputs found

    Harvesting Ultra-Low Power Wireless Signals in the GHz Range

    Get PDF
    We present methods for harvesting wireless energy as low as -30 dBm (1uW) from the 2.4 GHz frequency range (e.g. WiFi signals) with discrete components. We have constructed a proof-of-concept device which is capable of operating at -18.8 dBm (13.2 uW) with no onboard power sources, relying solely on the 2.4 GHz energy source. The device is constructed on a PCB and consists of an impedance matching network, a rectifier, and a DC-DC converter. The impedance matching network matches a 2.4 GHz 50 Ohm input source to the high impedance rectifier and provides a passive boost. The rectifier converts the AC signal from the impedance matching network to a DC signal. This DC signal feeds into the DC-DC converter subsystem which boosts the voltage from about 45 mV DC to a clean 95 mV DC output

    Power conditioning optimization for ultra low voltage wearable thermoelectric devices using self-sustained multi-stage charge pump

    Get PDF
    Waste heat energy recovery from human body utilizing the thermoelectric generator (TEG) has shown potential in the generation of electrical energy. However, the level of heat source from the human body restricts the temperature deviation as compared to ambient temperature (approximately 3~10 °C in difference), thereby yielding an ultra-low voltage (ULV) normally less than 100 mV. This research aims at generating power from the TEG by harnessing human body temperature as the heat source to power up wearable electronic devices realizing a self-sustain system. However, power conversion of the TEG has typically low efficiency (less than 12%), requiring proper design of its power regulation system. The generated ULV marked the lowest energy conversion factor and improvement is therefore required to validate the use of ULV generated from human body temperature. This problem was addressed by proposing an improved solution to the power regulation of the ULV type TEG system based on the DC-DC converter approach, namely a multi-stage charge pump, with specifications restricted at the ULV source. Performances of the TEG connected in multiple array configurations with the generated source voltage fed into fabricated charge pump circuit to boost and regulate the voltage from the ULV into the low voltage (LV) region were analyzed. The maximum source voltage (20 mV) was referred and simulated in the LT Spice software and used as a benchmark to be compared with the voltage generated by the fabricated charge pump circuits. Error performances of the fabricated charge pump circuits were further analyzed by manipulating the circuits’ parameters, namely, the switching frequency and the capacitance values. It was found that the proposed method was able to handle the ULV source voltage with proper tuning on its component parameters. The overall power conversion efficiency of 26.25% was achieved based on the performance evaluation values for components applied in this research. Hence, this proved the viability of thermoelectric applications in ULV using the proposed power regulation system

    Osciladores de ultra-baixa-tensão com aplicação em circuitos de captação de energia

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2014Abstract: This thesis describes the analysis and design of oscillators and charge pumps that can operate with very low supply voltages. The focus is on operation of the MOS transistor in the triode region owing to the limited voltage options available. Special attention has been given to the properties of the zero-VT transistor due to its high drive capability at low voltage. In order to investigate the minimum supply voltage for MOSFET oscillators, three topologies were studied. Two of them, namely the enhanced swing ring and the enhanced swing Colpitts oscillators, can operate with supply voltages below the thermal voltage, kT =q. Simplified theoretical expressions for the minimum supply voltage, oscillation frequency and minimum transistor gain of the oscillators were derived. Measurement results obtained using prototypes built with zero-VT transistors verified the operation of the oscillators for a supply voltage as low as 30 mV and 3.5 mV with high swing amplitude for arrangements built with integrated and off-theshelfinductors, respectively. The application of the ultra-low-voltage oscillators to energy harvesting circuits was addressed in this work. In order to convert the ac signal of the oscillator into a dc signal, the popular Dickson charge pump converter was employed. Expressions for the output voltage, input resistance and power converter efficiency of the Dickson charge pump operating at ultra-low voltages were derived. Experimental results obtained with prototypes built with the enhanced swing ring oscillator and the Dickson charge pump confirmed the feasibility of obtaining a dc output equal to 1 V at current consumptions of 100 nA and 1 µA from input voltages of 10 mV and 23 mV, respectively.O presente trabalho apresenta a análise, projeto e experimentação de osciladores e conversores dc-dc elevadores operando a muito baixas tensões de alimentação. Devido aos baixos valores de tensão de alimentação de interesse deste trabalho, especial atenção foi dada à operação do transistor MOS na região triodo e às propriedades do transistor zero-VT, graças a sua alta capacidade de corrente para baixas tensões. Com o objetivo de investigar a mínima tensão de alimentação de osciladores a MOSFET, três topologias foram estudadas. Duas delas, chamadas de oscilador em anel com elevada excursão desinal e oscilador Colpitts com elevada excursão de sinal, podem trabalhar com tensões de alimentação inferiores à tensão térmica, kT /q. Expressões simplificadas para a mínima tensão de alimentação, frequência de oscilação e mínimo ganho do transistor foram derivadas para cada topologia. Resultados experimentais obtidos com protótipos implementados com transistores zero-VT comprovam a operação dos osciladores com tensões tão baixas quanto 30 mV e 3,5 mV em circuitos construídos com indutores integrados e discretos, respectivamente. A aplicação dos osciladores a circuitos de captação de energia (energy harvesting circuits) a partir de fontes de alimentação de ultra-baixa-tensão foi estudada neste trabalho. Com o propósito de converter tensões ac geradas pelos osciladores em sinais dc, o clássico conversor Dickson foi utilizado. Expressões para a tensão de saída, resistência de entrada e eficiência de conversão de potência do conversor Dickson operando a ultra-baixas-tensões foram derivadas. Resultados experimentais obtidos com protótipos construídos com o oscilador em anel com elevada excursão de sinal e com o conversor Dickson, provaram a possibilidade de se obter uma tensão dc na saída de 1 V para correntes de carga de 100 nA e 1 µA a partir de tensões de entrada de 10 mV e 23 mV, respectivamente

    Piezoelectric energy harvesting and wireless sensing powered by non-harmonic motion

    Get PDF
    This thesis focuses on the design of non-harmonic motion-powered wireless sensing systems using piezoelectric energy harvesting. Most of the published work on the topic of inertial energy harvesting focussed on the analysis and design of the energy harvester modules only. A limited amount of work has involved the implementation of energy harvesters into a wireless sensing system, which is an important application of energy harvesters. This project presents an approach to simplify the design of a wireless sensing system so that a single piezoelectric energy harvester can be used as the power supply. A piezoelectric device structure with impulse output was proposed and an equivalent circuit model was built to simulate the performance. Both a large-scale and a small-scale piezoelectric pulse generator were produced for experimental demonstration, based on the proposed structure. A passive pre-biasing mechanism was introduced to improve the performance of the pulse generator, and the improvement was demonstrated by comparing the outputs of the prototypes in the pre-biased case to the outputs in the unbiased case. The comparison results showed that the output energy was increased by 38% for the large-scale prototype and 76% for the small-scale prototype. Load transmission circuits, suitable for the piezoelectric pulse generator, were discussed and simulated, and an impulse-powered transmitter circuit based on the Colpitts oscillator was built, which could encode the signal from a sensor by frequency modulation. By combining the piezoelectric pulse generator module and the impulse-powered transmitter module together, a fully functional piezoelectric system was achieved, for the first time, allowing instantaneous wireless monitoring of signals from a passive sensor using frequency modulation.Open Acces

    Thermoelectric generator and solid-state battery for stand-alone microsystems

    Get PDF
    This paper presents a thermoelectric (TE) generator and a solid-state battery for powering microsystems. Prototypes of TE generators were fabricated and characterized. The TE generator is a planar microstructure based on thin films of n-type bismuth telluride (Bi2Te3) and p-type antimony telluride (Sb2Te3), which were deposited using co-evaporation. The measurements on selected samples of Bi2Te3 and Sb2Te3 thin films indicated a Seebeck coefficient in the range of 90–250 μV K−1 and an in-plane electrical resistivity in the range of 7–17 μÄ m. The measurements also showed TE figures-of-merit, ZT, at room temperatures (T = 300 K) of 0.97 and 0.56, for thin films of Bi2Te3 and Sb2Te3, respectively (equivalent to a power factor, PF, of 4.87 mW K−2 m−1 and 2.81 mW K−2 m−1). The solid-state battery is based on thin films of: an anode of tin dioxide (SnO2), an electrolyte of lithium phosphorus oxynitride (LixPOyNz, known as LiPON) and a cathode of lithium cobaltate (LiCoO2, known as LiCO), which were deposited using the reactive RF (radio-frequency) sputtering. The deposition and characterization results of these thin-films layers are also reported in this paper.This work was fully supported by FCT/PTDC/EEA-ENE/66855/2006 project

    Receptor super-regenerativo de baixo consumo para redes corporais

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2014.O foco deste trabalho é a análise e o projeto de um receptor super-regenerativo voltado para aplicações biomédicas. Primeiramente, apresenta-se a fundamentação teórica da recepção super-regenerativa e, em seguida, mostra-se um circuito projetado segundo essa arquitetura, a qual incorpora um amplificador de baixo ruído, um oscilador e um detector de envoltória, além de um conversor balanceado-desbalanceado entre estes dois últimos. O projeto demonstra a vantagem dessa técnica para projetar receptores de baixa potência e elevada sensibilidade. Como o oscilador tende a ser o circuito com maior consumo elétrico em um receptor super-regenerativo, esta dissertação também apresenta uma técnica de projeto de osciladores para aplicações de baixa potência. O circuito é baseado no clássico oscilador Colpitts de porta comum com uma segunda fonte de realimentação positiva, a qual é fornecida por uma degeneração indutiva de porta. Esta técnica diminui a transcondutância requerida para originar as oscilações, o que faz com que seja possível reduzir a corrente de polarização e, consequentemente, o consumo de potência. Um protótipo foi produzido em uma tecnologia CMOS padrão de 0,18 µm para servir de prova de conceito. Simulações pós-leiaute demonstraram uma frequência de oscilação de 2,5 GHz com um ruído de fase de -112.9 dBc/Hz a uma frequência deslocada de 1 MHz da portadora, consumindo 124 µW a partir de uma tensão de alimentação de 0,575 V.Abstract : The goal of this work is the analysis and the design of a super-regenerative receiver aimed for biomedical applications. Firstly the theoretical foundation of the super-regenerative reception is presented and afterwards it is shown a circuit designed according such an architecture, which incorporates a lownoise amplifier, an oscillator, and an envelope detector, besides a balancedto- unbalanced converter between the last two. This project demonstrates the advantage of that technique to design low-power and high-sensitivity receivers. Since the oscillator tends to be the circuit with the highest power consumption in a super-regenerative receiver, this dissertation also presents an oscillator design technique for low-power applications. The circuit is based on the common-gate Colpitts oscillator with additional positive feedback provided by an inductive gate degeneration. This technique decreases the required transconductance to start-up oscillations, which makes possible to reduce the bias current and hence the power consumption. A prototype was designed in a standard 0.18 mm CMOS technology as a proof of concept. Post-layout simulations present an oscillating frequency of 2.5 GHz with a phase noise of -112.9 dBc/Hz at a 1 MHz offset frequency and consuming 124 mW from a 0.575-V supply voltage

    On the design of ultra low voltage CMOS oscillators.

    Get PDF
    Wireless sensor nodes require very tight power budgets to operate from either asmall battery, some energy harvesting mechanism or both. In many cases, thermalor electrochemical harvesting devices provide very low voltages of the order of100 mV or even lower. Time-keeping functionality is required in IoT systems andthe time-keeping module must be on at all times. Crystal oscillators have provento be useful for low power time-keeping applications, and in this context supplyvoltage lowering is a convenient strategy. Therefore, 32 kHz crystal oscillatorsoperating with only 60 mV supply are presented. Two implementations based ona Schmitt trigger circuit for two different crystals were designed and experimentallycharacterized.These crystal oscillators are based on the application of a Schmitt trigger asan amplifier. Guidelines for designing this block to be the amplifier of a crystaloscillator are provided. Furthermore, a dynamic model of the Schmitt trigger isproposed and the model results are compared against simulations. The amplifierswere experimentally characterized, providing a gain of 2.48 V/V with a 60 mVpower supply. As it was intended in the design stage, for voltages above 100 mVhysteresis appears and the Schmitt trigger starts operating as a comparator.The Schmitt triggers to operate as amplifiers of the crystal oscillators aredesigned in a 130 nm CMOS process, requiring an area of 45μm x 74μm and78μm x 83μm, respectively. The power consumptions of the crystal oscillators are2.26 nW and 15 nW and the temperature stabilities attained are 62 ppm (25-62°C)and 50 ppm (5-62°C), respectively. The dependence on the supply voltage of thecurrent consumption, fractional frequency, start-up time and oscillation amplitudewere measured. The Allan deviation is 30 ppb for both oscillators.On the other hand, an LC voltage controlled oscillator (VCO) is designed in28 nm FD-SOI for RF applications. The possibility of modeling the transistors inthe 28 nm FD-SOI technology by means of the all inversion region long channelbulk transistor model used for the Schmitt trigger circuits, is studied. A cross-coupled nMOS architecture is used to build the VCO. The theoretical limit for theminimum supply voltage that enables oscillation is studied. The transistors wereoptimally sized to aim the minimum power consumption through a low-voltageapproach and the performance of the VCO was obtained through simulations. Los nodos sensores inalámbricos tienen fuertes requerimientos de bajo consumo demanera de operar con baterías pequeñas o algún mecanismo de cosecha de energía, o ambos. En muchos casos, la cosecha de energía térmica o electroquímica provee tensiones muy bajas del orden de 100 mV o incluso menos. Los sistemas de internet de las cosas incluyen un módulo de reloj que debe estar siempre encendido a efectos de contar el tiempo. Los osciladores a cristal son probadamente ́utiles como relojes de bajo consumo, y en este contexto la reducción de la tensión es una estrategia conveniente. Por lo tanto, presentamos osciladores a cristal de 32 kHz operando con sólo 60 mV de tensión de alimentación. Dos implementaciones, basadas en el circuito Schmitt trigger para dos cristales diferentes, se diseñan y caracterizan experimentalmente.Estos osciladores a cristal están basados en la aplicación del Schmitt trigger como amplificador. Se provee una guía para el diseño de este bloque para funcionar como el amplificador de un oscilador a cristal. Adicionalmente se propone un modelo dinámico del Schmitt trigger y los resultados del modelo son comparados con resultados de simulación. Los amplificadores son caracterizados experimentalmente, proveyendo una ganancia de 2.48 V/V con 60 mV de tensión de alimentación. Tal como se pretende en la etapa de diseño, para tensiones mayores a 100 mV aparece el fenómeno de histéresis y el Schmitt trigger comienza a operarcomo un comparador.Los Schmitt trigger para operar como amplificadores de los osciladores a cristal son diseñados en un proceso CMOS de 130 nm y ocupan un área de 45μm x 74μmy 78μm x 83μm, respectivamente. El consumo de potencia de sendos osciladores es2.26 nW y 15 nW y la estabilidad en temperatura obtenida es de 62 ppm (25-62°C)y 50 ppm (5-62°C), respectivamente. Se midieron la dependencia del consumo de corriente con respecto a la tensión de alimentación, la frequencia de oscilación, eltiempo de arranque y la amplitud de oscilación. La desviación de Allan es 30 ppben ambos osciladores.Por otra parte, un oscilador LC controlado por voltaje es diseñado en un proceso CMOS de silicio sobre aislante en deplexión total de 28 nm, para aplicaciones de radiofrecuencia. Se estudia la posibilidad de utilizar en este caso el mismo modelo utilizado para el diseño del Schmitt trigger. Dicho modelo es válido en todas las regiones de inversión y está desarrollado para transistores de tipo sustrato y de canal largo. La arquitectura de transistores nMOS entrelazados es la utilizada para este oscilador. Se estudia el límite teórico para la mínima tensión de alimentación. Los transistores son dimensionados de manera óptima para obtener el mínimo consumo de potencia posible, utilizando un enfoque de baja tensión y el desempeño del oscilador se obtuvo mediante simulaciones

    On the design of ultra low voltage CMOS oscillators

    Get PDF
    Los nodos sensores inalámbricos tienen fuertes requerimientos de bajo consumo de manera de operar con baterías pequeñas o algún mecanismo de cosecha de energía, o ambos. En muchos casos, la cosecha de energía térmica o electroquímica provee tensiones muy bajas del orden de 100 mV o incluso menos. Los sistemas de internet de las cosas incluyen un módulo de reloj que debe estar siempre encendido a efectos de contar el tiempo. Los osciladores a cristal son probadamente útiles como relojes de bajo consumo, y en este contexto la reducción de la tensión es una estrategia conveniente. Por lo tanto, presentamos osciladores a cristal de 32 kHz operando con sólo 60 mV de tensión de alimentación. Dos implementaciones, basadas en el circuito Schmitt trigger para dos cristales diferentes, se diseñan y caracterizan experimentalmente. Estos osciladores a cristal están basados en la aplicación del Schmitt trigger como amplificador. Se provee una guía para el diseño de este bloque para funcionar como el amplificador de un oscilador a cristal. Adicionalmente se propone un modelo dinámico del Schmitt trigger y los resultados del modelo son comparados con resultados de simulación. Los amplificadores son caracterizados experimentalmente, proveyendo una ganancia de 2.48 V/V con 60 mV de tensión de alimentación. Tal como se pretende en la etapa de diseño, para tensiones mayores a 100 mV aparece el fenómeno de histéresis y el Schmitt trigger comienza a operar como un comparador. Los Schmitt trigger para operar como amplificadores de los osciladores a cristal son diseñados en un proceso CMOS de 130 nm y ocupan un área de 45 um x 74 um y 78 um x 83 um, respectivamente. El consumo de potencia de sendos osciladores es 2.26 nW y 15 nW y la estabilidad en temperatura obtenida es de 62 ppm (25-62°C) y 50 ppm (5-62°C), respectivamente. Se midieron la dependencia del consumo de corriente con respecto a la tensión de alimentación, la frequencia de oscilación, el tiempo de arranque y la amplitud de oscilación. La desviación de Allan es 30 ppb en ambos osciladores. Por otra parte, un oscilador LC controlado por voltaje es diseñado en un proceso CMOS de silicio sobre aislante en deplexión total de 28 nm, para aplicaciones de radiofrecuencia. Se estudia la posibilidad de utilizar en este caso el mismo modelo utilizado para el diseño del Schmitt trigger. Dicho modelo es válido en todas las regiones de inversión y está desarrollado para transistores de tipo sustrato y de canal largo. La arquitectura de transistores nMOS entrelazados es la utilizada para este oscilador. Se estudia el límite teórico para la mínima tensión de alimentación. Los transistores son dimensionados de manera óptima para obtener el mínimo consumo de potencia posible, utilizando un enfoque de baja tensión y el desempeño del oscilador se obtuvo mediante simulaciones.Agencia Nacional de Investigación e InnovaciónComisión Académica de Posgrado. Universidad de la RepúblicaComisión Sectorial de Investigación Científica. Universidad de la Repúblic
    corecore