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ABSTRACT 

 

 

 

 

Waste heat energy recovery from human body utilizing the thermoelectric 

generator (TEG) has shown potential in the generation of electrical energy.  However, 

the level of heat source from the human body restricts the temperature deviation as 

compared to ambient temperature (approximately 3~10 °C in difference), thereby 

yielding an ultra-low voltage (ULV) normally less than 100 mV.  This research aims 

at generating power from the TEG by harnessing human body temperature as the heat 

source to power up wearable electronic devices realizing a self-sustain system.  

However, power conversion of the TEG has typically low efficiency (less than 12%), 

requiring proper design of its power regulation system.  The generated ULV marked 

the lowest energy conversion factor and improvement is therefore required to validate 

the use of ULV generated from human body temperature.  This problem was addressed 

by proposing an improved solution to the power regulation of the ULV type TEG 

system based on the DC-DC converter approach, namely a multi-stage charge pump, 

with specifications restricted at the ULV source.  Performances of the TEG connected 

in multiple array configurations with the generated source voltage fed into fabricated 

charge pump circuit to boost and regulate the voltage from the ULV into the low 

voltage (LV) region were analyzed.  The maximum source voltage (20 mV) was 

referred and simulated in the LT Spice software and used as a benchmark to be 

compared with the voltage generated by the fabricated charge pump circuits.  Error 

performances of the fabricated charge pump circuits were further analyzed by 

manipulating the circuits’ parameters, namely, the switching frequency and the 

capacitance values.  It was found that the proposed method was able to handle the 

ULV source voltage with proper tuning on its component parameters.  The overall 

power conversion efficiency of 26.25% was achieved based on the performance 

evaluation values for components applied in this research.  Hence, this proved the 

viability of thermoelectric applications in ULV using the proposed power regulation 

system.  
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ABSTRAK 

 

 

 

 
Kitaran semula tenaga haba terpakai daripada badan manusia dengan 

menggunakan penjana termoelektrik (TEG) telah menunjukkan potensi dalam penjanaan 

kuasa elektrik.  Namun, kandungan haba dalam badan manusia mengehadkan perbezaan 

suhu berbanding dengan suhu persekitaran (kira-kira perbezaan 3~10 °C).  Kajian ini 

bertujuan menjana kuasa daripada TEG dengan menggunakan suhu badan manusia 

sebagai sumber haba untuk menghidupkan peranti boleh-pakai dan melengkapkan suatu 

sistem swakekal.  Namun, TEG mempunyai kecekapan penukaran tenaga yang rendah 

(kurang daripada 12%), menyebabkan ia memerlukan suatu sistem kawalan kuasa yang 

sesuai.  Ini mengakibatkan voltan teramat rendah (ULV) yang dijana biasanya mempunyai 

nilai kurang daripada 100 mV.  Penjanaan ULV tersebut merupakan faktor penukaran 

kuasa terendah dan penambahbaikan diperlukan bagi mengesahkan penggunaan ULV 

yang dijana daripada suhu badan manusia.  Masalah ini ditangani dengan cadangan solusi 

penambahbaikan terhadap kawalan kuasa bagi sistem TEG jenis ULV berasaskan kaedah 

pengubah DC-DC menggunakan cas pam berperingkat, dengan spesifikasi yang terhad 

pada sumber ULV.  Hasil janaan tenaga daripada TEG yang disambungkan dalam 

konfigurasi yang berbeza dan voltan janaan yang dialirkan ke litar cas pam yang 

difabrikasi untuk meningkat dan mengawal voltan daripada ULV kepada lingkungan 

voltan rendah (LV) telah dianalisis.  Sumber voltan maksima (20 mV) dirujuk dan 

disimulasikan dalam perisian LT Spice untuk dijadikan sebagai rujukan dan dibandingkan 

dengan voltan janaan daripada litar cas pam yang difabrikasi.  Ralat keputusan bagi litar 

cas pam yang difabrikasi dilanjutkan analisisnya dengan mengubah parameter litar 

merangkumi frekuensi pensuisan dan nilai kapasitor.  Kajian ini telah menunjukkan 

bahawa cadangan yang dikemukakan dalam kajian ini berupaya untuk menangani sumber 

voltan ULV dengan penalaan yang sesuai dalam perameter komponen.  Kecekapan 

penukaran kuasa secara keseluruhannya mencapai 26.25% berdasarkan keputusan bagi 

nilai komponen yang digunakan dalam kajian ini.  Kajian ini telah membuktikan 

kelayakan aplikasi penjana kuasa terma dalam lingkungan ULV dengan sistem kawalan 

kuasa yang dicadangkan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

Portable devices are becoming more of a necessity rather than a luxury. These 

devices have been upgraded from stationary devices that are bulky and heavy that limit 

both their portability and usage. Instead, they have been designed to be as small as possible 

to ensure portability so that users are able to enjoy the functions that the devices have to 

offer wherever and whenever they want.  Typically, a portable device is powered up by a 

power source that requires a charging and discharging process to maintain the function of 

the device.  The power source is a restricting factor where the utilization of dry cells can 

only support the functions of these devices for a specific time [1].  Additionally, the 

disposal of old dry cells also pollutes the environment as there are acidic elements within 

the cells.  Problems posed by the use of dry cells have been studied over the years with the 

intention of not only resolving the limitations of the dry cells but also attempting to 

eliminate their use entirely.   

 

The idea of harvesting energy from existing abundant natural resources has 

promoted the viability of a whole day long standby portable device.  Thus, green energy 

has been proposed worldwide as a form of sustainable new generation of power, harvested 

from the environment.  Among all natural resources, heat has probably received the most 

interest as heat can be obtained continuously from human daily activities.  Additionally, 

heat energy can readily be converted into electrical energy through the use of the 

thermoelectric generator (TEG). The TEG is attractive by its concise design with no 

moving parts and low maintenance [2].   
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Previous studies have shown that heat could be used as a power generation source.  

These studies have assisted in eliminating the need for charging and replacing batteries in 

applied applications [1].  At the same time, heat power generation has also assisted in the 

overall cost savings in terms of maintenance and labor.  The evolution of technology, 

particularly the development of wireless technologies and low powered electronics, has 

further encouraged the TEG to be applied in autonomous systems [3].   

 

Power supply is always a critical determination when dealing with autonomous 

systems.  This critical determination excites researchers to invest in studies on TEG 

modules applied within portable devices aimed at sustaining the operation of the device by 

the users themselves. In micro-scale applications for instance, there are suggestions that 

applying the TEG in medical devices could assist in continuous monitoring of patients 

while generating power from the patients’ body [4].  In macro-scale applications, the TEG 

has been applied on aircrafts [3], glass melt ovens [5] and nuclear dry cast storage [6].  The 

motivation for the macro-scale applications is to reduce reliability of power source on 

carbon and oil emission.   

 

The TEG is also known as a generator with low energy conversion not exceeding 

12% [7].  However, a proper power management system is required to ensure that the 

generated power is able to sustain operation of the whole power generation module.  It is 

thus the aim of this research to design a power management system with high accuracy of 

26.25 % of energy conversion efficiency for TEG based wearable devices.  

 

 

 

1.2 Problem Statement 

 

The TEG is very attractive in terms of its application due to the simplicity of the 

system in which no moving parts are involved [6].  However, its low energy conversion 

makes the design of a TEG based system difficult as power is generated based on heat 

conversion [8].  Therefore, there is a need for power dissipation being determined in the 

design criteria. The low generated power will not be able to support even low power 

electronic operations, making power generation a wasteful process.  
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These days, portable devices are typically equipped with built in batteries that need 

to be charged within specific periods.  The charging and discharging process reduces the 

life cycle of the batteries [9].  When the battery life expires, the compact design of the 

portable device needs to be disassembled to replace the battery. Such an action is an 

inconvenience.  The situation can also cause a rise in the cost of the device in terms of 

maintenance and manpower, which is not cost effective for long term usage.  

 

On the other hand, the thermoelectric power generation is directly proportional to 

the range of temperature gradient where the higher the temperature gradient, the more 

power is generated.  However, this limits the application of the TEG in an open 

environment as temperature gradients are low all the time resulting in low power generation.  

Low power generation of the TEG results in voltage generation in a much lower voltage 

rating, typically classified as an ultralow voltage region that has not been discussed much 

in previous research [10].  This situation limits the regulation of generated voltage as it is 

hard to find compatible circuit operating in ultralow voltage region.  Besides, temperature 

fluctuations also cause ripple in output power that is not suitable in Direct Current (DC) 

output systems.  Unstable DC power will cause output systems to have swing operations, 

causing improper system operations.  Therefore, a power regulation circuit is required to 

resolve the problems mentioned above.  The circuit works to filter unstable DC voltage at 

ultralow voltage region and amplify it to a higher level.   

 

As a conclusion, an ultralow voltage operated power management circuit is 

proposed to resolve the low energy conversion efficiency of TEG.  The power management 

circuit will be utilizing TEG sensors generating energy from human body temperature.  

Meanwhile, the energy harvesting method is set to be low temperature gradient that realize 

a self-sustain system.  Hence, this resolves the dependency of portable device on battery 

while improves the low energy conversion efficiency of TEG sensors in sustaining low 

powered electronic systems.   
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1.3 Research Objectives 

 

This research aims to accomplish the following objectives:  

i. To design an optimal power regulation system for a thermo-electric power 

harvesting system. 

ii. To prototype a power regulation system for the thermo-electric power harvesting 

system. 

iii. To characterize the system performance in terms of its efficiency by comparing the 

simulation results and bench marking it with other relevant methods mentioned in 

research scope.  

 

 

1.4 Scope of Research 

 

The followings represent the scope of this research: 

i) TEG based power management system design development restricted at 

ultralow voltage region. 

ii) Power management unit is simulated using LT Spice with 20 mV input voltage 

with temperature deviation of five to ten degree Celcius (to imitate the raw 

output adopted from the TEG by body temperature). 

iii) Step up based power management unit design (charge pump or boost converter) 

restricted with oscillator operated at 1.5 V. 

iv) Fabrication of the power management unit is based on the simulated design and 

results from both methods are compared. 

v) Analysis and optimization are based on two control parameters (switching 

frequency and charge capacitance) 

vi) Evaluation of power management system efficiency is aimed to achieve at least 

12 percent to overcome low energy conversion of TEG. 
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1.5 Significance of Study 

 

This study enhances the energy harvesting systems that operate to sustain low 

powered electronic systems.  As sustained power cuts down the cost for battery 

replacement in electronic devices, this study explores the potential of using human body 

temperature as a power generation source.  This further expands the possibility of power 

management systems obtained from this research to enhances the generated voltage from 

an ultralow voltage region to a low voltage region.  Additionally, this study also encourages 

further development of portable devices as the self-power sustained concept is not only a 

feasible option, but could also act as an unlimited power generation source.  Furthermore, 

it enhances the possibility of a continuous health monitoring system. By having such a self-

power sustained system, the risk of power failure of hospital facilities where lives are 

dependent on continuous power supply could be reduced.   

 

The contributions of this research are listed as follows: 

1) Explore the ultralow voltage region applications by utilizing human body 

temperature as a source for renewable energy conversion. 

2) Introduce power regulations in ultralow voltage region to further enhance the 

viability of ultralow voltage applications in renewable energy. 

3) Improve energy conversion efficiency by taking consideration of the worst energy 

conversion factor (i.e. low temperature differences) and improve it to a reliable 

rating.  

 

 

1.6 Thesis Outline 

 

The thesis consists of five chapters that are categorized as follows: 

 

Chapter 1 explains the viability of portable wearable thermoelectric devices, issues, 

motivation and scope of the study.  

 

Chapter 2 includes the literature review of past studies of thermoelectric applications, 

theories and power management methods that are applied to portable wearable devices. 
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Chapter 3 reveals the proposed techniques, software and hardware in proceeding with the 

research study.  

 

Chapter 4 analyses and characterizes the results of the performance of multiple sensors in 

array configurations. 

 

Chapter 5 discusses the results for both simulation and practical model of the proposed 

power conditioning system. 

 

Chapter 6 summarizes the research study with future recommendations for further 

improvement. 
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